DE2223491A1 - Mixed metallic phases - as high-temp pigments for enamels and glass semiconductors, dielectrics, catalysts - Google Patents
Mixed metallic phases - as high-temp pigments for enamels and glass semiconductors, dielectrics, catalystsInfo
- Publication number
- DE2223491A1 DE2223491A1 DE19722223491 DE2223491A DE2223491A1 DE 2223491 A1 DE2223491 A1 DE 2223491A1 DE 19722223491 DE19722223491 DE 19722223491 DE 2223491 A DE2223491 A DE 2223491A DE 2223491 A1 DE2223491 A1 DE 2223491A1
- Authority
- DE
- Germany
- Prior art keywords
- zrtio4
- mixed
- mixed phases
- host
- elements
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000049 pigment Substances 0.000 title claims description 7
- 239000003054 catalyst Substances 0.000 title claims description 4
- 239000004065 semiconductor Substances 0.000 title claims description 4
- 210000003298 dental enamel Anatomy 0.000 title claims description 3
- 239000003989 dielectric material Substances 0.000 title description 3
- 239000011521 glass Substances 0.000 title 1
- 150000001768 cations Chemical class 0.000 claims abstract description 10
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 7
- 150000001450 anions Chemical class 0.000 claims abstract description 5
- 229910052796 boron Inorganic materials 0.000 claims abstract description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 5
- 229910052790 beryllium Inorganic materials 0.000 claims abstract description 4
- 229910052794 bromium Inorganic materials 0.000 claims abstract description 4
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 4
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 4
- 229910052751 metal Inorganic materials 0.000 claims abstract description 4
- 239000002184 metal Substances 0.000 claims abstract description 4
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 4
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 4
- 150000002739 metals Chemical class 0.000 claims abstract description 3
- 239000001301 oxygen Substances 0.000 claims description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 229910052756 noble gas Inorganic materials 0.000 claims description 4
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical group FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims description 3
- 239000011737 fluorine Chemical group 0.000 claims description 3
- 150000002835 noble gases Chemical class 0.000 claims description 3
- 230000000737 periodic effect Effects 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims description 3
- 239000000919 ceramic Substances 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical group [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims description 2
- 238000000034 method Methods 0.000 claims description 2
- 239000007858 starting material Substances 0.000 claims description 2
- 239000007789 gas Substances 0.000 abstract description 6
- 239000000126 substance Substances 0.000 description 7
- 238000009434 installation Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- 150000004673 fluoride salts Chemical class 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 150000004679 hydroxides Chemical class 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 238000004040 coloring Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- NROKBHXJSPEDAR-UHFFFAOYSA-M potassium fluoride Chemical compound [F-].[K+] NROKBHXJSPEDAR-UHFFFAOYSA-M 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- -1 Hydroxide anions Chemical class 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000004870 electrical engineering Methods 0.000 description 1
- 239000010436 fluorite Substances 0.000 description 1
- 150000004675 formic acid derivatives Chemical class 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 150000002366 halogen compounds Chemical class 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 150000002484 inorganic compounds Chemical group 0.000 description 1
- 239000001023 inorganic pigment Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 150000003891 oxalate salts Chemical class 0.000 description 1
- CJJMLLCUQDSZIZ-UHFFFAOYSA-N oxobismuth Chemical class [Bi]=O CJJMLLCUQDSZIZ-UHFFFAOYSA-N 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 235000003270 potassium fluoride Nutrition 0.000 description 1
- 239000011698 potassium fluoride Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 235000013024 sodium fluoride Nutrition 0.000 description 1
- 239000011775 sodium fluoride Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- B01J21/066—Zirconium or hafnium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- B01J21/063—Titanium; Oxides or hydroxides thereof
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G25/00—Compounds of zirconium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G25/00—Compounds of zirconium
- C01G25/006—Compounds containing, besides zirconium, two or more other elements, with the exception of oxygen or hydrogen
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/36—Compounds of titanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/02—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
- H01B3/025—Other inorganic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/018—Dielectrics
- H01G4/06—Solid dielectrics
- H01G4/08—Inorganic dielectrics
- H01G4/12—Ceramic dielectrics
- H01G4/1209—Ceramic dielectrics characterised by the ceramic dielectric material
- H01G4/1218—Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/76—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/77—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/80—Particles consisting of a mixture of two or more inorganic phases
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/60—Optical properties, e.g. expressed in CIELAB-values
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Ceramic Engineering (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
Misohphasen mit ZrTiO,-Struktur Die vorliegende Erfindung betrifft Mischphasen, bei denen ZrTiO4 als Wirtsgitter verwendet wird. Misoh phases with ZrTiO, structure The present invention relates to Mixed phases in which ZrTiO4 is used as the host lattice.
