-
Die Erfindung betrifft einen endlagengedämpften Arbeitszylinder.
-
Aus dem Stand der Technik sind in verschiedenen Varianten Lösungen bekannt, welche die Bewegung eines Kolbens innerhalb eines hydraulischen Arbeitszylinders in einem definierten Bereich konstant oder progressiv verzögern. Die Verzögerung der Bewegung erfolgt in der Regel über ein Drosseln des Abstroms der Hydraulikflüssigkeit mittels eines Dämpfungsglieds. Dieses Dämpfungsglied reduziert den Querschnitt, über den die Hydraulikflüssigkeit abfließen kann.
-
So ist beispielsweise aus
EP 0 949 422 B1 eine Lösung bekannt, bei der ein Ringspalt eines Dämpfungsringes, welcher federnd an der Zylinderinnenwandung anliegt, als durchflussbegrenzende Engstelle dient. Für eine progressive Dämpfung ist der Dämpfungsbereich des Zylinders konisch ausgebildet. Somit wird mit fortschreitender Bewegung in dem Dämpfungsbereich der Dämpfungsring zusammengedrückt und der Ringspalt des Dämpfungsringes fortschreitend verkleinert. Es handelt sich hierbei um eine bewährte Lösung, die einen wichtigen Beitrag zum Stand der Technik leistet, auf der anderen Seite aber wegen der erforderlichen Präzision der Spaltmaßausbildung von Kolben und Zylinderinnenwandung in der Fertigung technologisch sehr anspruchsvoll ist.
-
Ein Problem nach dem Stand der Technik ergibt sich bei Knickbelastungen, da diese zu Verformungen in den Führungen des Führungsverschlussteils und in den Führungsbändern des Kolbens führen und ein relativ hohes Spaltmaß zwischen dem Kolben und der Zylinderinnenwandung bedingen um sicherzustellen, dass der Kolben nicht an der Zylinderinnenwandung schleift. Dies steht dann einer möglichst exakten Dämpfung entgegen.
-
Die Aufgabe der Erfindung ist es, eine Dämpfung für einen endlagengedämpften Arbeitszylinder aufzuzeigen, welche eine hohe Präzision und leichte Einstellbarkeit der Dämpfung bereitstellt, auch für hohe Biegebeanspruchungen der Kolbeneinheit sowie für unterschiedliche Zylinderbauarten geeignet ist, eine hohe Robustheit und Betriebssicherheit aufweist und zudem einfach und kostengünstig herstellbar ist.
-
Die Aufgabe wird durch die im Schutzanspruch 1 aufgeführten Merkmale gelöst. Bevorzugte Weiterbildungen ergeben sich aus den Unteransprüchen.
-
Erfindungsgemäß weist der endlagengedämpfte Arbeitszylinder einen Zylinder und eine Kolbeneinheit auf.
-
Der Zylinder weist gemäß der Erfindung ein Zylinderrohr, ein erstes und ein zweites Verschlussteil auf.
-
Erfindungsgemäß ist das erste Verschlussteil an dem ersten Zylinderrohrende und das zweite Verschlussteil an dem zweiten Zylinderrohrende des Zylinderrohrs angeordnet. Die Anordnung der beiden Verschlussteile ist dabei so ausgebildet, dass sie mit den jeweiligen Zylinderrohrenden druckdicht verbunden sind. Zum Verbinden werden die beiden Verschlussteile vorzugsweise jeweils entlang der umlaufenden gemeinsamen Kontaktfläche mit dem Zylinderrohr verschweißt. Es sind auch andere Verbindungen, wie beispielsweise ein Verschrauben, möglich.
-
Das Zylinderrohr und die Verschlussteile bilden erfindungsgemäß einen Zylinderinnenraum aus. Als Zylinderinnenraum ist der von den Verschlussteilen und dem Zylinderrohr gebildete Innenraum des Zylinders zu verstehen, in dem sich bei bestimmungsgemäßer Verwendung das Druckmittel befindet. Ferner ist in dem Zylinderinnenraum der Kolben angeordnet.
-
Erfindungsgemäß weist der Zylinder in mindestens einem Endbereich eine Dämpfungszone auf. Die Dämpfungszone ist der Bereich des Zylinderinnenraums, in welchen beim Einlaufen der Kolbeneinheit eine Dämpfung erfolgt.
-
Als Dämpfung wird eine die Bewegung der Kolbeneinheit verzögernde Kraftwirkung verstanden.
-
Die Dämpfungszone befindet sich an mindestens einem Endbereich des Zylinderrohrs und umfasst den Teil des Zylinderinnenraumes zwischen einem Druckmittelanschluss und einer axialen Begrenzung durch das an diesem Endbereich angeordnete Verschlussteil.
-
Der Zylinder weist erfindungsgemäß einen seitlich angeordneten Druckmittelanschluss auf, wobei der Druckmittelanschluss der Dämpfungszone zugeordnet und von der axialen Begrenzung des Zylinderinnenraums axial beabstandet ist.
Die Dämpfungszone erstreckt sich zwischen dem Druckmittelanschluss und der axialen Begrenzung. Die axiale Begrenzung blockiert physisch die weitere Bewegung der Kolbeneinheit und definiert so axial einseitig den maximalen Bewegungsweg der Kolbeneinheit.
Die axiale Begrenzung wird vorzugsweise durch das Verschlussteil gebildet. Hierzu besitzt das Verschlussteil eine entsprechende Anschlagfläche, gegen die die Kolbeneinheit sich anlegen kann, so dass sie ihre Endlage einnimmt.
Bei besonderen Ausbildungen kann die Endlage der Kolbeneinheit im Betrieb auch vor dem Erreichen der axialen Begrenzung liegen.
-
Die Kolbeneinheit weist erfindungsgemäß einen Kolbengrundkörper und einen Ringkörper auf. Vorzugsweise setzt sich die Kolbeneinheit aus einer Kolbenstange und einem Kolben zusammen, wobei dann der Kolben den Kolbengrundkörper und den Ringkörper aufweist. Der Kolbengrundkörper und der Ringkörper werden nachfolgend zusammengefasst auch als der Kolben bezeichnet.
