FR2694808A1 - Method for determining the characteristic quantities of the running behavior of a vehicle - Google Patents

Method for determining the characteristic quantities of the running behavior of a vehicle Download PDF

Info

Publication number
FR2694808A1
FR2694808A1 FR9309863A FR9309863A FR2694808A1 FR 2694808 A1 FR2694808 A1 FR 2694808A1 FR 9309863 A FR9309863 A FR 9309863A FR 9309863 A FR9309863 A FR 9309863A FR 2694808 A1 FR2694808 A1 FR 2694808A1
Authority
FR
France
Prior art keywords
vehicle
equations
quantities
observer
determining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR9309863A
Other languages
French (fr)
Other versions
FR2694808B1 (en
Inventor
Avshalom Suissa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daimler Benz AG
Original Assignee
Daimler Benz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler Benz AG filed Critical Daimler Benz AG
Publication of FR2694808A1 publication Critical patent/FR2694808A1/en
Application granted granted Critical
Publication of FR2694808B1 publication Critical patent/FR2694808B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1755Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
    • B60T8/17551Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve determining control parameters related to vehicle stability used in the regulation, e.g. by calculations involving measured or detected parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/172Determining control parameters used in the regulation, e.g. by calculations involving measured or detected parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/04Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to forces disturbing the intended course of the vehicle, e.g. forces acting transversely to the direction of vehicle travel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/14Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
    • B62D7/15Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels
    • B62D7/159Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels characterised by computing methods or stabilisation processes or systems, e.g. responding to yaw rate, lateral wind, load, road condition
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0891Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for land vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2230/00Monitoring, detecting special vehicle behaviour; Counteracting thereof
    • B60T2230/02Side slip angle, attitude angle, floating angle, drift angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/30ESP control system
    • B60T2270/313ESP control system with less than three sensors (yaw rate, steering angle, lateral acceleration)

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Navigation (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

L'invention concerne un procédé pour déterminer des grandeurs caractérisant le comportement en marche d'un véhicule. Dans le procédé, on utilise un dispositif de calcul (407), qui reçoit des signaux (401, 402, 403, 406) représentant les grandeurs mesurées de la vitesse longitudinale de véhicule (vx ), de l'accélération longitudinale (ax ), de l'accélération transversale (ay ) et de la vitesse angulaire de giration (OMEGAz ) et ensuite, en relation avec ces grandeurs mesurées, le dispositif de calcul établi, en utilisant un modèle de véhicule, au moins une autre grandeur, qui pourra représenter au moins l'angle de flottement beta.The invention relates to a method for determining quantities characterizing the running behavior of a vehicle. In the method, a calculation device (407) is used, which receives signals (401, 402, 403, 406) representing the measured quantities of the longitudinal vehicle speed (vx), of the longitudinal acceleration (ax), transverse acceleration (ay) and angular rate of turn (OMEGAz) and then, in relation to these measured quantities, the calculation device established, using a vehicle model, at least one other quantity, which may represent at least the float angle beta.

Description

-1- La présente invention concerne un procédé de détermination deThe present invention relates to a method for the determination of

grandeurs caractérisant le comportement en marche d'un véhicule, comportant un dispositif de calcul, auquel sont appliqués des signaux, qui représentent les grandeurs mesurées de la vitesse longitudinale de véhicule, de l'accélération longitudinale, de l'accélération transversale et de la vitesse angulaire de giration, et dans lequel on obtient, à l'aide de ces grandeurs mesurées, au moins une autre  variables characterizing the running behavior of a vehicle, comprising a computing device, to which signals are applied, which represent the measured magnitudes of the longitudinal vehicle speed, the longitudinal acceleration, the transverse acceleration and the speed angle of gyration, and in which one obtains, with the aid of these measured quantities, at least one other

grandeur.magnitude.

Il est connu un modèle à voie unique linéaire d'un véhicule, dans lequel la hauteur du centre de gravité du véhicule est négligée Ainsi, dans cette approximation, le centre de gravité du véhicule est décalé dans le plan des points d'appui des roues Du fait qu'ainsi des mouvements de tangage et de roulis sont exclus, il est possible avec ce modèle de réunir les roues d'un essieu sous la forme d'une roue située au milieu de l'essieu Ce modèle a été décrit par exemple dans le livre allemand: Zomotor, Adam: Fahrwerktechnik, Fahrverhalten, (Technique de transport, comportement en marche), Hrsg Jôrnsen Reimpell, W rzburg: Vogel 1987, ISBN 3-8023-0774-7, aux  It is known a linear single-track model of a vehicle, in which the height of the center of gravity of the vehicle is neglected. Thus, in this approximation, the center of gravity of the vehicle is shifted in the plane of the wheel support points. Because in this way pitching and rolling movements are excluded, it is possible with this model to join the wheels of an axle in the form of a wheel located in the middle of the axle. This model has been described for example. in the German book: Zomotor, Adam: Fahrwerktechnik, Fahrverhalten, (Transportation Technology, Running Behavior), Hrsg Jornsen Reimpell, W rzburg: Vogel 1987, ISBN 3-8023-0774-7, to

pages 99 à 116.pages 99 to 116.

On ne peut cependant pas déduire de ce document comment il est possible de déterminer les données caractérisant le comportement en marche en fonction de  However, it is not possible to deduce from this document how it is possible to determine the data characterizing the running behavior as a function of

grandeurs mesurées.measured quantities.

