DE3712317A1 - Wasserloesliche copolymerisate, verfahren zu deren herstellung und verwendung - Google Patents

Wasserloesliche copolymerisate, verfahren zu deren herstellung und verwendung

Info

Publication number
DE3712317A1
DE3712317A1 DE19873712317 DE3712317A DE3712317A1 DE 3712317 A1 DE3712317 A1 DE 3712317A1 DE 19873712317 DE19873712317 DE 19873712317 DE 3712317 A DE3712317 A DE 3712317A DE 3712317 A1 DE3712317 A1 DE 3712317A1
Authority
DE
Germany
Prior art keywords
mol
water
acid
monoethylenically unsaturated
soluble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19873712317
Other languages
English (en)
Inventor
Hans-Peter D Seelmann-Eggebert
Dieter Dr Boeckh
Heinrich Dr Hartmann
Wolfgang Dr Trieselt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to DE19873712317 priority Critical patent/DE3712317A1/de
Priority to DE8888105377T priority patent/DE3882166D1/de
Priority to EP88105377A priority patent/EP0289788B1/de
Priority to AT88105377T priority patent/ATE91289T1/de
Priority to ES88105377T priority patent/ES2056848T3/es
Priority to CA000563542A priority patent/CA1327254C/en
Priority to US07/179,477 priority patent/US4914172A/en
Priority to JP63087438A priority patent/JPS63268716A/ja
Publication of DE3712317A1 publication Critical patent/DE3712317A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/26Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests in coated particulate form

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Environmental Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Plant Pathology (AREA)
  • Agronomy & Crop Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

