DE19942538A1 - Waschmittel - Google Patents
WaschmittelInfo
- Publication number
- DE19942538A1 DE19942538A1 DE1999142538 DE19942538A DE19942538A1 DE 19942538 A1 DE19942538 A1 DE 19942538A1 DE 1999142538 DE1999142538 DE 1999142538 DE 19942538 A DE19942538 A DE 19942538A DE 19942538 A1 DE19942538 A1 DE 19942538A1
- Authority
- DE
- Germany
- Prior art keywords
- acid
- proteins
- alcohol
- contain
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/38—Products with no well-defined composition, e.g. natural products
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/66—Non-ionic compounds
- C11D1/83—Mixtures of non-ionic with anionic compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/86—Mixtures of anionic, cationic, and non-ionic compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/88—Ampholytes; Electroneutral compounds
- C11D1/94—Mixtures with anionic, cationic or non-ionic compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/02—Inorganic compounds ; Elemental compounds
- C11D3/12—Water-insoluble compounds
- C11D3/124—Silicon containing, e.g. silica, silex, quartz or glass beads
- C11D3/1246—Silicates, e.g. diatomaceous earth
- C11D3/128—Aluminium silicates, e.g. zeolites
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Detergent Compositions (AREA)
Abstract
Vorgeschlagen werden Waschmittel, enthaltend DOLLAR A (a) anionische, nichtionische und/oder amphotere Tenside, DOLLAR A (b) nicht-enzymatische Proteine und/oder deren Derivate und DOLLAR A (c) Zeolithe.
Description
Die Erfindung befindet sich auf dem Gebiet der Waschmittel und betrifft Zubereitungen mit Tensiden
und Buildern, die als Avivagemittel zusätzlich Proteine oder Proteinderivate enthalten.
Im Markt sind Waschmittel erhältlich, die die Wäsche nicht nur reinigen, sondern ihr auch einen beson
deren Weichgriff verleihen. Solche Zubereitungen, die häufig als Softdetergents bezeichnet werden,
enthalten als Avivagemittel in der Regel kationische Tenside vom Typ der Tetraalkylammoniumverbin
dungen, meist in Kombination mit Schichtsilicaten. Die genannten quartären Ammoniumverbindungen
sind hinsichtlich ihrer biologischen Abbaubarkeit nicht zufriedenstellend, zudem ist bekannt, daß mit
ihnen behandelte Wäsche bei sehr empfindlichen Verbrauchern Irritationen auslösen können. In Kom
bination mit anionischen Tensiden kommt es zudem leicht zu einer unerwünschten Salzbildung. Aus
diesem Grunde besteht ein lebhaftes Interesse an Ersatzstoffen, die frei von diesen Nachteilen sind.
Eine Lösung bestünde im Austausch der quartären Ammoniumverbindungen gegen andere kationische
Tenside vom Typ der Esterquats. Diese sind zwar hinsichtlich ihrer ökotoxikoiogischen Verträglich we
sentlich besser zu beurteilen und besitzen sogar vielfach überlegene Avivageeigenschaften, sind unter
den alkalischen Bedingungen des Waschprozesses nur eingeschränkt hydrolysebeständig und kom
men damit nicht als echter Ersatzstoff in Frage.
Demzufolge hat die Aufgabe der vorliegenden Erfindung darin bestanden, neue Waschmittel, vorzugs
weise in Form von Pulvern, Granulaten, Extrudaten oder Agglomeraten zur Verfügung zu stellen, die
hinsichtlich ihrer ökotoxikologischen Verträglichkeit nicht länger zu beanstanden sind, unter Waschbe
dingungen eine hinreichende chemische Beständigkeit zeigen und insbesondere der Wäsche einen
ausgezeichneten Weichgriff verleihen.
Gegenstand der Erfindung sind Waschmittel, enthaltend
- a) anionische, nichtionische und/oder amphotere Tenside,
- b) nicht-enzymatische Proteine und/oder deren Derivate, und
- c) Zeolithe.
Überraschenderweise wurde gefunden, daß die erfindungsgemäßen Waschmittel die eingangs ge
nannten Anforderungen in vorzüglicher Weise erfüllen. Die nicht-enzymatischen Proteine und Protein
derivate stellen ideale Ersatzstoffe für kationische Tenside dar, da sie eine vergleichbare Avivage be
wirken, dabei jedoch auch unter alkalischen Bedingungen chemisch stabil sind und weder aus ökologi
scher noch toxikologischer Sicht Anlaß zur Beanstandung bieten. Insbesondere in Kombination mit
Zeolithen als Buildern wird ein besonders vorteilhafter Avivageeffekt beobachtet, der durch den Zusatz
von Schichtsilicaten und/oder den Einsatz eines Tensidsystems auf Basis von Alkylbenzolsulfonaten
und Alkylsulfaten noch weiter verbessert werden kann. Vorzugsweise sind die Waschmittel frei von
kationischen Tensiden.
Die Waschmittel können als Komponente (a) anionische, nichtionische und/oder amphotere bzw. zwit
terionische Tenside enthalten; vorzugsweise sind jedoch anionische Tenside bzw. Kombinationen von
anionischen und nichtionischen Tensiden zugegen. Typische Beispiele für anionische Tenside sind
Seifen, Alkylbenzolsulfonate, Alkansulfonate, Olefinsulfonate, Alkylethersulfonate, Glycerinethersulfo
nate, α-Methylestersulfonate, Sulfofettsäuren, Alkylsulfate, Fettalkoholethersulfate, Glycerinether
sulfate, Hydroxymischethersulfate, Monoglycerid(ether)sulfate, Fettsäureamid(ether)sulfate, Mono- und
Dialkyl-sulfosuccinate, Mono- und Dialkylsulfosuccinamate, Sulfotriglyceride, Amidseifen, Ethercarbon
säuren und deren Salze, Fettsäureisethionate, Fettsäuresarcosinate, Fettsäuretauride, N-Acylamino
säuren wie beispielsweise Acyllactylate, Acyltartrate, Acylglutamate und Acylaspartate, Alkyloligogluco
sidsulfate, Proteinfettsäurekondensate (insbesondere pflanzliche Produkte auf Weizenbasis) und Al
kyl(ether)phosphate. Sofern die anionischen Tenside Polyglycoletherketten enthalten, können diese
eine konventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen. Vorzugs
weise werden Alkylbenzolsulfonate, Alkylsulfate, Seifen, Alkansulfonate, Olefinsulfonate, Methylester
sulfonate sowie deren Gemische eingesetzt.
