DE4226749C2 - Method for determining variables that characterize driving behavior - Google Patents

Method for determining variables that characterize driving behavior

Info

Publication number
DE4226749C2
DE4226749C2 DE4226749A DE4226749A DE4226749C2 DE 4226749 C2 DE4226749 C2 DE 4226749C2 DE 4226749 A DE4226749 A DE 4226749A DE 4226749 A DE4226749 A DE 4226749A DE 4226749 C2 DE4226749 C2 DE 4226749C2
Authority
DE
Germany
Prior art keywords
derived
vehicle
equations
variables
driving behavior
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE4226749A
Other languages
German (de)
Other versions
DE4226749A1 (en
Inventor
Avshalom Dipl Ing Suissa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
Daimler Benz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler Benz AG filed Critical Daimler Benz AG
Priority to DE4226749A priority Critical patent/DE4226749C2/en
Priority to GB9314918A priority patent/GB2269571B/en
Priority to ITRM930544A priority patent/IT1261511B/en
Priority to FR9309863A priority patent/FR2694808B1/en
Priority to SE9302610A priority patent/SE513553C2/en
Publication of DE4226749A1 publication Critical patent/DE4226749A1/en
Application granted granted Critical
Publication of DE4226749C2 publication Critical patent/DE4226749C2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1755Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
    • B60T8/17551Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve determining control parameters related to vehicle stability used in the regulation, e.g. by calculations involving measured or detected parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/172Determining control parameters used in the regulation, e.g. by calculations involving measured or detected parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/04Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to forces disturbing the intended course of the vehicle, e.g. forces acting transversely to the direction of vehicle travel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/14Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
    • B62D7/15Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels
    • B62D7/159Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels characterised by computing methods or stabilisation processes or systems, e.g. responding to yaw rate, lateral wind, load, road condition
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0891Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for land vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2230/00Monitoring, detecting special vehicle behaviour; Counteracting thereof
    • B60T2230/02Side slip angle, attitude angle, floating angle, drift angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/30ESP control system
    • B60T2270/313ESP control system with less than three sensors (yaw rate, steering angle, lateral acceleration)

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Navigation (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Bestimmung das Fahr­ verhalten charakterisierender Größen gemäß dem Oberbegriff des Patentanspruches 1.The invention relates to a method for determining the driving behavior characteristic quantities according to the generic term of Claim 1.

Es ist ein lineares Einspurmodell eines Fahrzeuges bekannt, bei dem die Höhe des Schwerpunktes des Fahrzeuges vernachlässigt wird. Somit wird in dieser Näherung der Schwerpunkt des Fahr­ zeuges in die Ebene der Aufstandspunkte der Räder verlegt. Da somit Wank- und Nickbewegungen ausgeschlossen sind, können bei diesem Modell die Räder einer Achse zu einem Rad in der Mitte der Achse vereinigt werden. Dieses Modell ist beispielsweise in DE-Buch: Zomotor, Adam: Fahrwerktechnik, Fahrverhalten, Hrsg. Jörnsen Reimpell, Würzburg: Vogel 1987, ISBN 3-8023-0774-7 auf den Seiten 99 bis 116 beschrieben.A linear single-track model of a vehicle is known from which neglects the height of the center of gravity of the vehicle becomes. Thus, in this approximation, the focus of the driving stuff in the plane of the contact points of the wheels. There thus roll and pitch movements are excluded, can this model the wheels of an axle to a wheel in the middle of the axis. This model is for example in DE-Buch: Zomotor, Adam: Chassis technology, driving behavior, ed. Jörnsen Reimpell, Würzburg: Vogel 1987, ISBN 3-8023-0774-7 pages 99 to 116.

Dieser Darstellung ist dabei nicht zu entnehmen, wie das Fahr­ verhalten charakterisierende Größen in Abhängigkeit von gemes­ senen Größen bestimmt werden können.This representation does not show how driving behavioral characteristic quantities depending on measured whose sizes can be determined.

Aus der DE 36 08 420 C2 ist es bekannt, die Größen Fahrzeuglängsgeschwindigkeit, Fahrzeugquerbeschleunigung und Gierwinkelgeschwindigkeit zu messen und zur Berechnung eines Schwimmwinkels heranzuziehen. Zur Berechnung wird ein die Eigenschaften des Fahrzeuge an sich berücksichtigendes Fahrzeugmodell herangezogen.From DE 36 08 420 C2 it is known to measure the vehicle longitudinal speed, Vehicle lateral acceleration and yaw rate to measure and calculate a float angle to use. The properties are used for the calculation of the vehicle itself taking into account the vehicle model used.

Aufgabe der Erfindung ist es, ein Verfahren zur Bestimmung das Fahrverhalten charakterisierender Größen derart auszugestalten, daß eine möglichst gute Meßgenauigkeit bei einem möglichst ge­ ringen Aufwand an benötigter Hardware erzielt werden kann. The object of the invention is to provide a method for determining the To design driving characteristics of characteristic quantities in such a way that the best possible measurement accuracy with a possible ge effort required hardware can be achieved.  