Aus der WO-Anmeldung 85/01 736 ist bekannt, Saatgut mit einer Polymerisatmischung zu beschichten, die hygroskopisch ist. Die Mischung besteht aus feinteiligen vernetzten Polyacrylamiden und feinteiligen vernetzten Polyacrylaten. Diese Mischungen können gegebenenfalls noch Graphit enthalten. Das damit beschichtete Saatgut keimt schneller als unbehandeltes. Nachteilig ist jedoch, daß die hochmolekularen, vernetzten Polymerisate biologisch praktisch nicht abbaubar sind.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, weitgehend biologisch abbaubare Beschichtungsmittel für Saatgut zur Verfügung zu stellen.
Die Aufgabe wird erfindungsgemäß gelöst mit wasserlöslichen Copolymerisaten auf Basis von monoethylenisch ungesättigten Carbonsäuren mit 3 bis 6 C-Atomen, wenn die Copolymerisate einen K-Wert von 8 bis 100, vorzugsweise 20 bis 80 (bestimmt am Natriumsalz nach H. Fikentscher in wäßriger Lösung bei 25°C, einem pH-Wert von 7 und einer Polymerkonzentration des Na-Salzes von 1 Gew.-%) haben und
  • a) 99 bis 15 Mol-% wenigstens einer monoethylenisch ungesättigten C₃- bis C₆-Monocarbonsäure,
  • b) 0,5 bis 84,5 Mol.-% wenigstens einer monoethylenisch ungesättigten C₄- bis C₆-Dicarbonsäure,
  • c) 0 bis 20 Mol-% eines oder mehrerer Hydroxyalkylester mit 2 bis 6 C-Atomen in der Hydroxyalkylgruppe von monoethylenisch ungesättigten C₃- bis C₆-Carbonsäuren,
  • d) 0 bis 30 Mol-% anderen, mit a), b) und c) copolymerisierbaren, wasserlöslichen, monoethylenisch ungesättigten Monomeren und
  • e) 0,5 bis 15 Mol-% wenigstens eines mindestens zwei ethylenisch ungesättigte, nicht konjugierte Doppelbindungen aufweisenden Comonomers, das mindestens eine -CO-OX-Gruppe hat, in der X ein Wasserstoff-, eine Alkalimetall- oder Erdalkalimetalläquivalent oder eine Ammoniumgruppe bedeutet,
mit der Maßgabe einpolymerisiert enthalten, daß die Summe der Angaben in Mol-% a) bis e) immer 100 beträgt.
Die wasserlöslichen Copolymerisate werden hergestellt durch copolymerisieren von Monomerengemischen aus
  • a) 99 bis 15 Mol-% wenigstens einer monoethylenisch ungesättigten C₃- bis C₆-Monocarbonsäure,
  • b) 0,5 bis 84,5 Mol-% wenigstens einer monoethylenisch ungesättigten C₄- bis C₆-Dicarbonsäure,
  • c) 0 bis 20 Mol-% eines oder mehrerer Hydroxyalkylester mit 2 bis 6 C-Atomen in der Hydroxyalkylgruppe von monoethylenisch ungesättigten C₃- bis C₆-Carbonsäuren und
  • d) 0 bis 30 Mol-% anderen, mit a), b) und c) copolymerisierbaren, wasserlöslichen, monoethylenisch ungesättigten Monomeren
in wäßriger Lösung in Gegenwart von Polymerisationsinitiatoren, mit der Maßgabe, daß die Copolymerisation in Anwesenheit von
  • e) 0,5 bis 15 Mol-% wenigstens eines mindestens zwei ethylenisch ungesättigte, nicht konjugierte Doppelbindungen aufweisenden Comonomers, das mindestens eine -CO-OX-Gruppe hat, in der X=H, ein Alkalimetall- oder Erdalkalimetalläquivalent oder eine Ammoniumgruppe bedeutet,
durchgeführt wird, wobei die Summe der Angaben in Mol-% a) bis e) immer 100 beträgt.
Als Komponente a) der wasserlöslichen Copolymerisate kommen monoethylenisch ungesättigte C₃- bis C₆-Monocarbonsäuren in Betracht. Geeignete Carbonsäuren dieser Art sind beispielsweise Acrylsäure, Methacrylsäure, Ethacrylsäure, Vinylessigsäure, Allylessigsäure und Crotonsäure. Vorzugsweise verwendet man als Monomer der Komponente a) Acrylsäure und/oder Methacrylsäure. Die Monomeren der Komponente a) sind zu 99 bis 15, vorzugsweise 90 bis 20 Mol-% am Aufbau des Copolymerisats beteiligt.
Als Monomer der Komponente b) werden monoethylenisch ungesättigte C₄- bis C₆-Dicarbonsäuren eingesetzt. Hierbei handelt es sich beispielsweise um Maleinsäure, Itaconsäure, Citraconsäure, Mesaconsäure, Fumarsäure und Methylenmalonsäure. Vorzugsweise kommen Maleinsäure oder Itaconsäure als Monomer b) zur Anwendung. Die Monomeren b) sind zu 0,5 bis 84,5, vorzugsweise 5 bis 60 Mol-% am Aufbau der Copolymerisate beteiligt.
Die Copolymerisate können gegebenenfalls Hydroxyalkylester mit 2 bis 6 C-Atomen in der Hydroxyalkylgruppe von monoethylenisch ungesättigten C₃- bis C₆-Carbonsäuren als Komponente c) einpolymerisiert enthalten. Die Hydroxyalkylestergruppen dieser Gruppe von Monomeren leiten sich von mehrwertigen Alkoholen ab, z. B. Glykol, Glycerin, Propandiol-1,2, Propandiol- 1,3, Butandiol-1,4, Butandiol-1,3, Butandiol-2,3, Gemische der Butandiole oder Propandiole, Hexandiol-1,6 und Neopentylglykol. Die mehrwertigen Alkohole werden mit monoethylenisch ungesättigten C₃- bis C₆- Carbonsäuren verestert. Hierbei handelt es sich um diejenigen Carbonsäuren, die oben unter a) und b) genannt sind. Als Komponente c) eignen sich somit beispielsweise Hydroxyethylacrylat, Hydroxyethylmethacrylat, Hydroxy-n-propylmethacrylat, Hydroxy-n-propylacrylat, Hydroxyisopropylacrylat, Hydroxyisopropylmethacrylat, Hydoxy-n-butylacrylat, Hydroxyisobutylacrylat, Hydroxy-n-butylmethacrylat, Hydroxyisobutylmethacrylat, Hydroxyethylmonomaleinat, Hydroxyethyldimaleinat, Hydroxypropylmonomaleinat, Hydroxypropyldimaleinat, Hydroxy-n-butylmonomaleinat, Hydroxy-n- butyldimaleinat und Hydroxyethylmonoitaconat. Von den Hydroxyalkylestern der monoethylenisch ungesättigten Dicarbonsäuren kommen sowohl die Mono- als auch die Diester der Dicarbonsäuren mit den oben genannten mehrwertigen Alkoholen in Betracht.
Vorzugsweise verwendet man als Komponente c) Hydroxyethylacrylat, Hydroxyethylmethacrylat, Butan-1,4-diolmonoacrylat und die technischen Gemische von Hydroxypropylacrylaten. Hierbei sind von besonderer technischer Bedeutung die Isomerengemische aus 2-Hydroxy-1-propylacrylat und 1-Hydroxy-2-propylacrylat. Diese Hydroxyalkylacrylate werden durch Umsetzung von Acrylsäure mit Propylenoxid hergestellt. Die Monomeren der Gruppe c) sind zu 0 bis 20, vorzugsweise 0 bis 15 Mol-% in polymerisierter Form im Copolymerisat enthalten.
Die Copolymerisate können gegebenenfalls als Komponente d) andere, mit a), b) und c) copolymerisierbare, wasserlösliche monoethylenisch ungesättigte Monomere enthalten. Geeignete Monomere dieser Art sind beispielsweise Acrylamid, Methacrylamid, 2-Acrylamido-2-methylpropansulfonsäure, Vinylsulfonsäure, Allylsulfonsäure, Vinylphosphonsäure, Allylphosphonsäure, Acrylnitril, Methacrylnitril, Dimethylaminoethylacrylat, Diethylaminoethylacrylat, Diethylaminoethylmethacrylat, N-Vinylpyrrolidon, N-Vinylformamid, N-Vinylimidazol, N-Vinylimidazolin, 1-Vinyl-2-methyl-2-imidazolin, Vinylacetat sowie Mischungen der genannten Monomeren. Diejenigen Monomeren dieser Gruppe, die Säuregruppen enthalten, können bei der Copolymerisation in Form der freien Säuregruppen oder auch in partiell oder vollständig mit Alkalimetallbasen oder Ammoniumbasen neutralisierter Form eingesetzt werden. Die basischen Acrylate, wie Diethylaminoethylacrylate, werden mit Säuren neutralisiert bzw. quaternisiert und dann der Copolymerisation unterworfen. Die Monomeren d) sind zu 0 bis 30, vorzugsweise 0 bis 20 Mol-% am Aufbau der Copolymerisate beteiligt. Die dienen lediglich zur Modifizierung der Copolymerisate.
Wesentlicher Bestandteil der Copolymerisate sind dagegen die Monomere der Komponente e). Hierbei handelt es sich um Comonomere, die mindestens zwei ethylenisch ungesättigte, nicht konjugierte Doppelbindungen und mindestens eine -CO-OX-Gruppe und/oder deren Salz mit einer Alkalimetall-, Ammonium- oder Erdalkalimetallbase aufweisen. Die Comonomeren bewirken eine Erhöhung des Molekulargewichts der Copolymerisate und sind zu 0,5 bis 15, vorzugsweise 1 bis 12 Mol-% am Aufbau der Copolymerisate beteiligt.