Bevorzugte Alkylbenzolsulfonate folgen vorzugsweise der Formel (I),
R-Ph-SO3X (I)
in der R für einen verzweigten, vorzugsweise jedoch linearen Alkylrest mit 10 bis 18 Kohlenstoffatomen,
Ph für einen Phenylrest und X für ein Alkali- und/oder Erdalkalimetall, Ammonium, Alkylammonium,
Alkanolammonium oder Glucammonium steht. Insbesondere von diesen geeignet sind Dodecylbenzol
sulfonate, Tetradecylbenzolsulfonate, Hexadecylbenzolsulfonate sowie deren technische Gemische in
Form der Natriumsalze.
Unter Alkyl- und/oder Alkenylsulfaten, die auch häufig als Fettalkoholsulfate bezeichnet werden, sind
die Sulfatierungsprodukte primärer und/oder sekundärer Alkohole zu verstehen, die vorzugsweise der
Formel (II) folgen,
R2O-SO3Y (II)
in der R2 für einen linearen oder verzweigten, aliphatischen Alkyl- und/oder Alkenylrest mit 6 bis 22,
vorzugsweise 12 bis 18 Kohlenstoffatomen und Y für ein Alkali- und/oder Erdalkalimetall, Ammonium,
Alkylammonium, Alkanolammonium oder Glucammonium steht. Typische Beispiele für Alkylsulfate, die
im Sinne der Erfindung Anwendung finden können, sind die Sulfatierungsprodukte von Capronalkohol,
Caprylalkohol, Caprinalkohol, 2-Ethylhexylalkohol, Laurylalkohol, Myristylalkohol, Cetylalkohol, Palmo
leylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Arachyl
alkohol, Gadoleylalkohol, Behenylalkohol und Erucylalkohol sowie deren technischen Gemischen, die
durch Hochdruckhydrierung technischer Methylesterfraktionen oder Aldehyden aus der Roelen'schen
Oxosynthese erhalten werden. Die Sulfatierungsprodukte können vorzugsweise in Form ihrer Alkali
salze und insbesondere ihrer Natriumsalze eingesetzt werden. Besonders bevorzugt sind Alkylsulfate
auf Basis von C16/18-Talg-Fettalkoholen bzw. pflanzliche Fettalkohole vergleichbarer C-Kettenverteilung
in Form ihrer Natriumsalze. Im Falle von verzweigten primären Alkoholen handelt es sich um Oxoalko
hole, wie sie z. B. durch Umsetzung von Kohlenmonoxid und Wasserstoff an alpha-ständige Olefine
nach dem Shop-Verfahren zugänglich sind. Solche Alkoholmischungen sind im Handel unter dem Han
delsnamen Dobanol® oder Neodol® erhältlich. Geeignete Alkoholmischungen sind Dobanol 91®, 23®,
25®, 45®. Eine weitere Möglichkeit sind Oxoalkohole, wie sie nach dem klassischen Oxoprozeß der
Enichema bzw. der Condea durch Anlagerung von Kohlenmonoxid und Wasserstoff an Olefine erhalten
werden. Bei diesen Alkoholmischungen handelt es sich um eine Mischung aus stark verzweigten Alko
holen. Solche Alkoholmischungen sind im Handel unter dem Handelsnamen Lial® erhältlich. Geeignete
Alkoholmischungen sind Lial 91®, 111®, 123®, 125®, 145®.
Unter Seifen sind schließlich Fettsäuresalze der Formel (III) zu verstehen,
R3CO-OX (III)
in der R3CO für einen linearen oder verzweigten, gesättigten oder ungesättigten Acylrest mit 6 bis 22
und vorzugsweise 12 bis 18 Kohlenstoffatomen und X für Alkali- und/oder Erdalkali, Ammonium, Alkyl
ammonium oder Alkanolammonium steht. Typische Beispiele sind die Natrium-, Kalium-, Magnesium-,
Ammonium- und Triethanolammoniumsalze der Capronsäure, Caprylsäure, 2-Ethylhexansäure, Ga
prinsäure, Laurinsäure, Isotridecansäure, Myristinsäure, Palmitinsäure, Palmoleinsäure, Stearinsäure,
Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Elaeostearinsäure,
Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren technische Mischungen. Vor
zugsweise werden Kokos- oder Palmkernfettsäure in Form ihrer Natrium- oder Kaliumsalze eingesetzt.
Typische Beispiele für nichtionische Tenside sind Fettalkoholpolyglycolether, Alkylphenolpolygly
colether, Fettsäurepolyglycolester, Fettsäureamidpolyglycolether, Fettaminpolyglycolether, alkoxylierte
Triglyceride, Mischether bzw. Mischformale, Alk(en)yloligoglykoside, Fettsäure-N-alkylglucamide, Pro
teinhydrolysate (insbesondere pflanzliche Produkte auf Weizenbasis), Polyolfettsäureester, Zuckere
ster, Sorbitanester, Polysorbate und Aminoxide. Sofern die nichtionischen Tenside Polyglycoletherket
ten enthalten, können diese eine konventionelle, vorzugsweise jedoch eine eingeengte Homologen
verteilung aufweisen. Vorzugsweise werden Fettalkoholpolyglycolether, alkoxylierte Fettsäureniedrigal
kylester oder Alkyloligoglucoside eingesetzt.