ZrTiO4, das durch direkte Reaktion der Oxide bei hohen Temperaturen erhalten wird, kristallisiert orthorhombisch in der 14 Raumgruppe D mit den Gitterkonstanteu a = 4,806 Å, b = 5,447Å, 2h c= 5,032 Å und mit 2 Molekeln/Zelle, (J. Amer. Ceram. Soc.ZrTiO4, which is produced by direct reaction of the oxides at high temperatures is obtained, crystallizes orthorhombically in the 14 space group D with the lattice constanteu a = 4.806 Å, b = 5.447 Å, 2h c = 5.032 Å and with 2 molecules / cell, (J. Amer. Ceram. Soc.
50, 216 (1967)).. Die Sauerstoffionen bilden eine gestörte hexagonale dichte Anionenpackung, in der die Zr- und ti-Ionen in statistischer Verteilung die hälfte der Oktaederlücken besetzen.50, 216 (1967)) .. The oxygen ions form a disturbed hexagonal dense anion packing, in which the Zr and ti ions in a statistical distribution the occupy half of the octahedron gaps.
Es wurden nun Mischphasen mit ZrTiO4-Struktur der allgemeinen Formel MM'X4 gefunden, welche dadurch gekennzeichnet sind, daß sie als Wirtskomponente ZrTïO4 enthalten und unter Erhaltung der ZrTiO4-Struktur, der Elektroneutralität und des Kationen- : Anionenverhältnisses von 1 5 2 folgende Gastkomponenten aufnehmen: Für M bzw. Mg ein- bis sechswertige Metalle mit Kationenradien über etwa 0,40 Å und X = Sauerstoff-, Fluor- oder Hydroxidanion. Dabei kann der Einbau der als Gastkomponenten dienenden Oxide, Fluoride oder Hydroxide, die an sich in ihrer Struktur mit der des Wirts nicht übereinstimmen, nach den in Tabelle 1 aufgeführten 9 Einbaugleichungen erfolgen. Als einbaufähige Elemente kommen alle in der Tabelle 2 erwähnten Elemente infrage, d.h. alle Elemente des Periodischen Systems mit Ausnahme von Be, B, C, Si, N, P, S, Se, Cl, Br und den Edelgasen können in fester Lösung in ZrTi04 als Wirt aufgenommen werden.There were now mixed phases with a ZrTiO4 structure of the general formula MM'X4 found, which are characterized in that they are used as the host component Containing ZrTiO4 and maintaining the ZrTiO4 structure, the electrical neutrality and the cation: anion ratio of 1 5 2 take up the following guest components: For M or Mg mono to hexavalent metals with cation radii above about 0.40 Å and X = oxygen, fluorine or hydroxide anion. The installation of the as guest components serving oxides, fluorides or hydroxides, which in themselves in their structure with the of the host do not match, according to those listed in Table 1 9 installation equations are made. All of them are listed in the table as elements that can be built in 2 elements mentioned in question, i.e. all elements of the periodic table with the exception of Be, B, C, Si, N, P, S, Se, Cl, Br and the noble gases can be in solid solution be included in ZrTi04 as a host.
