DE202004021250U1 - Turbinenrad zum Antrieb schnell rotierender Werkzeuge - Google Patents

Turbinenrad zum Antrieb schnell rotierender Werkzeuge Download PDF

Info

Publication number
DE202004021250U1
DE202004021250U1 DE202004021250U DE202004021250U DE202004021250U1 DE 202004021250 U1 DE202004021250 U1 DE 202004021250U1 DE 202004021250 U DE202004021250 U DE 202004021250U DE 202004021250 U DE202004021250 U DE 202004021250U DE 202004021250 U1 DE202004021250 U1 DE 202004021250U1
Authority
DE
Germany
Prior art keywords
turbine
curvature
radius
turbine wheel
wheel according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
DE202004021250U
Other languages
English (en)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moog GAT GmbH
Original Assignee
GAT Gesellschaft fuer Antriebstechnik mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10303617A external-priority patent/DE10303617A1/de
Application filed by GAT Gesellschaft fuer Antriebstechnik mbH filed Critical GAT Gesellschaft fuer Antriebstechnik mbH
Publication of DE202004021250U1 publication Critical patent/DE202004021250U1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/02Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines
    • F01D1/06Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines traversed by the working-fluid substantially radially
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/06Adaptations for driving, or combinations with, hand-held tools or the like control thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B3/00Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements
    • B05B3/02Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements
    • B05B3/10Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements discharging over substantially the whole periphery of the rotating member, i.e. the spraying being effected by centrifugal forces
    • B05B3/1035Driving means; Parts thereof, e.g. turbine, shaft, bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/301Cross-sectional characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/30Arrangement of components
    • F05D2250/31Arrangement of components according to the direction of their main axis or their axis of rotation
    • F05D2250/314Arrangement of components according to the direction of their main axis or their axis of rotation the axes being inclined in relation to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape
    • F05D2250/71Shape curved
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape
    • F05D2250/74Shape given by a set or table of xyz-coordinates

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Turbinenrad zum Antrieb schnell rotierender Werkzeuge, insbesondere für die rotierenden Teller und/oder Glocken von Farbsprüheinrichtungen, mit einer um eine Achse (5) drehbar gelagerten kreisscheiben- oder ringförmigen Trägerplatte (1) und darauf kreisförmig angeordneten Turbinenschaufeln (2), die achsparallele Vorderflächen (3) und Rückflächen (4) aufweisen und die in radialer Richtung, das heißt in Richtung senkrecht zu der Achse (5), gekrümmt verlaufen, wobei die Vorderfläche (3) einer Turbinenschaufel (2) mindestens abschnittsweise einen kleineren Krümmungsradius (R3, R4) hat als die Rückfläche (4) dadurch gekennzeichnet, daß die radial äußeren Abschnitte (3a, 4a) der Vorderfläche (3) und auch der Rückfläche (4) der Turbinenschaufel (2) einen kleineren Krümmungsradius (R4, R2) haben als die radial weiter innen liegenden Abschnitte (3b, 4b) und daß die axiale Länge der Turbinenschaufeln (2) mindestens 60%, und maximal 100% der radialen Erstreckung der Turbinenschaufeln (2) beträgt.