Die bevorzugten Fettalkoholpolyglycolether folgen der Formel (IV),
R4O(CH2CHR5O)nH (IV)
in der R4 für einen linearen oder verzweigten Alkyl- und/oder Alkenylrest mit 6 bis 22, vorzugsweise 12
bis 18 Kohlenstoffatomen, R5 für Wasserstoff oder Methyl und n für Zahlen von 1 bis 20 steht. Typische
Beispiele sind die Anlagerungsprodukte von durchschnittlich 1 bis 20 und vorzugsweise 5 bis 10 Mol
Ethylen- und/oder Propylenoxid an Capronalkohol, Caprylalkohol, 2-Ethylhexylalkohol, Caprinalkohol,
Laurylalkohol, Isotridecylalkohol, Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isoste
arylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Linolylalkohol, Linolenylalkohol, Elaeo
stearylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol und Brassidylalkohol
sowie deren technische Mischungen. Besonders bevorzugt sind Anlagerungsprodukte von 3, 5 oder 7 Mol
Ethylenoxid an technische Kokosfettalkohole.
Als alkoxylierte Fettsäureniedrigalkylester kommen Tenside der Formel (V) in Betracht,
R6CO-(OCH2CHR7)mOR8 (V)
in der R6CO für einen linearen oder verzweigten, gesättigten und/oder ungesättigten Acylrest mit 6 bis
22 Kohlenstoffatomen, R7 für Wasserstoff oder Methyl, R8 für lineare oder verzweigte Alkylreste mit 1
bis 4 Kohlenstoffatomen und m für Zahlen von 1 bis 20 steht. Typische Beispiele sind die formalen
Einschubprodukte von durchschnittlich 1 bis 20 und vorzugsweise 5 bis 10 Mol Ethylen- und/oder Pro
pylenoxid in die Methyl-, Ethyl-, Propyl-, Isopropyl-, Butyl- und tert.-Butylester von Capronsäure, Ca
prylsäure, 2-Ethylhexansäure, Caprinsäure, Laurinsäure, Isotridecansäure, Myristinsäure, Palmitinsäu
re, Palmoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure,
Linolensäure, Elaeostearinsäure, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie
deren technische Mischungen. Üblicherweise erfolgt die Herstellung der Produkte durch Insertion der
Alkylenoxide in die Carbonylesterbindung in Gegenwart spezieller Katalysatoren, wie z. B. calcinierter
Hydrotalcit. Besonders bevorzugt sind Umsetzungsprodukte von durchschnittlich 5 bis 10 Mol Ethylen
oxid in die Esterbindung von technischen Kokosfettsäuremethylestern.
Alkyl- und Alkenyloligoglykoside, die ebenfalls bevorzugte nichtionische Tenside darstellen, folgen übli
cherweise der Formel (VI),
R9O-[G]p (VI)
in der R9 für einen Alkyl- und/oder Alkenylrest mit 4 bis 22 Kohlenstoffatomen, G für einen Zuckerrest
mit 5 oder 6 Kohlenstoffatomen und p für Zahlen von 1 bis 10 steht. Sie können nach den einschlä
gigen Verfahren der präparativen organischen Chemie erhalten werden. Stellvertretend für das umfang
reiche Schrifttum sei hier auf die Schriften EP-A1 0 301 298 und WO 90/03977 verwiesen. Die Alkyl-
und/oder Alkenyloligoglykoside können sich von Aldosen bzw. Ketosen mit 5 oder 6 Kohlen
stoffatomen, vorzugsweise der Glucose ableiten. Die bevorzugten Alkyl- und/oder Alkenyloligoglykoside
sind somit Alkyl- und/oder Alkenyloligoglucoside. Die Indexzahl p in der allgemeinen Formel (VI) gibt
den Oligomerisierungsgrad (DP), d. h. die Verteilung von Mono- und Oligoglykosiden an und steht für
eine Zahl zwischen 1 und 10. Während p in einer gegebenen Verbindung stets ganzzahlig sein muß
und hier vor allem die Werte p = 1 bis 6 annehmen kann, ist der Wert p für ein bestimmtes Alkyloligo
glykosid eine analytisch ermittelte rechnerische Größe, die meistens eine gebrochene Zahl darstellt.
Vorzugsweise werden Alkyl- und/oder Alkenyloligoglykoside mit einem mittleren Oligomerisierungsgrad
p von 1, 1 bis 3,0 eingesetzt. Aus anwendungstechnischer Sicht sind solche Alkyl- und/oder Alkenyl
oligoglykoside bevorzugt, deren Oligomerisierungsgrad kleiner als 1,7 ist und insbesondere zwischen
1,2 und 1,4 liegt. Der Alkyl- bzw. Alkenylrest R9 kann sich von primären Alkoholen mit 4 bis 11, vor
zugsweise 8 bis 10 Kohlenstoffatomen ableiten. Typische Beispiele sind Butanol, Capronalkohol, Ca
prylalkohol, Caprinalkohol und Undecylalkohol sowie deren technische Mischungen, wie sie bei
spielsweise bei der Hydrierung von technischen Fettsäuremethylestern oder im Verlauf der Hydrierung
von Aldehyden aus der Roelen'schen Oxosynthese erhalten werden. Bevorzugt sind Alkyloli
goglucoside der Kettenlänge C8-C10 (DP = 1 bis 3), die als Vorlauf bei der destillativen Auftrennung von
technischem C8-C18-Kokosfettalkohol anfallen und mit einem Anteil von weniger als 6 Gew.-% C12-
Alkohol verunreinigt sein können sowie Alkyloligoglucoside auf Basis technischer C9/11-Oxoalkohole
(DP = 1 bis 3). Der Alkyl- bzw. Alkenylrest R9 kann sich ferner auch von primären Alkoholen mit 12 bis
22, vorzugsweise 12 bis 14 Kohlenstoffatomen ableiten. Typische Beispiele sind Laurylalkohol, My
ristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylal
kohol, Petroselinylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol, Brassidylal
kohol sowie deren technische Gemische, die wie oben beschrieben erhalten werden können. Bevorzugt
sind Alkyloligoglucoside auf Basis von gehärtetem C12/14-Kokosalkohol mit einem DP von 1 bis 3.