Je nach Typ des Arbeitszylinders kann der Kolbengrundkörper unterschiedlich ausgeführt sein. So kann die Kolbenstange komplett durch oder nur teilweise in den Kolbengrundkörper geführt sein. Ferner kann die Kolbeneinheit monolithisch ausgebildet sein und dann lediglich einen Kolbenstangen- und einen Kolbenabschnitt aufweisen.
-
Erfindungsgemäß durchsetzt die Kolbeneinheit das erste Verschlussteil gleitend und bildet in dem Zylinderinnenraum mindestens einen Arbeitsraum aus.
Das erste Verschlussteil ist dabei ausgebildet, die Kolbeneinheit gleitend aufzunehmen und weist hierzu Dicht- und Führungselemente auf.
-
Der Kolbengrundkörper wird erfindungsgemäß mittels einer Führung in dem Zylinderinnenraum axial verschieblich geführt.
Der Kolbengrundkörper weist hierzu mindestens eine Aufnahme für eine Führung auf. Die Aufnahme ist vorzugsweise als eine Nut ausgebildet, in welche ein Führungsring als Führung eingesetzt ist.
-
Der Ringkörper weist gemäß der Erfindung an einer radialen Außenmantelfläche eine umlaufende Innenringnut auf. In dieser Innenringnut ist ein Kolbenring angeordnet.
Hierzu ist die umlaufende Innenringnut ausgebildet, den Kolbenring aufzunehmen und ihn in seiner axialen Position zu fixieren. Weiterhin ist die umlaufende Innenringnut ausgebildet eine radiale Bewegung des Kolbenringes zumindest soweit zuzulassen, dass sich dieser federnd verformen kann. Dies wird durch eine ausreichende Tiefe der umlaufenden Innenringnut erreicht.
-
Erfindungsgemäß liegt der Kolbenring federnd an der Zylinderinnenwandung an und weist einen Kolbenringspalt auf.
Der Kolbenring ist hierfür federnd, insbesondere radial elastisch ausgebildet und besitzt in einem Entspannnungszustand einen Außendurchmesser, welcher größer als der Innendurchmesser des Zylinderrohrs ist.
Wird die Kolbeneinheit in das Zylinderrohr eingesetzt, nimmt der Kolbenring einen Spannungszustand in der umlaufenden Innenringnut ein und liegt an der Zylinderinnenwandung an. In diesem Spannungszustand verformt sich der Kolbenring elastisch und verkleinert seinen Außendurchmesser sowie die Größe des Kolbenringspalts.
-
Der Ringkörper nimmt erfindungsgemäß in einer Ringöffnung einen Führungszapfen des Kolbengrundkörpers auf und bildet zwischen einer radialen Innenmantelfläche des Ringkörpers und dem Führungszapfen einen Ringspalt aus. Die Ringöffnung ist eine vorzugsweise hohlzylindrische Ausnehmung. Sie kann aber auch eine andere Geometrie aufweisen soweit diese ausgebildet ist, von dem Führungszapfen geführt zu werden. Der Ringkörper ist so ausgebildet, dass er mit seiner Ringöffnung auf den Führungszapfen des Kolbengrundkörpers angeordnet werden kann.
-
Der Führungszapfen ist ein Bestandteil des Kolbengrundkörpers. Bei dem Führungszapfen handelt es sich vorzugsweise um einen verjüngten Abschnitt des Kolbengrundkörpers. Es kann sich aber auch um ein verbundenes Bauteil handeln. Der Führungszapfen ist an dem Ende der Kolbeneinheit angeordnet, die der zu dämpfenden Endlage zugewandt ist. Der Führungszapfen ist vorzugsweise zylinderförmig ausgebildet. Der Außendurchmesser des Führungszapfens ist dann kleiner als der Innendurchmesser der Ringöffnung. Der Führungszapfen kann aber auch jede andere Geometrie aufweisen die geeignet ist, den Ringkörper zu führen.
-
Die erfindungsgemäße Lösung ist insbesondere dadurch gekennzeichnet, dass der Ringkörper gegenüber dem Kolbengrundkörper ein axiales Bewegungsspiel und ein radiales Bewegungsspiel aufweist. Aufgrund des radialen Bewegungsspiels wird der Ringkörper nachfolgend auch als schwimmender Ringkörper bezeichnet.
-
Der Ringkörper wird in seiner Position auf dem Führungszapfen in seiner axialen Beweglichkeit mittels eines Sperrkörpers begrenzt. Der Sperrkörper ist vorzugsweise als ein Seegerring ausgebildet, welcher in eine entsprechend an dem Führungszapfen angeordnete Ringnut eingesetzt wird. Es sind auch andere Sperrkörperformen möglich, welche an dem Kolbengrundkörper angeordnet werden können und den Bewegungsspielraum des Ringkörpers axial begrenzen.
-
Der Ringkörper weist gemäß der Erfindung eine kolbengrundkörperseitige axiale Ringfläche auf und der Kolbengrundkörper weist gegenüberliegend eine ringkörperseitige axiale Gegenringfläche auf.
-
Erfindungsgemäß ist die Kolbeneinheit ausgebildet, bei einer Einfahrbewegung in die Dämpfungszone den Druckmittelanschluss mit dem Kolbenring axial zu überfahren und in der Dämpfungszone ein Dämpfungsdruckmittelvolumen in einem Dämpfungszonenraum einzuschließen.
Überfährt der Kolbenring in der Einfahrbewegung den Druckmittelanschluss, erreicht er die Dämpfungszone. Zugleich wird ein Dämpfungdruckmittelvolumen eingeschlossen. Das Druckmittel kann nun aus dem Arbeitsraum nicht mehr direkt über den Druckmittelanschluss ausströmen.
-
Der Dämpfungszonenraum bezeichnet den Teil des Zylinderinnenraums, der nach einer Überfahrung des Druckmittelanschlusses durch den Kolbenring durch die Kolbeneinheit, das Verschlussteil und das Zylinderrohr begrenzt wird. Mit fortschreitender axialer Bewegung der Kolbeneinheit in Richtung der axialen Endlage verkleinert sich der Dämpfungszonenraum.