Diese Aufgabe wird bei einem gattungsgemäßen Verfahren zur Be­ stimmung das Fahrverhalten charakterisierender Größen erfindungsgemäß mit den kennzeichnenden Merkmalen des An­ spruchs 1 gelöst, wobei die Merkmale der Unteransprüche vor­ teilhafte Aus- und Weiterbildungen kennzeichnen.This task is in a generic method for loading parameters that characterize the driving behavior according to the invention with the characteristic features of the An solved claim 1, wherein the features of the subclaims Mark partial training and further education.

Das erfindungsgemäße Verfahren zeigt Vorteile auf dahingehend, daß Eingangsgrößen in Form von Steuer- und Störeingängen nicht bekannt sein müssen, daß keine Fahrzeugparameter benötigt wer­ den und daß sowohl kleine als auch große Schwimmwinkel ge­ schätzt werden können.The method according to the invention shows advantages in that that input variables in the form of control and fault inputs are not must be known that no vehicle parameters are needed that and that both small and large float angles can be estimated.

Die vorliegende Erfindung betrifft ein Verfahren zur Bestimmung das Fahrverhalten charakterisierender Größen, bei dem Sensoren in dem Fahrzeug eingebaut sind, die die Längsbeschleunigung ax und die Querbeschleunigung ay des Fahrzeuges im Schwerpunkt, die Gierwinkelgeschwindigkeit Ωz sowie die Fahrzeuggeschwin­ digkeit in Längsrichtung vx unmittelbar messen. Aus diesen Größen kann dann die Fahrzeuggeschwindigkeit in Querrichtung vy und/oder der Schwimmwinkel β ermittelt werden. Dabei gilt die Beziehung:The present invention relates to a method for determining the driving behavior characterizing quantities, in which sensors are installed in the vehicle, the longitudinal acceleration a x and the lateral acceleration a y of the vehicle in the center of gravity, the yaw rate Ω z and the vehicle speed in the longitudinal direction v x directly measure up. The vehicle speed in the transverse direction v y and / or the slip angle β can then be determined from these variables. The relationship applies:

β = -arctan(vy/vx) (1).β = arctan (v y / v x ) (1).

Im folgenden wird ein Modell aufgezeigt, bei dem die Fahrzeug­ geschwindigkeit in Querrichtung vy ermittelt wird. Daraus kann dann gemäß der Gleichung (1) der Schwimmwinkel β ermittelt werden. Dieses Modell beruht darauf, daß die Geschwindigkeits­ komponenten über die Drehgeschwindigkeiten um die Längs-, Hoch- und Querachse gekoppelt sind.In the following, a model is shown in which the vehicle speed in the transverse direction v y is determined. The float angle β can then be determined from this in accordance with equation (1). This model is based on the fact that the speed components are coupled via the rotational speeds around the longitudinal, vertical and transverse axes.

Nach DIN 70 000 ergeben sich folgende die Bewegung charakteri­ sierenden Differentialgleichungen:According to DIN 70 000, the following characterize the movement differential equations:

dvx/dt + Ωy * vz - Ωz * vy = Fx/m (2)dv x / dt + Ω y * v z - Ω z * v y = F x / m (2)

dvy/dt + Ωz * vx - Ωx * vz = Fy/m (3)dv y / dt + Ω z * v x - Ω x * v z = F y / m (3)

dvz/dt + Ωx * vy - Ωy * vx = Fz/m (4)dv z / dt + Ω x * v y - Ω y * v x = F z / m (4)

undand

Ixx *x/dt + (Izz - Iyy) * Ωy * Ωz + Mx (5)I xx *x / dt + (I zz - I yy ) * Ω y * Ω z + M x (5)

Iyy *y/dt + (Ixx - Izz) * Ωx * Ωz = My (6)I yy *y / dt + (I xx - I zz ) * Ω x * Ω z = M y (6)

Izz *z/dt + (Iyy - Ixx) * Ωy * Ωx = Mz (7)I zz *z / dt + (I yy - I xx ) * Ω y * Ω x = M z (7)

Dabei sind die Größen Fx, Fy und Fz die Kräfte, die in die Richtung entsprechend dem Index wirken, die Größen Mx, My und Mz die Momente um die durch den Index bezeichneten Achsen, die Größen Ixx, Iyy und Izz die Trägheitsmomente bezüglich der durch die Indices bezeichneten Achsen und die Größe m ist die Fahrzeugmasse.The quantities F x , F y and F z are the forces which act in the direction corresponding to the index, the quantities M x , M y and M z the moments about the axes indicated by the index, the quantities I xx , I yy and I zz are the moments of inertia with respect to the axles indicated by the indices and the size m is the vehicle mass.