Die Comonomere e) sind erhältlich durch Umsetzung von
  • e1) Maleinsäureanhydrid, Itaconsäureanhydrid, Citraconsäureanhydrid oder deren Gemischen mit
  • e2) mehrwertigen, 2 bis 6 C-Atome aufweisenden Alkoholen, wasserlöslichen oder wasserunlöslichen Polyalkylenglykolen eines Molekulargewichts bis etwa 400, wasserlöslichen Polyalkylenglykolen eines Molekulargewichts über etwa 400 bis 10 000, Polyglycerinen eines Molekulargewichts bis 2000, Diaminen, Polyalkylenpolyaminen, Polyethyleniminen, Aminoalkoholen, Hydroxy-amino- oder -diaminocarbonsäuren, wie insbesondere Lysin und Serin, wasserlöslichen Copolymerisaten aus Ethylenoxid und Kohlendioxid, Polyvinylalkohol eines Molekulargewichts bis 10 000, Allylalkohol, Allylamin, Hydroxyalkylester mit 2 bis 6 C-Atomen in der Hydroxyalkylgruppe von monoethylenisch ungesättigten C₃- bis C₆- Carbonsäuren oder von gesättigten C₃- bis C₆-Hydroxycarbonsäuren oder deren Mischungen.
Mehrwertige, 2 bis 6 C-Atome aufweisende Alkohole sind beispielsweise Glykol, Glycerin, Pentaerythrit und Monosaccharide, wie Glucose, Mannose, Galactose, Uronsäuren wie Galacturonsäure und Zuckersäuren, wie Schleimsäure oder Galactonsäure.
Unter wasserlöslichen Polyalkylenglykolen sollen die Anlagerungsprodukte von Ethylenoxid, Propylenoxid, n-Butylenoxid und Isobutylenoxid oder deren Gemischen an mehrwertige, 2 bis 6 Kohlenstoffatome aufweisende Alkohole verstanden werden, z. B. die Anlagerungsprodukte von Ethylenoxid an Glykol, Anlagerungsprodukte von Ethylenoxid an Glycerin, Anlagerungsprodukte von Ethylenoxid an Pentaerythrit, Anlagerungsprodukte von Ethylenoxid an Monosaccharide, sowie die Anlagerungsprodukte von Mischungen der genannten Alkylenoxide an mehrwertige Alkohole. Bei diesen Anlagerungsprodukten kann es sich um Blockcopolymerisate von Ethylenoxid und Propylenoxid, von Ethylenoxid und Butylenoxiden oder von Ethylenoxid, Propylenoxid und Butylenoxiden handeln. Außer den Blockcopolymerisaten kommen solche Anlagerungsprodukte in Betracht, die die genannten Alkylenoxide in statistischer Verteilung einpolymerisiert enthalten.
Das Molekulargewicht der Polyalkylenglykole beträgt zweckmäßigerweise bis zu 5000, vorzugsweise bis 2000. Von den wasserlöslichen Polyalkylenglykolen verwendet man vorzugsweise Diethylenglykol, Triethylenglykol, Tetraethylenglykol und Polyethylenglykol eines Molekulargewichts von bis zu 1500.
Als Komponente e2) kommen außerdem Polyglycerine eines Molekulargewichts bis 2000 in Betracht. Vorzugsweise verwendet man von dieser Stoffklasse Diglycerin, Triglycerin und Tetraglycerin.
Geeignete Polyamine sind beispielsweise bevorzugt Diamine, wie Ethylendiamin, 1,3-Propylendiamin, 1,4-Butylendiamin, 1,6-Hexamethylendiamin und Melamin. Als Polyalkylenpolyamine kommen beispielsweise Diethylentriamin, Triethylentetramin, Pentaethylenhexamin, N-(3-Aminopropyl)-1,3-propandiamin und 3-(2-Aminoethyl)-aminopropylamin in Betracht. Besonders geeignete Polyethylenimine haben ein Molekulargewicht bis 5000.
Als Komponente e2) kommen außerdem Aminoalkohole, wie Ethanolamin, 2-Aminopropanol-1, Neopentanolamin und 1-Methylamino-2-propanol in Betracht.
Als Komponente e2) eignen sich außerdem wasserlösliche Copolymerisate aus Ethylenoxid und Kohlendioxid, die durch Copolymerisieren von Ethylenoxid und Kohlendioxid erhältlich sind. Außerdem kommen Polyvinylalkohole eines Molekulargewichts bis 10 000, vorzugsweise Polyvinylalkohole mit einem Molekulargewicht bis zu 2000 in Betracht. Die Polyvinylalkohole, die durch Hydrolyse aus Polyvinylacetat hergestellt werden, können ganz oder teilweise hydrolysiert sein. Weitere geeignete Verbindungen der Komponente e2) sind Lysin, Serin, Allylalkohol, Allylamin und Hydroxyalkylester mit 2 bis 6 C-Atomen in der Hydroxyalkylgruppe von monoethylenisch ungesättigten C₃- bis C₆-Mono- und Dicarbonsäuren. Derartige Verbindungen sind bereits oben in einem anderen Zusammenhang, nämlich als Monomer der Komponente c), beschrieben worden. Außerdem eignen sich Hydroxyalkylester von gesättigten C₃- bis C₆-Hydroxycarbonsäuren, wie Hydroxyessigsäureglykol(mono)ester, Milchsäureglycol(mono)ester, Hydroxypivalinsäureneopentylglycol(mono)ester.
Vorzugsweise werden Comonomere e) aus Maleinsäureanhydrid und Ethylenglykol, Polyethylenglykol eines Molekulargewichts bis 2000, Glycerin, Diglycerin, Triglycerin, Tetraglycerin, sowie Polyglycerinen eines Molekulargewichts bis 2000, Pentaerythrit, Monosacchariden, Neopentylglykol, α, ω-Diaminen mit 2 bis 6 C-Atomen, α, ω-Diolen mit 3 bis 6 C-Atomen und Hydroxypivalinsäureneopentylglykolester eingesetzt. Comonomere e), die sich von Ethylenglykol und α, ω-Diolen ableiten, können z. B. mit Hilfe folgender Formel dargestellt werden:
in der X=H, Alkalimetall oder eine Ammoniumgruppe und n=1 bis 120, vorzugsweise bis 50 bedeutet.
Comonomere e), die beispielsweise durch Umsetzung von Maleinsäureanhydrid mit α, ω-Diaminen entstehen, können z. B. mit Hilfe folgender Formel
XOOC-CH=CH-CO-NH-CH₂-(CH₂) n -CH₂-NH-CO-CH=CH-COOX (II)
in der X=H, Alkalimetall oder eine Ammoniumgruppe und n=0 bis 4 bedeutet, charakterisiert werden.
Die wasserlöslichen Copolymerisate werden durch Copolymerisieren von Monomerengemischen aus
  • a) 99 bis 15 Mol-% wenigstens einer monoethylenisch ungesättigten C₃- bis C₆-Monocarbonsäure,
  • b) 0,5 bis 84,4 Mol-% wenigstens einer monoethylenisch ungesättigten C₄- bis C₆-Dicarbonsäure,
  • c) 0 bis 20 Mol-% eines oder mehrerer Hydroxyalkylester mit 2 bis 6 C-Atomen in der Hydroxyalkylgruppe von monoethylenisch ungesättigten C₃- bis C₆-Carbonsäuren, und
  • d) 0 bis 30 Mol-% anderen, mit a), b) und c) copolymerisierbaren, wasserlöslichen, monoethylenisch ungesättigten Monomeren in wäßriger Lösung in Gegenwart von Polymerisationsinitiatoren und gemäß Erfindung zusätzlich in Gegenwart von
  • e) 0,5 bis 15 Mol-% eines mindestens zwei ethylenisch ungesättigte, nicht konjugierte Doppelbindungen und mindestens eine -CO-OH-Gruppe und/oder deren Salz mit einer Alkalimetall-, Ammonium- oder Erdalkalimetallbase aufweisenden Comonomers hergestellt.
Die Summe der Angaben in Mol-% der Komponenten a) bis e) beträgt immer 100. Die Copolymerisation wird in wäßrigem Medium, vorzugsweise in rein wäßrigem Medium, durchgeführt. Sie kann nach verschiedenen Verfahrensvarianten erfolgen, z. B. kann man die Monomeren a) bis e) in Form wäßriger Lösungen diskontinuierlich in einer Batch-Fahrweise polymerisieren. Außerdem ist es möglich, zunächst einen Teil der Monomeren und einen Teil des Initiators im Polymerisationsreaktor vorzulegen, unter Inertgasatmosphäre auf die Polymerisationstemperatur zu erwärmen und dann die übrigen Monomeren und den Initiator nach Fortschritt der Polymerisation dem Reaktor zuzugeben. Die Polymerisationstemperaturen liegen im Bereich von 20 bis 200°C. Bei Temperaturen oberhalb von 100°C arbeitet man in Druckapparaturen. Vorzugsweise beträgt die Polymerisationstemperatur 50 bis 150°C.
In einer bevorzugten Ausführungsform des Herstellverfahrens wird zunächst das Comonomer e) hergestellt, indem man
  • e1) Maleinsäureanhydrid, Itaconsäureanhydrid, Citraconsäureanhydrid oder deren Gemische in einem Reaktor vorlegt und darin mit