D'après le document DE 36 08 420 C 2, il est connu de mesurer les grandeurs constituées par la vitesse longitudinale de véhicule, l'accélération transversale de véhicule et la vitesse angulaire de giration et de les utiliser pour le calcul d'un angle de flottement Pour le calcul, on fait intervenir un modèle de véhicule tenant  From DE 36 08 420 C 2, it is known to measure the quantities constituted by the longitudinal vehicle speed, the vehicle transverse acceleration and the angular rate of gyration and to use them for the calculation of an angle For calculation purposes, a vehicle model

compte intrinsèquement des propriétés du véhicule.  intrinsically account for the properties of the vehicle.

-2- Un objet de l'invention est de créer un procédé de détermination des grandeurs caractérisant le comportement en marche de telle sorte qu'on puisse obtenir une précision de mesure aussi bonne que possible avec une dépense aussi réduite que possible en matériels nécessaires. Ce problème est résolu, pour un procédé du type précité servant à la détermination des grandeurs caractérisant le comportement en marche, conformément à l'invention par le fait que l'obtention de l'autre grandeur est effectuée en utilisant les grandeurs mesurées et des équations d'état et que, comme grandeur obtenue, au  An object of the invention is to create a method for determining the quantities characterizing the behavior in operation so that a measurement accuracy can be obtained that is as good as possible with as little expense as possible in the necessary materials. This problem is solved for a method of the aforementioned type used for determining the quantities characterizing the behavior in operation, according to the invention in that the obtaining of the other quantity is carried out using the measured quantities and equations. of state and that, as a result of

moins l'angle de flottement est déterminé et transmis.  the less the floating angle is determined and transmitted.

Selon d'autres caractéristiques du procédé: les équations d'état seront transformées dans la forme normale d'observation et ladite autre grandeur au moins obtenue sera déterminée au moyen d'un observateur complet. l'observateur est produit au moyen d'un filtre  According to other characteristics of the method: the state equations will be transformed into the normal form of observation and said other quantity at least obtained will be determined by means of a complete observer. the observer is produced by means of a filter

de Kalman.of Kalman.

dans les équations d'état, des mouvements de tangage et des mouvements de roulis du véhicule sont  in the state equations, pitching motions and roll motions of the vehicle are

compensés dans leur action.compensated in their action.

Le procédé conforme à l'invention présente des avantages par le fait qu'on n'a pas à connaître des grandeurs d'entrée en forme d'entrées de commande et entrées parasites, qu'aucun paramètre concernant le véhicule n'est nécessaire et qu'il est possible d'estimer  The method according to the invention has advantages in that it does not have to know input variables in the form of control inputs and parasitic inputs, no parameter relating to the vehicle is necessary and that it is possible to estimate

aussi bien de petits que de grands angles de flottement.  both small and large floating angles.

La présente invention concerne un procédé de détermination des grandeurs caractérisant le comportement en marche,sélon lequel des capteurs sont installés dans le véhicule de façon à mesurer directement l'accélération longitudinale ax et l'accélération transversale ay du véhicule au centre de gravité, la vitesse angulaire de -3- giration z ainsi que la vitesse du véhicule dans la z direction longitudinale vx A partir de ces grandeurs, la vitesse du véhicule dans la direction transversale v Y et/ou l'angle de flottement peuvent ensuite être déterminés A cet égard, la relation suivante est appliquée: = arctg (vy/Vx) ( 1) Dans la suite va être défini un modèle o la vitesse de véhicule dans la direction transversale v est Y déterminée On pourra en déduire, conformément à l'équation ( 1), l'angle de flottement Ce modèle est basé sur le fait que les composantes de vitesse sont combinées avec les vitesses de rotation autour de l'axe  The present invention relates to a method for determining the quantities characterizing the behavior in operation, whereby sensors are installed in the vehicle so as to directly measure the longitudinal acceleration ax and the transverse acceleration ay of the vehicle at the center of gravity, the speed In this respect, the angular velocity z and the velocity of the vehicle in the longitudinal direction vx. From these magnitudes, the velocity of the vehicle in the transverse direction v Y and / or the angle of repose can then be determined. the following relation is applied: = arctg (vy / Vx) (1) In the following will be defined a model where the vehicle velocity in the transverse direction v is Y determined We can deduce, according to the equation (1 ), the floating angle This model is based on the fact that speed components are combined with rotational speeds around the axis

longitudinal, de l'axe vertical et de l'axe transversal.  longitudinal axis, the vertical axis and the transverse axis.

D'après la norme DYN 70000, on obtient les équations différentielles suivantes qui caractérisent le mouvement: dvx/dt + y*vz z*y V= Fx/m ( 2) dvy/dt + Qz*vx Qx*Vz = Fy/m ( 3) dvz/dt ±Qx*Vy y*vx = Fz/m ( 4) zj X y y z et ex x zz)* 2 y*Qz = ( 5) Ixx *d Qx/dt + ( Izz Iyy)*Qy*z = Mx ( 6) yy*d y/dt + ( _XX Izz)*n X*Qz = My ( 6)  According to the DYN 70000 standard, we obtain the following differential equations which characterize the motion: dvx / dt + y * vz z * y V = Fx / m (2) dvy / dt + Qz * vx Qx * Vz = Fy / m (3) dvz / dt ± Qx * Vy y * vx = Fz / m (4) zj X yyz and ex x zz) * 2 y * Qz = (5) Ixx * d Qx / dt + (Izz Iyy) * Qy * z = Mx (6) yy * dy / dt + (_XX Izz) * n X * Qz = My (6)

Iyy*d Qy/dt -Iyy * d Qy / dt -

Izz*d Qz/dt + ( Iyy Ixx)*Qy*QX = Mz( 7) Dans ces équations, les grandeurs Fx' Fy et F sont les forces qui agissent dans la direction correspondant à l'indice, les grandeurs Mx, My et Mz sont les moments produits autour des axes désignés par l'indice et les grandeurs Ixx, Iyy et Izz sont les moments d'inertie par rapport aux axes définis par les indices, la  Izz * d Qz / dt + (Iyy Ixx) * Qy * QX = Mz (7) In these equations, the quantities Fx 'Fy and F are the forces acting in the direction corresponding to the index, the magnitudes Mx, My and Mz are the moments produced around the axes designated by the index and the quantities Ixx, Iyy and Izz are the moments of inertia with respect to the axes defined by the indices, the

grandeur m désignant la masse du véhicule.  magnitude m designating the mass of the vehicle.