Zur Vereinfachung der weiteren mathematischen Behandlung wird nun ein lineares Zustandsmodell vorgeschlagen. Dabei wird vor­ ausgesetzt, daß die Drehgeschwindigkeiten Ω genau gemessen werden können. In Matrix-Darstellung ergibt sich damit ein Sy­ stem von Differentialgleichungen:To simplify further mathematical treatment now proposed a linear state model. Doing so exposed that the rotational speeds Ω measured accurately can be. In the matrix representation, this results in a Sy stem of differential equations:

Den letzten Summanden der Gleichung (8) (Fx/m, Fy/m, Fz/m)T kann man durch das gemessene Beschleunigungssignal (ax, ay, Az)T sowie die Erdbeschleunigung g ausdrücken:The last summand of equation (8) (F x / m, F y / m, F z / m) T can be expressed by the measured acceleration signal (a x , a y , A z ) T and the gravitational acceleration g:

Somit ergibt sich eine bezüglich der Geschwindigkeitskomponenten (vx, vy, vz)T lineare Zustandsdifferentialgleichung:This results in a linear differential equation with respect to the velocity components (v x , v y , v z ) T :

Die Winkel Γ (Nicken), Φ (Wanken) und Π (Gieren) sind Kardan- Lagewinkel und beschreiben die Transformation des geodätischen Koordinatensystems in das fahrzeugfeste Koordinatensystem.The angles Γ (pitch), Φ (roll) and Π (yaw) are gimbals Position angle and describe the transformation of the geodesic Coordinate system in the vehicle-fixed coordinate system.

Weitere Vereinfachungen des obigen Modells ergeben sich, wenn man annimmt, daß sich das Fahrzeug auf einer Ebene befindet (d. h., daß die Kardan-Lagewinkel vernachlässigbar sind), wenn die Komponenten vx und vy als Längs- und Quergeschwindigkeit be­ trachtet werden (d. h., wenn der Einfluß der Aufbauwinkel ver­ nachlässigt wird). Wenn keine Nick- oder Wankbewegungen des Fahrzeuges auftreten, sind somit die Terme Ωy*yz, Ωy*vx, Ωx*vz, Ωx*vy sämtlich gleich 0. Das Gleichungssystem (10) vereinfacht sich dann zu:Further simplifications of the above model result if one assumes that the vehicle is on one plane (that is, that the cardan-bearing angles are negligible), if the components v x and v y are considered to be longitudinal and transverse speeds (ie , if the influence of the construction angle is neglected). If there are no pitching or rolling movements of the vehicle, the terms Ω y * y z , Ω y * v x , Ω x * v z , Ω x * v y are all equal to 0. The system of equations (10) is then simplified :

Es ist grundsätzlich möglich, die Zustandsgrößen (vx, vy)T aus der Gleichung (11) durch Integration zu erhalten. Durch die Instabilität der Gleichung (11) können dabei jedoch Fehler auftreten.In principle, it is possible to obtain the state variables (v x , v y ) T from equation (11) by integration. However, the instability of equation (11) can lead to errors.

Dadurch, daß die Geschwindigkeit in Längsrichtung vx meßbar ist, ist die Geschwindigkeit in Querrichtung vy beobachtbar. Im folgenden wird der Beobachterentwurf für vy angegeben.Because the speed in the longitudinal direction v x can be measured, the speed in the transverse direction v y can be observed. The observer design for v y is given below.

Die Differentialgleichung (11) hat die folgenden allgemeine Zustandsraumdarstellung:The differential equation (11) has the following general ones State space representation:

dx/dt + A(t)x + u(t) (12)dx / dt + A (t) x + u (t) (12)

Dabei gilt für die zugehörige Meßgleichung:The following applies to the associated measurement equation:

y = cT * x(t) = (10)Tx(t) + vx (13)y = c T * x (t) = (10) T x (t) + v x (13)

Diesem allgemeinen Ansatz eines Gleichungssystems entspricht bei dem vorliegenden Modell:This general approach of a system of equations corresponds to the present model:

Durch die an sich bekannte Transformation in die Beobachtungsnormalform erhält man aus den Gleichungen (12) und (13) den vollständigen Beobachter der Form:Through the known transformation into the normal observation form is obtained from equations (12) and (13) full observer of the form:

dx/dt + (A(t) - k(t) * cT)t))x + k(t) * y + u(t) (15)d x / dt + (A (t) - k (t) * c T ) t)) x + k (t) * y + u (t) (15)

mit der Meßgleichungwith the measurement equation

y + cT * x(t) = (10)Tx(t) + vx (16)y + c T * x (t) = (10) T x (t) + v x (16)

Dabei beziehen sich die unterstrichenen Vektoren auf die Dar­ stellung in der Beobachtungsnormalform. Die Größe k(t) ist die Beobachterverstärkung k(t)=(k1, k2)T. Schreibt man die Gleichung (15) explizit aus, ergibt sich:The underlined vectors relate to the representation in the normal observation form. The quantity k (t) is the observer gain k (t) = (k 1 , k 2 ) T. If you explicitly write out equation (15), you get:

dx₁/dt = x* Ωz + k₁ * (y-x₁) + ax (17)d x ₁ / dt = x* Ω z + k₁ * (y- x ₁) + a x (17)

dx₂/dt + -x* Ωz + k₂ * (y-x₁) + ay (18)d x ₂ / dt + - x* Ω z + k₂ * (y- x ₁) + a y (18)

