DE3812812C1 - - Google Patents

Info

Publication number
DE3812812C1
DE3812812C1 DE3812812A DE3812812A DE3812812C1 DE 3812812 C1 DE3812812 C1 DE 3812812C1 DE 3812812 A DE3812812 A DE 3812812A DE 3812812 A DE3812812 A DE 3812812A DE 3812812 C1 DE3812812 C1 DE 3812812C1
Authority
DE
Germany
Prior art keywords
fuel
fuel cell
gas
heat
transport liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
DE3812812A
Other languages
English (en)
Inventor
Joseph Dr. 7990 Friedrichshafen De Lemoine
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lemoine Joseph Dr 3510 Hann-Muenden De
Original Assignee
MTU Friedrichshafen GmbH
MTU Motoren und Turbinen Union Friedrichshafen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Friedrichshafen GmbH, MTU Motoren und Turbinen Union Friedrichshafen GmbH filed Critical MTU Friedrichshafen GmbH
Priority to DE3812812A priority Critical patent/DE3812812C1/de
Priority to JP1503562A priority patent/JPH02503968A/ja
Priority to PCT/DE1989/000209 priority patent/WO1989010010A1/de
Priority to US07/450,567 priority patent/US5156926A/en
Priority to EP89904001A priority patent/EP0364546A1/de
Application granted granted Critical
Publication of DE3812812C1 publication Critical patent/DE3812812C1/de
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