Typische Beispiele für amphotere bzw. zwitterionische Tenside sind Alkylbetaine, Alkylamidobetaine,
Aminopropionate, Aminoglycinate, Imidazoliniumbetaine und Sulfobetaine. Bei den genannten Tensi
den handelt es sich ausschließlich um bekannte Verbindungen. Hinsichtlich Struktur und Herstellung
dieser Stoffe sei auf einschlägige Übersichtsarbeiten beispielsweise J. Falbe (ed.), "Surfactants in
Consumer Products", Springer Verlag, Berlin, 1987, S. 54-124 oder J. Falbe (ed.), "Katalysatoren,
Tenside und Mineralöladditive", Thieme Verlag, Stuttgart, 1978, S. 123-217 verwiesen. Die
Waschmittel können die Tenside in Mengen von 1 bis 50, vorzugsweise 5 bis 25 und insbesondere 10
bis 20 Gew.-% - bezogen auf die Waschmittel - enthalten.
Nicht-enzymatische Proteine und deren Derivate (Komponente b), bei denen es sich vorzugsweise um
Proteinhydrolysate und/oder Proteinfettsäurekondensate handelt, sind bekannte Substanzen, die bei
spielsweise in Hautpflegemittel eingesetzt werden [vgl. Seifen-Fette-Öle-Wachse, 108, 177 (1982)]. Der
Zusatz "nicht-enzymatisch" wurde gewählt, um die Stoffe von typischen Waschmittelenzymen zu unter
scheiden, die im Sinne der Erfindung keine Anwendung finden. Typische Beispiele für nicht
enzymatische Proteine, die in den erfindungsgemässen Mitteln eingesetzt werden können, sind Kera
tin, Elastin, Kollagen, Weizenproteine, Milchproteine, Eiweißproteine, Seidenproteine, Mandelproteine,
Sojaproteine und andere Getreideproteine, sowie Proteine aus Tierhäuten. Proteinhydrolysate stellen
Abbauprodukte dieser tierischen oder pflanzlichen Proteine dar, die durch saure, alkalische und/oder
enzymatische Hydrolyse gespalten werden und danach ein durchschnittliches Molekulargewicht im
Bereich von 600 bis 4000, vorzugsweise 2000 bis 3500 aufweisen. Obschon Proteinhydrolysate in Er
mangelung eines hydrophoben Restes keine Tenside im klassischen Sinne darstellen, finden sie we
gen ihrer dispergierenden Eigenschaften vielfach Verwendung zur Formulierung oberflächenaktiver
Mittel. Übersichten zu Herstellung und Verwendung von Proteinhydrolysaten sind beispielsweise von
G. Schuster und A. Domsch in Seifen Öle Fette Wachse, 108, 177 (1982) bzw. Cosm. Toil. 99, 63
(1984), von H. W. Steisslinger in Parf. Kosm. 72, 556 (1991) und F. Aurich et al. in Tens. Surf. Det. 29,
389 (1992) erschienen. Durch Umsetzung der genannten Proteinhydrolysate mit Fettsäuren, welche in
der Regel 6 bis 22 und vorzugsweise 12 bis 18 Kohlenstoffatome im Acylrest enthalten, werden Pro
teinfettsäurekondensate gewonnen. Die Kondensate werden gewöhnlich in Form ihrer Alkali-, Erdal
kali-, Ammonium, Alkylammonium- oder Alkanolammoniumsalze eingesetzt. Typische Beispiele sind die
Kondensationsprodukte von Weizen- oder Sojaproteinhydrolysaten mit Capronsäure, Caprylsäure, 2-
Ethylhexansäure, Caprinsäure, Laurinsäure, Isotridecansäure, Myristinsäure, Palmitinsäure, Palmolein
säure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure,
Elaeostearinsäure, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren technische
Mischungen. Die erfindungsgemäßen Mittel können die Proteine bzw. Proteinderivate in Mengen von
0,1 bis 10, vorzugsweise 1 bis 8 und insbesondere 3 bis 5 Gew.-% - bezogen auf die Mittel - enthalten.
Als Builder (Komponente c) können die erfindungsgemäßen Waschmittel Zeolithe enthalten. Der als
Waschmittelbuilder häufig eingesetzte feinkristalline, synthetische und gebundenes Wasser enthalten
de Zeolith ist vorzugsweise Zeolith A und/oder P. Als Zeolith P wird beispielsweise Zeolith MAP®
(Handelsprodukt der Firma Crosfield) besonders bevorzugt. Geeignet sind jedoch auch Zeolith X sowie
Mischungen aus A, X und/oder P wie auch Y. Von besonderem Interesse ist auch ein cokristallisiertes
Natrium/Kalium-Aluminiumsilikat aus Zeolith A und Zeolith X, welches als VEGOBOND AX® (Handels
produkt der Firma Condea Augusta S.p.A.) im Handel erhältlich ist. Der Zeolith kann als sprühgetrock
netes Pulver oder auch als ungetrocknete, von ihrer Herstellung noch feuchte, stabilisierte Suspension
zum Einsatz kommen. Für den Fall, daß der Zeolith als Suspension eingesetzt wird, kann diese geringe
Zusätze an nichtionischen Tensiden als Stabilisatoren enthalten, beispielsweise 1 bis 3 Gew.-%, bezo
gen auf Zeolith, an ethoxylierten C12-C18-Fettalkoholen mit 2 bis 5 Ethylenoxidgruppen, C12-C14-Fettal
koholen mit 4 bis 5 Ethylenoxidgruppen oder ethoxylierten Isotridecanolen. Geeignete Zeolithe weisen
eine mittlere Teilchengröße von weniger als 10 µm (Volumenverteilung; Meßmethode: Coulter Counter)
auf und enthalten vorzugsweise 18 bis 22 Gew.-%, insbesondere 20 bis 22 Gew.-% an gebundenem
Wasser. Die Zeolithe sind in den Endzubereitungen vorzugsweise in Mengen von 10 bis 60, insbeson
dere 20 bis 40 Gew.-% - bezogen auf die Mittel - enthalten.