-4- Pour simplifier la suite du traitement mathématique, il a été proposé maintenant un modèle d'état linéaire A son sujet, on a admis que les vitesses angulaires l peuvent être mesurées exactement Dans la représentation matricielle, on obtient ainsi un système d'équations différentielles:  In order to simplify the continuation of the mathematical treatment, a linear state model has now been proposed. It has been admitted that the angular velocities can be measured exactly. In the matrix representation, a system of Differential equations:

Vl -f Qzf O lv F-Vl -f Qzf O lv F-

d/dt Ivy = ç O -Q 1 vx + 1/m Fy ( 8) Ly x L z Il est possible d'exprimer le dernier terme de somme intervenant dans l'équation ( 8), c'est-à-dire (Fx/m, Fy/m, Fz/m)T, au moyen du signal d'accélération mesuré y (ax, ay, az) ainsi qu'à l'aide de l'accélération de la x y z gravité g: 1/m F t ayl cos(r)*sin( 5) *g ( 9) z Z Lzi = Li Lcos(r) *cos () On obtient ainsi une équation différentielle d'état qui est linéaire par rapport aux composantes de T vitesse (vx, vy, vz): VX O -Qzf 2 v a-in) d/dt vy Qz o Z v X + a cos(r)*sin(f) *g Z_ y IX Za cos (r)*cos (  d / dt Ivy = ç O -Q 1 vx + 1 / m Fy (8) Ly x L z It is possible to express the last sum term involved in equation (8), that is to say (Fx / m, Fy / m, Fz / m) T, by means of the measured acceleration signal y (ax, ay, az) as well as by the acceleration of the gravity xyz g: 1 / m F t y cos (r) * sin (5) * g (9) z Z Lzi = Li Lcos (r) * cos () We thus obtain a differential equation of state which is linear with respect to the components of T velocity (vx, vy, vz): VX O -Qzf 2 v a-in) d / dt vy Qz o Z v X + a cos (r) * sin (f) * g Z_y IX Za cos (r) * cos (

( 10)(10)

Les angles r (tangage), (roulis) et Jt (giration) sont des angles de positions de cardan et définissent la transformation du système de coordonnées géodésique dans le système de coordonnées solidaire du  The angles r (pitch), (roll) and Jt (gyration) are cardan position angles and define the transformation of the geodesic coordinate system in the integral coordinate system of the

véhicule.vehicle.

-5- D'autres simplifications du modèle précité seront obtenues si on admet que le véhicule se trouve sur un plan (c'est-à-dire que les angles de positions de cardan sont négligeables), lorsque les composantes v X et vy sont considérées comme une vitesse longitudinale et une vitesse transversale (c'est-à-dire lorsque l'influence de l'angle de caisse est négligée) Lorsqu'il ne se produit aucun mouvement de tangage ou de roulis dans le véhicule, les  Other simplifications of the above-mentioned model will be obtained if it is assumed that the vehicle is on a plane (that is to say that the cardan positions angles are negligible), when the components v X and vy are considered as a longitudinal speed and a transverse speed (ie when the influence of the body angle is neglected). When no pitching or rolling motion occurs in the vehicle, the

termes SI y*vz, a *v, ri *v 12 x*v sont tous égaux à 0.  terms SI y * vz, a * v, ri * v 12 x * v are all equal to 0.

Le système d'équation ( 10) se simplifie alors sous la forme d/dt ÉV 3 Qo Lx + La 3 ( Il est en principe possible d'obtenir les grandeurs d'état (vx, v) T à partir de l'équation ( 11) en y opérant par intégration Du fait de l'instabilité de l'équation ( 11), il peut cependant se produire des  The system of equation (10) then simplifies in the form d / dt EV 3 Qo Lx + La 3 (It is in principle possible to obtain the state quantities (vx, v) T from the equation (11) by integrating With the instability of equation (11), there may be some

erreurs.errors.

Du fait que la vitesse dans la direction longitudinale v X peut être mesurée, la vitesse dans la direction transversale vy peut être observée On va  Since the velocity in the longitudinal direction v X can be measured, the velocity in the transverse direction vy can be observed.

indiquer dans la suite l'agencement d'observateur pour vy.  indicate in the following the observer arrangement for vy.

L'équation différentielle ( 11) se présente sous la forme générale suivante  The differential equation (11) is in the following general form

dx/dt = A(t)x + u(t) ( 12).dx / dt = A (t) x + u (t) (12).

A cet égard, l'équation de mesure correspondante se présente sous la forme:  In this respect, the corresponding measurement equation is in the form:

y = c *x(t) = ( 1 O) Tx(t) = ( 13).y = c * x (t) = (1 O) Tx (t) = (13).