Als Dämpfungsdruckmittelvolumen wird der Teil des Druckmittels bezeichnet, der in dem Dämpfungszonenraum eingeschlossen wird und aus diesem abströmt.
-
Die Kolbeneinheit ist erfindungsgemäß ausgebildet, bei einer Einfahrbewegung innerhalb der Dämpfungszone einen ersten Betriebszustand und bei einer Ausfahrbewegung innerhalb der Dämpfungszone einen zweiten Betriebszustand aufzuweisen. Der erste Betriebszustand wird nachfolgend auch als Dämpfungsbetriebszustand bezeichnet. Der zweite Betriebszustand wird nachfolgend auch als Ausfahrtbetriebszustand bezeichnet.
-
Gemäß der Erfindung liegen im ersten Betriebszustand die kolbengrundkörperseitige axiale Ringfläche und die ringkörperseitige axiale Gegenringfläche aneinander an und bilden eine Dichtebene aus.
-
Bei der Einfahrbewegung wird das Dämpfungsdruckmittelvolumen von der Kolbeneinheit eingeschlossen, wodurch sich auch der Druck im Dämpfungszonenraum gegenüber dem Druck am Druckmittelanschluss erhöht.
-
Erfindungsgemäß liegt im Dämpfungsbetriebszustand somit ein Überdruck des Dämpfungsdruckmittelvolumens gegenüber dem Druck am Druckmittelanschluss vor. Ferner ist der Kolbenringspalt erfindungsgemäß für einen gedrosselten Abstrom des Dämpfungsdruckmittelvolumens ausgebildet.
Im Dämpfungsbetriebszustand übersteigt der Druck des eingeschlossenen Druckmittels, also des Dämpfungsdruckmittelvolumens, den im übrigen Arbeitsraum anliegenden Betriebsdruck, so dass der Ringkörper mit seiner kolbengrundkörperseitigen axialen Ringfläche an die ringkörperseitige axiale Gegenringfläche gepresst wird und dort eine Dichtebene ausbildet. Als Betriebsdruck wird der an dem Druckmittelanschluss anliegende Druck des Druckmittels verstanden, der dem Druck im übrigen Arbeitsraum entspricht.
In dem Dämpfungsbetriebszustand kann das Druckmittel lediglich durch den Kolbenringspalt abströmen. Durch das Verzögern des Abströmens des Dämpfungsdruckmittelvolumens wird eine Kraftwirkung erzeugt, welche der Einfahrbewegung der Kolbeneinheit entgegenwirkt.
-
In dem zweiten Betriebszustand bildet sich erfindungsgemäß zwischen der kolbengrundkörperseitigen axialen Ringfläche und der ringkörperseitigen axialen Gegenringfläche ein axialer Spalt aus. Dieser axiale Spalt zwischen der kolbengrundkörperseitigen axialen Ringfläche und der ringkörperseitigen axialen Gegenringfläche wird nachfolgend auch verkürzt als der axiale Spalt bezeichnet.
Dem liegt zu Grunde, dass in dem Ausfahrtbetriebszustand der Betriebsdruck höher ist als der Druck des Dämpfungsdruckmittelvolumens im Dämpfungszonenraum. Der Ringkörper bewegt sich von der ringkörperseitigen axialen Gegenringfläche des Kolbengrundkörpers weg und es bildet sich ein axialer Spalt zwischen dem Kolbengrundkörper und dem Ringkörper aus.
-
Erfindungsgemäß bilden der axiale Spalt und der Ringspalt einen Druckmitteleinströmkanal aus. Der Druckmitteleinströmkanal ist für einen Zustrom des Druckmittels in den Dämpfungszonenraum ausgebildet.
Zwar ist ein Zustrom des Druckmittels auch über den durch den Kolbenringspalt verbleibenden Querschnitt möglich. Insbesondere bei einer progressiven Dämpfung mit einem konischen Querschnitt in der Dämpfungszone kann der Querschnitt des Kolbenringspalts jedoch so gering sein, dass eine aktive Ausfahrt dann nur sehr verzögert möglich wäre und zudem hierfür der erhebliche Druckverlust über dem Kolbenringspalt überwunden werden müsste.
Der axiale Spalt zwischen der kolbengrundkörperseitigen axialen Ringfläche des Ringkörpers und der ringkörperseitigen axialen Gegenringfläche des Kolbengrundkörpers sowie der radiale Ringspalt zwischen radialer Innenmantelfläche des Ringkörpers und dem Führungszapfen bilden einen Druckmittelkanal mit einem konstruktiv gestaltbaren Querschnitt aus, welcher unabhängig von dem Querschnitt des Kolbenringspalts einen Zustrom des Druckmittels in den Dämpfungszonenraum ermöglicht.
Auf diese Weise wird die Kolbeneinheit aus ihrer Endlage und der Dämpfungszone ohne ungewünschte Dämpfung heraus bewegt. Die Kolbeneinheit führt somit die Ausfahrbewegung aus.
Zudem wurde überraschend gefunden, dass mittels des Ringkörpers und seines axialen Bewegungsspiels die Ausfahrbewegung praktisch verzögerungsfrei eingeleitet werden kann. Dem liegt zu Grunde, dass bei einer Druckbeaufschlagung an dem Druckmittelanschluss der Ringkörper aktiv von dem Kolbengrundkörper axial wegbewegt wird. Die dies bewirkende Kraft ergibt sich aus dem Flächeninhalt der kolbengrundkörperseitigen Ringfläche und der Druckdifferenz zwischen dem Druck am Druckmittelanschluss und dem Druck das Dämpfungsdruckmittels im Dämpfungszonenraum. Bei seiner axialen Bewegung ist der Ringkörper als ein Volumenkörper ausgebildet und somit ausgebildet ein Teilvolumen des Dämpfungsdruckmittels im Dämpfungszonenraum zu verdrängen, wodurch das Druckmittel auf den Kolbengrundkörper presst und die Kolbeneinheit unverzögert aus der Endlage verdrängt wird. Diese initiale Phase des Ausfahrtbetriebszustand wird zwar lediglich solange bereitgestellt, bis der Kolbenringkörper die Spielendlage seines axialen Bewegungsspiels an dem Sicherungsring erreicht hat. In diesem Zustand ist jedoch vorteilhaft der axiale Spalt vollständig geöffnet, so dass das Druckmittel über den Druckmitteleinströmkanal in den Dämpfungszonenraum einströmen und so eine ununterbrochene Ausfahrt ohne nachteilige Verzögerung fortgesetzt werden kann.