  • e2) mehrwertigen, 2 bis 6 C-Atome aufweisenden Alkoholen, wasserlöslichen oder wasserunlöslichen Polyalkylenglykolen eines Molekulargewichts bis etwa 400, wasserlöslichen Polyalkylenglykolen eines Molekulargewichts über etwa 400 bis 10 000, Polyglycerine eines Molekulargewichts bis 2000, Diaminen, Polyalkylenpolyaminen, Polyethyleniminen, Aminoalkohole, Lysin, Serin, wasserlöslichen Copolymerisaten aus Ethylenoxid und Kohlendioxid, Polyvinylalkohol eines Molekulargewichts bis 10 000, Allylalkohol, Allylamin, Hydroxyalkylester mit 2 bis 6 C-Atomen in der Hydroxyalkylgruppe von monoethylenisch ungesättigten C₃- bis C₆-Carbonsäuren oder von gesättigten C₃- bis C₆-Hydroxycarbonsäuren oder deren Mischungen
bei Temperaturen von 50 bis 200°C umsetzt. Diese Umsetzung wird vorzugsweise in Abwesenheit von Wasser vorgenommen, geringe Mengen an Wasser stören dabei jedoch dann nicht, wenn die Komponente e1) in entsprechendem Überschuß eingesetzt wird. Anstelle von den unter e1) genannten Verbindungen kann man jedoch auch die sich davon ableitenden Mono- oder Diester mit C₁- bis C₄-Alkoholen einsetzen. In diesen Fällen wird eine Umesterung bzw. Amidierung durchgeführt und vorzugsweise der dabei entstehende C₁- bis C₄-Alkohol aus dem Reaktionsgemisch abdestilliert. Bei Einsatz von Aminogruppen enthaltenden Verbindungen, die unter e2) genannt sind, entstehen bei der Umsetzung mit den Mono- oder Diestern der Säureanhydride gemäß e1) die entsprechenden Amide. Falls bei der Herstellung der Comonomeren e) Ester der Komponente e1) eingesetzt werden, so sind dies vorzugsweise Maleinsäuredimethylester, Maleinsäuremonomethylester, Itaconsäuredimethylester, Maleinsäuremonoisopropylester und Maleinsäurediisopropylester. Gegebenenfalls können übliche Veresterungskatalysatoren mitverwendet werden.
Pro Mol der Verbindungen e2) setzt man mindestens 0,5 Mol einer Verbindung der Komponente e1) ein. Die Temperatur bei der Umsetzung beträgt vorzugsweise 50 bis 150°C. Die Reaktion wird soweit geführt, daß praktisch ein quantitativer Umsatz der Komponente e2) gegeben ist. Die üblicherweise in einem Überschuß verwendete Komponente e1) kann nach Beendigung der Comonomerherstellung im Reaktionsgemisch verbleiben. Das Comonomer kann in diesem Fall in einer monoethylenisch ungesättigten C₃- bis C₆-Monocarbonsäure gemäß a) gelöst werden und dann zusammen mit dem nicht umgesetzten Teil der Komponente e1) und den übrigen Monomeren der Copolymerisation unterworfen werden. Da die Copolymerisation in wäßrigem Medium erfolgt, wird das überschüssige, im Comonomer noch enthaltene Dicarbonsäureanhydrid gemäß e1) zu der entsprechenden Dicarbonsäure hydrolysiert. Diese Dicarbonsäure ist dann als das Comonomer b) aufzufassen.
Das zunächst hergestellte Comonomer e), das noch überschüssiges Dicarbonsäureanhydrid enthält, kann jedoch auch im Reaktionsgemisch, in dem es hergestellt wurde, verbleiben und darin zunächst durch Zugabe von Wasser bzw. verdünnter wäßriger Natronlauge gelöst werden. Hierbei wird das noch vorhandene Dicarbonsäureanhydrid hydrolysiert. Diese Monomerenmischung wird anschließend durch Zugabe der übrigen Comonomeren copolymerisiert. Die Copolymerisation der Monomeren a) bis e) wird bei einem pH-Wert der wäßrigen Lösung von 2 bis 9, vorzugsweise von 3 bis 7 durchgeführt. Die Monomeren a), b) und e), die jeweils Carbonsäuregruppen enthalten, können in Form der freien Carbonsäuren oder in neutralisierter, vorzugsweise in partiell neutralisierter Form copolymerisiert werden, wobei der Neutralisationsgrad 0 bis 100, vorzugsweise 40 bis 90 Mol-% beträgt. Die Neutralisation erfolgt vorzugsweise mit Alkalimetall- oder Ammoniumbasen. Hierunter sind beispielsweise Natronlauge, Kalilauge, Soda, Pottasche oder Ammoniumbasen wie Ammoniak, C₁₈- bis C₁₈-Alkylamine, Dialkylamine, wie Dimethylamin, Di-n-butylamin, Dihexylamin, tertiäre Amine wie Trimethylamin, Triethylamin, Tributylamin, Triethanolamin sowie quaternisierte Stickstoffbasen, z. B. Tetramethylammoniumhydroxid, Trimethyllaurylammoniumhydroxid und Trimethylbenzylammoniumhydroxid zu verstehen. Vorzugsweise verwendet man zum Neutralisieren Natronlauge, Kalilauge oder Ammoniak. Die Neutralisation kann jedoch auch mit Erdalkalimetallbasen, z. B. Ca-Hydroxid oder MgCO₃, vorgenommen werden.
Als Polymerisationsinitiatoren werden vorzugsweise wasserlösliche Radikalbildende Verbindungen eingesetzt, z. B. Wasserstoffperoxid, Peroxidisulfate und Mischungen aus Wasserstoffperoxid und Peroxidisulfaten. Geeignete Peroxidisulfate sind beispielsweise Lithium-, Natrium-, Kalium- und Ammoniumperoxidisulfat. Bei Mischungen als Wasserstoffperoxid und Peroxidisulfat kann jedes beliebige Verhältnis eingestellt werden, vorzugsweise verwendet man Wasserstoffperoxid und Peroxidisulfat im Gewichtsverhältnis 3 : 1 bis 1 : 3. Mischungen aus Wasserstoffperoxid und Natriumperoxidisulfat werden vorzugsweise im Gewichtsverhältnis von 1 : 1 angewendet. Die oben genannten wasserlöslichen Polymerisationsinitiatoren können gegebenenfalls auch in Kombination mit Reduktionsmitteln, z. B. Eisen-II-sulfat, Natriumsulfit, Natriumhydrogensulfit, Natriumdithionit, Triethanolamin und Ascorbinsäure in Form der sogenannten Redox-Initiatoren verwendet werden. Geeignete wasserlösliche organische Peroxide sind beispielsweise Acetylacetonperoxid, Methylethylketonperoxid, tert.-Butylhydroperoxid und Cumolhydroperoxid. Auch die wasserlöslichen organischen Peroxide können mit den oben genannten Reduktionsmitteln eingesetzt werden. Weitere wasserlösliche Polymerisationsinitiatoren sind Azostarter, z. B. 2,2′-Azo bis(2-amidinopropan)dihydrochlorid, 2,2′-Azobis(N,N′-dimethylen)isobutyramidin- dihydrochlorid, 2-(Carbamoylazo)isobutyronitril und 4,4′-Azobis- (4-cyanovaleriansäure). Man kann die Polymerisation auch mit wasserunlöslichen Initiatoren, wie Dibenzoylperoxid, Dicyclohexylperoxidicarbonat, Dilaurylperoxid oder Azodiisobutyronitril, starten.
Die Initiatoren werden in Mengen von 0,1 bis 10, vorzugsweise 0,5 bis 7 Gew.-%, bezogen auf die Summe der bei der Polymerisation eingesetzten Monomeren, angewendet. Die Polymerisationsinitiatoren können entweder zusammen mit dem Monomeren oder getrennt davon in Form von wäßrigen Lösungen kontinuierlich oder absatzweise der zu polymerisierenden Mischung zugegeben werden.
Die Copolymerisation kann gegebenenfalls auch in Gegenwart von Reglern durchgeführt werden. Hierfür verwendet man vorzugsweise wasserlösliche Verbindungen, die entweder in jedem Verhältnis mit Wasser mischbar sind oder sich zu mehr als 5 Gew.-% darin bei einer Temperatur von 20°C lösen. Verbindungen dieser Art sind beispielsweise Aldehyde mit 1 bis 4 Kohlenstoffatomen, wie Formaldehyd, Acetaldehyd, Propionaldehyd, n-Butyraldehyd und Isobutyraldehyd, Ameisensäure, Ammoniumformiat, Hydroxylammoniumsalze, insbesondere Hydroxylammoniumsulfat, SH-Gruppen enthaltende Verbindungen mit bis zu 6 Kohlenstoffatomen, wie Thioglykolsäure, Mercaptoalkohole, wie Mercaptoethanol, Mercaptopropanol, Mercaptobutanole und Mercaptohexanol, ein- und mehrwertige Alkohole mit bis zu 6 C-Atomen, wie Isopropanol, Glykol, Glycerin und Isobutanol. Vorzugsweise in Betracht kommende Regler sind wasserlösliche Mercaptane, Ammoniumformiat und Hydroxylammoniumsulfat. Die Regler werden in Mengen von 0 bis 25 Gew.-%, bezogen auf die Summe der bei der Polymerisation eingesetzten Monomeren, verwendet. Die besonders wirksamen Regler, die vorzugsweise in Betracht kommen, werden in Mengen bis höchstens 15 Gew.-% eingesetzt. Sofern in Gegenwart von Reglern gearbeitet wird, beträgt die minimale Einsatzmenge 0,2 Gew.-%, bezogen auf die zu polymerisierenden Monomeren.
Nach dem erfindungsgemäßen Verfahren polymerisiert man vorzugsweise Monomerengemische aus
  • a) 99 bis 15 Mol-% Acrylsäure, Methacrylsäure oder deren Mischungen,