Bei H. Strunz, Mineralogische Tabellen, 4. Aufl. Akad. Verlagsges. Leipzig 1970, S. 28 ff. sind nach Goldschmidt (1926) bez. bei Fehlen nach Ahrens (1952) alle Elemente angegeben, die Kationenradien über etwa 0,40 R besitzen. Wegen ihrer großen Zahl sollen diese Elemente nicht einzeln aufgeführt werden, sondern nur die Elemente mit Kationenradien in Å unter etwa 0,40 i, die nicht in ZrTiO4 als Wirt in fester Lösung in größeren Mengen eingebaut werden können: Be(II) = 0,34; B(III) = 0,23; C(IV) = 0,20; Si(IV) = 0,39; N(V) = 0,15; P(V) = 0,35; S(VI) = 0,34; Se(VI) = 0,35; Cl (V) = 0,34; Br(VII) = 0,39 Å.In H. Strunz, Mineralogical Tables, 4th ed. Akad. Verlagsges. Leipzig 1970, p. 28 ff. Are according to Goldschmidt (1926) or, if missing, according to Ahrens (1952) indicated all elements that have cation radii above about 0.40 R. Because Due to their large number, these elements should not be listed individually, but only the elements with cation radii in Å below about 0.40 i, which are not in ZrTiO4 can be incorporated as a host in solid solution in larger amounts: Be (II) = 0.34; B (III) = 0.23; C (IV) = 0.20; Si (IV) = 0.39; N (V) = 0.15; P (V) = 0.35; S (VI) = 0.34; Se (VI) = 0.35; Cl (V) = 0.34; Br (VII) = 0.39 Å.
Zu ZrTiO4 als Wirt können unter Beachtung der 9 Einbaugleichungen der Tabelle 1 auf der M- bzw0 M'-Lage nach Gleichung (1) und (2) ein- und fünfwertige, nach Gleichung (3) zwei-und fünfwertige, nach Gleichung (4) drei- und fünfwertige nach Gleichung (5) und (6) ein- und sechswertige, nach Gleichung (7) zwei- und sechswertige, nach Gleichung (8) drei-und sechswertige und nach Gleichung (9) verschiedene vierwertige Metallkationen eingebaut werden. Bei den entstandenen Mischphasen der allgemeinen Formel MM'X4 ist M + M' = 2 und ist für Elektroneutralität9 wenn auch im statistischen Sinn, gesorgt. Aus den einzelnen später aufgeführten Beispielen lassen sich hinsichtlich der lonenradien nach Goldschmidt bzw. Ahrens folgende allgemeine Regeln ableiten: Auf der M- bzw. M'-Lage sitzen Kationen mit Radien über etwa 0,40 g und auf der X-Lage sitzen Sauerstoff-, Pluor- oder Hydroxid-Anionen. Die insgesamt einbaufähigen Elemente sind in Tabelle 2 aufgeführt.To ZrTiO4 as a host, observing the 9 installation equations of Table 1 on the M or M 'position according to equations (1) and (2) mono- and pentavalent, according to equation (3) two-valued and pentavalent, according to equation (4) three- and pentavalent according to equation (5) and (6) mono- and hexavalent, according to equation (7) two- and hexavalent, three-valued and six-valued according to equation (8) and different four-valued according to equation (9) Metal cations are incorporated. In the resulting mixed phases of the general Formula MM'X4 is M + M '= 2 and is for electrical neutrality9 albeit in statistical terms Sense, taken care. From the individual examples listed below, with regard to derive the following general rules for the ion radii according to Goldschmidt or Ahrens: Cations with radii over about 0.40 g sit on the M or M 'layer and on the X-position sit oxygen, fluorine or Hydroxide anions. The total Elements that can be installed are listed in Table 2.
Die Untersuchungs- und Herstellungsmethoden der neuen ZrTiO4-Mischphasen und Mischphasenpigmente sind dieselben, wie sie in Angew. Chemie 74, 23 (1963) für Mischphasenpigmente mit Rutil- und in Ber. dtsch. Keram. Ges. 42, 251 (1965) für heterotype Mischphasen mit Fluorit- oder fluoritähnlicher Struktur beschrieben wurden.The investigation and production methods of the new ZrTiO4 mixed phases and mixed phase pigments are the same as described in Angew. Chemie 74, 23 (1963) for Mixed phase pigments with rutile and in Ber. German Keram. Ges. 42, 251 (1965) for heterotypical mixed phases with fluorite or fluorite-like structure have been described.
reine ZrTiO4-Mischphasenbildung nach den Gleichungen der Tabelle 1 mit ZrTiO4 als Wirt wurde angenommen, wenn nach der Röntgenuntersuchung mindestens 10 oder mehr Gew.-/a an Gastkomponenten in fester Lösung in den Wirt eingebaut wurden.pure ZrTiO4 mixed phase formation according to the equations in Table 1 with ZrTiO4 as the host was accepted if at least according to the X-ray examination 10 or more wt .- / a of guest components in solid solution were incorporated into the host.