Description

  • Die vorliegende Erfindung betrifft ein Turbinenrad zum Antrieb schnell rotierender Werkzeuge, insbesondere für die rotierenden Teller und/oder Glocken von Farbsprüheinrichtungen, mit einer um eine Achse drehbar gelagerten Kreisscheiben- oder ringförmigen Trägerplatte und darauf in Form eines Kranzes angeordneten Turbinenschaufeln, die achsparallele Vorderflächen und Rückflächen aufweisen und die in radialer Richtung, das heißt senkrecht zur Achse des Turbinenrades, gekrümmt verlaufen, wobei die Vorderflächen mindestens abschnittsweise einen kleineren Krümmungsradius haben als die Rückflächen.
  • Unter Vorderflächen werden dabei die in Rotationsrichtung des Turbinenrades vorderen Flächen der Turbinenschaufeln verstanden und die Rückflächen sind dementsprechend die Flächen der Schaufeln, die in Rotationsrichtung des Turbinenrades hinten liegen.
  • Entsprechende Turbinenräder sind bereits für Lackierungsanlagen bekannt, bei welchen Farbsprühglocken, die mit einem Farblack beaufschlagt werden, durch derartige Turbinen in schnelle Rotation versetzt werden, so daß die auf die Glocke aufgebrachte Farbe bzw. der betreffende Lack aufgrund der schnelleren Rotation der Glocke in kleinste Tröpfchen zerstäubt wird und sich auf einer zu lackierenden bzw. mit Farbe zu versehenden Oberfläche niederschlägt. Die für eine möglichst feine Zerstäubung erforderlichen Rotationsgeschwindigkeiten der rotierenden Farbglocken betragen bis zu 70.000 U.p.M. und die entsprechenden Turbinen sind aus diesem Grund luftgelagert. Derartige Turbinen-Lacksprühanlagen finden vor allem Verwenden bei der Lackierung von Fahrzeugkarosserien.
  • Dabei hängt die erreichbare Turbinendrehzahl selbstverständlich auch von der Farb- bzw. Lackmenge ab, mit welcher die Sprühglocke oder ein entsprechender Sprühteller beaufschlagt werden. Der auf die Sprühglocke nachgeführte Lack muß jeweils durch die Sprühglocke beschleunigt werden und hat deshalb selbstverständlich einen bremsenden Effekt. Um daher die Drehzahl der Turbine nicht übermäßig zu reduzieren, was wiederum einen nachteiligen Effekt auf die Gleichmäßigkeit und Feinheit der Tröpfchenbildung hätte, ist demzufolge die auf die Glocke pro Zeiteinheit aufzubringende Farb- bzw. Lackmenge begrenzt, und zwar herkömmlich auf etwa 400–450 ml pro Minute.
  • Der Erfinder der vorliegenden Anmeldung hat sich daher die Aufgabe gestellt, eine Turbine bzw. ein Turbinenrad zu schaffen, welches ohne größere Neukonstruktionen und mit höchstens geringfügigen Änderungen in die herkömmlichen Turbinengehäuse passt, bei den erforderlichen hohen Drehzahlen ein noch höheres Drehmoment hat als die bekannten Turbinenräder, so daß ohne nachteiligen bremsenden Effekt eine größere Lackmenge auf die Sprühglocke bzw. einen Sprühteller aufgebracht werden kann, so daß gegebene, zu lackierende Flächen in noch kürzerer Zeit mit einer gleichmäßigen Lackschicht versehen werden können.
  • Diese Aufgabe wird dadurch gelöst, daß die radial äußeren Abschnitte sowohl an der Vorderfläche als auch an der Rückfläche der Turbinenschaufeln eine stärkere Krümmung bzw. einen kleineren Krümmungsradius aufweisen als die radial weiter innen liegenden Abschnitte der Vorder- und der Rückfläche. Gleichzeitig wird jedoch die Achsparallelität der Vorderflächen und der Rückflächen der Turbinenschaufeln beibehalten.
  • Mit anderen Worten, die einzelnen Turbinenschaufeln haben über ihre axiale Länge hinweg ein konstantes Profil, was es insbesondere möglich macht, entsprechende Profile in großen Längen herzustellen, die einem Vielfachen der axialen Länge einer einzelnen Turbinenschaufel entsprechen und die einzelnen Turbinenschaufeln jeweils durch Abschneiden bzw. Abtrennen eines entsprechenden Abschnittes von diesem Profil herzustellen. Dies ermöglicht eine außerordentlich rationelle Fertigung. Bei einer solchen Fertigung stellt es auch kein nennenswertes Problem dar, wenn die radial äußeren Abschnitte der Turbinenschaufeln, das heißt die Abschnitte, die bei dem fertig hergestellten Turbinenrad vom Zentrum des Turbinenrades entfernt liegen, jeweils einen kleineren Krümmungsra dius und damit eine stärkere Krümmung aufweisen als die radial inneren Abschnitte der Turbinenschaufeln, und zwar sowohl auf der Vorderseite wie auf der Rückseite der Turbinenschaufeln.