Die Erfindung betrifft eine Einrichtung zur Erzeugung elektrischer Energie aus Brennstoffen mit elektrochemisch arbeitenden Brennstoffzellen nach dem Oberbegriff von Anspruch 1, wie sie beispielsweise aus der Enzyklopädie "Naturwissenschaft und Technik", Zweiburgen-Verlag Weinheim, Band 1, 1979, Seiten 585-593 als gattungsbildender Stand der Technik als bekannt hervorgeht.
Aus der eingangs genannten Literaturstelle geht eine Brennstoffzelle als bekannt hervor, die aus zwei als Katalysator dienenden Elektroden, die durch einen Elektrolyten voneinander getrennt sind, gebildet ist. Als Brennstoff für die Brennstoffzelle sind bereits die herkömmlichen fossilen Brennstoffe in Betracht gezogen worden. An der Brennstoffelektrode wird beispielsweise ein Gemisch aus Wasserdampf, Brennstoffdämpfen und ein Katalysatorgas zugeführt, unter dessen Einwirkung Kohlendioxyd, Wasserstoffionen und Elektronen entstehen. Die Wasserstoffionen wandern durch einen Elektrolyten hindurch zur Luftelektrode, an der Verbrennungsluft zugeführt wird, wo in einer Wasserstoffionen/Sauerstoffreaktion Wasserdampf entsteht. Um größere elektrische Leistungen zu erreichen, werden Stapel von Brennstoffzellen gebildet, die in Reihe geschaltet sind. Zum Betrieb derartiger Brennstoffzellen sind natürlich Einrichtungen zum Zu- und Abführen der reagierenden Stoffe und der Reaktionsprodukte zu und von an die Elektrodenoberflächen angrenzende Räume, sowie Einrichtungen zur Wärmeregulierung, beispielsweise Wärmetauscher, nötig. Die heute in Betrieb befindlichen Anlagen sind jedoch wegen mangelnder Wirtschaftlichkeit über einzelne begrenzte spezielle Anwendungen nicht hinausgekommen. Dies liegt daran, daß eine konsequente Wiederaufbereitung und Wiederverwendung der am Prozeß beteiligten Stoffe und die Nutzung der anfallenden Wärmemengen nicht stattgefunden hat.
In der DE-OS 16 71 963 ist ein Brennstoffzellensystem aufgezeigt, das zur Abfuhr von Wärme und Wasser für die Regelung von Temperatur und Feuchtigkeit mit entsprechenden Einrichtungen in Verbindung steht. Die gewonnene Abwärme wird zur Konditionierung der Verbrennungsluft wiederverwendet. Ferner ist eine Waschanlage vorgesehen, die dazu dient, das Einströmen von Kohlendioxid mit der Verbrennungsluft zu verhindern. Dies ist beispielsweise notwendig, wenn ein von einem Karbonat gebildeter Elektrolyt verwendet wird.
In der DE-PS 26 04 981 wird die Wirtschaftlichkeit einer Brennstoffzellenanlage durch Zufuhr von unter Druck stehenden Reaktionsmitteln gehoben. Dabei wird die Energie der Kathodenabgase, der Anodenabgase sowie bei der Brennstoffumwandlung anfallender Energiemengen zur Verdichtung genutzt. Außerdem weist die Anlage Kondensatoren zur Wassergewinnung aus Kathoden- und Anodenabgasen auf.
Die DE-OS 14 96 303, DE-OS 14 96 286 und die US-PS 37 36 187 zeigen jeweils Einrichtungen zum Trennen der in den Abgasen enthaltenen Abfallstoffe, beispielsweise Wasser oder Wasserdampf, von überschüssigem Brennstoff, wobei letzterer mittels Pumpen wieder in die Brennstoffzelle zurückgeführt wird. Ferner enthalten die Anlagen Wärmetauscher zum Nutzen der in der Brennstoffzelle anfallenden Wärmemengen.
Bei der US-PS 35 76 677 wird die zugeführte Verbrennungsluft mittels eines Wärmetauschers temperiert und in einer Waschanlage von Kohlendioxid befreit. Dabei wird die Abwärme der Brennstoffzelle verwendet.
Der Erfindung liegt die Aufgabe zugrunde, eine Einrichtung zur Erzeugung elektrischer Energie aufzuzeigen, die auf der Verwendung von Brennstoffzellen beruht, die einen hohen Wirkungsgrad aufweist und wirtschaftlich und umweltfreundlich betreibbar ist.
