DE2827569C2 - - Google Patents

Info

Publication number
DE2827569C2
DE2827569C2 DE19782827569 DE2827569A DE2827569C2 DE 2827569 C2 DE2827569 C2 DE 2827569C2 DE 19782827569 DE19782827569 DE 19782827569 DE 2827569 A DE2827569 A DE 2827569A DE 2827569 C2 DE2827569 C2 DE 2827569C2
Authority
DE
Germany
Prior art keywords
zone
base
emitter
contact
silicon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
DE19782827569
Other languages
English (en)
Other versions
DE2827569A1 (de
Inventor
Gerhard Dipl.-Phys. 7022 Leinfelden-Echterdingen De Conzelmann
Karl 7413 Gomaringen De Nagel
Adolf 7250 Leonberg De Kugelmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to DE19782827569 priority Critical patent/DE2827569A1/de
Publication of DE2827569A1 publication Critical patent/DE2827569A1/de
Application granted granted Critical
Publication of DE2827569C2 publication Critical patent/DE2827569C2/de
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/482Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body
    • H01L23/485Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body consisting of layered constructions comprising conductive layers and insulating layers, e.g. planar contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0804Emitter regions of bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41708Emitter or collector electrodes for bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42304Base electrodes for bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Bipolar Transistors (AREA)