In ZrTiD4 als Wirt kann soviel an-Gastkomponenten eingebaut werden, wie die ZrTiO4-Struktur erhalten bleibt. Die Löslichkeitagrenze ist nach oben hin nicht bestimmt worden, sie dürfte in vielen Fällen aber 50 Gew.-% und mehr betragen md in einigen Fällen wird sogar Mischphasenbildung von 0,01-100 Gew.As many guest components can be built into ZrTiD4 as a host, how the ZrTiO4 structure is preserved. The solubility limit is upwards has not been determined, but in many cases it should be 50% by weight and more md in some cases even mixed phase formation of 0.01-100 wt.
- der Gastkomponenten beobachtet. Bei über 50 Mol.-% der Gastkomponenten vertauschen dann natürlich Wirt und Gast ihre Rolle. Bei Ausschöpfung der vielen möglichen Mischphasenbildungen ergibt sich eine Variation der chemischen Zusammensetzung, wie man sie sonst nur von der Legierungschemie her kennt. Alle Elemente des Periodischen Systems mit Ausnahme von Be, B, C, Si, N, P, S, Se, Cl, Br und den Edelgasen kann man unter Mischphasenbildung in ZrTiO4 als ivirt bei Beachtung der 9 Einbaugleichungen in fester Lösung einbringen.- observed the guest components. With over 50 mol% of the guest components Then, of course, the host and guest swap their roles. When the many are exhausted possible mixed phase formation results in a variation of the chemical composition, as otherwise only known from alloy chemistry. All elements of the periodic Systems with the exception of Be, B, C, Si, N, P, S, Se, Cl, Br and the noble gases can one with mixed phase formation in ZrTiO4 as ivirt with observance of the 9 installation equations bring in solid solution.
Zur Herstellung von Mischphasenpigmenten nach den Methoden der Festkörperchemie wurden schon Literaturhinweise gegeben.For the production of mixed-phase pigments according to the methods of solid-state chemistry References have already been given.
Die Mischphasen können auf verschiedene Weise hergestellt werden. Einmal besteht die Möglichkeit, die getrennt hergestellten Wirtsubstanzen und die Gaatsubstanzen - jeweils in der gewünschten Menge - in feingepulvertem Zustand miteinander zu erhitzen. Auch kann zunächst nur die Wirtsubstanz oder nur die Gastsubstanz hergestellt und dann zusammen mit den einzelnen Komponenten der jeweiligen Gast- bzw. Wirtssubstanz -ebenfalls wieder im gewünschten Verhältnis - vermischt und erhitzt werden. Häufig werden einfach die einzelnen Ausgangskomponenten - sowohl für die Wirts- als auch für die Gastkomponente - innig vermischt und dann gemeinsam erhitzt. Diese Maßnahme bietet den Vorteil, daß schon vor dem Glühen eine gute statistische Verteilung der einzelnen Komponenten erreicht und damit kurze Diffusionswege ermöglicht werden.The mixed phases can be produced in various ways. Once there is the possibility of the host substances produced separately and the Gaat substances - each in the desired amount - in finely powdered State to heat with each other. Also, initially only the host substance or only the guest substance is produced and then together with the individual components of the respective guest or host substance - also again in the desired ratio - be mixed and heated. Often the individual starting components are simply the same - for both the host and the guest component - intimately mixed and then heated together. This measure has the advantage that a good statistical distribution of the individual components is achieved and thus short Diffusion paths are made possible.