  • Es hat sich herausgestellt, daß ein solches Profil der Turbinenschaufeln offenbar weniger störende Wirbel erzeugt und zu einem runderen und gleichmäßigeren Lauf eines Turbinenrades mit einem stabilen Drehmoment führt.
  • Gleichzeitig ermöglicht es die Turbinenschaufelgestaltung offenbar, auch die axiale Länge der Schaufeln zu vergrößern. Bei herkömmlichen Turbinenschaufeln dieser Art, die für luftgelagerte Turbinen hoher Drehzahl (70.000 U.p.M.) hergestellt und verwendet werden, liegt die axiale Länge der Turbinenschaufeln nur bei etwa 50% der radialen Erstreckung der Turbinenschaufeln, das heißt der Differenz zwischen Außenradius und Innenradius des Schaufelkranzes.
  • Erfindungsgemäß ist dagegen vorgesehen, daß die axiale Länge einer Turbinenschaufel mindestens 60% und vorzugsweise mehr als 65% der radialen Erstreckung der entsprechenden Turbinenschaufel beträgt. Als zweckmäßig und gut beherrschbar hat sich eine axiale Länge der Schaufeln bewährt, die bei etwa 70% der radialen Erstreckung der Schaufel liegt. Nach Möglichkeit sollte ein Wert von 80%, höchstens aber etwa 100%, für die axiale Länge der Schaufeln im Vergleich zu ihrer radialen Erstreckung nicht überschritten werden.
  • Das Verhältnis der radialen Erstreckung der Schaufeln bzw. des Schaufelkranzes, das heißt konkret die Differenz zwischen Außenradius und Innenradius des Schaufelkranzes, im Verhältnis zu dem Radius des Turbinenrades (der mit dem Außenradius des Schaufelkranzes gleichzusetzen ist) beträgt etwa 20%.
  • Grundsätzlich gilt, daß bei den Turbinenschaufeln die Vorderfläche mindestens entlang eines Abschnittes derselben einen kleineren Krümmungsradius hat als der entsprechende, gegenüberliegende Abschnitt der Rückfläche. Gleichzeitig hat aber auch der radial äußere Abschnitt jeder Turbinenschaufel sowohl auf der Außenfläche wie auf der Innenfläche einen kleineren Krümmungsradius als der entsprechende innere Abschnitt dieser Flächen.
  • Auch wenn beispielsweise der äußere Abschnitt auf der Vorderfläche einen kleineren Krümmungsradius hat als der äußere Abschnitt der Fläche, so hat aber dennoch der radial innere Abschnitt der Vorderfläche einen größeren Krümmungsradius als der radial äußere Abschnitt der Rückfläche.
  • In der bevorzugten Ausführungsform der Erfindung liegen die Krümmungsradien der inneren Abschnitte der Vorderfläche und der Rückfläche relativ dicht beieinander, das heißt der Krümmungsradius der Rückfläche ist in dem radial inneren Abschnitt vorzugsweise zwischen 0 und 10% größer als der Krümmungsradius des inneren Abschnittes der Vorderfläche, eventuell kann jedoch der Krümmungsradius des inneren Abschnittes der Rückfläche auch um bis zu 5% kleiner sein als der Krümmungsradius des radial inneren Abschnittes der Vorderfläche oder er kann umgekehrt auch um bis zu 15% größer sein.
  • Die radial äußeren Abschnitte der Vorderfläche und der Rückfläche unterscheiden sich im allgemeinen etwas deutlicher, und zwar typischerweise um einen Wert zwischen 10% und 50%, bezogen auf den kleineren Radius des äußeren Abschnittes der Vorderfläche, das heißt der Krümmungsradius des inneren Abschnittes der Rückfläche ist um 10 bis 50% größer. Als zweckmäßig hat sich für diesen Krümmungsradius der Rückflächen ein etwa 30% größerer Krümmungsradius gegenüber dem Krümmungsradius des äußeren Abschnittes der Rückfläche erwiesen.