Die Bestimmung der Beobachterverstärkung k(t) ist Stand der Technik als Methode von Prof. O. Föllinger: "Entwurf zeitvarianter Systeme durch Polvorgabe". Diese Methode ist darge­ stellt im International Journal of Control, 1983 Volume 38 No. 2, Seiten 419 bis 431 in dem Artikel von Bestle und Zeitz: Canonical form observer design for non-linear time-variable systems; dort insbesondere auf S. 421. Es ergibt sich aus dieser Literatur­ stelle der sogenannte Luebberger-Beobachter der Form:The determination of the observer gain k (t) is state of the art Technology as a method by Prof. O. Föllinger: "Design time-variant systems due to pole specification ". This method is shown published in the International Journal of Control, 1983 Volume 38 No. 2, Pages 419 to 431 in the article by Bestle and Zeitz: Canonical form observer design for non-linear time-variable systems; there in particular on p. 421. It follows from this literature put the so-called Luebberger observer of the form:

Dabei sind die Größen p0 und p1 frei wählbar als Koreffizienten des charakteristischen Polynoms.The sizes p 0 and p 1 are freely selectable as coefficients of the characteristic polynomial.

Alternativ dazu ist es möglich, die Beobachterverstärkung mittels eines Kalman-Filters zu bestimmen. Eine derartige Methode ist in dem Buch von Brammer/Siffling: "Kalman-Bucy-Filter" in der Reihe "Methoden der Regelungstechnik" im Verlag R. Oldenbourg in München, Wien aus dem Jahre 1985 beschrieben. Es ergibt sich dabei folgendes Gleichungssystem bestehend aus den Gleichungen (20), (21), (22), (23):Alternatively, it is possible to use the observer gain of a Kalman filter. One such method is in the book by Brammer / Siffling: "Kalman-Bucy-Filter" in the series "Methods of Control Engineering" by R. Oldenbourg in Munich, Vienna from 1985. It follows the following system of equations consisting of the equations (20), (21), (22), (23):

dp₁₁/dt = -2 * p₂₁ *z/dt - p₂₁ * /R₁₁ + Qk11 (20)dp₁₁ / dt = -2 * p₂₁ *z / dt - p₂₁ * / R₁₁ + Q k11 (20)

dp₂₁/dt = -p₂₂ *z/dt + p₁₁ *z/dt - p₂₁ * p₂₂/R₁₁ + Qk21 (21)dp₂₁ / dt = -p₂₂ *z / dt + p₁₁ *z / dt - p₂₁ * p₂₂ / R₁₁ + Q k21 (21)

dp₂₂/dt = 2 * p₂₂ *z/dt - p₂₂ * /R₁₁ + Qk22 (22)dp₂₂ / dt = 2 * p₂₂ *z / dt - p₂₂ * / R₁₁ + Q k22 (22)

undand

Dabei betragen die Werte der Koeffizienten der Kovarianzmatrix Qk11=1, Qk21=0,3, Qk22=1 sowie der Wert R11=0,5. Die Anfangswerte p11(0)=0, p21(0)=0 sowie p22(0)=0.The values of the coefficients of the covariance matrix are Q k11 = 1, Q k21 = 0.3, Q k22 = 1 and the value R 11 = 0.5. The initial values p 11 (0) = 0, p 21 (0) = 0 and p 22 (0) = 0.

In einer Erweiterung des Modells können auch noch die Kardan- Lagewinkel in ihrer Wirkung kompensiert werden, die bei der bisherigen Betrachtung vernachlässigt wurden. Dazu wird zunächst ein Subsystem 1 beschrieben, bei dem Ωz und vz gleich 0 sind. Es ergibt sich dann folgende Gleichung:In an expansion of the model, the effect of the gimbal angles can be compensated for, which were neglected in the previous consideration. For this purpose, a subsystem 1 is first described in which Ω z and v z are 0. The following equation then results:

dvx/dt = ax + sin (Γ * g (24)dv x / dt = a x + sin (Γ * g (24)

Das zeitliche Mittel der Größe sin(Γ)*g läßt sich somit aus der Differenz von dvx/dt und ax berechnen, wenn Ωz und vz gleich 0 sind. The time mean of the quantity sin (Γ) * g can thus be calculated from the difference between dv x / dt and a x if Ω z and v z are 0.

Mittels eines zweiten Subsystems können dann unter Verwendung der bei Ωz=0 bestimmten Größe sin (Γ)*g die Größen vx und vy bestimmt werden. Dieses Subsystem hat dann die Gleichungen:The variables v x and v y can then be determined by means of a second subsystem using the variable sin (Γ) * g determined at Ω z = 0. This subsystem then has the equations:

dvx/dt = Ωz * vy + ax + sin (Γ) * g (25)dv x / dt = Ω z * v y + a x + sin (Γ) * g (25)

dvy/dt = -Ωz * vx + ay + µ (26)dv y / dt = -Ω z * v x + a y + µ (26)

dµ/dt = 0 (27)dµ / dt = 0 (27)

Dabei werden dann Ωx und Ωy nicht benötigt. Die Größe µ wird hierbei gesondert berücksichtigt und entspricht dem Ausdruck -cos (Γ)*sin(Φ)*g. Für dieses Subsystem wird dann entweder ein Beobachter oder ein Kalman-Filter eingesetzt.Then Ω x and Ω y are not required. The size µ is taken into account separately and corresponds to the expression -cos (*) * sin (*) * g. Either an observer or a Kalman filter is then used for this subsystem.