Diese Aufgabe wird bei einer gattungsgemäßen Einrichtung durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst. Durch geeignete Wärmetauscher und Vorrichtungen werden im Prozeß anfallende Wärmemengen zur Erwärmung der zur Brennstoffzelle zuzuführenden Stoffströme wiedergenutzt. Weitere Anlagenteile dienen dazu, die bei der Brennstoffreaktion anfallenden Brennstoffgase mittels Gaswaschanlagen zu reinigen, Brennstoffrestkomponenten den Brennstoffzellen wieder zuzuführen und teuere Katalysatorgase wiederzugewinnen. In besonders zweckmäßigen Ausbildungen nach den Unteransprüchen wird die Wirtschaftlichkeit und Umweltfreundlichkeit der Anlage durch eine weitere Gaswaschanlage und weitere Geräte, sowie besondere Regelungstechniken unter Verwendung von Mikroprozessoren weiter erhöht.
Ein Ausführungsbeispiel der Erfindung ist in einer Zeichnung dargestellt. Die einzige Figur zeigt eine schematische Darstellung der Gesamtkonfiguration einer Anlage mit einer elektrochemischen Brennstoffzelle zur elektrischen Energieerzeugung.
Die in der Figur dargestellte Einrichtung dient zur direkten elektrochemischen Umwandlung chemischer Energie aus Brennstoffen in elektrische Energie. Die Einrichtung ist anwendbar für die Umwandlung der Energie aus den meisten herkömmlichen Brennstoffen, wie beispielsweise Dieselöl, Kerosin, Benzin, verschiedene Alkohole und auch Butan, Propan und Methan. Das Gerät arbeitet mit Luft als Oxidationsmittel bei einer Betriebstemperatur zwischen 120°C und 250°C. Den Brennstoffelektroden des Brennstoffzellenkerns, der aus einer Anzahl von in Stapel angeordneten einzelnen Brennstoffzellen 1 gebildet sein kann, wird ein Gemisch aus Wasserdampf, Brennstoffdämpfen und einem Katalysatorgas zugeführt. Durch die Elektrodenreaktion werden an der Oberfläche der Brennstoffelektrode Protonen gebildet, die den Strom tragend, durch einen Elektrolyten zur Luftelektrode wandern, und dort in einer Protonen/Sauerstoffreaktion entladen und in Wasserdampf umgesetzt werden. An der Brennstoffelektrode bilden sich Protonen in einer Reaktionskette, wobei Wasserdampf verbraucht wird, und der Brennstoff in Kohlendioxyd umgesetzt wird. Bei vollständigem Verbrauch von Luftsauerstoff und Brennstoff werden die Austrittsgase somit aus einem Stickstoff/Wasserdampfgemisch, (verbrauchte Luft), bzw. Wasserdampf/Katalysatorgas/ Kohlendioxydgemisch (verbrauchter Brennstoff) bestehen.
Die Verbrennungsluft und das Verbrennungsgasgemisch sind auf die notwendigen Temperaturen zu erwärmen. Zum Anfahren der Anlage wird eine Heizeinrichtung mit einem Dampferzeuger 16 benötigt, mit dem die Brennstoffzelle 1 extra beheizt werden muß. Im Betrieb produziert die Brennstoffzelle 1 durch Verluste genug Wärme, um ihre eigene Betriebstemperatur aufrecht zu erhalten. Hierzu dient ein Wärmetauscher 2, in dem die durch Abkühlung der aus der Brennstoffzelle 1 abgeführten Stoffströme gewonnene Wärme und die aus dem Abscheiden von Kondensaten erzeugte Kondensationswärme zur Erwärmung und Verdampfung der der Brennstoffzelle 1 zuzuführenden Stoffströme ausgebildet ist. Ein Teil der Wärme muß sogar abgeführt werden, was über die später erläuterten Gaswaschanlagen 11 und 20 und eventuell zusätzlicher Kühlflüssigkeit im Wärmetauscher 2 erreicht werden kann. Ferner kann eine Wärmepumpe 23 zur Regelung der Betriebstemperatur eingesetzt werden. Durch Bilden von Kondensaten im Wärmetauscher 2 werden die Gaswaschanlagen 11 und 20 entlastet. Die im Wärmetauscher 2 aus den Brennstoffgasen gebildeten Kondensate werden durch eine Pumpe 14 abgesaugt und in geschlossenem Kreislauf in das zuströmende Brennstoffgasgemisch im Wärmetauscher 2 wieder eingespritzt. Ein Teil dieses Kondensats wird in einem Kondensattank 15 gespeichert und einem besonderen Dampferzeuger 16 geregelt zugeführt. Dadurch wird der Druck der Brennstoffgase geregelt.