  • Die Krümmungsmittelpunkte des inneren und äußeren Abschnittes der Vorderfläche liegen, bezogen auf die Turbinenradachse, jeweils in einem etwas größeren Abstand zur Turbinenradachse als die Krümmungsmittelpunkte der jeweils entsprechenden Abschnitte der Rücklächen, wobei außerdem die Krümmungsmittelpunkte der radial inneren Abschnitte von der Turbinenachse beide weiter entfernt liegen als die beiden Krümmungsmittelpunkte der jeweiligen radial äußeren Abschnitte der Vorder- und der Rückfläche.
  • Die jeweils unterschiedlich gekrümmten Abschnitte der Vorderfläche und auch der Rückfläche gehen vorzugsweise glatt, das heißt ohne Sprung oder Knick (d. h. mit einer stetigen ersten Ableitung) ineinander über. Dies erreicht man am einfachsten dadurch, daß der Übergangspunkt genau an die Position gelegt wird, die von der Verbindungslinie durch die Krümmungsmittelpunkte des jeweiligen äußeren und inneren Abschnittes geschnitten wird.
  • Zweckmäßigerweise ist die Turbinenschaufel so gestaltet, daß, bezogen auf die radiale Erstreckung der Turbinenschaufel, der radial innere Abschnitt sowohl der Vorderfläche als auch der Rückfläche jeweils mindestens 30% dieser axialen Erstreckung erfaßt und daß umgekehrt auch der radial äußere Abschnitt der Vorderfläche und der Rückfläche, der mit jeweils gegenüber dem inneren Abschnitt kleinerem Krümmungsradius definiert ist, jeweils mindestens 30% der axialen Erstreckung der Schaufel umfaßt. In der Praxis stellt sich heraus, daß es zweckmäßig ist, wenn jeder der radial inneren bzw. äußeren Abschnitte sowohl der Vorderfläche als auch der Rückfläche jeweils in etwa 50% der radialen Erstreckung der Turbinenschaufel umfaßt. Dabei sind allerdings die Winkelbereiche, über welche die jeweiligen inneren und äußeren Abschnitte sich erstrecken, deutlich voneinander verschieden, was unter anderem auch mit den unterschiedlichen Krümmungsradien zusammenhängt, da der Winkelbereich, über welchen ein gegebener, gekrümmter Abschnitt sich erstreckt, jeweils auf seinen Krümmungsmittelpunkt bezogen wird. Als vorteilhaft hat es sich dabei erwiesen, wenn der Winkelbereich, über welchen der radial innere Abschnitt der Rückfläche sich erstreckt, zwischen 28 und 40°, vorzugsweise zwischen 30 und 35° und insbesondere bei etwa 33° liegt, und der Krümmungswinkel des radial äußeren Abschnittes der Rückfläche im Bereich zwischen 60 und 90°, vorzugsweise bei 70° ± 5°, liegt. Auf der Vorderfläche sind die entsprechenden Winkelbereiche etwas größer, da die Krümmungsradien dort kleiner sind und wegen der stärkeren Krümmung gleichzeitig der Weg von der Innenkante zur Außenkante auf der Vorderfläche der Turbinenschaufeln länger ist als auf der Rückseite. Demzufolge beträgt der Winkel, über welchen der radial innere Abschnitt der Vorderfläche sich erstreckt, zwischen 30 und 45°, vorzugsweise etwa 40° ± 2°, und der Winkelbereich, über welchen sich der radial äußere Abschnitt der Vorderfläche erstreckt, beträgt zwischen 100 und 130°, vorzugsweise 115° ± 5°. Dies ist jeweils auf den Krümmungsmittelpunkt des betreffenden gekrümmten Abschnittes zu beziehen.
  • Weiterhin hat es sich als besonders zweckmäßig und für die Turbinenleistung günstig erwiesen, wenn die Turbinenschaufeln aus einer exakt radialen Ausrichtung ihrer Verbindungslinie von Innen- und Außenkante nach vorn verkippt sind, und zwar in der Weise, daß die radial äußere Kante der Turbinenschaufel der inneren Kante in Rotationsrichtung etwas voranläuft. Als zweckmäßig hat es sich dabei erwiesen, wenn der Winkel zwischen der Verbindungslinie von äußerer und innerer Kante einer Turbinenschaufel um einen Winkel zwischen 5 und 12°, vorzugsweise um etwa 8° bis –1° gegenüber dem auf die Innenkante der Turbinenschaufel weisenden Radiusvektor des Turbinenrades geneigt ist.