  • b) 0,5 bis 84,5 Mol-% Maleinsäure und/oder Itaconsäure und
  • c) 0 bis 20 Mol-% Hydroxypropylacrylaten, Hydroxypropylmethacrylaten, Hydroxyethylacrylat, Hydroxyethylmethacrylat, Hydroxybutylacrylaten, Hydroxybutylmethacrylaten oder deren Mischungen und
  • e) 0,5 bis 15 Mol-% eines Comonomers aus e1) Maleinsäureanhydrid und e2) Ethylenglykol, Polyethylenglykol eines Molekulargewichts bis 2000, Glycerin, Polyglycerinen eines Molekulargewichts bis 2000, Pentaerythrit, Monosacchariden, Neopentylglykol, α, ω-Diaminen mit 2 bis 6 C-Atomen, α, ω-Diolen mit 3 bis 6 C-Atomen, Hydroxypivalinsäureneopentylglykolester oder Mischungen aus diesen Verbindungen.
Besonders bevorzugt ist die Herstellung von Copolymerisaten aus
  • a) Acrylsäure und/oder Methacrylsäure,
  • b) Maleinsäure und
  • e) einem der oben genannten Comonomeren der Formel (I) oder (II).
Bei der Copolymerisation der Monomeren a) bis e) werden wäßrige Polymerisatlösungen erhalten, die einen Polymerisatgehalt bis zu 70 Gew.-% aufweisen. Es ist selbstverständlich auch möglich, stark verdünnte, z. B. 1%ige wäßrige Lösungen herzustellen, jedoch wird die Copolymerisation aus wirtschaftlichen Erwägungen so geführt, daß man mindestens 20 gew.-%ige wäßrige Copolymerisatlösungen herstellt. Die Lösungen können nach der Copolymerisation auf einen pH-Wert im Bereich von 6,5 bis 7 eingestellt werden, sofern nicht die Polymerisation ohnehin in diesem Bereich durchgeführt wurde. Die Copolymerisate können durch Eindampfen der wäßrigen Lösungen gewonnen werden. Sie haben einen niedrigen Restmonomerengehalt und sind überraschenderweise biologisch abbaubar. Die biologische Abbaubarkeit der erfindungsgemäßen Copolymerisate beträgt nach DIN 38 412, Teil 24, Statischer Test (L25) bis zu 100%, und liegt in der Regel zwischen 20 und 95%.
Die Copolymerisate sind wasserlöslich. Falls sie sich in der freien Säureform nicht in Wasser lösen, so gelingt es, sie durch partielle oder vollständige Neutralisation mit NaOH, KOH, Ammoniak oder Aminen in eine wasserlösliche Form zu überführen. Copolymerisate, deren Alkali- oder Ammoniumsalze, von denen sich mindestens 20 g pro Liter Wasser bei einer Temperatur von 20°C lösen, werden im vorliegenden Zusammenhang als wasserlöslich bezeichnet.
Die Copolymerisate werden als Beschichtungsmittel für Saatgut verwendet. Bei der Saatgutbeschichtung - hier können sämtliche Getreidearten wie Weizen, Roggen, Hafer und Gerste sowie Mais und Lupinen sowie andere Saatgüter mit einem Polymerfilm umhüllt werden - wird ein schnelleres Keimen des Saatguts gegenüber dem nichtbeschichteten Saatgut erreicht. Pro 100 kg Saatgut verwendet man 0,1 bis 1 kg der Copolymerisate. Die Copolymerisate werden vorzugsweise in Form einer verdünnten wäßrigen Lösung auf das Saatgut gesprüht und bilden dort einen schützenden Polymerfilm. In den Polymerfilm können feinteilige, inerte Füllstoffe, z. B. Graphit, Quarz, Talkum oder Bentonit einer Teilchengröße von 20 bis 500 µm eingelagert sein. Die Füllstoffe werden vorzugsweise zusammen mit der Polymerlösung auf das zu beschichtende Material aufgetragen.
Die in den Beispielen angegebenen K-Werte wurden nach H. Fikentscher, Cellulosechemie, Band 13, 58-64 und 71-74 (1932) bestimmt, dabei bedeutet K=k · 10³. Die Messungen wurden am Natriumsalz in wäßriger Lösung bei 25°C, einem pH-Wert von 7 und einer Polymerkonzentration des Na-Salzes von 1 Gew.-% vorgenommen. Sofern erfindungsgemäße Copolymerisate in Form anderer Salze oder der freien Säuren anfallen, müssen sie vor der Bestimmung des K-Wertes zunächst in die Na-Salze umgewandelt werden. Die in den Beispielen angegebenen Molekulargewichte beziehen sich auf das Zahlenmittel des Molekulargewichts.
Beispiel 1
In einem 2-l-fassenden Glasreaktor, der mit Rührer, Thermometer, Stickstoffeinleitung, Kühler und drei Zulaufgefäßen ausgestattet ist, werden 98 g (1 Mol) Maleinsäureanhydrid und 0,1 g p-Toluolsulfonsäure vorgelegt und zusammen mit 0,25 Mol eines in Tabelle 1 jeweils angegebenen Diols 45 min auf eine Temperatur von 60°C erhitzt. Danach gibt man zu der Schmelze 200 ml Wasser und erhitzt die Lösung 30 min unter Einleiten von Stickstoff und unter Rühren auf eine Temperatur von 90°C.
Die Copolymerisation wird in der Weise durchgeführt, daß man zu der oben beschriebenen Mischung aus Comonomer und Maleinsäure bei einer Temperatur von 90°C innerhalb von 5 Stunden 1075 g einer 35%igen Natriumacrylatlösung (4 Mol) und gleichzeitig damit über einen Zeitraum von 6 Stunden separat vom Monomerenzulauf 55 g 30%iges Wasserstoffperoxid zufügt, das in 45 ml Wasser gelöst ist. Man erhält eine viskose Lösung, die noch 1 Stunde nach beendeter Zugabe des Polymerisationsinitiators bei 90°C unter Rühren nachpolymerisiert wird. Die Lösung wird dann abgekühlt und durch Zugabe von 25%iger wäßriger Natronlauge auf einen pH-Wert von 6,5 eingestellt. In Tabelle 1 sind die jeweils eingesetzten Monomeren sowie die K-Werte der wasserlöslichen Copolymerisate, der Restmonomergehalt und die Daten zur biologischen Abbaubarkeit [bestimmt nach DIN 38 412, Teil 24, Statistischer Teil (L25)], der Copolymerisate angegeben.
Tabelle 1
Beispiel 2
In einem 2-l-fassenden Reaktor aus Glas, der mit einem Rührer, Thermometer, Stickstoffeinleitung und drei Zulaufgefäßen ausgestattet ist, von denen 1 Zulaufgefäß heizbar und rührbar ist, werden jeweils 98 g (1 Mol) Maleinsäureanhydrid in 500 ml 4molarer wäßriger Natronlauge gelöst und auf eine Temperatur von 90°C erhitzt. Gleichzeitig werden in dem beheizbaren Zulaufgefäß 98 g (1 Mol) Maleinsäureanhydrid mit 0,1 g p-Toluolsulfonsäure und den in der Tabelle 2 jeweils angegebenen mehrwertigen Alkoholen versetzt und unter einer Stickstoffatmosphäre innerhalb von 0,5 bis 3,5 Stunden bei Temperaturen im Bereich von 60 bis 120°C geschmolzen.
Die Copolymerisation wird bei einer Temperatur von 90°C innerhalb von 5 Stunden durchgeführt, indem man 285 g (3 Mol) Natriumacrylat gelöst in 500 ml Wasser, die Schmelze der Comonomere (aus Maleinsäureanhydrid und mehrwertigem Alkohol und nicht reagiertem Maleinsäureanhydrid) und über einen Zeitraum von 6 Stunden, beginnend mit dem Monomerenzulauf, ebenfalls kontinuierlich 90 g 30%iges Wasserstoffperoxid in 100 ml Wasser zulaufen läßt. Man erhält eine viskose wäßrige Lösung, die noch 1 Stunde nach Beendigung der Initiatorzugabe bei einer Temperatur von 90°C nachpolymerisiert wird. Die wäßrige Lösung wird nach dem Abkühlen mit 25%iger wäßriger Natronlauge auf einen pH-Wert von 6,5 eingestellt. Die Einsatzstoffe, die K-Werte, der Restmaleinsäuregehalt und die Daten zur biologischen Abbaubarkeit der Copolymerisate sind in Tabelle 2 angegeben.
Tabelle 2
Beispiel 3
In einem 2-l-fassenden Reaktor aus Glas, der mit Rührer, Thermometer, Stickstoffeinleitung und drei Zulaufgefäßen ausgestattet ist, von denen 1 Zulaufgefäß beheizbar und rührbar ist, werden 98 g (1 Mol) Maleinsäureanhydrid in 500 ml 4molarer wäßriger Natronlauge gelöst und unter Zugabe von 24,5 g Hydroxylammoniumsulfat auf eine Temperatur von 90°C erhitzt. Gleichzeitig damit werden in dem beheizbaren Zulaufgefäß 98 g (1 Mol) Maleinsäureanhydrid mit jeweils 0,4 Mol der in Tabelle 3 angegebenen Diole und 0,1 g p-Toluolsulfonsäure versetzt und unter Stickstoff bei 60°C 60 min lang geschmolzen. Die Schmelze wird auf 20°C abgekühlt und in 86 g (1 Mol) Methacrylsäure gelöst.