Cette disposition générale d'un système -6- d'équation correspond dans le modèle existant à la forme suivante: X YT u(t) =(ax,ay)T x = (vx, Vy) = a, a(t) = Z r ( 14). Grâce à la transformation intrinsèquement connue dans la forme normale d'observation, on obtient à partir des équations ( 12) et ( 13) l'observateur complet ayant la forme suivante: d_/dt = (A(t)-k(t)*c T(t))x + k(t)*y + u(t) avec l'équation de mesure: y = c T*x(t) = ( 10) Tx(t) V= ( 16) A cet égard, les vecteurs soulignés par des traits se rapportent à la représentation dans la forme normale d'observation La grandeur k(t) correspond à l'amplification d'observateur k(t) = (k 1 k 2)T En écrivant alors l'équation ( 15 S) de façon explicite, on obtient: dxl/dt = x 2 z + kl*(y-xl) + ax ( 17)  This general arrangement of a system -6- equation corresponds in the existing model to the following form: X YT u (t) = (ax, ay) T x = (vx, Vy) = a, a (t) = Z r (14). Thanks to the transformation intrinsically known in the normal form of observation, one obtains from equations (12) and (13) the complete observer having the following form: d_ / dt = (A (t) -k (t) * c T (t)) x + k (t) * y + u (t) with the measurement equation: y = c T * x (t) = (10) Tx (t) V = (16) A In this respect, the vectors underlined by lines refer to the representation in the normal form of observation. The magnitude k (t) corresponds to the observer amplification k (t) = (k 1 k 2) T. the equation (15 S) explicitly, we obtain: dxl / dt = x 2 z + kl * (y-xl) + ax (17)

dx 2/dt = -Xl*Qz + k 2 *(Y-Xl) + a ( 18).  dx 2 / dt = -Xl * Qz + k 2 * (Y-Xl) + a (18).

La détermination de l'amplification d'observateur k(t) correspond dans l'art antérieur à la méthode du Professeur O F 5 llinger: "Entwurf zeitvarianter Systeme durch Polvorgabe" Cette méthode a été décrite dans le document "International Journal of Control", 1983, Volume 38, n 2, pages 419 à 431, dans l'article de Bestle et Zeitz: "Canonical form observer design for non-linear time-variable systems"; en se reportant notamment à la page 421 On peut déduire de cette littérature technique ce qu'on appelle l'observateur de Luebberger qui se présente sous la forme: -7- k = So (d Q /dt)2 (d 2 z/dt)-l ( 19) 0 *-Q IE d 2 Q /dz ( 19) Pl*d Qz/d de Qz/dt d I/Cz A cet égard, les grandeurs p O et Pl peuvent être librement choisis comme des coefficients du polynôme caractéristique. En variante, il est également possible de déterminer l'amplification d'observateur au moyen d'un filtre de Kalman Une méthode de ce genre a été décrite dans le livre de Brammer/Siffling: "Kalman-Bucy-Filter" dans la série des "Methodes techniques de régulation", éditions R Oldenbourg, Munich, Vienne en 1985 On obtient alors le système d'équations suivant se composant des équations ( 20), ( 21), ( 22), ( 23): dpll/dt = -2 * P 21 * d Qz/dt P 21/Rl + Qkll ( 20) dp 21/dt = -P 22 * d Qz/dt + Pll * d Qz/dt P 21 *P 22/Rll + Qk 21 ( 21) dp 22/dt 2 P 22 dz/dt = 2 * P 22 P 22/R 11 + Qk 22 ( 22) et  The determination of the observer amplification k (t) corresponds in the prior art to the method of Professor OF Llinger: "Entwurf zeitvarianter System durch Polvorgabe" This method has been described in the document "International Journal of Control", 1983, Volume 38, No. 2, pages 419 to 431, in the article by Bestle and Zeitz: "Canonical form observer design for non-linear time-variable systems"; in particular referring to page 421 We can deduce from this technical literature what is called the observer of Luebberger which is in the form: -7- k = So (d Q / dt) 2 (d 2 z / In this respect, the quantities p 0 and P1 can be freely chosen as the values of the parameters p0 and p1. coefficients of the characteristic polynomial. Alternatively, it is also possible to determine observer amplification by means of a Kalman filter. A method of this kind has been described in the Brammer / Siffling book: "Kalman-Bucy-Filter" in the series of "Technical regulation methods", R Oldenbourg, Munich, Vienna editions in 1985 The following system of equations is then obtained consisting of equations (20), (21), (22), (23): dpll / dt = - 2 * P 21 * d Qz / dt P 21 / Rl + Qkll (20) dp 21 / dt = -P 22 * d Qz / dt + Pll * d Qz / dt P 21 * P 22 / Rll + Qk 21 (21 ) dp 22 / dt 2 P 22 dz / dt = 2 * P 22 P 22 / R 11 + Qk 22 (22) and

-1-1

k= 21 *R ( 23) 2 J Dans ces équations, les valeurs des coefficients de la matrice de covariance sont les suivantes:  k = 21 * R (23) 2 J In these equations, the values of the coefficients of the covariance matrix are as follows:

Qkll = 1 Qk 21 = 0,3, Qk 22 = 1 et Rl a la valeur 0,5.  Qkll = 1 Qk 21 = 0.3, Qk 22 = 1 and Rl is 0.5.

Comme valeurs initiales, on a: Pll( 0) = 0, P 21 (O) = O et  As initial values, we have: Pll (0) = 0, P 21 (O) = O and

P 22 ( 0) = 0.P 22 (0) = 0.