  • Bei einer bevorzugten Ausführungsform der Erfindung beträgt außerdem die Teilung, das heißt der Abstand zwischen aufeinanderfolgenden Turbinenschaufeln in Umfangsrichtung, 10° bis 15°, insbesondere etwa 12°, wobei dieser Abstand jeweils zwischen entsprechenden Punkten der benachbarten Turbinenschaufeln zu messen ist. Dies bedeutet, daß die Gesamtzahl der in Form eines Kranzes am Außenumfang des Turbinenrades angeordneten Turbinenschaufel zwischen 24 und 36 bzw. bei 30 liegt.
  • Die Innenkante und die Außenkante einer Turbinenschaufel sind jeweils durch einen kleinen Radius abgerundet, wobei die Innenkante etwas scharfkantiger ist als die Außenkante und z.B. einen Krümmungsradius von weniger als 0,1, vorzugsweise von weniger als 0,05 mm, z. B. 0,025 mm, aufweist, wohingegen die äußere Kante einen Krümmungsradius von weniger als 0,3, vorzugsweise von weniger als 0,2 mm, jedoch größer als 0,1 mm, hat.
  • Weitere Vorteile, Merkmale und Anwendungsmöglichkeiten der vorliegenden Erfindung werden deutlich anhand der folgenden Beschreibung einer bevorzugten Ausführungsform und der dazugehörigen Figuren. Es zeigen:
  • 1 eine Draufsicht auf ein Turbinenrad entlang der Achse mit einem entlang des Außenumfanges des Rades angeordneten Kranz von Turbinenschaufeln,
  • 2 eine Schnittansicht des in 1 dargestellten Turbinenrades, und zwar mit einem Schnitt entlang der Linie II-II in 1,
  • 3 einen Ausschnitt aus 1 mit einer einzelnen Turbinenschaufel.
  • Man erkennt in 1 ein Turbinenrad mit einer kreisscheibenförmigen Trägerplatte 1, welche einen Außendurchmesser D aufweist. Am äußeren Rand der Trägerplatte 1 befindet sich ein Kranz aus Turbinenschaufeln 2, wobei die äußeren Kanten der Turbinenschaufeln 2 in etwa auf dem Durchmesser D liegen, während die inneren Kanten des Schaufelradkranzes einen Durchmesser d definieren, wie man ebenfalls in 2 erkennt. Konkret liegen die Werte für d zwischen 40 und 44 mm und die Werte für D zwischen etwa 50 und 60 mm, wobei die Differenz D-d etwa 20% von D ausmacht. Für die entsprechenden Radien gelten jeweils die halben Werte.
  • Wie man außerdem in 1 erkennt, sind die einzelnen Schaufeln gegenüber der Radialrichtung um einen Winkel α nach vorn verkippt, das heißt in der Weise, daß die äußere Kante einer Turbinenschaufel der inneren Kante in Rotationsrichtung R etwas voranläuft. Konkret beträgt der Winkel α, das heißt der Winkel einer Verbindungslinie von Außenkante und Innenkante einer Schaufel zu dem Radiusvektor auf die Innenkante der Schaufel etwa 8° ± 1°.
  • Der Teilungswinkel zwischen den Schaufeln beträgt 12°, das heißt über den Umfang sind insgesamt 30 Turbinenschaufeln 2 verteilt. Anstelle einer Kreisscheibe könnte das Turbinenrad 1 selbstverständlich auch aus einem Ring mit Speichen und entlang des Ringes angeordneten Turbinenschaufeln 2 bestehen.
  • In 3 erkennt man einen Ausschnitt aus der Trägerplatte 1 eines Turbinenrades mit einer einzelnen Turbinenschaufel 2, die im Querschnitt dargestellt ist. Die Turbinenschaufel 2 hat eine gekrümmte Vorderfläche 3 und eine ebenfalls gekrümmte Rückfläche 4, wobei die Vorderfläche ihrerseits aus einem radial äußeren Abschnitt 3a und einem radial inneren Abschnitt 3b besteht, während die Rückfläche 4 aus einem radial äußeren Abschnitt 4a und einem radial inneren Abschnitt 4b besteht. In axialer Richtung ist das Profil der Turbinenschaufel 2 konstant, das Heißt, die Vorderfläche 3 und die Rückfläche 4 verlaufen achsparallel.
  • Der Übergang von der Vorderfläche zur Rückfläche an der inneren Kante und der äußeren Kante der Turbinenschaufel 2 erfolgt außen über einen Krümmungsradius R5 von etwa 0,15 mm oder auch etwas kleiner und im Bereich der inneren Kante über einen Krümmungsradius R6, der deutlich unter 0,1 mm liegt, beispielsweise bei etwa 0,025 mm.