Alternativ dazu ist es auch möglich, alle Ausdrücke, die wenig­ stens einen der Winkel Γ oder Φ enthalten, als Fehler aufzufassen und die Ordnung des Systems zu erweitern. Es ergibt sich dann beispielsweise folgendes Gleichungssystem, das ebenfalls wieder mittels eines Kalman-Filters behandelt werden kann:Alternatively, it is also possible to use all expressions that are little contain at least one of the angles Γ or Φ as an error and expand the order of the system. It then turns out for example the following system of equations, which again can be treated with a Kalman filter:

dvx/dt = vy * Ωz + ax + e₁ (28)dv x / dt = v y * Ω z + a x + e₁ (28)

dvy/dt = -vx * Ωz + ay + e₂ (29)dv y / dt = -v x * Ω z + a y + e₂ (29)

de₁/dt = 0 (30)de₁ / dt = 0 (30)

de₂/dt = 0 (31)de₂ / dt = 0 (31)

undand

y = vx (32)y = v x (32)

Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung schematisch dargestellt und wird im folgenden näher beschrieben. Es zeigen:An embodiment of the invention is in the drawing is shown schematically and is described in more detail below. Show it:

Fig. 1 das Blockschaltbild eines Beobachters, bei dem bei dem zugrundeliegenden Modell Nick- und Rollwinkel Γ und Φ vernachlässigt wurden und Fig. 1 shows the block diagram of an observer, in which the pitch and roll angles Γ and Φ were neglected in the underlying model and

Fig. 2 eine Anordnung von Sensoren, mit denen die Meßgrößen ermittelt werden, die den Modellen zugrunde liegen. Fig. 2 shows an arrangement of sensors with which the measured variables on which the models are based are determined.

Wie aus dem in Fig. 1 dargestellten Blockschaltbild ersicht­ lich, werden als Meßgrößen die Fahrzeuggeschwindigkeit in Längsrichtung vx, die Längsbeschleunigung ax, die Querbe­ schleunigung ay sowie die Gierwinkelgeschwindigkeit Ωz verwen­ det. Die Kreise stellen dabei Summierstellen dar, bei den Rechtecken mit dem Punkt werden die Eingangsgrößen miteinander multipliziert. Die Integratoren und Verstärker erklären sich selbst.As can be seen from the block diagram in FIG. 1, the vehicle speed in the longitudinal direction v x , the longitudinal acceleration a x , the transverse acceleration a y and the yaw rate Ω z are used as measured variables. The circles represent summation points, with the rectangles with the point the input quantities are multiplied by each other. The integrators and amplifiers are self-explanatory.

Das Blockschaltbild nach Fig. 1 ist eine Darstellung der Glei­ chungen (17) und (18).The block diagram of FIG. 1 is an illustration of the anti-tions (17) and (18).

Fig. 2 zeigt bestimmte Signale, die von an sich bekannten Sen­ soren einer Recheneinrichtung 407 zugeführt werden. Die Meß­ größen, die den Signalen 401, 402, 403, 404, 405 und 406 ent­ sprechen, sind in der Fig. 4 dargestellt. In der Rechenein­ richtung wird beispielsweise aufgrund des eingangs beschrie­ benen Verfahrens die Fahrzeuggeschwindigkeit in Querrichtung vy bestimmt und als Signal 408 ausgegeben. Aus diesem Signal kann dann in der Recheneinheit 409 beispielsweise mittels der Glei­ chung (1) der Schwimmwinkel β berechnet werden. Dieser Wert wird dann als Signal 410 ausgegeben. Fig. 2 shows certain signals that are supplied by sensors known per se to a computing device 407 . The measurement quantities that correspond to the signals 401 , 402 , 403 , 404 , 405 and 406 are shown in FIG. 4. In the computing device, for example, the vehicle speed in the transverse direction v y is determined on the basis of the method described at the outset and output as signal 408 . From this signal, the float angle β can then be calculated in the computing unit 409, for example by means of the equation (1). This value is then output as signal 410 .

Claims (4)