Das aus der verbrauchten Verbrennungsluft anfallende Kondensat besteht aus reinem Wasser, was zu einem Teil in der Gaswaschanlage 11 gebraucht wird, und zum Teil als Abfallprodukt abgeführt werden muß. Im Prozeß wird im Luftraum wesentlich mehr Wasser produziert als im Brennstoffraum verbraucht wird.
Die Gaswaschanlage 11 dient zur Trennung von Katalysatorgas und Brennstoffrestkomponenten aus den aus den Brennstoffzellen 1 abgeführten Brennstoffgasen. Katalysatorgas und Brennstoffrestkomponenten werden im geschlossenen Kreislauf wieder in die Brennstoffzellen 1 eingespeist. Die genannten Stoffe werden mit Wasser aus den Gasen nach dem Gegenstromprinzip ausgewaschen, da die sauren Zwischenprodukte eine ungünstige Auswirkung auf die basische Transportflüssigkeit der Waschanlage 20 haben würden.
Die weitere Gaswaschanlage 20 dient zur Trennung von Kohlendioxyd von den aus der Gaswaschanlage 11 austretenden Restgasen. Das Kohlendioxyd wird in einer Transportflüssigkeit gelöst und aus dem Restgasgemisch abgeführt. Die Restgase werden im geschlossenen Kreislauf über Pumpe 13 wieder in die Brennstoffzelle 1 eingespeist. Als Transportflüssigkeit wird eine Flüssigkeit verwendet, die das Kohlendioxyd bei niedriger Temperatur stark bindet, sie aber bei höherer Temperatur wieder ganz frei gibt. Zum Kühlen der Gaswaschanlage 11 und 20 dienen Wärmetauscher 25 und 27.
Zur Wiederaufbereitung der Transportflüssigkeit dient ein Gerät 21 zum Abscheiden des Kohlendioxyds an die Atmosphäre. Im Gerät 21 wird die Transportflüssigkeit mittels eines Wärmetauschers 24 aufgeheizt. Die Transportflüssigkeit läuft in einem geschlossenen Kreislauf zwischen Gaswaschanlage 20 und Gerät 21 um, wobei ein Wärmetauscher 26 zur Wärmeregulierung vorgesehen ist. Die Transportflüssigkeit wird im Wärmetauscher 26 mit der regenerierten Transportflüssigkeit im Gegenstromprinzip aufgeheizt.
Auch bei Überdimensionierung der Waschanlage 11 läßt sich nicht vermeiden, daß Restspuren des Katalysatorgases in die Waschanlage 20 gelangen und dort die Transportflüssigkeit allmählich blockieren. Zudem sind Brennstoffe üblicherweise nicht schwefelfrei. Der Schwefel landet als Schwefeldioxyd letztendlich in der Waschanlage 20 und blockiert die Transportflüssigkeit ebenso. Die Katalysatorsäure und das Schwefeldioxyd werden wegen ihres stark sauren Charakters nicht durch Aufheizen ausgetrieben. Deswegen ist bei entsprechenden Brennstoffen eventuell ein zusätzliches, jedoch nicht dargestelltes Gerät erforderlich, um beide Komponenten aus der Transportflüssigkeit abzutrennen und zu entsorgen. Eine derartige Technik ist bekannt. Ein solches Gerät kann eingespart werden, wenn durch Austausch der Transportflüssigkeit anläßlich einer Wartung neue Transportflüssigkeit eingefüllt wird. Die entsorgte Transportflüssigkeit könnte dann in einem Chemiewerk wieder aufbereitet werden.
Eine Wärmepumpe 23 dient dazu, die Gaswaschanlagen 11 und 20 auf eine Temperatur etwas über dem Gefrierpunkt abzukühlen. Die regenerierte Wärme dient zum Erhitzen des Dampferzeugers 16 und des Geräts 21 zur Wiederaufbereitung der Transportflüssigkeit. Die Verlustwärme des Systems wird an die Atmosphäre oder an einen Verbraucher abgegeben.