-
Der erfindungsgemäße endlagengedämpfte Arbeitszylinder weist insbesondere folgende Vorteile auf:
- Mit dem schwimmenden Ringkörper wurde eine überraschend einfache Lösung gefunden, mehrere technische Probleme zugleich zu lösen.
-
Zum ersten ist der Ringkörper durch seine schwimmende Lagerung von der exakten radialen Lage des Kolbengrundkörpers entkoppelt. Der Ringkörper folgt mittels des radial elastischen Kolbenrings in seiner radialen Position im Sinne einer Selbstjustierung immer exakt der Zylinderinnenwandung. Dies gilt insbesondere auch dann, wenn der Kolbengrundkörper insbesondere infolge von Verformungen der Kolbenstange bei Knickbelastungen in seiner radialen Position negativ beeinflusst wird.
-
Weiterhin besteht der Vorteil, dass der Ringkörper keine radialen Kräfte auf die Zylinderinnenwandung übertragen muss.
-
Damit kann ferner vorteilhaft ein besonders geringes Spaltmaß zwischen der Außenmantelfläche des Ringkörpers und der Zylinderinnenwandung bereitgestellt werden, ohne dass die Gefahr eines Schleifens an der Zylinderinnenwandung besteht, wie dies nach dem Stand der Technik nicht möglich wäre.
-
Vorteilhaft ist zudem, dass mittels des Ringkörpers und damit mit ein und demselben Bauteil eine besonders präzise Endlagendämpfung bereitgestellt werden kann. Die besondere Präzision beruht darauf, dass der Ringkörper in seiner radialen Position auch in der Dämpfungszone der jeweiligen Form der Zylinderinnenwandung folgt, die hier insbesondere konisch ausgebildet sein kann.
-
Zudem kann vorteilhaft mit besonders geringem konstruktiven Aufwand der schwimmende Ringkörper zugleich mit einem axialen Spiel versehen werden, und es können so mit einem Dämpfungsbetriebszustand und einem Ausfahrtbetriebszustand zwei unterschiedliche Betriebszustände bereitgestellt werden, die einerseits eine präzise Dämpfungswirkung bei einer Einfahrbewegung und andererseits eine Umgehung der Dämpfung bei einer aktiven Ausfahrbewegung ermöglichen.
-
Der Querschnitt des Ringspalt ist zudem vorteihaft unabhänig von der relativen radialen Lagebeziehung von Ringkörper und Führungszapfen innerhalb des radialen Bewegungsspiels stets konstant und kann in einfacher Weise durch die Differenz des Innendurchmessers des Ringkörpers und des Außendurchmessers des Führungszapfens festgelegt werden.
-
Vorteilhaft ist ferner, dass mit einfachen konstruktiven Mitteln wie der Wahl des axialen Abstand des Druckmittelanschlusses, der Form der Zylinderinnenwandung in der Dämpfungszone, der Breite des Kolbenringspalt oder der Breite des radialen Spalts und des Ringspalt die Dämpfungscharakteristik und die Ausfahrcharakteristik den jeweiligen Anforderungen angepasst werden kann. Dies kann zudem - soweit vorgesehen - für jede Endlage gesondert erfolgen.
-
Weiterhin ist es vorteilhaft, dass mittel des Ringkörpers und seines axialen Bewegungsspiel in seiner Ausbildung als Volumenkörper eine verzögerungsfreie Ausfahrbewegung bereitgestellt werden kann.
-
Weiterhin ist es vorteilhaft, dass die Endlagendämpfung sowohl in nur einer Endlage als auch in beiden Endlagen bereitgestellt werden kann.
-
Zudem ist die Lösung in unterschiedlichen Zylindertypen, wie insbesondere Differenzialarbeitszylinder, Gleichgangzylinder, Zugzylinder oder Plungerzylinder anwendbar.
-
Der elastische Kolbenring, welcher gegen die Zylinderinnenwandung gespannt ist kann vorteilhaft zudem fertigungsbedingte Abweichungen des Zylinderrohrs ausgleichen und somit eine hohe Präzision der Dämpfung ermöglichen.
-
Durch den konstanten Abstand des Ringkörpers zur Zylinderinnenwandung ergibt sich der Vorteil, dass magnetische Positionsgeber sehr zuverlässlich eingesetzt werden können und präzise axiale Positionsdaten der Kolbeneinheit bereitstellen.
-
Letztlich besteht ein besonderer Vorteil in der hohen Robustheit, der hohen Betriebssicherheit und der technologisch guten Herstellbarkeit.
-
Gemäß einer vorteilhaften Weiterbildung wird das axiale Bewegungsspiel des Ringkörpers axial entgegen der Kolbenmitte durch einen Sicherungsring begrenzt. Hierzu wird der Sicherungsring in eine Nut des Führungszapfens eingesetzt, wobei der Sicherungsring nicht vollständig von der Nut aufgenommen wird. Bei dem Sicherungsring kann es sich insbesondere um einen kostengünstig und als Normbauteil verfügbaren Seegerring handeln.
So wird das axiale Bewegungsspiel des Ringkörpers in der einen Richtung durch die axiale Gegenringfläche des Kolbengrundkörpers und in der anderen Richtung durch den Sicherungsring begrenzt.