1. Verfahren zur Bestimmung das Fahrverhalten charakterisierender Größen, mit einer Recheneinrichtung (407), der Signale (401, 402, 403, 406) zugeführt werden, die gemessene Größen der Fahrzeuglängsgeschwindigkeit (vx), der Längsbeschleunigung (ax), der Querbeschleunigung (ay) und die Gierwinkelgeschwindigkeit (Ωz) repräsentieren, und in der aufgrund dieser gemessenen Größen wenigstens eine weitere Größe abgeleitet wird, dadurch gekennzeichnet, daß die Ableitung der weiteren Größe unter Verwendung der gemessenen Größen und von Zustandsgleichungen erfolgt, und daß als abgeleitete Größe zumindest der Schwimmwinkel (β) ermittelt und ausgegeben wird.1. A method for determining the variables that characterize the driving behavior, with a computing device ( 407 ) to which signals ( 401 , 402 , 403 , 406 ) are supplied, the measured variables of the longitudinal vehicle speed (v x ), the longitudinal acceleration (a x ), and the lateral acceleration (a y ) and the yaw angular velocity (Ω z ), and in which at least one further variable is derived on the basis of these measured variables, characterized in that the further variable is derived using the measured variables and state equations, and that as derived Size at least the float angle (β) is determined and output. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Zustandsgleichungen in die Beobachtungsnormalform transformiert werden und daß die wenigstens eine weitere Größe (408, 410) mittels eines vollständigen Beobachters abgeleitet wird.2. The method according to claim 1, characterized in that the equations of state are transformed into the normal observation form and that the at least one further variable ( 408 , 410 ) is derived by means of a complete observer. 3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Beobachterverstärkung (17, 18) mittels eines Kalman- Filters abgeleitet wird. 3. The method according to claim 1, characterized in that the observer gain ( 17 , 18 ) is derived by means of a Kalman filter. 4. Verfahren nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß bei den Zustandsgleichungen Wankbewegungen und Nickbewegungen des Fahrzeuges in ihrer Wirkung kompensiert werden (404, 405).4. The method according to claim 1, 2 or 3, characterized in that in the state equations roll and pitch movements of the vehicle are compensated in their effect ( 404 , 405 ).
DE4226749A 1992-08-13 1992-08-13 Method for determining variables that characterize driving behavior Expired - Fee Related DE4226749C2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE4226749A DE4226749C2 (en) 1992-08-13 1992-08-13 Method for determining variables that characterize driving behavior
GB9314918A GB2269571B (en) 1992-08-13 1993-07-19 Process for the determination of quantities characterising the travel behaviour
ITRM930544A IT1261511B (en) 1992-08-13 1993-08-09 PROCEDURE FOR DETERMINING THE SIZES THAT CHARACTERIZE THE BEHAVIOR OF A VEHICLE DURING RUNNING.
FR9309863A FR2694808B1 (en) 1992-08-13 1993-08-11 PROCESS FOR DETERMINING THE CHARACTERISTIC QUANTITIES OF THE BEHAVIOR IN OPERATION OF A VEHICLE.
SE9302610A SE513553C2 (en) 1992-08-13 1993-08-11 Procedure for determining quantities that characterize the driving condition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE4226749A DE4226749C2 (en) 1992-08-13 1992-08-13 Method for determining variables that characterize driving behavior

Publications (2)

Publication Number Publication Date
DE4226749A1 DE4226749A1 (en) 1994-02-17
DE4226749C2 true DE4226749C2 (en) 1996-02-08

Family

ID=6465434

Family Applications (1)

Application Number Title Priority Date Filing Date
DE4226749A Expired - Fee Related DE4226749C2 (en) 1992-08-13 1992-08-13 Method for determining variables that characterize driving behavior

Country Status (5)

Country Link
DE (1) DE4226749C2 (en)
FR (1) FR2694808B1 (en)
GB (1) GB2269571B (en)
IT (1) IT1261511B (en)
SE (1) SE513553C2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19818860A1 (en) * 1998-04-28 1999-11-11 Daimler Chrysler Ag Sensor error detection and location method for automobile control-by-wire system
DE10002685A1 (en) * 2000-01-22 2001-07-26 Wabco Gmbh & Co Ohg Method for detecting the incorrect installation of sensing devices in a vehicle
DE102004053236A1 (en) * 2004-11-04 2006-05-11 Daimlerchrysler Ag Vehicle longitudinal acceleration procedure measures spring travel and vertical acceleration or axle rotation to determine pitch angle

