DE585151C - Nickel-iron alloy spring, especially for thermocompensated oscillating systems - Google Patents

Nickel-iron alloy spring, especially for thermocompensated oscillating systems

Info

Publication number
DE585151C
DE585151C DEST48650D DEST048650D DE585151C DE 585151 C DE585151 C DE 585151C DE ST48650 D DEST48650 D DE ST48650D DE ST048650 D DEST048650 D DE ST048650D DE 585151 C DE585151 C DE 585151C
Authority
DE
Germany
Prior art keywords
nickel
thermocompensated
iron alloy
alloy spring
oscillating systems
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
DEST48650D
Other languages
German (de)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DEST48650D priority Critical patent/DE585151C/en
Application granted granted Critical
Publication of DE585151C publication Critical patent/DE585151C/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/20Compensation of mechanisms for stabilising frequency
    • G04B17/22Compensation of mechanisms for stabilising frequency for the effect of variations of temperature
    • G04B17/227Compensation of mechanisms for stabilising frequency for the effect of variations of temperature composition and manufacture of the material used

Landscapes

  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Springs (AREA)

Description

Feder aus Nickel-Eisen-Legierung, insbesondere für thermokompensierte Schwingsysteme Die bekannten Federn für thermokompensierte Schwingsysteme, z. B. Spiralfedern für Uhren, werden aus Stahl, Nickelstahl oder Elinvar hergestellt. Alle diese Legierungen haben den Nachteil, zu rosten und magnetisch zu sein. Nach dem Hauptpatent wird nun bei Nickel-Eisen-Legierungen durch Zusätze von bis zu 304 Wolfram, Molybdän, Chrom, Beryllium usw. erreicht, daß die Legierungen neben der beliebigen Einstellung ihres thermoelastischenKoeffizienten durch die mengenmäßige Abstimmung der Zusätze weitgehend rostsicher und unmagnetisch werden. Bei für thermokompensierte Schwingsysteme verwendeten Legierungsreihen kommt der thermoelastische Koeffizient auf die negative Seite des Kurvenverlaufs zu liegen, einmal bei Nikkelgehalten von weniger als 32 "1" im aufsteigenden Ast und dann bei Nickelgehalten von mehr als 36 "I" im abfallenden Ast der Wertkurve. Die bisher für diese Zwecke verwendeten Legierungen haben in der Regel Nickelgehalte unter 32 "/", die somit in dem bisher empfohlenen negativen Bereich des den thermoelastischen Koeffizienten darstellenden Kurvenverlaufs liegen. Um nun die Rostsicherheit und Unempfindlichkeit gegen Magnetismus zu erhöhen, wird für die Spiralfeder aus Nickel-Eisen-Legierung, welche den Gegenstand der Erfindung bildet, eine Legierung mit mehr als 36 "f" Nickel .und derart mengenmäßig abgestimmten Zusätzen bis zu insgesamt 40 "/" Wolfram, Chrom, Molybdän, Beryllium, Mangan usw. verwendet, daß unter Erzielung der gewünschten Härte anläßlich des Fixierens der Feder bei hoherTemperatur der thermoelastische Koeffizient derselben in den für absolute Rostfreiheit und Magnetunempfindlichkeit maßgebenden Bereich des abfallenden Astes seiner Wertkurve zu liegen kommt. Die Dosierung der Zusätze kann dabei so gewählt werden, daß sich das Material sowohl zur Herstellung von thermokompensierten rostfreien und unmagnetischen Schwingungsfedern als auch zur Herstellung von rostsicheren und unmagnetischen Triebfedern eignet.Spring made of nickel-iron alloy, especially for thermocompensated vibration systems. The known springs for thermocompensated vibration systems, e.g. B. Coil springs for watches are made of steel, nickel steel or Elinvar. All of these alloys have the disadvantage of rusting and being magnetic. According to the main patent, the addition of up to 304 tungsten, molybdenum, chromium, beryllium etc. to nickel-iron alloys ensures that the alloys are largely rustproof and non-magnetic due to the arbitrary adjustment of their thermoelastic coefficients through the quantitative adjustment of the additives. In the case of alloy series used for thermocompensated oscillating systems, the thermoelastic coefficient is on the negative side of the curve, once with nickel contents of less than 32 "1" in the ascending branch and then with nickel contents of more than 36 "I" in the descending branch of the value curve. The alloys previously used for this purpose generally have nickel contents below 32 "/", which are therefore in the previously recommended negative range of the curve shape representing the thermoelastic coefficient. In order to increase the rust resistance and insensitivity to magnetism, an alloy with more than 36 "f" nickel. / "Tungsten, chromium, molybdenum, beryllium, manganese etc. are used so that when the desired hardness is achieved, the thermoelastic coefficient of the spring comes to lie in the region of the sloping branch of its value curve, which is decisive for absolute freedom from rust and magnetic insensitivity. The dosage of the additives can be chosen so that the material is suitable both for the production of thermocompensated rust-free and non-magnetic oscillation springs and for the production of rust-proof and non-magnetic drive springs.

Es können für diese neuartige Feder an und für sich bekannte Legierungsgattungen verwendet und ihre Legierungsbestandteile mengenmäßig derart abgestimmt werden, daß sie sich für die beschriebenen Kompensationszwecke eignen. So stellt z. B. eine Legierung aus 6o % Nickel, 16 % Eisen, 15 "/" Chrom, 2 "/" Mangan, 6,5 "/" Malybdän und o,5 "J" Beryllium ein Material dar, das hinsichtlich des thermoelastischen Koeffizienten Werte ergibt, die auf der negativen Seitc der Kurve im abfallenden Ast derselben liegen.Alloys known per se can be used for this new type of spring and their alloy constituents can be adjusted in terms of quantity in such a way that they are suitable for the compensation purposes described. So z. B. an alloy of 60% nickel, 16 % iron, 15 "/" chromium, 2 "/" manganese, 6.5 "/" Malybdenum and 0.5 "J" beryllium is a material that has values in terms of the thermoelastic coefficient results, which are on the negative Seitc of the curve in the sloping branch of the same.