Der Vorteil liegt darin, dass durch ein konstruktiv sehr einfaches und zugleich zuverlässiges Mittel mittels des axialen Abstands des Sicherungsringes zu dem Ringkörper das axiale Bewegungsspiel des Ringkörpers und somit die mögliche Breite des axialen Spalts zwischen der kolbengrundkörperseitigen axialen Ringfläche und der ringkörperseitigen axialen Gegenringfläche als ein Abschnitt des Druckmittelzustromkanals festlegbar ist. Somit kann auch die mögliche Ausfahrgeschwindigkeit in dem zweiten Betriebszustand gezielt beeinflusst werden.
-
Gemäß einer weiteren Weiterbildung weist der Führungszapfen eine Axialnut auf. Die Axialnut ist hierbei als Teil des Druckmitteleinströmkanals ausgebildet.
Die Axialnut ist mindestens eine Nut, welche axial entlang des Führungszapfens verläuft. Die Axialnut kann auch durch mehrere Nuten ausgebildet sein.
-
Durch die Axialnut kann mit einem einfachen Mittel der Querschnitt des Ringspalts erweitert und so in Verbindung mit dem axialen Spalt vorteilhaft zum gezielten Einstellen des Druckmitteleinstroms im zweiten Betriebszustand genutzt werden. Somit kann die erreichbare Geschwindigkeit der Ausfahrbewegung in der Dämpfungszone bestimmt werden. Mittels der Axialnut kann vorteilhaft der Querschnitt des Druckmitteleinströmkanals unabhängig von dem radialen Bewegungsspiel des Ringkörpers erweitert werden.
-
Der Zylinder weist gemäß einer vorteilhaften Weiterbildung einen Positionsgeber auf. Der Positionsgeber ist ausgebildet, eine Position des Ringkörpers aufzunehmen.
Der Positionsgeber detektiert die Position der Kolbeneinheit mittels eines Messverfahrens, welches eine kapazitative, magnetische, mechanische oder eine elektromagnetische Eigenschaftsänderung während der Kolbenbewegung registriert und auswertet. Aus dem Stand der Technik sind hierzu unterschiedliche Positionsgeber für die Ermittlung der Kolbenposition bekannt. Beispielsweise kann bei einer magnetischen Ausbildung eine Erfassung mittels eines Reed-Schalters erfolgen.
-
Diese Weiterbildung ist insbesondere vorteilhaft, weil eine besonders präzise Positionserfassung bereitgestellt werden kann. Dem liegt zu Grunde, dass der Ringkörper gegenüber dem Kolbengrundkörper mit einem radialen Spiel, also schwimmend gelagert ist. Die exakte radiale Position des Ringkörpers relativ zu dem Zylinderrohr bleibt von radialen Positionsungenauigkeiten des Kolbengrundkörpers, die insbesondere infolge von Knickbelastungen, dynamischen Belastungen oder ungleichmäßigem Verschleiß der Führung auftreten können, unberührt, da der Ringkörper über den Kolbenring direkt von der Zylinderrohrinnenwandung geführt wird. Somit liegt stets ein exaktes Spaltmaß zwischen dem Ringkörper und der Zylinderinnenwandung vor, wobei das Spaltmaß zudem gegenüber dem Stand der Technik wesentlich geringer ausgelegt werden kann. Der Positionsgeber ist gegenüber dem Zylinderrohr lagefest angeordnet. Es wurde gefunden, dass durch den zuverlässigen radialen Abstand zwischen dem Ringkörper und dem Postionsgeber die Genauigkeit der axialen Positionserfassung erheblich gesteigert werden kann.
-
Gemäß einer anderen Weiterbildung weist die Zylinderinnenwandung in der Dämpfungszone eine Konizität auf und in dem ersten Betriebszustand ist der Kolbenring ausgebildet, den Kolbenringspalt mit fortschreitender Einfahrbewegung zu verschmälern.
Weist die Zylinderinnenwandung in der Dämpfungszone eine Konizität auf, wird bei der Einfahrbewegung der Kolbenring immer stärker gespannt, da sich sein Außendurchmesser dem immer geringer werdenden Innendurchmesser der Zylinderinnenwandung anpassen muss. Damit verkleinert sich auch der Kolbenringspalt fortschreitend und der Querschnitt für das Abströmen des Dämpfungsdruckmittelvolumens verringert sich.
Somit nimmt die Dämpfungswirkung der Dämpfungszone bis zu einem Maximum zu. Dabei bestimmt die Stärke der Konizität die Zunahme der Dämpfungswirkung in Abhängigkeit von dem zurückgelegten Einfahrweg.
-
Die Zylinderinnenwandung kann in der Dämpfungzone entlang der Einfahrbewegung aber auch zunächst einen konischen und nachfolgend wieder einen zylindrischen Abschnitt aufweisen. Hierbei wird im konischen Bereich die Dämpfungswirkung bis zu einem Maximum gesteigert während im nachfolgenden zylindrischen Abschnitt der Dämpfungszone die erreichte maximale Dämpfungswirkung bis zum Erreichen der Endlage kontinuierlich fortwirkt. Somit kann der Verlauf der Dämpfungswirkung auch an spezifische Anforderungen angepasst werden.
-
Der Zylinder weist gemäß einer vorteilhaften Weiterbildung in einem dem Endbereich axial gegenüberliegenden weiteren Endbereich eine weitere Dämpfungszone auf.
-
Gemäß dieser vorteilhaften Weiterbildung weist der Zylinder einen weiteren seitlich angeordneten Druckmittelanschluss auf, wobei der weitere Druckmittelanschluss der weiteren Dämpfungszone zugeordnet und von einer der axialen Begrenzung gegenüberliegenden weiteren axialen Begrenzung des Zylinderinnenraums axial beabstandet ist.
-
Der weitere Druckmittelanschluss, die weitere Dämpfungszone und die weitere axiale Begrenzung entsprechen dem Grunde nach in Funktion und Ausbildung dem Druckmittelanschluss, der Dämpfungszone und der axialen Begrenzung.
Die weitere Dämpfungszone und der weitere Druckmittelanschluss sind in räumlicher Nähe des zweiten Verschlussteils am zweiten Zylinderrohrende angeordnet.