Dans une extension du modèle, il est également possible de compenser les angles de positions de cardan dans leurs effets, qui ont été négligés dans l'exposé fait précédemment A cet égard, on définira initialement un sous-système 1 dans lequell'z et v sont égaux à 0 On z z obtient alors l'équation suivante:  In an extension of the model, it is also possible to compensate the cardan position angles in their effects, which have been neglected in the above discussion. In this respect, a subsystem 1 will initially be defined in which are equal to 0 On zz then gets the following equation:

dvx/dt = ax + sin(r)*g ( 24).dvx / dt = ax + sin (r) * g (24).

-8- La moyenne temporelle de la grandeur sin(r)*g peut ainsi être calculée à partir de la différence entre  The temporal average of the quantity sin (r) * g can thus be calculated from the difference between

dvx/dt et ax, lorsque -iz et vz sont égaux à 0.  dvx / dt and ax, when -iz and vz are 0.

Au moyen d'un second sous-système, il est possible de déterminer, en utilisant la grandeur sin(r*g  By means of a second subsystem, it is possible to determine, using the quantity sin (r * g

déterminée pour A z= 0, les grandeurs vx et vy Ce sous-  determined for A z = 0, the quantities vx and vy This sub-

système contient alors les équations suivantes: dvx/dt = Qz*Vy + ax + sin(r)*g ( 25) dvy/dt = -z*Vx + ay + ( 26)  The system then contains the following equations: dvx / dt = Qz * Vy + ax + sin (r) * g (25) dvy / dt = -z * Vx + ay + (26)

dg/dt = O ( 27).dg / dt = O (27).

A cet égard, u-f x et y ne seront alors pas nécessaires La grandeur p sera dans ce cas prise en considération d'une manière particulière et elle correspondra à l'expression -cos(r)*sin()*g Pour ce sous-système, on utilisera ensuite soit un observateur  In this respect, uf x and y will then not be necessary. The quantity p will be taken into consideration in a particular way and it will correspond to the expression -cos (r) * sin () * g. system, we will then use either an observer

soit un filtre de Kalman.a Kalman filter.

En variante à cet égard, il est également possible de considérer toutes les expressions qui contiennent au moins un des angles r ou i comme des erreurs et d'étendre l'ordre du système On obtient alors par exemple le système d'équations suivant, qui peut à nouveau être traité au moyen d'un filtre de Kalman: dvx/dt = vy*Qz + ax + e 1 ( 28) d Vy/dt = -VX *Qz + ay + 2 ( 29) del/dt = O ( 30) de 2/dt = O ( 31) et  Alternatively in this respect, it is also possible to consider all the expressions which contain at least one of the angles r or i as errors and to extend the order of the system. For example, the following system of equations is obtained. can again be processed using a Kalman filter: dvx / dt = vy * Qz + ax + e 1 (28) d Vy / dt = -VX * Qz + ay + 2 (29) del / dt = O (30) of 2 / dt = O (31) and

y VX ( 32).y VX (32).

D'autres caractéristiques et avantages de l'invention seront mis en évidence dans la suite de la  Other features and advantages of the invention will be highlighted later in the

description, donnée à titre d'exemple non limitatif, en  description, given by way of non-limiting example, in

-9- référence aux dessins annexés dans lesquels la Figure 1 représente le schéma à blocs d'un observateur, o dans le modèle de base les angles de tangage et de roulis r et 4 ont été négligés et la Figure 2 montre un agencement de capteurs, à l'aide desquels sont déterminées les grandeurs de mesure  Referring to the accompanying drawings, in which Figure 1 shows the block diagram of an observer, o in the basic model, the pitch and roll angles r and 4 have been neglected and Figure 2 shows a sensor arrangement. , with which the measured variables are determined

qui sont à la base des modèles.which are at the base of the models.

Comme le montre le schéma à blocs représenté sur la Figure 1, on utilise comme grandeurs de mesure la vitesse de véhicule dans la direction longitudinale vx, l'accélération longitudinale axi l'accélération  As shown in the block diagram shown in FIG. 1, the vehicle speed in the longitudinal direction vx is used as the measuring variables, the longitudinal acceleration axi the acceleration

transversale ay et la vitesse angulaire de giration -lz.  transversal ay and the angular rate of gyration -lz.

Les cercles représentent dans ce cas des zones de sommation et dans les rectangles pourvus du point, les grandeurs d'entrée seront multipliées entre elles Les intégrateurs et les amplificateurs s'expliquent d'eux mêmes. Le schéma à blocs de la Figure 1 est une  In this case, the circles represent summation zones and in the rectangles provided with the point, the input quantities will be multiplied together. The integrators and the amplifiers explain themselves. The block diagram of Figure 1 is a

représentation des équations ( 17) et ( 18).  representation of equations (17) and (18).

La Figure 2 représente des signaux déterminés qui sont appliqués par des capteurs intrinsèquement connus à un dispositif de calcul 407 Les grandeurs de mesure, qui correspondent aux signaux 401, 402, 403, 404, 405 et 406, sont représentés sur la Figure 4 Dans le dispositif de calcul, par exemple avec application du procédé décrit ci-dessus, la vitesse de véhicule dans la direction transversale vy est déterminée et produite sous la forme du signal de sortie 408 A partir de ce signal, il est possible de calculer ensuite dans l'unité de calcul 409 l'angle de flottement @ par exemple au moyen de l'équation ( 1) Cette valeur sera ensuite transmise sous  FIG. 2 shows specific signals which are applied by intrinsically known sensors to a computing device 407 The measurement quantities, which correspond to the signals 401, 402, 403, 404, 405 and 406, are represented in FIG. computing device, for example with application of the method described above, the vehicle speed in the transverse direction vy is determined and produced in the form of the output signal 408. From this signal, it is possible to calculate subsequently in calculation unit 409 the floating angle @ for example by means of equation (1) This value will then be transmitted under

forme d'un signal de sortie 410.form of an output signal 410.