  • Die radial inneren und äußeren Abschnitte 3a, 3b der Vorderfläche und auch die entsprechenden radial inneren und äußeren Abschnitte 4a, 4b der rückwärtigen Fläche 4 haben jeweils unterschiedliche Krümmungsradien und auch unterschiedlich angeordnete Krümmungszentren. Der radial innere Abschnitt 4b der rückwärtigen Fläche 4 hat einen Krümmungsradius R1 und ein Krümmungszentrum 11. Dieses Krümmungszentrum 11 liegt bei der auf dem Turbinenrad montierten Turbinenschaufel 2 etwas mehr an der Achse 5 des Turbinenrades als das Krümmungszentrum 13 des radial inneren Abschnittes 3b der Vorderfläche 3, der einen Krümmungsradius R3 hat. Das Krümmungszentrum 11 liegt dabei radial weiter außerhalb (bezogen auf die Turbinenachse 5) als das Krümmungszentrum 12 des radial äußeren Abschnittes 4a der Rückfläche, die einen Krümmungsradius R2 aufweist.
  • Der Krümmungsmittelpunkt 14 des radial äußeren Abschnittes 3a der Vorderfläche 3 liegt wiederum näher an der Turbinenachse als das Krümmungszentrum 13 des radial inneren Abschnittes der Vorderfläche 3, aber geringfügig weiter von der Achse 5 der Turbine entfernt als das Krümmungszentrum 12 des radial äußeren Abschnittes 4a der Rückfläche 4.
  • Insgesamt gilt für die 4 Krümmungsradien der Vorder- und Rückflächen in der bevorzugten Ausführungsform der Erfindung die Beziehung: R4 < R2 < R3 < R1, wobei der Faktor zwischen R2 und R4 etwa 1,3 beträgt, der Faktor zwischen R3 und R2 etwa 2 beträgt und der Faktor zwischen R1 und R3 etwa 1,1 beträgt. Diese Faktoren können jedoch auch ohne weiteres um 10% in beide Richtungen variieren.
  • Der Übergang zwischen dem Abschnitt 3a und dem Abschnitt 3b auf der Vorderfläche 3 liegt genau auf der Schnittlinie dieser Vorderfläche 3 mit einer die Krümmungszentren 13 und 14 verbindenden Geraden. Der Übergang zwischen den Abschnitten 4a und 4b der rückwärtigen Fläche 4 liegt auf dem Schnittpunkt dieser rückwärtigen Fläche 4 mit einer Geraden durch die Krümmungszentren 11, 12 dieser beiden Abschnitte. Hierdurch wird sichergestellt, daß der Übergang zwischen den verschiedenen Radien glatt und ohne jeden Knick erfolgt, da die Tangenten der jeweils verschieden gekrümmten Abschnitte in den so definierten Übergangspunkten exakt zusammenfallen.
  • Wie man im übrigen aus den 1 und 2 ableiten kann, die exakt im selben Maßstab dargestellt sind, beträgt die Länge l der Turbinenschaufel 2 im Verhältnis zu ihrer radialen Erstreckung, das heißt im Verhältnis zu der Differenz zwischen Außenradius und Innenradius des Schaufelkranzes, etwa 68% (zwischen 65 und 70%). Neben dem speziellen Profil und der speziellen Anordnung der Turbinenschaufeln auf dem Turbinenrad trägt auch diese größere axiale Länge im Verhältnis zur radialen Erstreckung der Schaufeln zu einer verbesserten und stabilen Turbinenleistung und zu einem höheren Drehmoment bei hohen Drehzahlen bei.
  • Mit dem erfindungsgemäßen Turbinenrad gelingt es, im Vergleich zu einem herkömmlichen Turbinenrad mit den gleichen äußeren Abmessungen, in einer Lacksprüheinrichtung eine um ca. 100% höhere Sprühleistung bei gleicher Qualität zu erzielen.
  • Gleichzeitig ist die Herstellung des Turbinenrades durch die neue Gestaltung und Anordnung der Turbinenschaufeln praktisch nicht oder nur unwesentlich erschwert worden. Da die Turbinenschaufeln aus entsprechend längeren Profilen einfach durch Abtrennen von Abschnitten gewünschter Länge (die der axialen Länge l der Turbinenschaufeln entspricht) hergestellt werden, erfordert die Herstellung des neuen Schaufelprofils keinen wesentlich höheren Aufwand, da das Profil über die große Länge entsprechender vorgefertigter Profilelemente konstant ist. Auch das leicht verkippte Anordnen der Schaufeln verlangt keinen erhöhten Montage- bzw. Fertigungsaufwand. Dies gilt weiterhin auch für die vergrößerte axiale Länge der Schaufeln.
  • Durch die drastisch erhöhte Leistung des Turbinenrades wird der nur geringfügig erhöhte Aufwand beim Herstellen eines entsprechenden Turbinenrades bei weitem überkompensiert.