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4325413C2 (en) * 1993-07-29 1995-05-18 Daimler Benz Ag Method for determining the behavior of characteristic quantities
JP3022167B2 (en) * 1994-06-20 2000-03-15 トヨタ自動車株式会社 Vehicle motion state estimation method
DE4430458A1 (en) * 1994-08-27 1996-02-29 Teves Gmbh Alfred Method for determining the lateral acceleration of a vehicle
DE4434480A1 (en) * 1994-09-27 1996-03-28 Bayerische Motoren Werke Ag Method for determining the speed of a wheel in motor vehicles
DE19549800B4 (en) * 1994-11-25 2017-03-09 Continental Teves Ag & Co. Ohg Driving stability device for a vehicle
KR0157738B1 (en) * 1995-02-10 1999-03-30 김은영 Method for measuring automobile motion resistance using distance-time inertia travelling test
DE19518700A1 (en) * 1995-05-22 1996-11-28 Bayerische Motoren Werke Ag Comfort evaluation device for motor vehicles with means for detecting and evaluating the longitudinal acceleration
DE19529539A1 (en) * 1995-08-11 1997-02-13 Man Nutzfahrzeuge Ag Procedure for the ON-BOARD determination of vehicle dynamic safety reserves of commercial vehicles
JP3008833B2 (en) * 1995-10-25 2000-02-14 トヨタ自動車株式会社 Estimation device for vehicle body skidding speed
DE19602994A1 (en) * 1996-01-27 1997-07-31 Teves Gmbh Alfred Method for determining variables that describe the driving behavior of a vehicle
US6138066A (en) * 1996-02-03 2000-10-24 Itt Manufacturing Enterprises, Inc. Method of determining quantities describing vehicle driving behavior
DE19607050A1 (en) * 1996-02-03 1997-08-07 Teves Gmbh Alfred Method for determining variables that describe the driving behavior of a vehicle
DE19607429B4 (en) * 1996-02-28 2004-02-19 Daimlerchrysler Ag Fault-tolerant control device for a physical system, in particular vehicle dynamics control device for a motor vehicle
US5857160A (en) * 1996-05-23 1999-01-05 General Motors Corporation Sensor-responsive control method and apparatus
US5895433A (en) * 1996-05-23 1999-04-20 General Motors Corporation Vehicle chassis system control method and apparatus
US5667286A (en) * 1996-05-29 1997-09-16 General Motors Corporation Brake control system
US6212460B1 (en) 1996-09-06 2001-04-03 General Motors Corporation Brake control system
US6325469B1 (en) 1996-09-06 2001-12-04 General Motors Corporation Brake control system
US5720533A (en) * 1996-10-15 1998-02-24 General Motors Corporation Brake control system
US5746486A (en) * 1996-10-16 1998-05-05 General Motors Corporation Brake control system
US5686662A (en) * 1996-10-16 1997-11-11 General Motors Corporation Brake control system
US5941919A (en) * 1996-10-16 1999-08-24 General Motors Corporation Chassis control system
DE19650691C2 (en) * 1996-12-07 1998-10-29 Deutsch Zentr Luft & Raumfahrt Method for steering assistance for a driver of a road vehicle
US5948030A (en) * 1997-07-25 1999-09-07 General Motors Corporation Steering angle determaination method and apparatus
US6547343B1 (en) 1997-09-08 2003-04-15 General Motors Corporation Brake system control
US6035251A (en) * 1997-11-10 2000-03-07 General Motors Corporation Brake system control method employing yaw rate and ship angle control
DE19817686A1 (en) 1998-04-21 1999-10-28 Wabco Gmbh Method for determining a comparison variable
US6205391B1 (en) 1998-05-18 2001-03-20 General Motors Corporation Vehicle yaw control based on yaw rate estimate
US6125319A (en) * 1998-08-17 2000-09-26 General Motors Corporation Brake system control method responsive to measured vehicle acceleration
US6112147A (en) * 1998-08-17 2000-08-29 General Motors Corporation Vehicle yaw rate control with bank angle compensation
US6079800A (en) * 1998-08-20 2000-06-27 General Motors Corporation Active brake control with front-to-rear proportioning
US6169951B1 (en) 1998-08-21 2001-01-02 General Motors Corporation Active brake control having yaw rate estimation
US6175790B1 (en) 1998-08-24 2001-01-16 General Motors Corporation Vehicle yaw rate control with yaw rate command limiting
US6056371A (en) * 1998-08-24 2000-05-02 General Motors Corporation Feed-forward active brake control
US5931887A (en) * 1998-09-24 1999-08-03 General Motors Corporation Brake control method based on a linear transfer function reference model
US6161905A (en) * 1998-11-19 2000-12-19 General Motors Corporation Active brake control including estimation of yaw rate and slip angle
US6195606B1 (en) 1998-12-07 2001-02-27 General Motors Corporation Vehicle active brake control with bank angle compensation
DE10003739C2 (en) * 2000-01-28 2002-12-05 Daimler Chrysler Ag Method and system for identifying system parameters in vehicles
DE10047745A1 (en) * 2000-09-27 2002-04-11 Bayerische Motoren Werke Ag Signal filtering method
US6618651B1 (en) * 2002-02-25 2003-09-09 Visteon Global Technologies, Inc. Estimating vehicle velocities using linear-parameter-varying and gain varying scheduling theories
EP1483142A1 (en) * 2002-03-13 2004-12-08 DaimlerChrysler AG Method and device for detecting parameters characterizing the driving behavior of a vehicle
EP1743819B1 (en) * 2005-07-12 2009-09-16 Ford Global Technologies, LLC, A subsidary of Ford Motor Company Method and device to calculate the yaw and roll rates in a vehicle
FR2899189B1 (en) * 2006-03-31 2008-12-05 Peugeot Citroen Automobiles Sa VEHICLE STABILIZATION DEVICE
DE102007022595A1 (en) * 2007-05-14 2008-11-27 Robert Bosch Gmbh Driving dynamics controller with reduced sensors
EP2042397A1 (en) * 2007-09-25 2009-04-01 Peugeot Citroen Automobiles SA Vehicle stabilisation device
DE102016220388A1 (en) * 2016-10-18 2018-04-19 Audi Ag Method for calculating the lateral velocity of a vehicle