Zu der auf 90°C erwärmten Vorlage gibt man gleichzeitig und jeweils kontinuierlich über einen Zeitraum von 5 Stunden 285 g (3 Mol) Natriumacrylat gelöst in 500 ml Wasser und die in dem beheizbaren Zulaufgefäß bereitete Lösung des Comonomers (das noch überschüssiges Maleinsäureanhydrid enthält und das in Methacrylsäure gelöst ist) sowie ebenfalls beginnend mit dem Monomerenzulauf, innerhalb von 6 Stunden 90 g 30%iges Wasserstoffperoxid gelöst in 100 ml Wasser. Während der Copolymerisation wird das Reaktionsgemisch gerührt und mit Stickstoff gespült. Die viskose Lösung wird jeweils 1 Stunde bei einer Temperatur von 95°C nachpolymerisiert und nach dem Abkühlen auf 30°C mit 25%iger wäßriger Natronlauge auf einen pH-Wert von 6,5 eingestellt. Die jeweils verwendeten Einsatzstoffe sowie die K-Werte der Copolymerisate, deren Restgehalt an Maleinsäure und die Daten zur biologischen Abbaubarkeit sind in Tabelle 3 angegeben.
Tabelle 3
Beispiel 4 a) Herstellung der Comonomeren A und B (Komponente e)
In einem 1-l-fassenden Reaktor aus Glas, der mit einem Rührer, Kühler und einem Zulaufgefäß ausgestattet ist, wird eine Lösung aus 1,5 Mol (147 g) Maleinsäureanhydrid in 350 g Dimethylformamid vorgelegt. Zu dieser Lösung gibt man jeweils bei 40°C über einen Zeitraum von 1,5 Stunden eine Lösung von 1 Mol des in Tabelle 4 jeweils angegebenen Diamins, das in 150 g Dimethylformamid gelöst ist. Die Reaktionstemperatur wird bei 60°C gehalten. Nach Beendigung der Zugabe des Diamins wird die entstehende Suspension noch 1 Stunde bei 60°C gerührt und anschließend eingeengt und der Feststoff abfiltriert. Der Filterkuchen wird anschließend mit Aceton kurz aufgekocht, das Aceton abgesaugt und der Filterkuchen getrocknet. Die so erhältlichen Comonomeren A bzw. B sind in heißem Wasser löslich. Sie haben die oben in Formel (II) angegebene Struktur. Die Ausbeuten an Verbindungen der Formel (II) betragen zwischen 72 und 91%.
b) Copolymerisation
In einem 2-l-fassenden Glasreaktor, der mit Rührer, Thermometer, Stickstoffeinleitung, Kühler und 2 Zulaufgefäßen ausgestattet ist, werden jeweils 49 g (0,5 Mol) Maleinsäureanhydrid, 0,5 Mol der gemäß a) hergestellten Comonomeren A bzw. B vorgelegt, mit 300 ml Wasser versetzt und unter Stickstoffatmosphäre und Rühren auf eine Temperatur von 90°C erwärmt. Die Copolymerisation wird in der Weise durchgeführt, daß man zu der Vorlage unter Rühren innerhalb von 5 Stunden 1075 g (4 Mol) einer 35%igen wäßrigen Natriumacrylatlösung und über einen Zeitraum von 6 Stunden 33 g 2,2′-Azobis(2-amidinopropan)dihydrochlorid gelöst in 170 ml Wasser bei 90°C unter Stickstoffatmosphäre zutropft. Man erhält eine viskose, gelb-braune Lösung, die noch 1 Stunde nach Beendigung der Initiatorzugabe bei einer Temperatur von 90°C nachpolymerisiert wird und nach dem Abkühlen auf 30°C mit 25%iger wäßriger Natronlauge auf einen pH-Wert von 6 eingestellt wird. Die Einsatzstoffe, die bei der Polymerisation eingesetzten Stoffe und die K-Werte der Copolymerisate, deren Restgehalt an nicht polymerisierter Maleinsäure sowie die Daten zur biologischen Abbaubarkeit sind in Tabelle 4 angegeben.
Tabelle 4
Beispiel 5
In einem 2-l-fassenden Glasreaktor, der mit Rührer, Thermometer, Stickstoffeinleitung und 3 Zulaufgefäßen ausgestattet ist, von denen 1 Zulaufgefäß beheizbar und mit einem Rührer versehen ist, werden 98 g (1 Mol) Maleinsäureanhydrid in 500 ml 4molarer wäßriger Natronlauge gelöst und auf 90°C erhitzt. Gleichzeitig werden in dem beheizbaren Zulaufgefäß 98 g (1 Mol) Maleinsäureanhydrid auf 80°C erwärmt und über einen Zeitraum von 2 Stunden mit 0,4 Mol Serin versetzt. Anschließend wird das überschüssige Maleinsäureanhydrid durch Zugabe von 300 ml Wasser hydrolysiert und das entstandene Comonomer (Komponente e) zusammen mit der bei der Hydrolyse gebildeten Maleinsäure in dem zugesetzten Wasser gelöst.
Die Copolymerisation wird in der Weise durchgeführt, daß man über einen Zeitraum von 5 Stunden 282 g (3 Mol) Natriumacrylat, gelöst in 500 ml Wasser, und die das Comonomer und Maleinsäure enthaltende wäßrige Lösung sowie über einen Zeitraum von 6 Stunden 90 g 30%iges Wasserstoffperoxid, gelöst in 100 ml Wasser, unter Stickstoffspülung zu dem auf 90°C erwärmten Reaktorinhalt zutropft. Die der Copolymerisation unterworfene Monomermischung besteht aus 65,2 Mol-% Acrylsäure, 26,1 Mol-% Maleinsäure und 8,7 Mol-% des Comonomers aus Maleinsäureanhydrid und Serin. Man erhält eine viskose Lösung, die noch 1 Stunde bei 95°C nachpolymerisiert und nach dem Abkühlen auf 35°C mit 25%iger wäßriger Natronlauge auf einen pH-Wert von 6,5 eingestellt wird. Das Copolymerisat hat einen K-Wert von 33 und enthält 0,19 Gew.-% nicht polymerisierter Maleinsäure.
Wiederholt man das Beispiel 5 mit der einzigen Ausnahme, daß man anstelle des Serins 0,4 Mol Lysin einsetzt, so wird ebenfalls eine Monomermischung aus 65,2 Mol-% Acrylsäure, 26,1 Mol-% Maleinsäure und 8,7 Mol-% eines Comonomers (Umsetzungsprodukt aus Maleinsäureanhydrid und Lysin) der Copolymerisation unterworfen. Man erhält dabei ein Copolymerisat mit einem K-Wert von 30,1, das 0,21 Gew.-% an nicht polymerisierter Maleinsäure enthält.
Beispiel 6
In einem 2-l-fassenden Glasreaktor, der mit Rührer, Thermometer, Stickstoffeinleitung und 3 Zulaufgefäßen ausgestattet ist, werden 98 g (1 Mol) Maleinsäureanhydrid in 500 ml 4molarer wäßriger Natronlauge gelöst und auf 90°C erhitzt. Von den 3 Zulaufgefäßen ist 1 Zulaufgefäß beheizbar und mit einem Rührer ausgestattet. In diesem Zulaufgefäß erhitzt man unter Rühren 98 g (1 Mol) Maleinsäureanhydrid, 0,2 g Natriumacetat und 19,8 g (0,1 Mol) Glucosemonohydrat, 2,5 Stunden auf eine Temperatur von 120°C. Der Umsatz an Maleinsäureanhydrid bei der Veresterung beträgt nach dieser Zeit 50%. Die dabei entstandene Schmelze wird nach dem Abkühlen in 72 g (1 Mol) Acrylsäure gelöst.
Zur Polymerisation werden dann, gleichbeginnend über einen Zeitraum von 5 Stunden 188 g (2 Mol) Natriumacrylat, gelöst in 350 ml Wasser, und die Lösung des Comonomers aus MSA und Glukose zusammen mit dem überschüssigen Maleinsäureanhydrid in Acrylsäure, und über einen Zeitraum von 6 Stunden 90 g 30%iges Wasserstoffperoxid, gelöst in 100 ml Wasser, zu der auf 90°C erhitzten Vorlage unter Stickstoffspülung zutropft. Die viskose Lösung wird 1 Stunde nachpolymerisiert und nach dem Abkühlen mit 25%iger Natronlauge auf einen pH-Wert von 6,5 eingestellt. Das Copolymerisat hat einen K-Wert von 35,7 und enthält 0,13 Gew.-% an nicht einpolymerisierter Maleinsäure. Die biologische Abbaubarkeit beträgt 62%.
Beispiel 7
In einem 2-l-fassenden Glasreaktor, der mit Rührer, Thermometer, Stickstoffeinleitung und 2 Zulaufgefäßen ausgestattet ist, werden 147 g (1,5 Mol) Maleinsäureanhydrid in 500 ml 6molarer wäßriger Natronlauge gelöst und auf 90°C erhitzt.
Zur Polymerisation werden dann über einen Zeitraum von 5 Stunden 40,66 g (0,19 Mol) Mono-2-hydroxyethylacrylatmaleinat (Comonomer, erhältlich aus Maleinsäureanhydrid und 2-Hydroxyethylacrylat im Molverhältnis 1 : 1), gelöst in 162 g (2,25 Mol) Acrylsäure und gleichbeginnend über einen Zeitraum von 6 Stunden 71,4 g 30%iges Wasserstoffperoxid, gelöst in 28 g Wasser, zu der auf 90°C erhitzten Vorlage unter Stickstoffspülung zugetropft. Das Monomerengemisch, das der Copolymerisation unterworfen wird, enthält 4,8 Mol-% des Comonomers aus MSA und 2-Hydroxyethylacrylat, 38,1 Mol-% Maleinsäure und 57,1 Mol-% Acrylsäure. Die viskose Lösung wird 1 Stunde bei 95°C nachpolymerisiert und nach dem Abkühlen auf 28°C mit 25%iger wäßriger Natronlauge auf einen pH-Wert von 6,5 eingestellt. Das Copolymerisat hat einen K-Wert von 42,2 und enthält 0,19 Gew.-% nicht polymerisierte Maleinsäure.