Weitere bevorzugte Inhaltsstoffe der erfindungsgemäßen Waschmittel sind zusätzliche anorganische
und organische Buildersubstanzen, wobei als anorganische Buildersubstanzen hauptsächlich kristalline
Schichtsilikate und amorphe Silikate mit Buildereigenschaften sowie - wo zulässig - auch Phosphate
wie Tripolyphosphate zum Einsatz kommen. Die Menge an Co-Builder ist dabei auf die bevorzugten
Mengen an Zeolithen anzurechnen.
Geeignete Substitute bzw. Teilsubstitute für Phosphate und Zeolithe sind kristalline, schichtförmige
Natriumsilikate der allgemeinen Formel NaMSixO2x+1.yH2O, wobei M Natrium oder Wasserstoff be
deutet, x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für × 2, 3 oder 4
sind. Derartige kristalline Schichtsilikate werden beispielsweise in der europäischen Patentanmeldung
EP 0164514 A1 beschrieben. Bevorzugte kristalline Schichtsilikate der angegebenen Formel sind sol
che, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl β- als
auch δ-Natriumdisilikate Na2Si2O5.yH2O bevorzugt, wobei β-Natriumdisilikat beispielsweise nach dem
Verfahren erhalten werden kann, das in der internationalen Patentanmeldung WO 91/08171 beschrie
ben ist. Weitere geeignete Schichtsilicate sind beispielsweise aus den Patentanmeldungen DE
23 34 899 A1, EP 0026529 A1 und DE 35 26 405 A1 bekannt. Ihre Verwendbarkeit ist nicht auf eine spe
zielle Zusammensetzung bzw. Strukturformel beschränkt. Bevorzugt sind hier jedoch Smectite, insbe
sondere Bentonite. Geeignete Schichtsilicate, die zur Gruppe der mit Wasser quellfähigen Smectite
zählen, sind z. B. solche der allgemeinen Formeln
(OH)4Si8-yAly(MgxAl4-x)O20 Montmorrilonit
(OH)4Si8-yAly(Mg6-zLiz)O20 Hectorit
(OH)4Si8-yAly(Mg6-zAlz)O20 Saponit
(OH)4Si8-yAly(Mg6-zLiz)O20 Hectorit
(OH)4Si8-yAly(Mg6-zAlz)O20 Saponit
mit x = 0 bis 4, y = 0 bis 2, z = 0 bis 6. Zusätzlich kann in das Kristallgitter der Schichtsilicate gemäß
den vorstehenden Formeln geringe Mengen an Eisen eingebaut sein. Ferner können die Schichtsilicate
aufgrund ihrer ionenaustauschenden Eigenschaften Wasserstoff-, Alkali-, Erdalkaliionen, insbesondere
Na+ und Ca2+ enthalten. Die Hydratwassermenge liegt meist im Bereich von 8 bis 20 Gew.-% und ist
vom Quellzustand bzw. von der Art der Bearbeitung abhängig. Brauchbare Schichtsilicate sind bei
spielsweise aus US 3,966,629, US 4,062,647, EP 0026529 A1 und EP 0028432 A1 bekannt. Vorzugs
weise werden Schichtsilicate verwendet, die aufgrund einer Alkalibehandlung weitgehend frei von Cal
ciumionen und stark färbenden Eisenionen sind.
Zu den bevorzugten Buildersubstanzen gehören auch amorphe Natriumsilikate mit einem Modul
Na20 : SiO2 von 1 : 2 bis 1 : 3,3, vorzugsweise von 1 : 2 bis 1 : 2,8 und insbesondere von 1 : 2 bis 1 : 2,6,
welche löseverzögert sind und Sekundärwascheigenschaften aufweisen. Die Löseverzögerung ge
genüber herkömmlichen amorphen Natriumsilikaten kann dabei auf verschiedene Weise, beispiels
weise durch Oberflächenbehandlung, Compoundierung, Kompaktierung/Verdichtung oder durch Über
trocknung hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Begriff "amorph"
auch "röntgenamorph" verstanden. Dies heißt, daß die Silikate bei Röntgenbeugungsexperimenten
keine scharfen Röntgenreflexe liefern, wie sie für kristalline Substanzen typisch sind, sondern allenfalls
ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinhei
ten des Beugungswinkels aufweisen. Es kann jedoch sehr wohl sogar zu besonders guten Builder
eigenschaften führen, wenn die Silikatpartikel bei Elektronenbeugungsexperimenten verwaschene oder
sogar scharfe Beugungsmaxima liefern. Dies ist so zu interpretieren, daß die Produkte mikrokristalline
Bereiche der Größe 10 bis einige Hundert nm aufweisen, wobei Werte bis max. 50 nm und insbesonde
re bis max. 20 nm bevorzugt sind. Derartige sogenannte röntgenamorphe Silikate, welche ebenfalls
eine Löseverzögerung gegenüber den herkömmlichen Wassergläsern aufweisen, werden beispielswei
se in der deutschen Patentanmeldung DE 44 00 024 A1 beschrieben. Insbesondere bevorzugt sind ver
dichtetelkompaktierte amorphe Silikate, compoundierte amorphe Silikate und übertrocknete röntgena
morphe Silikate.