Ein Mikroprozessor dient zur Steuerung der Gas- und Flüssigkeitsströme, sowie zur Steuerung und Überwachung der Betriebstemperaturen und zum Einhalten von Betriebssicherheitskriterien. Sämtliche Ventile und Pumpen sind mikroprozessorgesteuert. Die Luftversorgung der Brennstoffzellen 1 erfolgt über einen Luftfilter 7, einen Kompressor 6, einen Lufttank 5 sowie Ventile 8 und 9. Mit den Ventilen 8, 9 wird - mikroprozessorgesteuert - ein Druck im Luftraum der Brennstoffzelle 1 aufrechterhalten, der dem Druck im Brennstoffraum gleich ist, und durch die Festigkeit der Zellenkonstruktion vorgeschrieben ist. Der Strömungsdurchsatz ist so geregelt, daß er den theoretisch gebrauchten Wert geringfügig übertrifft.
Die Durchströmung der Brennstoffgase wird durch Betätigen des Ventils 10 und durch Regelung der Dampferzeugung im Dampferzeuger 16 geregelt. Wenn das Ventil 10 geschlossen ist, entsteht in den Gaswaschanlagen 11 und 20 ein Vakuum, das die Brennstoffgase beim Öffnen des Ventils 10 aus der Brennstoffzelle 1 durch den Wärmetauscher 2 hindurch absaugt. Der Druck im Brennstoffraum wird durch den Dampferzeuger 16, in Verbindung mit den Ventilen 18 und 19 und durch Einspritzen von Brennstoff wieder aufgebaut. Die Pumpe 14 und das Einspritzen von Kondensat in den Wärmetauscher 2 sorgt für einen - geschlossenen Kreislauf. Die Durchströmung der Brennstoffgase wird unabhängig von der Einspritzung von Brennstoff geregelt, da der Partialdruck des Brennstoffs in breiten Genzen variiert werden kann.
Die Brennstoffeinspritzung kann an den mit A, B oder C gekennzeichneten Punkten je nach Flüchtigkeit des verwendeten Brennstoffs erfolgen. Die in Stapeln angeordneten Brennstoffzellen 1 werden vorteilhafterweise nacheinander vom zuzuführenden Brennstoffgasgemisch durchströmt. Die Brennstoffzellenspannung ist abhängig vom Logarithmus des Partialdrucks des Brennstoffs. Die Differenz der Brennstoffzellenspannungen einer ersten und einer letzten Gruppe in der Serpentinenströmung läßt sich aber leicht messen und dadurch die Verarmung des Brennstoffs genau bestimmen. Die Messung der Brennstoffzellenspannungen wird also herangezogen, um die Brennstoffeinspritzung so zu regeln, daß nahezu der gesamte zugeführte Brennstoff verbraucht wird. Da nur wenig überschüssiger Brennstoff mit den Brennstoffgasen austritt, werden die Gaswaschanlagen 11 und 20 wenig belastet.
In der Brennstoffelektrode wird Wasser verbraucht, das aus dem Waschwasser der Gaswaschanlage 11 entnommen wird. Das Wasser wird dem im Wärmetauscher 2 zugeführten Kondensat zugeschlagen. Die Zufuhr an Wasser wird derart geregelt, daß seine Konzentration im Brennstoffkondensat konstant bleibt.
Durch Regelung der Pumpe 22 und durch Regelung der Wärmepumpe 23 läßt sich die Abscheidung von Kohlendioxyd aus der Transportflüssigkeit regeln. Der Durchsatz wird nach dem Gehalt an Kohlendioxyd am Ausgang der Gaswaschanlage 11 oder in der Transportflüssigkeit gesteuert.
Der zur Regelung des Arbeitsprozesses eingesetzte Mikroprozessor dient ferner zur Überwachung der Drücke, ob also bei Bruch der Zellenstruktur ein plötzlicher Druckabfall stattfindet, oder ob bei einem Leck in der Brennstoffzelle Katalysatorsäure im Luftkondensat auftritt, oder ob die Temperaturen eingehalten werden. Im Falle einer Fehlfunktion werden Sicherheitsventile geöffnet, die jedoch nicht dargestellt sind. Die Sicherheitsventile bewirken, daß der Druck in beiden Zellenhälften gleich gemacht wird, um die dort befindlichen Gase durch ein Sicherheitsgas, wie beispielsweise Stickstoff oder Kohlendioxyd, zu verdrängen. Im Ruhezustand der Anlage sind die Brennstoffzellen 1 mit diesem Gas gefüllt. Erst beim Anfahren wird durch Dampf aus dem Dampferzeuger 16 und Luft vom Kompressor 6 dieses Gas allmählich verdrängt.