Claims (21)

1. Wasserlösliche Copolymerisate auf Basis von monoethylenisch ungesättigten Carbonsäuren mit 3 bis 6 C-Atomen, dadurch gekennzeichnet, daß die Copolymerisate einen K-Wert von 8 bis 100 (bestimmt am Na-Salz nach H. Fikentscher in wäßriger Lösung bei 25°C, einem pH-Wert von 7 und einer Polymerkonzentration des Na-Salzes von 1 Gew.-%) haben und
  • a) 99 bis 15 Mol-% wenigstens einer monoethylenisch ungesättigten C₁- bis C₆-Monocarbonsäure,
  • b) 0,5 bis 84,5 Mol-% wenigstens einer monoethylenisch ungesättigten C₄- bis C₆-Dicarbonsäure,
  • c) 0 bis 20 Mol-% eines oder mehrerer Hydroxyalkylester mit 2 bis 6 C-Atomen in der Hydroxyalkylgruppe von monoethylenisch ungesättigten C₃- bis C₆-Carbonsäuren,
  • d) 0 bis 30 Mol-% anderen, mit a), b) und c) copolymerisierbaren, wasserlöslichen, monoethylenisch ungesättigten Monomeren und
  • e) 0,5 bis 15 Mol-% wenigstens eines mindestens zwei ethylenisch ungesättigte, nicht konjugierte Doppelbindungen aufweisenden Comonomers, das mindestens eine -CO-OX-Gruppe hat, in der X ein Wasserstoff-, ein Alkalimetall- oder Erdalkalimetalläquivalent oder eine Ammoniumgruppe bedeutet,
mit der Maßgabe einpolymerisiert enthalten, daß die Summe der Angaben in Mol-% a) bis e) immer 100 beträgt.
2. Wasserlösliche Copolymerisate nach Anspruch 1, dadurch gekennzeichnet, daß das einpolymerisierte Comonomer (e) erhältlich ist durch Umsetzung von
  • e1) Maleinsäureanhydrid, Itaconsäureanhydrid, Citraconsäureanhydrid oder deren Gemische mit
  • e2) mehrwertigen, 2 bis 6 C-Atome aufweisenden Alkoholen, wasserlöslichen oder wasserunlöslichen Polyalkylenglykolen eines Molekulargewichts bis etwa 400, wasserlöslichen Polyalkylenglykolen eines Molekulargewichts über etwa 400 bis 10 000, Polyglycerinen eines Molekulargewichts bis 2000, Polyaminen, Polyalkylenpolyaminen, Polyethyleniminen, Aminoalkoholen, Hydroxyamino- oder -diaminocarbonsäuren, wasserlöslichen Copolymerisaten aus Ethylenoxid und Kohlendioxid, Polyvinylalkohol eines Molekulargewichts bis 10 000, Allylalkohol, Allylamin, Hydroxyalkylester mit 2 bis 6 C-Atomen in der Hydroxyalkylgruppe von monoethylenisch ungesättigten C₃- bis C₆-Carbonsäuren oder von gesättigten C₃- bis C₆-Hydroxycarbonsäuren oder deren Mischungen.
3. Verfahren zur Herstellung von wasserlöslichen Copolymerisaten nach den Ansprüchen 1 und 2 durch Copolymerisieren von Monomerengemischen aus
  • a) 99 bis 15 Mol-% einer monoethylenisch ungesättigten C₃- bis C₆-Monocarbonsäure,
  • b) 0,5 bis 84,5 Mol-% einer monoethylenisch ungesättigten C₄- bis C₆-Dicarbonsäure,
  • c) 0 bis 20 Mol-% eines oder mehrerer Hydroxyalkylester mit 2 bis 6 C-Atomen in der Hydroxyalkylgruppe von monoethylenisch ungesättigten C₃- bis C₆-Carbonsäuren,
  • d) 0 bis 30 Mol-% anderen, mit a), b) und c) copolymerisierbaren, wasserlöslichen, monoethylenisch ungesättigten Monomeren
in wäßriger Lösung in Gegenwart von Polymerisationsinitiatoren, dadurch gekennzeichnet, daß die Copolymerisation in Anwesenheit von
  • e) 0,5 bis 15 Mol-% wenigstens eines mindestens zwei ethylenisch ungesättigte, nicht konjugierte Doppelbindungen aufweisenden Comonomers, das mindestens eine -CO-OX-Gruppe hat, in der X ein Wasserstoff-, ein Alkalimetall- oder Erdalkalimetalläquivalent oder eine Ammoniumgruppe bedeutet,
mit der Maßgabe durchgeführt wird, daß die Summe der Angaben in Mol-% a) bis e) immer 100 beträgt.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß man zunächst das Comonomer (e) herstellt durch Umsetzung von
  • e1) Maleinsäureanhydrid, Itaconsäureanhydrid, Citraconsäureanhydrid oder deren Gemische mit
  • e2) mehrwertigen, 2 bis 6 C-Atome aufweisenden Alkoholen, wasserlöslichen oder wasserunlöslichen Polyalkylenglykolen eines Molekulargewichts bis etwa 400, wasserlöslichen Polyalkylenglykolen eines Molekulargewichts über etwa 400 bis 10 000, Polyglycerinen eines Molekulargewichts bis 2000, Diaminen, Polyalkylenpolyaminen, Polyethyleniminen, Aminoalkoholen, Lysin, Serin, wasserlöslichen Copolymerisaten aus Ethylenoxid und Kohlendioxid, Polyvinylalkohol eines Molekulargewichts bis 10 000, Allylalkohol, Allylamin, Hydroxyalkylester mit 2 bis 6 C-Atomen in der Hydroxyalkylgruppe von monoethylenisch ungesättigten C₃- bis C₆-Carbonsäuren oder von gesättigten C₃- bis C₆- Hydroxycarbonsäuren oder deren Mischungen
bei Temperaturen von 50 bis 200°C und es dann in wäßriger Lösung mit den Monomeren a) bis d) bei Temperaturen bis 200°C copolymerisiert.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß man den Umsetzungsansatz aus den Komponenten (e1) und (e2) in Form seiner Schmelze oder ihrer gegebenenfalls teilweise oder vollständig neutralisierten, wäßrigen Lösung dem Polymerisationsansatz zuführt.
6. Verfahren nach den Ansprüchen 3 bis 4, dadurch gekennzeichnet, daß das Comonomer (e) in einer monoethylenisch ungesättigten Carbonsäure gemäß (a) oder einer gegebenenfalls teilweise oder vollständig neutralisierten wäßrigen Lösung derselben gelöst und in Form dieser Lösung der Copolymerisation mit den übrigen Comonomeren unterworfen wird.
7. Verfahren nach Ansprüchen 3 bis 6, dadurch gekennzeichnet, daß man Monomerengemische aus
  • a) Acrylsäure und/oder Methacrylsäure und
  • b) Maleinsäure und/oder Itaconsäure mit
  • e) einem Comonomer aus e1) Maleinsäureanhydrid und e2) Ethylenglykol, Polyethylenglykol eines Molekulargewichts bis 2000, Glycerin, Polyglycerinen eines Molekulargewichts bis 2000, Pentaerythrit, Monosacchariden, Neopentylglykol, α, ω-Diaminen mit 2 bis 6 C-Atomen, α, ω-Diolen mit 3 bis 6 C-Atomen, Hydroxypivalinsäureneopentylglykolmonoester
der Copolymerisation unterwirft.
8. Verfahren nach den Ansprüchen 3 bis 6, dadurch gekennzeichnet, daß man Monomerengemische aus
  • a) 99 bis 15 Mol-% Acrylsäure und/oder Methacrylsäure und
  • b) 0,5 bis 84,5 Mol-% Maleinsäure und/oder Itaconsäure und
  • c) 0 bis 20 Mol-% Hydroxypropylacrylaten, Hydroxypropylmethacrylaten, Hydroxyethylacrylat, Hydroxyethylmethacrylat, Hydroxybutylacrylaten, Hydroxybutylmethacrylaten oder deren Mischungen und
  • e) 0,5 bis 15 Mol-% eines Comonomers aus e1) Maleinsäureanhydrid und e2) Ethylenglykol, Polyethylenglykol eines Molekulargewichts bis 2000, Glycerin, Polyglycerinen eines Molekulargewichts bis 2000, Pentaerythrit, Monosacchariden, Neopentylglykol, α, ω-Diaminen mit 2 bis 6 C-Atomen, α, ω-Diolen mit 3 bis 6 C-Atomen, Hydroxypivalinsäureneopentylglykolester oder deren Mischungen
der Copolymerisation unterwirft.
9. Verfahren nach Anspruch 3 bis 8, dadurch gekennzeichnet, daß der pH-Wert der wäßrigen Lösung während der Copolymerisation 2 bis 9 beträgt.
10. Verfahren nach den Ansprüchen 3 bis 7, dadurch gekennzeichnet, daß man Monomerengemische aus
  • a) Acrylsäure und/oder Methacrylsäure,
  • b) Maleinsäure und
  • e) einer Verbindung der Formel in der
    X=H, Alkalimetall oder eine Ammoniumgruppe und
  • n=1 bis 120 bedeutet,
der Copolymerisation unterwirft.
11. Verfahren nach den Ansprüchen 3 bis 7, dadurch gekennzeichnet, daß man Monomerengemische aus
  • a) Acrylsäure und/oder Methacrylsäure,
  • b) Maleinsäure und
  • e) einer Verbindung der Formel XOOC-CH=CH-CO-NH-CH₂-(CH₂) n -CH₂-NH-CO-CH=CH-COOX (II)in der
    X=H, Alkalimetall oder eine Ammoniumgruppe und
  • n=0 bis 4 bedeutet.
der Copolymerisation unterwirft.
12. Verfahren nach den Ansprüchen 10 und 11, dadurch gekennzeichnet, daß die Monomeren a), b) und e) jeweils in partiell mit Alkalimetall- oder Ammoniumbasen neutralisierter Form copolymerisiert werden, wobei der Neutralisationsgrad 40 bis 90 Mol-% beträgt.
13. Verwendung der wasserlöslichen Copolymerisate nach Anspruch 1 als Beschichtungsmittel für Saatgut.
DE19873712317 1987-04-11 1987-04-11 Wasserloesliche copolymerisate, verfahren zu deren herstellung und verwendung Withdrawn DE3712317A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
DE19873712317 DE3712317A1 (de) 1987-04-11 1987-04-11 Wasserloesliche copolymerisate, verfahren zu deren herstellung und verwendung
DE8888105377T DE3882166D1 (de) 1987-04-11 1988-04-02 Wasserloesliche copolymerisate, verfahren zu ihrer herstellung und ihre verwendung.
EP88105377A EP0289788B1 (de) 1987-04-11 1988-04-02 Wasserlösliche Copolymerisate, Verfahren zu ihrer Herstellung und ihre Verwendung
AT88105377T ATE91289T1 (de) 1987-04-11 1988-04-02 Wasserloesliche copolymerisate, verfahren zu ihrer herstellung und ihre verwendung.
ES88105377T ES2056848T3 (es) 1987-04-11 1988-04-02 Copolimeros hidrosolubles, un procedimiento para su obtencion y su empleo.
CA000563542A CA1327254C (en) 1987-04-11 1988-04-07 Water-soluble copolymers and their preparation
US07/179,477 US4914172A (en) 1987-04-11 1988-04-08 Water-soluble copolymers and their preparation
JP63087438A JPS63268716A (ja) 1987-04-11 1988-04-11 水溶性共重合体、その製法及び用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19873712317 DE3712317A1 (de) 1987-04-11 1987-04-11 Wasserloesliche copolymerisate, verfahren zu deren herstellung und verwendung