Selbstverständlich ist auch ein Einsatz der allgemein bekannten Phosphate als Buildersubstanzen
möglich, sofern ein derartiger Einsatz nicht aus ökologischen Gründen vermieden werden sollte. Ge
eignet sind insbesondere die Natriumsalze der Orthophosphate, der Pyrophosphate und insbesondere
der Tripolyphosphate. Ihr Gehalt beträgt im allgemeinen nicht mehr als 25 Gew.-%, vorzugsweise nicht
mehr als 20 Gew.-%, jeweils bezogen auf das fertige Mittel. In einigen Fällen hat es sich gezeigt, daß
insbesondere Tripolyphosphate schon in geringen Mengen bis maximal 10 Gew.-%, bezogen auf das
fertige Mittel, in Kombination mit anderen Buildersubstanzen zu einer synergistischen Verbesserung
des Sekundärwaschvermögens führen.
Brauchbare organische Gerüstsubstanzen sind beispielsweise die in Form ihrer Natriumsalze ein
setzbaren Polycarbonsäuren, wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Wein
säure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus
ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind
die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Wein
säure, Zuckersäuren und Mischungen aus diesen. Auch die Säuren an sich können eingesetzt werden.
Die Säuren besitzen neben ihrer Builderwirkung typischerweise auch die Eigenschaft einer Säuerungs
komponente und dienen somit auch zur Einstellung eines niedrigeren und milderen pH-Wertes von
Wasch- oder Reinigungsmitteln. Insbesondere sind hierbei Citronensäure, Bernsteinsäure, Glutarsäure,
Adipinsäure, Gluconsäure und beliebige Mischungen aus diesen zu nennen.
Weitere geeignete organische Buildersubstanzen sind Dextrine, beispielsweise Oligomere bzw. Po
lymere von Kohlenhydraten, die durch partielle Hydrolyse von Stärken erhalten werden können. Die
Hydrolyse kann nach üblichen, beispielsweise säure- oder enzymkatalysierten Verfahren durchgeführt
werden. Vorzugsweise handelt es sich um Hydrolyseprodukte mit mittleren Molmassen im Bereich von
400 bis 500 000. Dabei ist ein Polysaccharid mit einem Dextrose-Äquivalent (DE) im Bereich von 0,5
bis 40, insbesondere von 2 bis 30 bevorzugt, wobei DE ein gebräuchliches Maß für die reduzierende
Wirkung eines Polysaccharids im Vergleich zu Dextrose, welche ein DE von 100 besitzt, ist. Brauchbar
sind sowohl Maltodextrine mit einem DE zwischen 3 und 20 und Trockenglucosesirupe mit einem DE
zwischen 20 und 37 als auch sogenannte Gelbdextrine und Weißdextrine mit höheren Molmassen im
Bereich von 2000 bis 30 000. Ein bevorzugtes Dextrin ist in der britischen Patentanmeldung GB
9419091 A1 beschrieben. Bei den oxidierten Derivaten derartiger Dextrine handelt es sich um deren
Umsetzungsprodukte mit Oxidationsmitteln, welche in der Lage sind, mindestens eine Alkoholfunktion
des Saccharidrings zur Carbonsäurefunktion zu oxidieren. Derartige oxidierte Dextrine und Verfahren
ihrer Herstellung sind beispielsweise aus den europäischen Patentanmeldungen EP 0232202 A1, EP
0427349 A1, EP 0472042 A1 und EP 0542496 A1 sowie den internationalen Patentanmeldungen WO
92/18542, WO 93/08251, WO 93/16110, WO 94/28030, WO 95/07303, WO 95/12619 und WO
95/20608 bekannt. Ebenfalls geeignet ist ein oxidiertes Oligosaccharid gemäß der deutschen Pa
tentanmeldung DE 196 00 018 A1. Ein an C6 des Saccharidrings oxidiertes Produkt kann besonders
vorteilhaft sein.
Weitere geeignete Cobuilder sind Oxydisuccinate und andere Derivate von Disuccinaten, vorzugs
weise Ethylendiamindisuccinat. Besonders bevorzugt sind in diesem Zusammenhang auch Glyce
rindisuccinate und Glycerintrisuccinate, wie sie beispielsweise in den US-amerikanischen Patent
schriften US 4,524,009, US 4,639,325, in der europäischen Patentanmeldung EP 0150930 A1 und der
japanischen Patentanmeldung JP 93/339896 beschrieben werden. Geeignete Einsatzmengen liegen in
zeolithhaltigen und/oder silikathaltigen Formulierungen bei 3 bis 15 Gew.-%.
Weitere brauchbare organische Cobuilder sind beispielsweise acetylierte Hydroxycarbonsäuren bzw.
deren Salze, welche gegebenenfalls auch in Lactonform vorliegen können und welche mindestens 4
Kohlenstoffatome und mindestens eine Hydroxygruppe sowie maximal zwei Säuregruppen enthalten.
Derartige Cobuilder werden beispielsweise in der internationalen Patentanmeldung WO 95/20029 be
schrieben.
Geeignete polymere Polycarboxylate sind beispielsweise die Natriumsalze der Polyacrylsäure oder
der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 800 bis 150 000
(auf Säure bezogen und jeweils gemessen gegen Polystyrolsulfonsäure). Geeignete copolymere Poly
carboxylate sind insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder
Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrylsäure mit
Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten.