Claims (1)

PATENTANSPRUCH: Feder aus Nickel-Eisen-Legierung, insbesondere für thermokompensierte Schwingsysteme, nach dem Hauptpatent, dadurch gekennzeichnet, daß die Nickel-Eisen-Legierung mit 35 bis 7d-% Nickel unter Anwendung von o,t bis 3,°% Beryllium und eines insgesamt bis zu 40 °,!o gehenden Zusatzes von Wolfram, Chrom, Molybdän, Mangan usw. mengenmäßig derart abgestimmt wird, daß unter Erzielung der gewünschten Härte anläßlich des Fixierens der Feder bei hoher Temperatur der thermoelastische Koeffizient derselben in den für absolute Rostfreiheit und Magnetunempfindlichkeit maßgebenden Bereich des abfallenden Astes seiner Wertkurve zu liegen kommt.PATENT CLAIM: Spring made of nickel-iron alloy, especially for thermocompensated oscillation systems, according to the main patent, characterized by that the nickel-iron alloy with 35 to 7d-% nickel using o, t to 3% beryllium and a total of up to 40% addition of tungsten, Chromium, molybdenum, manganese, etc. is matched in terms of quantity in such a way that while achieving the desired hardness on the occasion of fixing the spring at a high temperature of the thermoelastic coefficient of the same in the for absolute rust-free and magnetic insensitivity relevant area of the sloping branch of its value curve comes to lie.
DEST48650D 1931-12-05 1931-12-05 Nickel-iron alloy spring, especially for thermocompensated oscillating systems Expired DE585151C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DEST48650D DE585151C (en) 1931-12-05 1931-12-05 Nickel-iron alloy spring, especially for thermocompensated oscillating systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DEST48650D DE585151C (en) 1931-12-05 1931-12-05 Nickel-iron alloy spring, especially for thermocompensated oscillating systems

Publications (1)

Publication Number Publication Date
DE585151C true DE585151C (en) 1933-09-29

Family

ID=7465683

Family Applications (1)

Application Number Title Priority Date Filing Date
DEST48650D Expired DE585151C (en) 1931-12-05 1931-12-05 Nickel-iron alloy spring, especially for thermocompensated oscillating systems

Country Status (1)

Country Link
DE (1) DE585151C (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE751177C (en) * 1936-06-28 1951-08-06 Heraeus Vacuumschmelze Ag Iron alloy for practically non-magnetic objects, which should have high hardness, a small temperature coefficient of the elastic modulus and a low secondary error
US2805945A (en) * 1949-01-28 1957-09-10 Straumann Reinhard Mainspring composed of nickel base alloys

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE751177C (en) * 1936-06-28 1951-08-06 Heraeus Vacuumschmelze Ag Iron alloy for practically non-magnetic objects, which should have high hardness, a small temperature coefficient of the elastic modulus and a low secondary error
US2805945A (en) * 1949-01-28 1957-09-10 Straumann Reinhard Mainspring composed of nickel base alloys

Similar Documents

Publication Publication Date Title
DE585151C (en) Nickel-iron alloy spring, especially for thermocompensated oscillating systems
DE1240672B (en) Use of an iron-chromium alloy for the production of objects with temperature-independent magnetic permeability
DE3248134A1 (en) HIGH-STRENGTH AND CORROSION-RESISTANT SINGLE-CRYSTAL OBJECT FROM A NICKEL-BASED ALLOY
CH166535A (en) Nickel iron alloy spring, especially for thermo-compensated oscillating systems.
DE649811C (en) Nickel iron alloy spring with hardening beryllium addition
DE1783136B1 (en) USE OF A GOOD MACHINABLE STAINLESS MAGNETIC SOFT CHROME STEEL FOR SOLENOID VALVES
CH306697A (en) Iron-nickel-cobalt alloy, particularly suitable for watch springs.
DE659529C (en) Payable rustproof chrome steel
DE1558643B2 (en) Non-magnetic nickel-chromium-iron alloy and its use for watch springs
DE652472C (en) Steel alloy for non-magnetic bandages
DE880449C (en) Compensation process for the production of a modulus of elasticity that changes in a predetermined manner with temperature
DE891399C (en) Austenitic steel alloys for objects that are exposed to heat during manufacture or in operation
AT158766B (en) Structural steel made of austenitic chromium-nickel steels that is exposed to high temperatures.
DE754955C (en) Nickel iron alloy spring with hardening beryllium for thermocompensated oscillating systems
CH227628A (en) Nickel-iron alloy spring, especially for thermocompensated oscillating systems.
DE896659C (en) Steel for objects, the production of which requires a high degree of cold forming of the material
DE678854C (en) Permanent magnet steel
AT158971B (en) Process for the production of steel alloys for objects which must have high fatigue strength at high temperatures.
DE707151C (en) Nickel-iron alloy spring with hardening beryllium addition
AT202171B (en) Forgeable ferritic steel alloy with high fatigue strength at elevated temperatures.
DE705615C (en) Chrome steel for permanent magnets
AT159580B (en) Chromium-cobalt magnetic steel.
CH196408A (en) Nickel iron alloy spring with hardening beryllium additive for thermo-compensated oscillating systems.
DE578390C (en) Nickel iron alloy spring, especially for thermo-compensated oscillating systems
CH337788A (en) Process for the production of a self-compensating spring element