Publications (1)

Publication Number Publication Date
DE3712317A1 true DE3712317A1 (de) 1988-10-20

Family

ID=6325419

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19873712317 Withdrawn DE3712317A1 (de) 1987-04-11 1987-04-11 Wasserloesliche copolymerisate, verfahren zu deren herstellung und verwendung

Country Status (1)

Country Link
DE (1) DE3712317A1 (de)

Similar Documents

Publication Publication Date Title
EP0291808B1 (de) Verwendung von wasserlöslichen Copolymerisaten, die Monomere mit mindestens zwei ethylenisch ungesättigten Doppelbindungen einpolymerisiert enthalten,in Wasch- und Reinigungsmitteln
DE3878533T2 (de) Verfahren zur oberflaechenbehandlung eines wasser absorbierenden harzes.
DE2103898A1 (de) Quaternare Copolymere
EP0344591B1 (de) Verfahren zur Herstellung von wasserlöslichen Polymerisaten und ihre Verwendung
DD296692A5 (de) Wasserloesliche, niedermolekulare copolymere, verfahren zur herstellung und waschmittelzusammensetzungen enthaltend solche copolymere
EP0292766B1 (de) Verwendung von wasserlöslichen Copolymerisaten, die Monomere mit mindestens zwei ethylenisch ungesättigten Doppelbindungen einpolymerisiert enthalten, in Wasch-und Reinigungsmitteln
DE69533160T2 (de) Detergenzbildner, Verfahren zu seiner Herstellung und diesen enthaltende Detergenzzusammensetzung
EP0337259A2 (de) Verwendung von wasserlöslichen Copolymerisaten auf Basis von monoethylenisch ungesättigten Carbonsäuren
EP0289788B1 (de) Wasserlösliche Copolymerisate, Verfahren zu ihrer Herstellung und ihre Verwendung
EP0290807B1 (de) Wasserlösliche Copolymerisate, Verfahren zu deren Herstellung und Verwendung
EP0289827B1 (de) Wasserlösliche Copolymerisate, Verfahren zu ihrer Herstellung und ihre Verwendung
EP0289787B1 (de) Wasserlösliche Copolymerisate, Verfahren zu ihrer Herstellung und ihre Verwendung
EP0791023B1 (de) Verfahren zur herstellung von terpolymeren
EP0944657B1 (de) Amphiphile pfropfpolymerisate auf basis von n-vinylcarbonsäureamid-einheiten enthaltenden pfropfgrundlagen, verfahren zu ihrer herstellung und ihre verwendung
DE3712317A1 (de) Wasserloesliche copolymerisate, verfahren zu deren herstellung und verwendung
DE3712326A1 (de) Wasserloesliche copolymerisate, verfahren zu deren herstellung und verwendung
DE69924612T2 (de) Wasserlösliche oder wasserdispergierbare pfropfpolymere
WO1999048998A1 (de) VERFAHREN ZUR ANHEBUNG DES pH-WERTS IN SAUREN BÖDEN
DE3807086A1 (de) Wasserloesliche copolymerisate, verfahren zu ihrer herstellung und ihre verwendung
DE4405621A1 (de) Verfahren zur Herstellung von Copolymerisaten aus Vinylestern und monoethylenisch ungesättigten Carbonsäuren und ihre Verwendung
DE3807085A1 (de) Wasserloesliche copolymerisate, verfahren zu ihrer herstellung und ihre verwendung
DE3147489A1 (de) Verfahren zur herstellung von copolymerisaten aus monoethylenisch ungesaettigten mono- und dicarbonsaeuren
WO2010057988A1 (de) Bodenfestiger
DE1037129B (de) Verfahren zur Herstellung von wasserloeslichen Mischpolymerisaten
DE2222730B2 (de) Verfahren zur Herstellung einer wäßrigen Emulsion eines wärmehärtbaren Vinylestercopolymerisats und dessen Verwendung

Legal Events

Date Code Title Description
8130 Withdrawal