-
Gemäß der vorteilhaften Weiterbildung weist die Kolbeneinheit axial dem Ringkörper gegenüberliegend einen weiteren Ringkörper und der Kolbengrundkörper axial dem Führungszapfen gegenüberliegend einen weiteren Führungszapfen auf.
Der weitere Ringkörper ist analog zum Ringkörper ausgebildet und an der gegenüberliegenden Seite der Kolbeneinheit angeordnet. Der weitere Führungszapfen weist ebenfalls mindestens einen weiteren Sperrkörper auf, welcher den axialen Bewegungsspielraum des weiteren Ringkörpers beschränkt. Vorzugsweise ist auch dieser weitere Sperrkörper als ein weiterer Sicherungsring ausgebildet, welcher in eine weitere Nut im weiteren Führungszapfen eingesetzt wird.
Der weitere Ringkörper und der weitere Führungszapfen können sich trotz des dem Grunde nach gleichen Aufbaus in ihren Abmaßen von dem Ringkörper und dem Führungszapfen unterscheiden. So können an den beiden Endlagen der Kolbeneinheit beispielsweise verschiedene Dämpfungscharakteristika realisiert werden. Dies ist besonders bei einem stark asymmetrisch belasteten Arbeitszylinder sinnvoll.
-
Die Kolbeneinheit ist gemäß der vorteilhaften Weiterbildung ausgebildet, bei einer Einfahrbewegung innerhalb der weiteren Dämpfungszone einen dritten Betriebszustand und bei einer Ausfahrbewegung innerhalb der weiteren Dämpfungszone einen vierten Betriebszustand aufzuweisen. Der dritte Betriebszustand wird nachfolgend auch als weiterer Dämpfungsbetriebszustand bezeichnet. Der vierte Betriebszustand wird nachfolgend auch als weiterer Ausfahrbetriebszustand bezeichnet.
-
Der dritte Betriebszustand wird auch als weiterer Dämpfungsbetriebszustand bezeichnet und weist bezogen auf die weitere Dämpfungszone die Merkmale des ersten Betriebszustands in entsprechender Weise auf. Der vierte Betriebszustand wird auch als weiterer Ausfahrbetriebszustand bezeichnet und weist bezogen auf die weitere Dämpfungszone die Merkmale des zweiten Betriebszustands in entsprechender Weise auf.
-
Als Merkmale der Betriebszustände sind insbesondere die Druckverhältnisse, die Positionen des Ringkörpers und des weiteren Ringkörpers relativ zu dem Kolbengrundkörper sowie die Lagebeziehungen der Kolbeneinheit zu dem Druckmittelanschluss und dem weiteren Druckmittelanschluss zu verstehen.
Der besondere Vorteil der vorstehenden Weiterbildung liegt darin, dass auch für doppelt wirkende Arbeitszylinder eine in beiden Endlagen wirksame Endlagendämpfung bereitgestellt wird.
Zudem ist es vorteilhaft, dass die Dämpfungscharakteristik in jeder der beiden Endlagendämpfungen unabhängig von der der jeweils anderen Endlagendämpfung einstellbar ist.
-
Die Erfindung wird als Ausführungsbeispiel anhand von
- 1 Endlagengedämpfter Arbeitszylinder als Differenzialzylinder mit einseitiger Endlagendämpfung (Schnittansicht)
- 2 Endlagengedämpfter Arbeitszylinder als Differenzialzylinder mit einseitiger Endlagendämpfung (vergrößerter Ausschnitt in Schnittansicht)
- 3 Endlagengedämpfter Arbeitszylinder als Differenzialzylinder mit beidseitiger Endlagendämpfung (Schnittansicht)
- 4 Endlagengedämpfter Arbeitszylinder als Gleichgangzylinder mit beidseitiger Endlagendämpfung (Schnittansicht)
- 5 Endlagengedämpfter Arbeitszylinder als Differenzialzylinder mit beidseitiger Endlagendämpfung im ersten Betriebszustand (vergrößerter Ausschnitt in Schnittansicht)
- 6 Endlagengedämpfter Arbeitszylinder als Differenzialzylinder mit beidseitiger Endlagendämpfung im ersten Betriebszustand (vergrößerter Ausschnitt in Schnittansicht)
- 7 Kolbeneinheit (isometrische Ansicht)
näher erläutert.
-
1 zeigt eine Übersichtsansicht eines ersten Ausführungsbeispiels des endlagengedämpften Differenzialarbeitszylinders. In diesem Ausführungsbeispiel handelt es sich um einen einseitig endlagengedämpften Differenzialarbeitszylinder. Die Endlagendämpfung ist in diesem Ausführungsbeispiel an der dem zweiten Verschlussteil 5 zugeordneten Endlage angeordnet. Es handelt sich um eine Endlagendämpfung am Kolbenboden, welche die Einfahrbewegung dämpft.
-
Der endlagengedämpfte Arbeitszylinder weist einen Zylinder 1 und eine Kolbeneinheit 2 auf.
Der Zylinder 1 setzt sich aus dem Zylinderrohr 3, dem ersten Verschlussteil 4 und dem zweiten Verschlussteil 5 zusammen. Das Zylinderrohr 3 und die beiden Verschlussteile 4, 5 sind so miteinander verbunden, dass sie einen Zylinderinneraum 8 umschließen. Dabei ist das erste Verschlussteil 4 dem ersten Zylinderrohrende 6 und das zweite Verschlussteil 5 dem zweiten Zylinderrohrende 7 zugeordnet. In dieser Ausführung bildet die Innenseite des zweiten Verschlussteils 5 eine axiale Begrenzung 11 und die Innenseite des ersten Verschlussteil 5 eine weitere axiale Begrenzung 27, welche den axialen Bewegungsraum der im Zylinderinnenraum 8 angeordneten Kolbeneinheit 2 begrenzt. Die axialen Begrenzungen 11, 27 sind als Anschlagflächen für die sich im Betrieb axial bewegende Kolbeneinheit 2 ausgebildet.
-
An dem Zylinderrohr 3 ist an dem zweiten Zylinderrohrende 7 der Druckmittelanschluss 10 und dem ersten Zylinderrohrende 6 der weitere Druckmittelanschluss 26 angeordnet.