-10--10-

Claims (4)

REVENDICATIONS 1 Procédé pour déterminer les grandeurs caractéristiques du comportement en marche d'un véhicule, comportant un dispositif de calcul ( 407), auquel sont appliqués des signaux ( 401, 402, 403, 406), qui représentent les grandeurs mesurées de la vitesse longitudinale de véhicule (v x), de l'accélération longitudinale (ax), de l'accélération transversale (a y) et de la vitesse angulaire de giration (r)i et dans lequel on obtient, à l'aide de ces grandeurs mesurées, au moins une autre grandeur, caractérisé en ce que l'obtention de l'autre grandeur est effectuée en utilisant les grandeurs mesurées et des équations d'état et en ce que, comme grandeur obtenue, au moins l'angle de flottement (g) est  A method for determining the characteristic variables of the running behavior of a vehicle, comprising a computing device (407), to which signals (401, 402, 403, 406) are applied, which represent the measured magnitudes of the longitudinal speed of the vehicle. vehicle (vx), the longitudinal acceleration (ax), the transverse acceleration (ay) and the angular rate of turn (r) i and in which, using these measured quantities, at least another size, characterized in that the obtaining of the other quantity is carried out using the measured quantities and the equations of state and in that, as the quantity obtained, at least the floating angle (g) is déterminé et transmis.determined and transmitted. 2 Procédé selon la revendication 1, caractérisé en ce que les équations d'état seront transformées dans la forme normale d'observation et en ce que ladite autre grandeur au moins obtenue ( 408, 410) sera déterminée au  Method according to claim 1, characterized in that the state equations will be transformed into the normal form of observation and in that said other at least one obtained magnitude (408, 410) will be determined at moyen d'un observateur complet.means of a complete observer. 3 Procédé selon la revendication 1, caractérisé en ce que l'observateur ( 17, 18) est produit au moyen d'un  Process according to Claim 1, characterized in that the observer (17, 18) is produced by means of a filtre de Kalman.Kalman filter. 4 Procédé selon une des revendications 1, 2 ou  4 Process according to one of claims 1, 2 or 3, caractérisé en ce que, dans les équations d'état, des mouvements de tangage et des mouvements de roulis du  3, characterized in that, in the state equations, pitch motions and roll movements of the véhicule sont compensés dans leur action ( 404, 405).  vehicle are compensated in their action (404, 405).
FR9309863A 1992-08-13 1993-08-11 PROCESS FOR DETERMINING THE CHARACTERISTIC QUANTITIES OF THE BEHAVIOR IN OPERATION OF A VEHICLE. Expired - Fee Related FR2694808B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE4226749A DE4226749C2 (en) 1992-08-13 1992-08-13 Method for determining variables that characterize driving behavior

Publications (2)

Publication Number Publication Date
FR2694808A1 true FR2694808A1 (en) 1994-02-18
FR2694808B1 FR2694808B1 (en) 1996-02-23

Family

ID=6465434

Family Applications (1)

Application Number Title Priority Date Filing Date
FR9309863A Expired - Fee Related FR2694808B1 (en) 1992-08-13 1993-08-11 PROCESS FOR DETERMINING THE CHARACTERISTIC QUANTITIES OF THE BEHAVIOR IN OPERATION OF A VEHICLE.

Country Status (5)