Claims (18)

  1. Turbinenrad zum Antrieb schnell rotierender Werkzeuge, insbesondere für die rotierenden Teller und/oder Glocken von Farbsprüheinrichtungen, mit einer um eine Achse (5) drehbar gelagerten kreisscheiben- oder ringförmigen Trägerplatte (1) und darauf kreisförmig angeordneten Turbinenschaufeln (2), die achsparallele Vorderflächen (3) und Rückflächen (4) aufweisen und die in radialer Richtung, das heißt in Richtung senkrecht zu der Achse (5), gekrümmt verlaufen, wobei die Vorderfläche (3) einer Turbinenschaufel (2) mindestens abschnittsweise einen kleineren Krümmungsradius (R3, R4) hat als die Rückfläche (4) dadurch gekennzeichnet, daß die radial äußeren Abschnitte (3a, 4a) der Vorderfläche (3) und auch der Rückfläche (4) der Turbinenschaufel (2) einen kleineren Krümmungsradius (R4, R2) haben als die radial weiter innen liegenden Abschnitte (3b, 4b) und daß die axiale Länge der Turbinenschaufeln (2) mindestens 60%, und maximal 100% der radialen Erstreckung der Turbinenschaufeln (2) beträgt.
  2. Turbinenrad nach Anspruch 1, dadurch gekennzeichnet, daß die radial inneren Abschnitte (3b) der Vorderflächen (3) der Turbinenschaufeln (2) einen größeren Krümmungsradius (R3) haben als die radial äußeren Abschnitte (4a) der Rückfläche (4).
  3. Turbinenrad nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß die radial inneren Abschnitte (3b, 4b) der Vorderflächen (3) bzw. der Rückflächen (4) mindestens 30% der radialen Erstreckung einer Turbinenschaufel (2) erfassen, während die radial äußeren Abschnitte (3a, 4a) der Vorderflächen (3) bzw. Rückflächen (4) ebenfalls mindestens 30% der radialen Erstreckung der Turbinenschaufeln (2) erfassen, und daß die Krümmungsradien (R3, R1) der radial inneren Abschnitte (3b bzw. 4b) um mindestens 50%, vorzugsweise um mindestens 100% größer sind als die Krümmungsradium (R4, R2) der entsprechenden radial äußeren Abschnitte (3a bzw. 4a) der Vorderflächen (3) bzw. Rückflächen (4).
  4. Turbinenrad nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Krümmungsradius (R3, R1) eines radial inneren Abschnittes (3b, 4b) maximal das Vierfache des Krümmungsradius (R4, R2) des entsprechenden radial äußeren Abschnittes (3a, 4a) beträgt.
  5. Turbinenrad nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Krümmungsradius (R2) des radial äußeren Abschnittes der Rückfläche (4) zwischen 5 und 50% größer ist als der Krümmungsradius (R4) des radial äußeren Abschnittes (3a) der Vorderfläche (3).
  6. Turbinenrad nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der Krümmungsradius (R1) des radial inneren Abschnittes (4b) der Rückfläche (4) von dem Krümmungsradius (R3) des radial inneren Abschnittes (3b) der Vorderfläche (3) um –5 bis 15, vorzugsweise um 0 bis 10% abweicht.
  7. Turbinenrad nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Vorderfläche (3) und die Rückfläche (4) jeweils im wesentlichen zwei verschiedene Krümmungsradien haben, wobei die unterschiedlichen Krümmungsabschnitte (3a, 3b bzw. 4a, 4b) glatt, das heißt mit einer stetigen ersten Ableitung, ineinander übergehen.
  8. Turbinenrad nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die axiale Länge der Turbinenschaufeln (2) mindestens 65% der radialen Erstreckung der Turbinenschaufeln (2) beträgt.
  9. Turbinenrad nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die axiale Länge der Turbinenschaufeln (2) höchstens 80%, der radialen Erstreckung der Schaufeln (2) beträgt.
  10. Turbinenrad nach den Ansprüchen 8 und 9, dadurch gekennzeichnet, daß die axiale Länge der Turbinenschaufeln (2) etwa 70% ± 5% der radialen Erstreckung der Turbinenschaufeln (2) beträgt.
  11. Turbinenrad nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß in einem Schnitt senkrecht zur Turbinenachse die Verbindungslinie der radial inneren und der radial äußeren Kante einer Turbinenschaufel gegenüber einem Radiusvektor auf die Innenkante der Turbinenschaufel geneigt verläuft, und zwar in der Weise, daß die äußere Kante der Turbinenschaufel der inneren Kante in Rotationsrichtung voraneilt, wobei die Verbindungslinie gegenüber dem auf die innere Kante der Turbinenschaufel (2) weisenden Radiusvektor um 2 bis 15°, vorzugsweise um 5 bis 12° und insbesondere um etwa 8° ± 1° geneigt ist.
  12. Turbinenrad nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß die innere und die äußere Kante der Turbinenschaufeln mit jeweils einem kleinen Radius abgerundet sind, wobei der Rundungsradius (R6) der inneren Kante kleiner als 0,1 mm, vorzugsweise kleiner als 0,05 mm und größer als 0,01 mm ist und der Rundungsradius (R5) der äußeren Kante kleiner als 0,3, vorzugsweise kleiner als 0,2 mm aber größer als 0,1 mm ist.
  13. Turbinenrad nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß die Teilung der Turbinenschaufel (2) in Umfangsrichtung zwischen 10° und 15°, vorzugsweise 12° beträgt.
  14. Turbinenrad nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß der Innenradius des Schaufelkranzes zwischen 20 und 24, vorzugsweise etwa 22 mm beträgt.
  15. Turbinenrad nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß der Außenradius des Schaufelkranzes zwischen 25 und 60 mm, insbesondere etwa 27,5 mm beträgt.
  16. Turbinenrad nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß der Winkelbereich, über welchen der radial innere Abschnitt (4b) der Schaufelrückseite (4) sich erstreckt, zwischen 28° und 40°, insbesondere zwischen 30 und 35° liegt und der Winkelbereich, über welchen der radial äußere Abschnitt (4a) der Rückseite der Turbinenschaufel (2) sich erstreckt, zwischen 60 und 90°, insbesondere zwischen 70° ± 5° liegt, jeweils bezogen auf den Krümmungsmittelpunkt (11, 12) der entsprechenden Abschnitte.
  17. Turbinenrad nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, daß der Winkelbereich, über welchen der radial innere Abschnitt (3b) der Vorderseite (3) der Turbinenschaufel (2) sich erstreckt, in einem Winkelbereich zwischen 35 und 45°, insbesondere bei 40° ± 2° liegt, und daß der Winkelbereich, über welchen der radial äußere Abschnitt (3a) der Vorderseite (3) der Turbinenschaufel (2) sich erstreckt, zwischen 100 und 130°, insbesondere bei 115° ± 5° liegt, jeweils bezogen auf den Krümmungsmittelpunkt (13, 14) der entsprechenden Abschnitte.
  18. Turbinenrad nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, daß der Übergang der Krümmungsradien vom radial inneren zum radial äußeren Abschnitt jeweils auf der Verbindungslinie der Krümmungsmittelpunkte (11, 12 bzw. 13, 14) des entsprechenden radial inneren und radial äußeren Abschnittes liegt.
DE202004021250U 1990-01-20 2004-01-27 Turbinenrad zum Antrieb schnell rotierender Werkzeuge Expired - Lifetime DE202004021250U1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4001647 1990-01-20
DE10303617A DE10303617A1 (de) 2003-01-30 2003-01-30 Turbinenrad zum Antrieb schnell rotierender Werkzeuge
DE10303617.2 2003-01-30