Das Erhitzen der intensiv gemahlenen Komponenten geschieht entweder an Luft, O,, N2, H20 oder unter Edelgasatmosphäre von Unter-, Normal- oder Überdruck auf Temperaturen zwischen 200 und 19000C, bevorzugt zwischen 500 und 14000C. Zur Senkung der Reaktionstemperatur kann es von Vorteil sein, Fluß-und Schmelzmittel, sogenannte Mineralisatoren, der Reaktionsmischung vor oder während des Glühens zuzusetzen. Als Flußmittel eignen sich Alkali- und Erdalkalihalogenide, -hydroxide oder -carbonate; auch Bor-, Blei- oder Wismut-Oxide oder Halogenverbindungen kommen infrage. Besonders geeignet sind Alkalifluoride, wie z.B. Natriumfluorid oder Kaliumfluorid.The intensively ground components are either heated in air, O ,, N2, H20 or under a noble gas atmosphere of negative, normal or positive pressure to temperatures between 200 and 19000C, preferably between 500 and 14000C. To the Lowering the reaction temperature, it can be advantageous to use fluxes and fluxes, so-called mineralizers, to be added to the reaction mixture before or during the annealing. Alkali and alkaline earth halides, hydroxides or carbonates are suitable as fluxes; boron, lead or bismuth oxides or halogen compounds are also possible. Particularly alkali fluorides such as sodium fluoride or potassium fluoride are suitable.
Die Komponenten können entweder in trockener Form erhitzt werden; es ist jedoch auch möglich die Reaktionsmischung durch vollständige oder teilweise Umsetzung in wäßrigen oder flüssigen organischen Medien, z.B. im Autoklaven unter Druck, herzustellen. Als Ausgangsstoffe können sowohl natürliche als auch künstlich hergestellte Reaktionspartner verwendet werden, wobei es nicht notwendig ist, nur die Oxide, Fluoride bzw. Hydroxide zu verwenden. Es können auch thermisch instabile Verbindungen der den Komponenten zugrunde liegenden Elemente oder ihre Lösungen, die beim Erhitzen in die Komponenten der Mischphasenpigmente übergehen, verwendet werden.The components can either be heated in dry form; however, it is also possible for the reaction mixture to be completely or partially Implementation in aqueous or liquid organic media, e.g. in an autoclave under Pressure to produce. The starting materials can be both natural and artificial prepared reactants can be used, it is not necessary only to use the oxides, fluorides or hydroxides. It can also be thermally unstable Connections of the elements on which the components are based or their solutions, those when heated into the components the mixed phase pigments pass over, be used.
So können z.B. auch Carbonate, Nitrate, Oxalate, Formiate oder Acetate in den entsprechenden stöchiometrischen Mengen eingesetzt werden.For example, carbonates, nitrates, oxalates, formates or acetates can also be used be used in the appropriate stoichiometric amounts.
Die Erhitzungszeit kann in relativ weiten Bereichen variiert werden. Im allgemeinen genügen jedoch Zeiten von 5 Minuten bis 24 Stunden. Die Erhitzung kann sowohl ein- als auch mehrstufig unter verschiedenen Temperatur-, Zeit und Druck-Bedingungen vorgenommen werden. Dabei kann sowohl in einer oxydierenden Atmosphäre, d.h. also in Gegenwart von oxydierenden Gasen, wie z.B. Sauerstoff oder sauerstoffhaltigen Gasen oder in Gegenwart von reduzierenden Gasen wie z. Bé Wasserstoff oder Kohlenmonoxid oder auch in einer Schutzgasatmosphäre, wie z.B. unter Stickstoff oder Argon, gearbeitet werden.The heating time can be varied within a relatively wide range. In general, however, times of 5 minutes to 24 hours are sufficient. The heating can be single-stage or multi-stage under different temperature, time and pressure conditions be made. This can be done in an oxidizing atmosphere, i.e. in the presence of oxidizing gases such as oxygen or oxygen-containing gases Gases or in the presence of reducing gases such. Bé hydrogen or carbon monoxide or in a protective gas atmosphere, e.g. under nitrogen or argon will.