Country Link
DE (1) DE4226749C2 (en)
FR (1) FR2694808B1 (en)
GB (1) GB2269571B (en)
IT (1) IT1261511B (en)
SE (1) SE513553C2 (en)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4325413C2 (en) * 1993-07-29 1995-05-18 Daimler Benz Ag Method for determining the behavior of characteristic quantities
JP3022167B2 (en) * 1994-06-20 2000-03-15 トヨタ自動車株式会社 Vehicle motion state estimation method
DE4430458A1 (en) * 1994-08-27 1996-02-29 Teves Gmbh Alfred Method for determining the lateral acceleration of a vehicle
DE4434480A1 (en) * 1994-09-27 1996-03-28 Bayerische Motoren Werke Ag Method for determining the speed of a wheel in motor vehicles
DE19515060A1 (en) * 1994-11-25 1996-05-30 Teves Gmbh Alfred Vehicle wheel braking force determn. by reference speed comparison
KR0157738B1 (en) * 1995-02-10 1999-03-30 김은영 Method for measuring automobile motion resistance using distance-time inertia travelling test
DE19518700A1 (en) * 1995-05-22 1996-11-28 Bayerische Motoren Werke Ag Comfort evaluation device for motor vehicles with means for detecting and evaluating the longitudinal acceleration
DE19529539A1 (en) * 1995-08-11 1997-02-13 Man Nutzfahrzeuge Ag Procedure for the ON-BOARD determination of vehicle dynamic safety reserves of commercial vehicles
JP3008833B2 (en) * 1995-10-25 2000-02-14 トヨタ自動車株式会社 Estimation device for vehicle body skidding speed
DE19602994A1 (en) * 1996-01-27 1997-07-31 Teves Gmbh Alfred Method for determining variables that describe the driving behavior of a vehicle
DE19607050A1 (en) * 1996-02-03 1997-08-07 Teves Gmbh Alfred Method for determining variables that describe the driving behavior of a vehicle
AU2083897A (en) * 1996-02-03 1997-08-22 Itt Manufacturing Enterprises, Inc. Method of determining variables which describe a vehicle's driving characteristics
DE19607429B4 (en) * 1996-02-28 2004-02-19 Daimlerchrysler Ag Fault-tolerant control device for a physical system, in particular vehicle dynamics control device for a motor vehicle
US5895433A (en) * 1996-05-23 1999-04-20 General Motors Corporation Vehicle chassis system control method and apparatus
US5857160A (en) * 1996-05-23 1999-01-05 General Motors Corporation Sensor-responsive control method and apparatus
US5667286A (en) * 1996-05-29 1997-09-16 General Motors Corporation Brake control system
US6212460B1 (en) 1996-09-06 2001-04-03 General Motors Corporation Brake control system
US6325469B1 (en) 1996-09-06 2001-12-04 General Motors Corporation Brake control system
US5720533A (en) * 1996-10-15 1998-02-24 General Motors Corporation Brake control system
US5686662A (en) * 1996-10-16 1997-11-11 General Motors Corporation Brake control system
US5746486A (en) * 1996-10-16 1998-05-05 General Motors Corporation Brake control system
US5941919A (en) * 1996-10-16 1999-08-24 General Motors Corporation Chassis control system
DE19650691C2 (en) * 1996-12-07 1998-10-29 Deutsch Zentr Luft & Raumfahrt Method for steering assistance for a driver of a road vehicle
US5948030A (en) * 1997-07-25 1999-09-07 General Motors Corporation Steering angle determaination method and apparatus
US6547343B1 (en) 1997-09-08 2003-04-15 General Motors Corporation Brake system control
US6035251A (en) * 1997-11-10 2000-03-07 General Motors Corporation Brake system control method employing yaw rate and ship angle control
DE19817686A1 (en) * 1998-04-21 1999-10-28 Wabco Gmbh Method for determining a comparison variable
DE19818860C2 (en) 1998-04-28 2001-04-19 Daimler Chrysler Ag Method and device for the detection and localization of sensor errors in motor vehicles
US6205391B1 (en) 1998-05-18 2001-03-20 General Motors Corporation Vehicle yaw control based on yaw rate estimate
US6112147A (en) * 1998-08-17 2000-08-29 General Motors Corporation Vehicle yaw rate control with bank angle compensation
US6125319A (en) * 1998-08-17 2000-09-26 General Motors Corporation Brake system control method responsive to measured vehicle acceleration
US6079800A (en) * 1998-08-20 2000-06-27 General Motors Corporation Active brake control with front-to-rear proportioning
US6169951B1 (en) 1998-08-21 2001-01-02 General Motors Corporation Active brake control having yaw rate estimation
US6175790B1 (en) 1998-08-24 2001-01-16 General Motors Corporation Vehicle yaw rate control with yaw rate command limiting
US6056371A (en) * 1998-08-24 2000-05-02 General Motors Corporation Feed-forward active brake control
US5931887A (en) * 1998-09-24 1999-08-03 General Motors Corporation Brake control method based on a linear transfer function reference model
US6161905A (en) * 1998-11-19 2000-12-19 General Motors Corporation Active brake control including estimation of yaw rate and slip angle
US6195606B1 (en) 1998-12-07 2001-02-27 General Motors Corporation Vehicle active brake control with bank angle compensation
DE10002685A1 (en) * 2000-01-22 2001-07-26 Wabco Gmbh & Co Ohg Method for detecting the incorrect installation of sensing devices in a vehicle
DE10003739C2 (en) * 2000-01-28 2002-12-05 Daimler Chrysler Ag Method and system for identifying system parameters in vehicles
DE10047745A1 (en) * 2000-09-27 2002-04-11 Bayerische Motoren Werke Ag Signal filtering method
US6618651B1 (en) * 2002-02-25 2003-09-09 Visteon Global Technologies, Inc. Estimating vehicle velocities using linear-parameter-varying and gain varying scheduling theories
US20050182548A1 (en) * 2002-03-13 2005-08-18 Daimler Chrysler Ag Method and device for detecting parameters characterizing the driving behavior of a vehicle
DE102004053236B4 (en) * 2004-11-04 2006-10-19 Daimlerchrysler Ag Method for determining a longitudinal acceleration of a motor vehicle
DE502005008142D1 (en) * 2005-07-12 2009-10-29 Ford Global Tech Llc Method and arrangement for determining the yaw or rolling motion in a vehicle
FR2899189B1 (en) * 2006-03-31 2008-12-05 Peugeot Citroen Automobiles Sa VEHICLE STABILIZATION DEVICE
DE102007022595A1 (en) * 2007-05-14 2008-11-27 Robert Bosch Gmbh Driving dynamics controller with reduced sensors
EP2042397A1 (en) * 2007-09-25 2009-04-01 Peugeot Citroen Automobiles SA Vehicle stabilisation device
DE102016220388A1 (en) * 2016-10-18 2018-04-19 Audi Ag Method for calculating the lateral velocity of a vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3608420A1 (en) * 1985-03-15 1986-09-25 Nissan Motor Co., Ltd., Yokohama, Kanagawa DEVICE FOR DETERMINING THE MOVEMENT OF A VEHICLE
DE4031304A1 (en) * 1990-10-04 1992-04-09 Bosch Gmbh Robert Model supported estimation of float angle - using vehicle speed from ABS system, steering angle sensor to derive transverse speed and hence float angle
WO1992005987A2 (en) * 1990-09-28 1992-04-16 Robert Bosch Gmbh Method of determining the oblique-motion angle of a braked vehicle and/or the lateral motion force acting on the vehicle
GB2263180A (en) * 1992-01-03 1993-07-14 Bosch Gmbh Robert Determination of the transverse velocity of a vehicle and/or the drift angle

