DE585151C - Nickel-iron alloy spring, especially for thermocompensated oscillating systems - Google Patents
Nickel-iron alloy spring, especially for thermocompensated oscillating systemsInfo
- Publication number
- DE585151C DE585151C DEST48650D DEST048650D DE585151C DE 585151 C DE585151 C DE 585151C DE ST48650 D DEST48650 D DE ST48650D DE ST048650 D DEST048650 D DE ST048650D DE 585151 C DE585151 C DE 585151C
- Authority
- DE
- Germany
- Prior art keywords
- nickel
- thermocompensated
- iron alloy
- alloy spring
- oscillating systems
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B17/00—Mechanisms for stabilising frequency
- G04B17/20—Compensation of mechanisms for stabilising frequency
- G04B17/22—Compensation of mechanisms for stabilising frequency for the effect of variations of temperature
- G04B17/227—Compensation of mechanisms for stabilising frequency for the effect of variations of temperature composition and manufacture of the material used
Landscapes
- Engineering & Computer Science (AREA)
- Metallurgy (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Springs (AREA)
Description
Feder aus Nickel-Eisen-Legierung, insbesondere für thermokompensierte Schwingsysteme Die bekannten Federn für thermokompensierte Schwingsysteme, z. B. Spiralfedern für Uhren, werden aus Stahl, Nickelstahl oder Elinvar hergestellt. Alle diese Legierungen haben den Nachteil, zu rosten und magnetisch zu sein. Nach dem Hauptpatent wird nun bei Nickel-Eisen-Legierungen durch Zusätze von bis zu 304 Wolfram, Molybdän, Chrom, Beryllium usw. erreicht, daß die Legierungen neben der beliebigen Einstellung ihres thermoelastischenKoeffizienten durch die mengenmäßige Abstimmung der Zusätze weitgehend rostsicher und unmagnetisch werden. Bei für thermokompensierte Schwingsysteme verwendeten Legierungsreihen kommt der thermoelastische Koeffizient auf die negative Seite des Kurvenverlaufs zu liegen, einmal bei Nikkelgehalten von weniger als 32 "1" im aufsteigenden Ast und dann bei Nickelgehalten von mehr als 36 "I" im abfallenden Ast der Wertkurve. Die bisher für diese Zwecke verwendeten Legierungen haben in der Regel Nickelgehalte unter 32 "/", die somit in dem bisher empfohlenen negativen Bereich des den thermoelastischen Koeffizienten darstellenden Kurvenverlaufs liegen. Um nun die Rostsicherheit und Unempfindlichkeit gegen Magnetismus zu erhöhen, wird für die Spiralfeder aus Nickel-Eisen-Legierung, welche den Gegenstand der Erfindung bildet, eine Legierung mit mehr als 36 "f" Nickel .und derart mengenmäßig abgestimmten Zusätzen bis zu insgesamt 40 "/" Wolfram, Chrom, Molybdän, Beryllium, Mangan usw. verwendet, daß unter Erzielung der gewünschten Härte anläßlich des Fixierens der Feder bei hoherTemperatur der thermoelastische Koeffizient derselben in den für absolute Rostfreiheit und Magnetunempfindlichkeit maßgebenden Bereich des abfallenden Astes seiner Wertkurve zu liegen kommt. Die Dosierung der Zusätze kann dabei so gewählt werden, daß sich das Material sowohl zur Herstellung von thermokompensierten rostfreien und unmagnetischen Schwingungsfedern als auch zur Herstellung von rostsicheren und unmagnetischen Triebfedern eignet.Spring made of nickel-iron alloy, especially for thermocompensated vibration systems. The known springs for thermocompensated vibration systems, e.g. B. Coil springs for watches are made of steel, nickel steel or Elinvar. All of these alloys have the disadvantage of rusting and being magnetic. According to the main patent, the addition of up to 304 tungsten, molybdenum, chromium, beryllium etc. to nickel-iron alloys ensures that the alloys are largely rustproof and non-magnetic due to the arbitrary adjustment of their thermoelastic coefficients through the quantitative adjustment of the additives. In the case of alloy series used for thermocompensated oscillating systems, the thermoelastic coefficient is on the negative side of the curve, once with nickel contents of less than 32 "1" in the ascending branch and then with nickel contents of more than 36 "I" in the descending branch of the value curve. The alloys previously used for this purpose generally have nickel contents below 32 "/", which are therefore in the previously recommended negative range of the curve shape representing the thermoelastic coefficient. In order to increase the rust resistance and insensitivity to magnetism, an alloy with more than 36 "f" nickel. / "Tungsten, chromium, molybdenum, beryllium, manganese etc. are used so that when the desired hardness is achieved, the thermoelastic coefficient of the spring comes to lie in the region of the sloping branch of its value curve, which is decisive for absolute freedom from rust and magnetic insensitivity. The dosage of the additives can be chosen so that the material is suitable both for the production of thermocompensated rust-free and non-magnetic oscillation springs and for the production of rust-proof and non-magnetic drive springs.