Die Zugabe der Gastkomponenten kann sowohl einmalig als auch über mehrere Stufen verteilt, durchgeführt werden. Die Menge der zuzusetzenden Gastkomponenten-hängt: von dem Wirt wie auch von den aufzunehmenden Komponenten-- und schließlich auch von den gewünschten Eigenschaften des Endproduktes ab. Es wurde bereits erwähnt, daß von einer eindeutigen Mischphase bei Zusatz der Gastkomponenten in Mengen von 10 bis unter 50 ß gesprochen werden kann. Jedoch können die Gastkomponenten auch in wesentlich kleineren Mengen, wie z.3. 0,1 % und weniger vorhandenvund technisch interessant sein, beispielsweise als Halbleiter, Dielektrika oder Katalysatoren.The addition of the guest components can be either one-time or via distributed over several stages. The amount of guest components to be added depends on: from the host as well as from the components to be included - and finally also on the desired properties of the end product. It has already been mentioned that of a clear mixed phase when the guest components are added in amounts of 10 to below 50 ß can be spoken. However, the guest components can also in much smaller quantities, such as 3. 0.1% and less present and technical be of interest, for example as semiconductors, dielectrics or catalysts.
In Tabelle 3 - 7 sind die Beispiele zusammengestellt. Nach der Angabe der Nr. der Einbaugleichung folgt die Versuchs-Nr., die theoretische Formel der Gastsubstanz, die Angabe ihrer Gewichtsmenge (g), die auf 5 g des Wirts eingewogen wurde, die maximale Glühtemperatur, bei der von tiefen Temperaturen herkommend nach mehrmaligem 1/2-stündigem Glühen und erneutem intensivem Pulverisieren der Mischung das Wirtsgitter allein noch auf den Röntgenaufnahmen zu sehen war. In der letzten Spalte findet man die jeweils visuell beobachtete Farbe der ZrTi04-Mischphasenpigmente Die neuen ZrTi04-Mischphasen stellen eine neue anorganische Verbindungsgruppe dar, die auf verschiedenen Gebieten eingesetzt werden können. Die ZrTiO4-MLschphasen stellen insbesondere wertvolle, hochtemperaturbeständige anorganische Pigmente dar, die infolge ihrer hohen Herstellungstemperatur zur Einfärbung von Email und keramischen Glasuren dienen können und hier die vorhandene Farbpalette erweitern oder zur Einsparung teurer farbgebender Elemente fUhren. Auch eine Anwendung in der Elektrotechnik, beispielsweise als Halbleiter oder Dielektrika oder eine Verwendung als Katalysatoren ist mdglich.The examples are compiled in Tables 3 - 7. According to the statement the number of the installation equation is followed by the test number, the theoretical formula of the Guest substance, indicating its amount by weight (g), weighed out to 5 g of the host became the maximum annealing temperature at which coming from low temperatures after several 1/2 hour glowing and renewed intensive pulverization of the mixture the host lattice could only be seen on the X-rays. In the last Column shows the color of the ZrTi04 mixed-phase pigments observed visually in each case The new ZrTi04 mixed phases represent a new inorganic compound group, which can be used in various fields. The ZrTiO4 MLsch phases are particularly valuable, high-temperature-resistant inorganic pigments, the coloring of enamel and ceramic due to their high production temperature Glazes can serve and here expand the existing color palette or to save more expensive coloring elements. Also an application in electrical engineering, for example as semiconductors or dielectrics or use as catalysts is possible.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19722223491 DE2223491A1 (en) | 1972-05-13 | 1972-05-13 | Mixed metallic phases - as high-temp pigments for enamels and glass semiconductors, dielectrics, catalysts |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19722223491 DE2223491A1 (en) | 1972-05-13 | 1972-05-13 | Mixed metallic phases - as high-temp pigments for enamels and glass semiconductors, dielectrics, catalysts |
Publications (1)
Publication Number | Publication Date |
---|---|