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4712807A (en) * 1985-02-06 1987-12-15 Toyota Jidosha Kabushiki Kaisha Vehicle active suspension system incorporating acceleration detecting means
JPS62137276A (en) * 1985-12-09 1987-06-20 Nissan Motor Co Ltd Steering system control device for vehicle
JPH0725320B2 (en) * 1986-10-13 1995-03-22 日産自動車株式会社 Actual steering angle control device for vehicle
DE3912045A1 (en) * 1989-04-12 1990-10-25 Bayerische Motoren Werke Ag METHOD FOR REGULATING A CROSS-DYNAMIC STATE SIZE OF A MOTOR VEHICLE

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3608420A1 (en) * 1985-03-15 1986-09-25 Nissan Motor Co., Ltd., Yokohama, Kanagawa DEVICE FOR DETERMINING THE MOVEMENT OF A VEHICLE
WO1992005987A2 (en) * 1990-09-28 1992-04-16 Robert Bosch Gmbh Method of determining the oblique-motion angle of a braked vehicle and/or the lateral motion force acting on the vehicle
DE4031304A1 (en) * 1990-10-04 1992-04-09 Bosch Gmbh Robert Model supported estimation of float angle - using vehicle speed from ABS system, steering angle sensor to derive transverse speed and hence float angle
GB2263180A (en) * 1992-01-03 1993-07-14 Bosch Gmbh Robert Determination of the transverse velocity of a vehicle and/or the drift angle

Also Published As

Publication number Publication date
FR2694808B1 (en) 1996-02-23
GB9314918D0 (en) 1993-09-01
DE4226749A1 (en) 1994-02-17
SE513553C2 (en) 2000-10-02
GB2269571A (en) 1994-02-16
SE9302610D0 (en) 1993-08-11
IT1261511B (en) 1996-05-23
ITRM930544A0 (en) 1993-08-09
DE4226749C2 (en) 1996-02-08
GB2269571B (en) 1995-11-08
SE9302610L (en) 1994-02-14
ITRM930544A1 (en) 1995-02-09

Similar Documents

Publication Publication Date Title
FR2694808A1 (en) Method for determining the characteristic quantities of the running behavior of a vehicle
EP0496661B1 (en) Method and apparatus for measuring speed of a non-stationary flow
FR2552222A1 (en) ACCELEROMETER ASSEMBLY FOR INERTIAL PLATFORM AND INERTIAL PLATFORM COMPRISING THE SAME
FR2889679A1 (en) SYSTEM AND METHOD FOR ESTIMATING AT LEAST ONE CHARACTERISTIC OF A SUSPENSION OF A MOTOR VEHICLE
FR3077792A1 (en) AUTONOMOUS METHOD AND DEVICE FOR DETERMINING A PLATE OF A MOTOR VEHICLE.
FR2973115A1 (en) ESTIMATING THE DYNAMIC RADIUS OF A WHEEL AND THE SPEED OF A MOTOR VEHICLE
EP2170678B1 (en) System and method for controlling the turn of the steering wheels of an automobile in a braking situation with asymmetrical adhesion
EP0704705B1 (en) Method and apparatus for minimising an error due to a disturbing movement in the determination of the speed in an inertial measuring system
FR2610411A1 (en) METHOD AND DEVICE FOR MEASURING SPEED IN RELATION TO AIR OF A LOW SPEED HELICOPTER
EP0094298B1 (en) Method and apparatus for measuring the liquid level in a vehicle tank
FR2935807A1 (en) Motor vehicle stopping detection method for hill-start assistance system, involves confirming stopping of vehicle by null vehicle speed deduced from measurement of odometer, when vehicle speed estimated based on independent data is null
FR2908511A3 (en) Tank's e.g. petrol tank, liquid volume determining device for vehicle, has calculator to calculate liquid volume based on preset relation by simulation or calibration according to characteristics of tank
EP0919814B1 (en) Method for estimating the velocity of a vehicle or an assembly of vehicles
FR2935124A1 (en) METHOD FOR DETERMINING THE DRIFT OF A MOTOR VEHICLE
EP1804041A1 (en) Method for real-time estimation of front force and rear force applied by the ground to a vehicle
EP3899432A1 (en) Method for characterising an inertial measurement unit
EP1940662B1 (en) Method for determining the condition of a motor vehicle wheels and device therefor
EP3080565B1 (en) Device and method for estimating the total mass of a motor vehicle with onboard calibration of suspension displacement sensors
FR3120689A1 (en) PROCEDURE FOR AIDING THE NAVIGATION OF A VEHICLE
EP2368088B1 (en) Method for determining the rotation speed of an axisymmetrical vibrating sensor and inertial device for implementing said method
FR2868843A1 (en) Motor vehicle`s longitudinal, lateral and angular acceleration determining device has identical acceleration sensors which are linear and placed tangentially to predetermined radiation circles
EP0346178A1 (en) Four-wheel steering device for an automotive vehicle
FR2890737A1 (en) Power unit displacement estimating device for motor vehicle, has movement detection device permitting to evaluate relative displacement of power unit with respect to structure of motor vehicle
FR2920047A3 (en) Road slope estimating method for motor vehicle, involves cognizing/estimating real longitudinal acceleration of vehicle, and considering information for measurement as basic input data for calculation of slope
EP2176111B1 (en) Method for estimating the sliding of the wheels of a vehicle and device for implementing same

Legal Events

Date Code Title Description
ST Notification of lapse

Effective date: 20070430