Publications (1)

Publication Number Publication Date
DE202004021250U1 true DE202004021250U1 (de) 2007-07-26

Family

ID=38320208

Family Applications (1)

Application Number Title Priority Date Filing Date
DE202004021250U Expired - Lifetime DE202004021250U1 (de) 1990-01-20 2004-01-27 Turbinenrad zum Antrieb schnell rotierender Werkzeuge

Country Status (1)

Country Link
DE (1) DE202004021250U1 (de)

Similar Documents

Publication Publication Date Title
EP0951942B1 (de) Verfahren und Rotationszerstäuber zum serienweisen Beschichten von Werkstücken
EP1443181B1 (de) Turbinenrad zum Antrieb schnell rotierender Werkzeuge
DE69212703T2 (de) Spannungswellengetriebe mit einem kurzen, flexiblen Becher-Element
EP2099570B1 (de) Lenkluftring mit einer ringmulde und entsprechender glockenteller
EP0698417A2 (de) Regner zum Austragen eines Fluids
DE102008034189B3 (de) Fahrzeugrad oder Radstern hierfür
EP1749564A2 (de) Kavitationsmischer
EP2285495A1 (de) Universalzerstäuber
DE3714148A1 (de) Haltevorrichtung fuer rotierende koerper
DE2616894C3 (de) Schleuderrad
DE10236017B3 (de) Rotationszerstäuberturbine und Rotationszerstäuber
DE3614806A1 (de) Einbauventilator
DE102005049794A1 (de) Propeller
DE2554692C2 (de) Vorrichtung zur Herstellung der Magnetschichten von Magnetspeicherplatten
DE2434397C2 (de) Radialturbine
DE2659428C2 (de) Vorrichtung zum elektrostatischen Versprühen von auf Werkstücken aufzutragendem flüssigen Überzugsmaterial
DE202004021250U1 (de) Turbinenrad zum Antrieb schnell rotierender Werkzeuge
DE2854326C2 (de) Elektrostatische Farbspritzpistole mit rotierender Zerstäuberglocke
EP1072318B1 (de) Sprühkopf für einen elektrostatischen Rotationszerstäuber
DE3708096C2 (de)
DE4211827C2 (de) Verfahren und Strangpreßwerkzeug zur kontinuierlichen Herstellung von zylindrischen Stäben mit zumindest einem innenliegenden, wendelförmigen Kanal, und nach diesem Verfahren hergestellter Stab
DE2461105C3 (de) Strahlmittelschleuderrad
DE1457818A1 (de) Geraet zum gleichmaessigen Verstaeuben von festen,viskosen oder fluessigen Stoffen unter Ausnutzung der Fliehkraft
DE926176C (de) Vorrichtung zum Veraendern der Spurweite der Laufraeder, insbesondere von landwirtschaftlich genutzten Motorfahrzeugen
DE3711128C3 (de) Rotationszerstäuber

Legal Events

Date Code Title Description
R207 Utility model specification

Effective date: 20070830

R150 Utility model maintained after payment of first maintenance fee after three years

Effective date: 20070823

R151 Utility model maintained after payment of second maintenance fee after six years

Effective date: 20100407

R152 Utility model maintained after payment of third maintenance fee after eight years

Effective date: 20120329

R071 Expiry of right
R071 Expiry of right