DE2223491A1 true DE2223491A1 (en) | 1973-12-20 |
Family
ID=5844852
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE19722223491 Pending DE2223491A1 (en) | 1972-05-13 | 1972-05-13 | Mixed metallic phases - as high-temp pigments for enamels and glass semiconductors, dielectrics, catalysts |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE2223491A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3315851A1 (en) * | 1983-04-30 | 1984-10-31 | Bayer Ag, 5090 Leverkusen | Process for the preparation of yellow bismuth vanadate pigment |
DE3315850A1 (en) * | 1983-04-30 | 1984-10-31 | Bayer Ag, 5090 Leverkusen | Process for the preparation of yellow bismuth vanadate pigment |
EP0717018A1 (en) * | 1994-11-22 | 1996-06-19 | Matsushita Electric Industrial Co., Ltd. | Dielectric ceramic compositions and dielectric resonators |
-
1972
- 1972-05-13 DE DE19722223491 patent/DE2223491A1/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3315851A1 (en) * | 1983-04-30 | 1984-10-31 | Bayer Ag, 5090 Leverkusen | Process for the preparation of yellow bismuth vanadate pigment |
DE3315850A1 (en) * | 1983-04-30 | 1984-10-31 | Bayer Ag, 5090 Leverkusen | Process for the preparation of yellow bismuth vanadate pigment |
EP0717018A1 (en) * | 1994-11-22 | 1996-06-19 | Matsushita Electric Industrial Co., Ltd. | Dielectric ceramic compositions and dielectric resonators |
US5700745A (en) * | 1994-11-22 | 1997-12-23 | Matsushita Electric Industrial Co. Ltd. | Dielectric ceramic compositions and dielectric resonators |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2229358A1 (en) | METHOD OF MANUFACTURING CATALYSTS | |
DE2829996A1 (en) | CERAMICS AND THE PROCESS FOR THEIR PRODUCTION | |
EP0249843B1 (en) | Manufacturing process for black iron oxide pigments having high tinting strength, obtained by the nitrobenzenereduction method | |
EP0482444B1 (en) | Process for preparing zinc oxide pigments doped with metal oxides | |
DE2951944A1 (en) | PRODUCT FROM CERAMIC MATERIAL | |
DE4234938A1 (en) | Process for the preparation of tantalum (V) nitride and its use | |
EP0431284A2 (en) | Process for the preparation of starting powders usable for the production of a varistor and starting powders obtained by this process | |
DE2223491A1 (en) | Mixed metallic phases - as high-temp pigments for enamels and glass semiconductors, dielectrics, catalysts | |
DE2135715A1 (en) | Method for controlling the surface size of ceramic powders | |
DE1966418C3 (en) | Process for the preparation of a fluidized bed catalyst for the production of maleic anhydride | |
DE1814113A1 (en) | Process for the production of lead oxides | |
DE4131548A1 (en) | BROWN SPINEL COLOR BODIES ON THE BASIS OF ZINC CHROMITE, PROCESS FOR THEIR PRODUCTION AND THEIR USE | |
DE2540015A1 (en) | POROESE SILICON NITRIDE BODY AND PROCESS FOR ITS MANUFACTURING | |
DE962251C (en) | Additive compounds of hydrogen peroxide and silicon dioxide and process for their preparation | |
DE19907618A1 (en) | Process for the production of yellow to red pigments based on nitrides and oxide nitrides | |
DE60318563T2 (en) | METHOD FOR PRODUCING A MOLYBDENESILICIDE-TYPE HEATING ELEMENT AND HEATING ELEMENT | |
DE2457357C3 (en) | Process for the production of single crystals from ß-lead dioxide | |
DE3835345A1 (en) | CATALYST FOR CONVERTING CARBON MONOXIDE | |
DE3442239A1 (en) | METHOD FOR PRODUCING A METAMORPHOUS METAL OXIDE | |
DE1086218B (en) | Process for the production of catalysts for the oxidation of sulfur dioxide to sulfur trioxide | |
DE1201228B (en) | Color bodies and process for their manufacture | |
EP0014408B1 (en) | Process for preparing "kosmochlor" pigments (sodium chromium double silicate)and use thereof | |
DE808709C (en) | Process for the production of ferrites | |
DE554607C (en) | Process for the production of fire-resistant and non-toxic yellow and similar colored bodies for ceramic and enamelling purposes | |
DE3429164A1 (en) | CATALYST CONTAINING MIXED VANADIUM, PHOSPHORUS AND ALUMINUM AND / OR BORINE OXIDS |