Claims (11)

1. Einrichtung zur Erzeugung elektrischer Energie aus Brennstoffen mit elektrochemisch arbeitenden Brennstoffzellen, mit Vorrichtungen zum Zu- und Abführen der reagierenden Stoffe und der Reaktionsprodukte zu und von an die Oberflächen der Elektroden der Brennstoffzellen angrenzende Reaktionsräume, sowie mit Vorrichtungen zur Wärmeregulierung und Aufbereitung der Stoffströme, dadurch gekennzeichnet, daß der Brennstoffzelle (1) ein Wärmetauscher (2) zugeordnet ist, der zur Abkühlung der aus der Brennstoffzelle (1) abgeführten Stoffströme und zum Abscheiden von darin enthaltenen Kondensaten dient, und der die daraus gewonnene Wärme zur Erwärmung und Verdampfung der der Brennstoffzelle (1) zuzuführenden Stoffströme verwendet, ferner mit einer Gaswaschanlage (11), die zur Trennung von in der Brennstoffzelle (1) verwendetem Katalysatorgas und Brennstoffrestkomponenten aus den aus der Brennstoffzelle (1) abgeführten Brennstoffgasen dient, sowie mit Vorrichtungen zur Wiedereinspeisung der gewonnenen Kondensate in die Brennstoffzellen (1).
2. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, daß eine weitere Gaswaschanlage (20) vorgesehen ist, in der das in den Brennstoffgasen enthaltene Kohlendioxid in einer Transportflüssigkeit gelöst und abgeführt wird, und ein Restgasgemisch abgeschieden wird, das mittels geeigneter Vorrichtungen wieder in die Brennstoffzelle (1) eingespeist wird.
3. Einrichtung nach Anspruch 2, dadurch gekennzeichnet, daß ein Gerät (21) zur Wiederaufbereitung der Transportflüssigkeit bei Abgabe des Kohlendioxids an die Umgebungsluft vorgesehen ist, wobei die Transportflüssigkeit in einem geschlossenen Kreislauf zwischen Gaswaschanlage (20) und Gerät (21) geführt wird, und ein Wärmetauscher (26) zum Wärmetausch zwischen den Flüssigkeitsströmen vorgesehen ist.
4. Einrichtung nach Anspruch 3, dadurch gekennzeichnet, daß ein Gerät zur Regenerierung von Restkatalysatorgas und zum Abtrennen von Giftgasen aus der Transportflüssigkeit vorgesehen ist.
5. Einrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß eine Wärmepumpe (23) vorgesehen ist, die zur Kühlung der Gaswaschanlagen (11, 20) über die Wärmetauscher (27, 25) dient, und die die generierte Wärme zum Heizen von einem Dampferzeuger (16) und dem Gerät (21) zur Wiederaufbereitung der Transportflüssigkeit zur Verfügung stellt.
6. Einrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der Verbrennungsluftstrom durch Ventile (8, 9) in der Zu- und Abfuhrleitung zur Brennstoffzelle (1) geregelt ist.
7. Einrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Strom des Brennstoffgasgemisches zur Brennstoffzelle (1) durch ein Ventil (10) in der zur Gaswaschanlage (11) führenden Abfuhrleitung und durch Regelung der Dampferzeugung mittels eines Dampferzeugers (16) in der Zufuhrleitung geregelt ist.
8. Einrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Brennstoffeinspritzung mittels einer Vorrichtung zur Messung der Zellenspannung geregelt ist.
9. Einrichtung nach Anspruch 8, dadurch gekennzeichnet, daß bei Stapelanordnung der Brennstoffzellen (1) von den reagierenden Stoffen zumindest das den Brennstoff enthaltende Gasgemisch serpentinenartig nacheinander durch die einzelnen Brennstoffzellen (1) des Stapels geführt wird.
10. Einrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Zufuhr von Wasser zur brennstoffgasgemischseitigen Elektrode der Brennstoffzelle (1) in Abhängigkeit von dessen Konzentration im Brennstoffkondensat geregelt ist, das im Wärmetauscher (2) niedergeschlagen wird.
11. Einrichtung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Pumpen (3, 13, 14, 22) und Ventile (8, 9, 10, 12, 18, 19) zur Zu- und Abfuhr der Stoffströme zu und von der Brennstoffzelle (1) mikroprozessorgesteuert sind.
DE3812812A 1988-04-16 1988-04-16 Expired DE3812812C1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE3812812A DE3812812C1 (de) 1988-04-16 1988-04-16
JP1503562A JPH02503968A (ja) 1988-04-16 1989-04-05 電気化学的に作動する燃料電池により燃料から電気エネルギーを発生する装置
PCT/DE1989/000209 WO1989010010A1 (en) 1988-04-16 1989-04-05 Installation for generating electrical energy from fuels by means of electrochemical fuel cells
US07/450,567 US5156926A (en) 1988-04-16 1989-04-05 System for generating electric energy from fuels having electrochemically acting fuel cells
EP89904001A EP0364546A1 (de) 1988-04-16 1989-04-05 Einrichtung zur erzeugung elektrischer energie aus brennstoffen mit elektrochemisch arbeitenden brennstoffzellen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE3812812A DE3812812C1 (de) 1988-04-16 1988-04-16