Description

Die Erfindung betrifft ein monolithisch integriertes Referenzelement nach dem Oberbegriff des Patentanspruchs.
Aus der DE-OS 16 14 180 ist ein als diskretes Bauelement ausgebil­ detes Referenzelement bekannt, bei dem aber die beiden Elektroden der das Referenzelement bildenden Zenerdiode an zwei einander gegen­ überliegenden Oberflächenseiten des Halbleiterkörpers angebracht sind.
Aus der DE-OS 23 42 637 und aus der Zeitschrift "Neues aus der Tech­ nik", Nr. 6 vom 15. 12. 1973, Seite 2, sind darüber hinaus verschie­ dene Ausführungsformen von als Zenerdioden ausgebildeten Referenz­ elementen bekanntgeworden, die Bestandteil eines monolithisch inte­ grierten Schaltkreises sind. Allen diesen Ausführungsformen ist je­ doch gemeinsam, daß der Durchschlag an einem PN-Übergang stattfin­ det, der sich im Innern des Halbleiterkörpers befindet, der also nicht wie bei der bekannten Basis-Emitter-Diode an die Halbleiter­ oberfläche tritt. Diese Referenzelemente haben den Nachteil, daß ihre Herstellung sehr aufwendig ist und größere Dicken des inte­ grierten Elementes erfordert.
Aus der Zeitschrift "IBM Technical Disclosure Bulletin", Vol. 19, Nr. 5, Oktober 1975, Seite 1782 f ist des weiteren ein monolithisch integriertes Referenzelement nach dem Oberbegriff des Patentan­ spruchs bekannt, bei dem jedoch keine Maßnahmen getroffen sind, um mit Hilfe der Kontaktmetallisierung der Basiszone die Stabilität der Durchbruchsspannung zu verbessern.
Der Erfindung liegt die Aufgabe zugrunde, ein einfach herstellbares Referenzelement nach dem Oberbegriff des Patentanspruchs zu ent­ wickeln, bei dem die Stabilität der Durchbruchsspannung mit Hilfe der Kontaktmetallisierung der Basiszone verbessert ist.
Erfindungsgemäß ist diese Aufgabe durch die kennzeichnenden Merkmale des Patentanspruchs gelöst.
Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung darge­ stellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigt
Fig. 1 einen Schnitt durch eine Basis-Emitter-Diode in bekannter Ausführung,
Fig. 2 einen Schnitt durch das erfindungsgemäße Referenzelement.
Fig. 1 zeigt einen Schnitt durch eine bekannte Halbleiterdiode, bei der die N-dotierte Epitaxialschicht mit 1, die P-leitende Basiszone mit 2 und die N⁺-leitende Emitterzone mit 3 bezeichnet ist. Auf diese Anordnung ist eine Siliziumdioxydschicht 4 aufgebracht, die Fenster für den Basiskontakt 5 und den Emitterkontakt 6 aufweist. Während des Betriebes treten extrem hohe Feldstärken an den an der Halblei­ teroberfläche freiliegenden Grenzschichtübergängen auf, die bewir­ ken, daß Verunreinigungen an oder im Bereich der Halbleiterober­ fläche ionisiert werden und in den Grenzschichtbereich eindringen. Außerdem erzeugt der im Durchbruch betriebene PN-Übergang Licht­ quanten, wodurch Ladungen in der Siliziumdioxydschicht 4 entstehen. Die Anordnung bricht bei einer Beanspruchung in Sperrichtung im Be­ reich des größten Dotierungsgradienten durch, der normalerweise in der Nähe des Emitterrandes 7 dicht unter der Oberfläche liegt.
Außerdem ist der Gradient der Dotierung von den Ladungen in der Siliziumdioxydschicht 4 abhängig.
Der Einfluß der Ladungen in der Siliziumdioxydschicht 4 läßt sich gemäß Fig. 2 dadurch verringern, daß das Metall des Basiskontaktes 5 so weit über die Siliziumdioxydschicht 4 gezogen wird, daß es den an die Halbleiteroberfläche tretenden Rand 7 des zwischen Emitterzone 3 und Basiszone 2 angeordneten PN-Übergangs überdeckt. Dabei wird ab­ weichend von Fig. 1 außerdem die Emitterzone 3 ringförmig um die Basiszone 2 gelegt und nur teilweise in sie eindiffundiert. Durch diese Anordnung, bei der der Basiskontakt 5 über den an die Halblei­ teroberfläche tretenden Rand 7 des PN-Übergangs zwischen Emitter­ zone 3 und Basiszone 2 gezogen ist, sind die Kontakte 5 und 6 für die notwendigen Anschlußleitungen frei zugänglich. Ein weiterer PN-Übergang in der Nähe der Oberfläche tritt nach Fig. 2 im Gegen­ satz zu Fig. 1 nicht auf, da ebenso wie die Emitterzone 3 die Epi­ taxialschicht 1 ein N-leitendes Gebiet ist.
Eine durch Fehljustierung erzeugte Unsymmetrie zwischen Basiskontakt 5 und Emitterzone 3 schadet der Anordnung nicht; sie kann sogar er­ wünscht sein, wenn der Durchbruch an einer bevorzugten Stelle ein­ treten soll, um so zu einer höheren Stromdichte zu kommen. In diesem Fall ist es zweckmäßig, bei kreisförmigen Geometrien den Basiskon­ takt 5 bereits im Layout exzentrisch zur Emitterzone 3 zu legen oder auch einen exzentrischen Basiskontakt und/oder eine exzentrische Emitterrandbegrenzung vorzusehen.
Mit der erfindungsgemäßen Anordnung nach Fig. 2 ist es möglich, zu­ sätzlich zu der Siliziumdioxydschicht 4 eine Schutzschicht aus Plas­ manitrid aufzubringen, die extrem widerstandsfähig gegen Kontamina­ tion aller Art ist. Mit einer Anordnung nach Fig. 1 wäre dies nicht möglich, da sich an den Grenzflächen zwischen Oxyd und Nitrid Haftstellen (Traps) bilden, an denen die Ladungen eingefangen werden und sich dadurch anhäufen. Da der Basiskontakt 5 oberhalb des Randes 7 des zwischen Emitterzone 3 und Basiszone 2 verlaufenden PN-Über­ ganges zwischen der Oxydschicht 4 und der möglicherweise aufge­ brachten Nitridschicht liegt, haben die Traps keinen bedeutenden Einfluß auf den Durchbruch an dieser Stelle.