Die Kolbeneinheit 2 weist einen Kolbengrundkörper 12 und einen Ringkörper 13 auf. Die Kolbeneinheit 2 setzt sich in dem Ausführungsbeispiel aus einer Kolbenstange und einem Kolben zusammen, welche fest miteinander verbunden sind. Im Ausführungsbeispiel bilden der Kolbengrundkörper und der Ringkörper zusammen den Kolben aus.
In dieser Ausführung ist die Kolbenstange der Kolbeneinheit 2 durch das erste Verschlussteil 4 geführt und darin gleitend gelagert.
Der Ringkörper 13 ist auf den Führungszapfen 18 aufgeschoben, welcher als eine Verjüngung am Kolbengrundkörper 12 ausgeführt ist.
Der Kolbengrundkörper 12 wird mittels einer Führung 14 im Zylinderrohr 3 geführt.
-
2 zeigt eine Vergrößerung von 1 im Bereich des zweiten Verschlussteils 5. Weiterhin befindet sich der Kolbengrundkörper 12 in einer Endlagenposition, wodurch der Kolbengrundkörper 12 mit seinem Führungszapfen 18 an der axialen Begrenzung 11 anliegt.
-
In dieser Figur ist die Anordnung und die Bauform des Ringkörpers 13 detaillierter dargestellt. Der Ringkörper 13 ist in dem Ausführungsbeispiel als ein Metallring ausgebildet, welcher an seiner Außenmantelfläche 13c eine Innenringnut 15 besitzt, in welcher der Kolbenring 16 eingesetzt ist. Die Innenringnut 15 ist so ausgebildet, dass der Kolbenring 16 in radialer Richtung einen größeren Bewegungsspielraum besitzt, so dass er sich radial elastisch verformen kann. Der elastische Kolbenring weist einen Kolbenringspalt 16a auf (siehe hierzu insbesondere 7) und spannt sich gegen die Zylinderinnenwandung 17.
Der Ringkörper 13 ist auf den Führungszapfen 18 aufgeschoben und liegt mit einer kolbengrundkörperseitigen axialen Ringfläche 13d an der ringkörperseitigen Gegenringfläche 12a des Kolbengrungkörpers 12 an. Axial gegenüberliegend wird der axiale Bewegungsspielraum des Ringkörpers 13 von einem Sicherungsring 22 begrenzt.
-
Weiterhin ist die Ringöffnung 13a des Ringkörpers so ausgebildet, dass diese den Durchmesser das Führungszapfens 18 übersteigt, so dass der Ringkörper insoweit einen radialen Bewegungsspielraum gegenüber dem Führungzapfen 18 besitzt.
-
Die Dämpfungszone 9 stellt einen axialen Abschnitt dar und erstreckt sich vom Druckmittelanschluss 10 bis zur Endlage des Kolbenrings 16 vor dem zweiten Verschlussteil 5. In Dämpfungszone 9 herrscht bei einer Einfahrbewegung der Kolbeneinheit 2 eine Dämpfungswirkung, welche der Einfahrbewegung der Kolbeneinheit 2 entgegengerichtet ist und diese abbremst. Dies wird ferner in 5 detailliert beschrieben.
-
In 3 ist ein zweites Ausführungsbeispiel dargestellt. Es handelt sich hierbei um einen Differenzialarbeitszylinder mit einer Dämpfung in beiden Endlagen. Hierzu ist ein weiterer Ringkörper 28 vorhanden. Der weitere Ringkörper 28 ist baugleich zum Ringkörper 13 und ist auf einen weiteren Führungszapfen 29 aufgeschoben und dort von einem weiteren Sicherungsring 30 fixiert. Beide Ringkörper 13, 28 und beide Führungszapfen 18, 29 liegen sich am Kolbengrundkörper 12 axial gegenüber.
-
Durch den weiteren Ringkörper wird in entsprechender Weise wie in der Dämpfungszone 9 zusätzlich eine Dämpfwirkung in der weiteren Dämpfungszone 25 bewirkt. Die weitere Dämpfungszone 25 erstreckt sich zwischen dem weiteren Druckmittelanschluss 26 und der Endlage des weiteren Kolbenrings 31 vor der weiteren axialen Begrenzung 27 an dem ersten Verschlussteil 4.
Im Übrigen sind die Diffenzialarbeitszylinder aus 1 und 3 in ihrem Grundaufbau baugleich.
-
In 4 ist ein Gleichlaufarbeitszylinder dargestellt, welcher ebenfalls beidseitig endlagengedämpft ist. Der Unterschied zu den Differenzialarbeitskolben aus 3 liegt darin, dass der Kolbenstangenabschnitt des Kolbengrundkörpers 12 durch beide Verschlussteile 4, 5 geführt und gleitend gelagert ist. Daher ist auch das zweite Verschlussteil 5 in diesem Ausführungsbeispiels als Führungsverschlussteil ausgebildet. Der Kolbengrundkörper 12 ist ähnlich dem aus 3 ausgebildet, er unterscheidet sich aber darin, dass die Kolbenstange durch ihn hindurch reicht. Beide Abschnitte der Kolbeneinheit 2 sind auch hier fest miteinander verbunden.
-
In 5 ist der erste Betriebszustand, bei dem es sich um den Dämpfungsbetriebszustand handelt, und in 6 der zweite Betriebszustand, bei dem es sich um den Ausfahrtbetriebszustand handelt, während des Betriebs des endlagengedämpften Arbeitszylinders dargstellt. Diese Figuren dienen der Darstellung der Funktionsweise der Dämpfung.
-
In 5 befindet sich die Kolbeneinheit in der Einfahrbewegung und der Kolbenring 16 in der Innenringnut 15 des Ringkörpers 13 hat den Druckmittelanschluss 10 gerade überfahren und schließt im Dämpfungszonenraum 20 ein Dämpfungsdruckmittelvolumen ein. Der Druck im Dämpfungsdruckmittelvolumen ist größer als der Druck am Druckmittelanschluss 10. Somit wird der Ringkörper 13 mit seiner kolbengrundkörperseitigen axiale Ringfläche 13d an die ringkörperseitige axiale Gegenringfläche 12a gepresst, wodurch sich dort eine ringförmige Dichtebene ausbildet.