Publications (1)

Publication Number Publication Date
DE3812812C1 true DE3812812C1 (de) 1989-10-19

Family

ID=6352196

Family Applications (1)

Application Number Title Priority Date Filing Date
DE3812812A Expired DE3812812C1 (de) 1988-04-16 1988-04-16

Country Status (5)

Country Link
US (1) US5156926A (de)
EP (1) EP0364546A1 (de)
JP (1) JPH02503968A (de)
DE (1) DE3812812C1 (de)
WO (1) WO1989010010A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10040087A1 (de) * 2000-08-16 2002-03-07 Siemens Ag Verfahren zur Abtrennung von Brennstoff aus einem Abgas und zugehörige Vorrichtung
DE10127349B4 (de) * 2001-06-06 2005-09-15 Ballard Power Systems Ag Verfahren zum Betreiben einer Brennstoffzellenanlage und Brennstoffzellenanlage

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5366821A (en) * 1992-03-13 1994-11-22 Ballard Power Systems Inc. Constant voltage fuel cell with improved reactant supply and control system
DE19608738C1 (de) * 1996-03-06 1997-06-26 Siemens Ag Verfahren zur Nutzung der in den Abgasen einer Niedertemperatur-Brennstoffzelle enthaltenen Enthalpie und Anlage zur Durchführung des Verfahrens
US6641625B1 (en) 1999-05-03 2003-11-04 Nuvera Fuel Cells, Inc. Integrated hydrocarbon reforming system and controls
KR100700184B1 (ko) * 2000-12-29 2007-03-27 주식회사 엘지이아이 연료전지를 이용한 세탁기
DE102004037097A1 (de) * 2004-07-30 2006-03-23 Daimlerchrysler Ag Verfahren zum Betreiben eines Brennstoffzellensystems
CN100460040C (zh) * 2006-12-04 2009-02-11 何金星 回收、净化含有挥发性有机化合物废气的装置及其应用
JP5812379B2 (ja) * 2010-07-02 2015-11-11 スズキ株式会社 燃料電池車両の暖房装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1496303A1 (de) * 1964-08-04 1969-05-14 United Aircraft Corp Verfahren zum Betrieb einer Brennstoffzelle und dafuer geeignete Anlage
DE1496286A1 (de) * 1961-11-30 1970-08-20 United Aircraft Corp Regelsystem fuer Brennstoffzellen
US3576677A (en) * 1967-05-23 1971-04-27 United Aircraft Corp Fuel cell process air control
DE1671963A1 (de) * 1967-02-15 1972-03-09 United Aircraft Corp Brennstoffzellensystem
US3736187A (en) * 1971-09-14 1973-05-29 Us Navy Pressure equilibrated gas fuel cells and method
DE2604981C2 (de) * 1975-02-12 1985-01-03 United Technologies Corp., Hartford, Conn. Unter Druck betriebene Brennstoffzellenstromversorgungsanlagen und Verfahren zu ihrem Betrieb

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE639862A (de) * 1961-12-05 1900-01-01
FR1436747A (fr) * 1965-03-17 1966-04-29 Gaz De France Installations génératrices d'électricité et d'énergie thermique comportant des batteries de piles à combustible fonctionnant à haute température et procédé de mise en oeuvre de ces installations
FR1602213A (de) * 1968-12-09 1970-10-26
DE2114920A1 (de) * 1971-03-27 1972-10-26 Varta Ag, 6000 Frankfurt Verfahren zur Kohlendioxidentfernung aus Gasgemischen
US4128700A (en) * 1977-11-26 1978-12-05 United Technologies Corp. Fuel cell power plant and method for operating the same
US4344849A (en) * 1981-01-19 1982-08-17 United Technologies Corporation Fuel cell power plant self-controlling coolant cleaning process
JPS5823169A (ja) * 1981-08-03 1983-02-10 Hitachi Ltd 燃料電池発電装置およびその運転方法
JPS60165063A (ja) * 1984-02-07 1985-08-28 Ishikawajima Harima Heavy Ind Co Ltd 燃料電池発電方法
JPH088107B2 (ja) * 1984-03-30 1996-01-29 三菱電機株式会社 内部改質形燃料電池の流量制御方法
US4532192A (en) * 1984-11-06 1985-07-30 Energy Research Corporation Fuel cell system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1496286A1 (de) * 1961-11-30 1970-08-20 United Aircraft Corp Regelsystem fuer Brennstoffzellen
DE1496303A1 (de) * 1964-08-04 1969-05-14 United Aircraft Corp Verfahren zum Betrieb einer Brennstoffzelle und dafuer geeignete Anlage
DE1671963A1 (de) * 1967-02-15 1972-03-09 United Aircraft Corp Brennstoffzellensystem
US3576677A (en) * 1967-05-23 1971-04-27 United Aircraft Corp Fuel cell process air control
US3736187A (en) * 1971-09-14 1973-05-29 Us Navy Pressure equilibrated gas fuel cells and method
DE2604981C2 (de) * 1975-02-12 1985-01-03 United Technologies Corp., Hartford, Conn. Unter Druck betriebene Brennstoffzellenstromversorgungsanlagen und Verfahren zu ihrem Betrieb