Es können für diese neuartige Feder an und für sich bekannte Legierungsgattungen verwendet und ihre Legierungsbestandteile mengenmäßig derart abgestimmt werden, daß sie sich für die beschriebenen Kompensationszwecke eignen. So stellt z. B. eine Legierung aus 6o % Nickel, 16 % Eisen, 15 "/" Chrom, 2 "/" Mangan, 6,5 "/" Malybdän und o,5 "J" Beryllium ein Material dar, das hinsichtlich des thermoelastischen Koeffizienten Werte ergibt, die auf der negativen Seitc der Kurve im abfallenden Ast derselben liegen.Alloys known per se can be used for this new type of spring and their alloy constituents can be adjusted in terms of quantity in such a way that they are suitable for the compensation purposes described. So z. B. an alloy of 60% nickel, 16 % iron, 15 "/" chromium, 2 "/" manganese, 6.5 "/" Malybdenum and 0.5 "J" beryllium is a material that has values in terms of the thermoelastic coefficient results, which are on the negative Seitc of the curve in the sloping branch of the same.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DEST48650D DE585151C (en) | 1931-12-05 | 1931-12-05 | Nickel-iron alloy spring, especially for thermocompensated oscillating systems |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DEST48650D DE585151C (en) | 1931-12-05 | 1931-12-05 | Nickel-iron alloy spring, especially for thermocompensated oscillating systems |
Publications (1)
Publication Number | Publication Date |
---|---|
DE585151C true DE585151C (en) | 1933-09-29 |
Family
ID=7465683
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DEST48650D Expired DE585151C (en) | 1931-12-05 | 1931-12-05 | Nickel-iron alloy spring, especially for thermocompensated oscillating systems |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE585151C (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE751177C (en) * | 1936-06-28 | 1951-08-06 | Heraeus Vacuumschmelze Ag | Iron alloy for practically non-magnetic objects, which should have high hardness, a small temperature coefficient of the elastic modulus and a low secondary error |
US2805945A (en) * | 1949-01-28 | 1957-09-10 | Straumann Reinhard | Mainspring composed of nickel base alloys |
-
1931
- 1931-12-05 DE DEST48650D patent/DE585151C/en not_active Expired
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE751177C (en) * | 1936-06-28 | 1951-08-06 | Heraeus Vacuumschmelze Ag | Iron alloy for practically non-magnetic objects, which should have high hardness, a small temperature coefficient of the elastic modulus and a low secondary error |
US2805945A (en) * | 1949-01-28 | 1957-09-10 | Straumann Reinhard | Mainspring composed of nickel base alloys |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE585151C (en) | Nickel-iron alloy spring, especially for thermocompensated oscillating systems | |
DE1240672B (en) | Use of an iron-chromium alloy for the production of objects with temperature-independent magnetic permeability | |
AT146720B (en) | Manufacture of objects that must have special strength properties, in particular high vibration resistance and / or should have high resistance to becoming brittle due to intergranular corrosion. | |
CH166535A (en) | Nickel iron alloy spring, especially for thermo-compensated oscillating systems. | |
DE4118437A1 (en) | HIGH SILICON, CORROSION-RESISTANT, AUSTENITIC STEEL | |
DE649811C (en) | Nickel iron alloy spring with hardening beryllium addition | |
DE1783136B1 (en) | USE OF A GOOD MACHINABLE STAINLESS MAGNETIC SOFT CHROME STEEL FOR SOLENOID VALVES | |
CH306697A (en) | Iron-nickel-cobalt alloy, particularly suitable for watch springs. | |
DE659529C (en) | Payable rustproof chrome steel | |
AT160410B (en) | Valve cone for internal combustion engines. | |
DE1558643B2 (en) | Non-magnetic nickel-chromium-iron alloy and its use for watch springs | |
DE652472C (en) | Steel alloy for non-magnetic bandages | |
AT142097B (en) | Rust-proof molybdenum-copper-chromium steels. | |
DE880449C (en) | Compensation process for the production of a modulus of elasticity that changes in a predetermined manner with temperature | |
DE891399C (en) | Austenitic steel alloys for objects that are exposed to heat during manufacture or in operation | |
AT158766B (en) | Structural steel made of austenitic chromium-nickel steels that is exposed to high temperatures. | |
DE754955C (en) | Nickel iron alloy spring with hardening beryllium for thermocompensated oscillating systems | |
CH227628A (en) | Nickel-iron alloy spring, especially for thermocompensated oscillating systems. | |
DE896659C (en) | Steel for objects, the production of which requires a high degree of cold forming of the material | |
DE678854C (en) | Permanent magnet steel | |
DE707151C (en) | Nickel-iron alloy spring with hardening beryllium addition | |
AT202171B (en) | Forgeable ferritic steel alloy with high fatigue strength at elevated temperatures. | |
DE840766C (en) | Alloy for springs, especially for clocks and apparatus | |
DE705615C (en) | Chrome steel for permanent magnets | |
AT159580B (en) | Chromium-cobalt magnetic steel. |