Claims (1)

  1. Monolithisch integriertes Referenzelement aus einer im Sperrspan­ nungsdurchbruch betriebenen Basis-Emitter-Diode, bei der die Emit­ terzone (3) teilweise in die Basiszone (2) eindiffundiert ist, mit einer auf eine Oberflächenseite des Halbleiterkörpers aufgebrachten Siliziumdioxidschicht, die je ein Fenster für den Emitterkontakt und für den Basiskontakt aufweist, dadurch gekennzeichnet, daß die Emit­ terzone (3) ringförmig um die Basiszone (2) gelegt ist und daß die Kontaktmetallisierung (5) der Basiszone (2) so weit über die isolie­ rende Siliziumdioxidschicht (4) gezogen ist, daß sie den an die Halbleiteroberfläche tretenden Rand (7) des zwischen Emitterzone (3) und Basiszone (2) angeordneten PN-Übergangs vollständig überdeckt.
DE19782827569 1978-06-23 1978-06-23 Monolithisch integriertes referenzelement Granted DE2827569A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19782827569 DE2827569A1 (de) 1978-06-23 1978-06-23 Monolithisch integriertes referenzelement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19782827569 DE2827569A1 (de) 1978-06-23 1978-06-23 Monolithisch integriertes referenzelement

Publications (2)

Publication Number Publication Date
DE2827569A1 DE2827569A1 (de) 1980-01-17
DE2827569C2 true DE2827569C2 (de) 1989-10-19

Family

ID=6042553

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19782827569 Granted DE2827569A1 (de) 1978-06-23 1978-06-23 Monolithisch integriertes referenzelement

Country Status (1)

Country Link
DE (1) DE2827569A1 (de)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1165575A (en) * 1966-01-03 1969-10-01 Texas Instruments Inc Semiconductor Device Stabilization.
US3510368A (en) * 1966-08-29 1970-05-05 Motorola Inc Method of making a semiconductor device

Also Published As

Publication number Publication date
DE2827569A1 (de) 1980-01-17

Similar Documents

Publication Publication Date Title
DE3203066C2 (de) Integrierte Halbleiterschaltungsanordnung mit zwei gegenpolig geschalteten Dioden
DE1639019C3 (de) Steuerbarer Halbleitergleichrichter
DE1282196B (de) Halbleiterbauelement mit einer Schutzvorrichtung fuer seine pn-UEbergaenge
DE4320780A1 (de) Halbleiteranordnung und Verfahren zur Herstellung
DE2951421A1 (de) Integrierte halbleiterschaltung
DE1789119B2 (de) Halbleiterbauelement. Ausscheidung aus: 1514855
DE1216435B (de) Schaltbares Halbleiterbauelement mit vier Zonen
DE2747668A1 (de) Thyristor-bauelement
DE2406807A1 (de) Integrierte halbleiterschaltung
EP1003218A1 (de) Halbleiteranordnungen mit einer Schottky-Diode und einer Diode mit einem hochdotierten Bereich und entsprechende Herstellungsverfahren
DE3103785C2 (de)
DE2827569C2 (de)
DE1539070A1 (de) Halbleiteranordnungen mit kleinen Oberflaechenstroemen
DE1764171A1 (de) Halbleitereinrichtung und Verfahren zu deren Herstellung
DE2046053B2 (de) Integrierte Schaltung
DE3417474A1 (de) Monolithisch integrierte planare halbleiteranordnung
DE3832709A1 (de) Thyristor
DE3542166A1 (de) Halbleiterbauelement
DE2361171A1 (de) halbleitervorrichtung
DE3210785A1 (de) Halbleiterbauelement
DE2263075B2 (de) Elektrische spannungsversorgung fuer eine monolithisch integrierte halbleiteranordnung
DE10002241C2 (de) Integrierte bipolare Transistorstruktur zum Begrenzen von Überspannung
DE2718185A1 (de) Halbleiter-verbundanordnung fuer hohe spannungen
DE2210386A1 (de) Thyristor
DE3626858A1 (de) Schutzstruktur fuer integrierte schaltungen

Legal Events

Date Code Title Description
8110 Request for examination paragraph 44
8120 Willingness to grant licenses paragraph 23
D2 Grant after examination
8363 Opposition against the patent
8365 Fully valid after opposition proceedings
8339 Ceased/non-payment of the annual fee