Ihre relative Molekülmasse, bezogen auf freie Säuren, beträgt im allgemeinen 5000 bis 200 000, vor
zugsweise 10 000 bis 120 000 und insbesondere 50 000 bis 100 000 (jeweils gemessen gegen Po
lystyrolsulfonsäure). Die (co-)polymeren Polycarboxylate können entweder als Pulver oder als wäßrige
Lösung eingesetzt werden, wobei 20 bis 55gew.-%ige wäßrige Lösungen bevorzugt sind. Granulare
Polymere werden zumeist nachträglich zu einem oder mehreren Basisgranulaten zugemischt. Insbe
sondere bevorzugt sind auch biologisch abbaubare Polymere aus mehr als zwei verschiedenen Mono
mereinheiten, beispielsweise solche, die gemäß der DE 43 00 772 A1 als Monomere Salze der Acrylsäu
re und der Maleinsäure sowie Vinylalkohol bzw. Vinylalkohol-Derivate oder gemäß der DE 42 21 381 C2
als Monomere Salze der Acrylsäure und der 2-Alkylallylsulfonsäure sowie Zucker-Derivate enthalten.
Weitere bevorzugte Copolymere sind solche, die in den deutschen Patentanmeldungen DE 43 03 320
A1 und DE 44 17 734 A1 beschrieben werden und als Monomere vorzugsweise Acrolein und Acryl
säure/Acrylsäuresalze bzw. Acrolein und Vinylacetat aufweisen. Ebenso sind als weitere bevorzugte
Buildersubstanzen polymere Aminodicarbonsäuren, deren Salze oder deren Vorläufersubstanzen zu
nennen. Besonders bevorzugt sind Polyasparaginsäuren bzw. deren Salze und Derivate.
Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Dialdehyden mit
Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hydroxylgruppen aufweisen, bei
spielsweise wie in der europäischen Patentanmeldung EP 0280223 A1 beschrieben, erhalten werden
können. Bevorzugte Polyacetale werden aus Dialdehyden wie Glyoxal, Glutaraldehyd, Terephthalalde
hyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Gluconsäure und/oder Glucoheptonsäu
re erhalten.
Zusätzlich können die Mittel auch Komponenten enthalten, welche die Öl- und Fett-Auswaschbarkeit
aus Textilien positiv beeinflussen. Zu den bevorzugten Öl- und fettlösenden Komponenten zählen bei
spielsweise nichtionische Celluloseether wie Methylcellulose und Methylhydroxypropylcellulose mit
einem Anteil an Methoxyl-Gruppen von 15 bis 30 Gew.-% und an Hydroxypropoxyl-Gruppen von 1 bis
15 Gew.-%, jeweils bezogen auf den nichtionischen Celluloseether, sowie die aus dem Stand der
Technik bekannten Polymere der Phthalsäure und/oder der Terephthalsäure bzw. von deren Deriva
ten, insbesondere Polymere aus Ethylenterephthalaten und/oder Polyethylenglykolterephthalaten oder
anionisch und/oder nichtionisch modifizierten Derivaten von diesen. Besonders bevorzugt von diesen
sind die sulfonierten Derivate der Phthalsäure- und der Terephthalsäure-Polymere.
Weitere geeignete Inhaltsstoffe der Mittel sind wasserlösliche anorganische Salze wie Bicarbonate,
Carbonate, amorphe Silikate, normale Wassergläser, welche keine herausragenden Buildereigen
schaften aufweisen, oder Mischungen aus diesen; insbesondere werden Alkalicarbonat und/oder
amorphes Alkalisilikat, vor allem Natriumsilikat mit einem molaren Verhältnis Na2O : SiO2 von 1 : 1 bis 1 : 4,5,
vorzugsweise von 1 : 2 bis 1 : 3,5, eingesetzt. Der Gehalt an Natriumcarbonat in den endzube
reitungen beträgt dabei vorzugsweise bis zu 40 Gew.-%, vorteilhafterweise zwischen 2 und 35 Gew.-%.
Der Gehalt der Mittel an Natriumsilikat (ohne besondere Buildereigenschaften) beträgt im allgemeinen
bis zu 10 Gew.-% und vorzugsweise zwischen 1 und 8 Gew.-%.
Außer den genannten Inhaltsstoffen können die Mittel weitere bekannte Zusatzstoffe, beispielsweise
Salze von Polyphosphonsäuren, optische Aufheller, Enzyme, Enzymstabilisatoren, Entschäumer, ge
ringe Mengen an neutralen Füllsalzen sowie Farb- und Duftstoffe und dergleichen enthalten.
Unter den als Bleichmittel dienenden, in Wasser H2O2 liefernden Verbindungen haben das Natrium
perborattetrahydrat und das Natriumperboratmonohydrat besondere Bedeutung. Weitere brauchbare
Bleichmittel sind beispielsweise Natriumpercarbonat, Peroxypyrophosphate, Citratperhydrate sowie
H2O2 liefernde persaure Salze oder Persäuren, wie Perbenzoate, Peroxophthalate, Diperazelainsäure,
Phthaloiminopersäure oder Diperdodecandisäure. Der Gehalt der Mittel an Bleichmitteln beträgt vor
zugsweise 5 bis 35 Gew.-% und insbesondere bis 30 Gew.-%, wobei vorteilhafterweise Per
boratmonohydrat oder Percarbonat eingesetzt wird.