Das Druckmittel aus dem Dämpfungsdruckmittelvolumen kann nun nur noch über den Kolbenringspalt 16a im Kolbenring 16 zum Druckmittelanschluss 10 zurückströmen, wodurch der Einfahrbewegung der Kolbeneinheit 2 eine dämpfende Kraftwirkung entgegengesetzt wird. Die Einfahrbewegung wird solange verzögert, bis die Kolbeneinheit 2 die axiale Begrenzung 11 erreicht.
-
In 6 wird der zweite Betriebszustand dargestellt.
In diesem zweiten Betriebszustand vollzieht die Kolbeneinheit 2 eine Ausfahrbewegung. Diese wird durch das vom Druckmittelanschluss 10 in den Dämpfungszonenraum 20 einströmende Druckmittel (sobald der Druck am Druckmittelanschluss 10 größer als der im Dämpfungsdruckmittelvolumen ist) hervorgerufen.
Sobald der Druck am Druckmittelanschluss 10 größer ist als der im Dämpfungsdruckmittelvolumen wird der Ringkörper 13 axial verschoben und an den Sicherungsring 22 gedrückt. Damit wird ein axialer Spalt 21 zwischen ringkörperseitiger axialer Gegenringfläche 12a und kolbengrundkörperseitiger axialen Ringfläche 13d geöffnet.
Der Ringkörper 13 besitzt zudem einen radialen Bewegungsspielraum. Dieser wird durch einen Ringspalt 19 zwischen der Innenmantelfläche 13b und dem Führungszapfen 18 bereitgestellt. Der axiale Spalt 21 und der Ringspalt 19 bilden einen durchgängigen Druckmitteleinströmkanal für das in den Dämpfungszonenraum 20 einströmende Druckmittel aus. Eine axiale Nut 24 im Führungszapfen vergrößert in diesem Ausführungsbeispiel zusätzlich den Strömungsquerschnitt des Druckmitteleinströmkanals.
So kann das Druckmittel mit einem geringen Druckverlust in den Dämpfungszonenraum 20 strömen und die Ausfahrbewegung wird kaum verzögert.
-
Die in 5 und 6 dargestellte Funktionsweise entspricht im Falle einer Ausführung mit beidseitiger Endlagendämpfung dem Zusammenspiel von drittem und viertem Betriebszustand in der weiteren Dämpfungszone 25 mittels des weiteren Ringkörpers 28.
Dabei wird der dritte Betriebszustand während der Einfahrbewegung in die weitere Dämpfungszone 25 und der vierte Betriebszustand während der Ausfahrbewegung aus der weiteren Dämpfungszone 25 eingenommen. In der weiteren Endlage ist der dritte Betriebszustand der Dämpfungsbetriebszustand und der vierte Betriebszustand der Ausfahrtbetriebszustand.
Zudem ist in 5 und 6 ein an dem Zylinderrohr angeordneter Positionsgeber 23 dargestellt.
-
7 zeigt die Kolbeneinheit 2 eines Ausführungsbeispiels eines Differenzialarbeitszylinders mit beidseitiger Endlagendämpfung in einer Schrägansicht.
Es sind der Ringkörper 13, der Kolbenring 16 mit seinem Kolbenringspalt 16a, der Sicherungsring 22, die Führung 14 und die axiale Nut 24 gezeigt. Ferner ist axial an dem Kolbengrundkörper 12 gegenüberliegend der weitere Ringkörper 28 und der dort angeordnete weitere Kolbenring 31 mit seinem weiteren Kolbenringspalt 31a dargestellt. Die Kolbenringe 16, 31 und der Sicherheitsring 22 werden jeweils durch einen elastischen Metallring gebildet. Der weitere Sicherungsring und der weitere Führungszapfen sind verdeckt und daher in 7 ohne Bezugszeichen.
-
Der Ringkörper 13 nimmt den Kolbenring 16 in der Innenringnut 15 auf und ist mit dem Sicherheitsring 22 auf dem Führungszapfen 18 fixiert. Entsprechendes gilt für den weiteren Ringkörper 28 und den weiteren Kolbenring 31 sowie den weiteren Sicherungsring und den weiteren Führungszapfen.
Die Führung 14 ist in einer Nut des Kolbengrundkörpers 12 angeordnet.
-
Bezugszeichenliste
-
- 1
- Zylinder
- 2
- Kolbeneinheit
- 3
- Zylinderrohr
- 4
- erstes Verschlussteil
- 5
- zweites Verschlussteil
- 6
- erstes Zylinderrohrende
- 7
- zweites Zylinderrohrende
- 8
- Zylinderinnenraum
- 9
- Dämpfungszone
- 10
- Druckmittelanschluss
- 11
- axiale Begrenzung
- 12
- Kolbengrundkörper
- 12a
- ringkörperseitige axiale Gegenringfläche
- 13
- Ringkörper
- 13a
- Ringöffnung
- 13b
- Innenmantelfläche
- 13c
- Außenmantelfläche
- 13d
- kolbengrundkörperseitige axiale Ringfläche
- 14
- Führung
- 15
- Innenringnut
- 16
- Kolbenring
- 16a
- Kolbenringspalt
- 17
- Zylinderinnenwandung
- 18
- Führungszapfen
- 19
- Ringspalt
- 20
- Dämpfungszonenraum
- 21
- axiale Spalt
- 22
- Sicherungsring
- 23
- Positionsgeber
- 24
- axiale Nut
- 25
- weitere Dämpfungszone
- 26
- weiterer Druckmittelanschluss
- 27
- weitere axiale Begrenzung
- 28
- weiterer Ringkörper
- 29
- weiterer Führungszapfen
- 30
- weiterer Sicherungsring
- 31
- weiterer Kolbenring
- 31a
- weiterer Kolbenringspalt
-
ZITATE ENTHALTEN IN DER BESCHREIBUNG
-
Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
-
Zitierte Patentliteratur
-