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10040087A1 (de) * 2000-08-16 2002-03-07 Siemens Ag Verfahren zur Abtrennung von Brennstoff aus einem Abgas und zugehörige Vorrichtung
DE10127349B4 (de) * 2001-06-06 2005-09-15 Ballard Power Systems Ag Verfahren zum Betreiben einer Brennstoffzellenanlage und Brennstoffzellenanlage

Also Published As

Publication number Publication date
JPH02503968A (ja) 1990-11-15
US5156926A (en) 1992-10-20
EP0364546A1 (de) 1990-04-25
WO1989010010A1 (en) 1989-10-19

Similar Documents

Publication Publication Date Title
EP3639314B1 (de) Vorrichtung und verfahren zum erzeugen von elektrischem strom mittels wasserstoff und einem wasserstoffspeichermedium
DE68907398T2 (de) System zur Erzeugung elektrischer Energie mit Gebrauch von Brennstoffzellen des geschmolzenen Karbonattyps.
DE19857398B4 (de) Brennstoffzellensystem, insbesondere für elektromotorisch angetriebene Fahrzeuge
EP0850494B1 (de) Verfahren zum betreiben einer brennstoffzellenanlage und brennstoffzellenanlage zum durchführen des verfahrens
DE10307112A1 (de) System zur Speicherung und Rückgewinnung von Energie und Verfahren für dessen Gebrauch
EP2134434A1 (de) Verfahren und vorrichtung zur aufbereitung von flüssigkeiten mit einer trocknungsstufe mittels elektrolyse
DE60222712T2 (de) Wasser-Rückgewinnung für eine Brennstoffzellenanlage
WO2001022512A2 (de) Brennstoffzellenanlage und zugehöriges betriebsverfahren
DE102011121176A1 (de) Brennstoffzellensystem für ein Luftfahrzeug und Luftfahrzeug mit einem Brennstoffzellensystem
DE3812812C1 (de)
WO2022042876A1 (de) Wärmerückgewinnung bei elektrolyseprozessen
DE102013225368A1 (de) Brennstoffzellensystem und verfahren zum befeuchten und kühlen desselben
EP0925614B1 (de) Verfahren zum betreiben einer brennstoffzellenanlage und brennstoffzellenanlage
DE19928068C2 (de) Brennstoffzellensystem und dessen Verwendung
EP1600374A2 (de) Elektrochemischer Reaktor für Luftfahrzeuge und Verfahren zum Betreiben des elektrochemischen Reaktors
DE10032667A1 (de) Brennstoffzellensystem
DE102008054370A1 (de) Wartungsfreie und kontinuierliche Kühlmittelaufbereitung in Brennstoffzellenfahrzeugen mittels Elektro-Deionisation (EDI) mit vorteilhafter Ionenentnahme
EP1061600A2 (de) Brennstoffzellensystem
DE102014103554B4 (de) Verfahren und Vorrichtung zur Gewinnung von Stickstoff aus Luft
WO2021213893A1 (de) System mit einer flüssigluft-energiespeicher- und kraftwerksvorrichtung
EP0898790B1 (de) Verfahren zum betreiben einer hochtemperatur-brennstoffzellenanlage und hochtemperatur-brennstoffzellenanlage
DE19930875A1 (de) Hochtemperatur-Polymer-Elektrolyt-Membran (HTM)-Brennstoffzelle, HTM-Brennstoffzellenanlage, Verfahren zum Betreiben einer HTM-Brennstoffzelle und/oder einer HTM-Brennstoffzellenanlage
EP4028145B1 (de) Power-to-x-anlage mit optimierter wasserstofftrocknung und reinigung
DE102007002653A1 (de) Brennstoffzellensystem und zugehöriges Betriebsverfahren
DE10296673T5 (de) Brennstoffzellen-Stromerzeugungsanlage

Legal Events

Date Code Title Description
8100 Publication of the examined application without publication of unexamined application
D1 Grant (no unexamined application published) patent law 81
8364 No opposition during term of opposition
8327 Change in the person/name/address of the patent owner

Owner name: LEMOINE, JOSEPH, DR., 7990 FRIEDRICHSHAFEN, DE

8327 Change in the person/name/address of the patent owner

Owner name: LEMOINE, JOSEPH, DR., 3510 HANN.-MUENDEN, DE

8339 Ceased/non-payment of the annual fee