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0193744B2 (en) * 1985-02-06 1992-12-02 Toyota Jidosha Kabushiki Kaisha Vehicle active suspension system incorporating acceleration detecting means
JPH06104455B2 (en) * 1985-03-15 1994-12-21 日産自動車株式会社 Vehicle motion condition estimation device
JPS62137276A (en) * 1985-12-09 1987-06-20 Nissan Motor Co Ltd Steering system control device for vehicle
JPH0725320B2 (en) * 1986-10-13 1995-03-22 日産自動車株式会社 Actual steering angle control device for vehicle
DE3912045A1 (en) * 1989-04-12 1990-10-25 Bayerische Motoren Werke Ag METHOD FOR REGULATING A CROSS-DYNAMIC STATE SIZE OF A MOTOR VEHICLE
DE4030653A1 (en) * 1990-09-28 1992-04-02 Bosch Gmbh Robert METHOD FOR DETERMINING THE SLOPING ANGLE AND / OR THE SIDE GUIDING FORCE OF A BRAKED VEHICLE
DE4031304A1 (en) * 1990-10-04 1992-04-09 Bosch Gmbh Robert Model supported estimation of float angle - using vehicle speed from ABS system, steering angle sensor to derive transverse speed and hence float angle
DE4200061C2 (en) * 1992-01-03 2001-09-13 Bosch Gmbh Robert Procedure for determining the vehicle transverse speed and / or the slip angle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19818860A1 (en) * 1998-04-28 1999-11-11 Daimler Chrysler Ag Sensor error detection and location method for automobile control-by-wire system
DE19818860C2 (en) * 1998-04-28 2001-04-19 Daimler Chrysler Ag Method and device for the detection and localization of sensor errors in motor vehicles
DE10002685A1 (en) * 2000-01-22 2001-07-26 Wabco Gmbh & Co Ohg Method for detecting the incorrect installation of sensing devices in a vehicle
DE102004053236A1 (en) * 2004-11-04 2006-05-11 Daimlerchrysler Ag Vehicle longitudinal acceleration procedure measures spring travel and vertical acceleration or axle rotation to determine pitch angle
DE102004053236B4 (en) * 2004-11-04 2006-10-19 Daimlerchrysler Ag Method for determining a longitudinal acceleration of a motor vehicle

Also Published As

Publication number Publication date
SE9302610L (en) 1994-02-14
IT1261511B (en) 1996-05-23
SE513553C2 (en) 2000-10-02
ITRM930544A1 (en) 1995-02-09
FR2694808B1 (en) 1996-02-23
GB2269571A (en) 1994-02-16
GB2269571B (en) 1995-11-08
ITRM930544A0 (en) 1993-08-09
DE4226749A1 (en) 1994-02-17
GB9314918D0 (en) 1993-09-01
SE9302610D0 (en) 1993-08-11
FR2694808A1 (en) 1994-02-18

Similar Documents

Publication Publication Date Title
DE4226749C2 (en) Method for determining variables that characterize driving behavior
DE4325413C2 (en) Method for determining the behavior of characteristic quantities
EP0523397B1 (en) Method for production of the yaw rate or the transversal speed
DE4216301C2 (en) Method for determining the behavior of characterizing variables
DE2909105A1 (en) ELECTROHYDRAULIC FLIGHT CONTROL SIMULATOR
AT520536A4 (en) A method of estimating an internal effective torque of a torque generator
DE2827669C2 (en) Method for determining the magnitude and phase position of vibrations detected by transducers, especially in balancing technology
EP0322532B1 (en) Device for determining the speed of vehicles
EP0544108B1 (en) Semi-active suspension control system for cars
EP0276663B1 (en) Device for determining the time variant position and the errors of a repeater navigation system relative to a master system
DE3830747A1 (en) METHOD AND DEVICE FOR AUTOMATICALLY GUIDING THE LONGITUDINAL AND LATERAL MOVEMENTS OF A VEHICLE
EP1691994A1 (en) Determining a relative movement of a chassis and a body of a wheeled vehicle
DE102011104270A1 (en) Method for controlling driving dynamics of e.g. passenger car, involves evaluating stability of current dynamics state of vehicle, and performing stabilization measurement when evaluated stability is not sufficient
DE10215464B9 (en) Method and apparatus for estimating a state variable
EP0557322B1 (en) Semi-active suspension-control system
DE19522179A1 (en) Movement state estimation method in wheel-driven motor vehicles
DE60024835T2 (en) INTEGRATED INERTIAL / VEHICLE MOTOR SENSOR NAVIGATION SYSTEM
DE4126731C2 (en) Chassis control system for motor vehicles
EP1440289B1 (en) Navigation system for determining the course of a vehicle
WO2013156588A1 (en) Movement system state
DE102008026746A1 (en) Vehicle i.e. aircraft, navigating method, involves repeatedly consolidating measured absolute positions and determined current position, storing results of integration and consolidating stored result of integration
EP2847624A2 (en) Method and apparatus for estimating the shape of an acoustic trailing antenna
DE102007055638A1 (en) Actual vehicle condition determining device, has evaluation and control unit measuring actual vehicle condition from determined momentum, and sensor units including two identically constructed sensors, which detect same movement signals
DE102011082261B4 (en) Method for providing a high quality signal value for the vertical acceleration of a wheel
DE1623505A1 (en) Method and device for determining the direction of movement of a moving object

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
D2 Grant after examination
8364 No opposition during term of opposition
8327 Change in the person/name/address of the patent owner

Owner name: DAIMLERCHRYSLER AG, 70567 STUTTGART, DE

8327 Change in the person/name/address of the patent owner

Owner name: DAIMLERCHRYSLER AG, 70327 STUTTGART, DE

8339 Ceased/non-payment of the annual fee