Als Bleichaktivatoren können Verbindungen, die unter Perhydrolysebedingungen aliphatische Per
oxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen, und/oder ge
gebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die
O- und/oder N-Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoyl
gruppen tragen. Bevorzugt sind mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylen
diamin (TAED), acylierte Triazinderivate, insbesondere 1,5-Diacetyl-2,4-dioxohexahydro-1,3,5-triazin
(DADHT), acylierte Glykolurile, insbesondere Tetraacetylglykoluril (TAGU), N-Acylimide, insbesondere
N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyl
oxybenzolsulfonat (n- bzw. iso-NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid,
acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat, 2,5-Diacetoxy-2,5-
dihydrofuran und die aus den deutschen Patentanmeldungen DE 196 16 693 A1 und DE 196 16 767 A1
bekannten Enolester sowie acetyliertes Sorbitol und Mannitol beziehungsweise deren in der europäi
schen Patentanmeldung EP 0525239 A1 beschriebene Mischungen (SORMAN), acylierte Zucker
derivate, insbesondere Pentaacetylglukose (PAG), Pentaacetylfruktose, Tetraacetylxylose und Octaa
cetyllactose sowie acetyliertes, gegebenenfalls N-alkyliertes Glucamin und Gluconolacton, und/oder N-
acylierte Lactame, beispielsweise N-Benzoylcaprolactam, die aus den internationalen Patentanmeldun
gen WO 94/27970, WO 94/28102, WO 94/28103, WO 95/00626, WO 95/14759 und WO 95/17498
bekannt sind. Die aus der deutschen Patentanmeldung DE 196 16 769 A1 bekannten hydrophil sub
stituierten Acylacetale und die in der deutschen Patentanmeldung DE 196 16 770 sowie der internatio
nalen Patentanmeldung WO 95/14075 beschriebenen Acyllactame werden ebenfalls bevorzugt einge
setzt. Auch die aus der deutschen Patentanmeldung DE 44 43 177 A1 bekannten Kombinationen kon
ventioneller Bleichaktivatoren können eingesetzt werden. Derartige Bleichaktivatoren sind im üblichen
Mengenbereich, vorzugsweise in Mengen von 1 Gew.-% bis 10 Gew.-%, insbesondere 2 Gew.-% bis
8 Gew.-%, bezogen auf gesamtes Mittel, enthalten. Zusätzlich zu den oben aufgeführten konventionel
len Bleichaktivatoren oder an deren Stelle können auch die aus den europäischen Patentschriften
EP 0446982 B1 und EP 0453 003 B1 bekannten Sulfonimine und/oder bleichverstärkende Über
gangsmetallsalze beziehungsweise Übergangsmetallkomplexe als sogenannte Bleichkatalysatoren
enthalten sein. Zu den in Frage kommenden Übergangsmetallverbindungen gehören insbesondere die
aus der deutschen Patentanmeldung DE 195 29 905 A1 bekannten Mangan-, Eisen-, Kobalt-, Rutheni
um- oder Molybdän-Salenkomplexe und deren aus der deutschen Patentanmeldung DE 196 20 267 A1
bekannte N-Analogverbindungen, die aus der deutschen Patentanmeldung DE 195 36 082 A1 bekann
ten Mangan-, Eisen-, Kobalt-, Ruthenium- oder Molybdän-Carbonylkomplexe, die in der deutschen
Patentanmeldung DE 196 05 688 beschriebenen Mangan-, Eisen-, Kobalt-, Ruthenium-, Molybdän-,
Titan-, Vanadium- und Kupfer-Komplexe mit stickstoffhaltigen Tripod-Liganden, die aus der deutschen
Patentanmeldung DE 196 20 411 A1 bekannten Kobalt-, Eisen-, Kupfer- und Ruthenium-Aminkomplexe,
die in der deutschen Patentanmeldung DE 44 16 438 A1 beschriebenen Mangan-, Kupfer- und Kobalt-
Komplexe, die in der europäischen Patentanmeldung EP 0272030 A1 beschriebenen Kobalt-
Komplexe, die aus der europäischen Patentanmeldung EP 0693550 A1 bekannten Mangan-Komplexe,
die aus der europäischen Patentschrift EP 0392592 A1 bekannten Mangan-, Eisen-, Kobalt- und Kup
fer-Komplexe und/oder die in der europäischen Patentschrift EP 0443651 B1 oder den europäischen
Patentanmeldungen EP 0458397 A1, EP 0458398 A1, EP 0549271 A1, EP 0549272 A1, EP 0544490
A1 und EP 0544519 A1 beschriebenen Mangan-Komplexe, Kombinationen aus Bleichaktivatoren und
Übergangsmetall-Bleichkatalysatoren sind beispielsweise aus der deutschen Patentanmeldung
DE 196 13 103 A1 und der internationalen Patentanmeldung WO 95/27775 bekannt. Bleichverstärkende
Übergangsmetallkomplexe, insbesondere mit den Zentralatomen Mn, Fe, Co, Cu, Mo, V, Ti und/oder
Ru, werden in üblichen Mengen, vorzugsweise in einer Menge bis zu 1 Gew.-%, insbesondere von
0,0025 Gew.-% bis 0,25 Gew.-% und besonders bevorzugt von 0,01 Gew.-% bis 0,1 Gew.-%, jeweils
bezogen auf gesamtes Mittel, eingesetzt.
Als Enzyme kommen insbesondere solche aus der Klasse der Hydrolasen, wie der Proteasen, Estera
sen, Lipasen bzw. lipolytisch wirkenden Enzyme, Amylasen, Cellulasen bzw. andere Glyko
sylhydrolasen und Gemische der genannten Enzyme in Frage. Alle diese Hydrolasen tragen in der
Wäsche zur Entfernung von Verfleckungen, wie protein-, fett- oder stärkehaltigen Verfleckungen, und
Vergrauungen bei. Cellulasen und andere Glykosylhydrolasen können durch das Entfernen von Pilling
und Mikrofibrillen zur Farberhaltung und zur Erhöhung der Weichheit des Textils beitragen. Zur Bleiche
bzw. zur Hemmung der Farbübertragung können auch Oxidoreduktasen eingesetzt werden. Besonders
gut geeignet sind aus Bakterienstämmen oder Pilzen, wie Bacillus subtilis, Bacillus licheniformis,
Streptomyces griseus und Humicola insolens gewonnene enzymatische Wirkstoffe. Vorzugsweise wer
den Proteasen vom Subtilisin-Typ und insbesondere Proteasen, die aus Bacillus lentus gewonnen wer
den, eingesetzt. Dabei sind Enzymmischungen, beispielsweise aus Protease und Amylase oder Pro
tease und Lipase bzw. lipolytisch wirkenden Enzymen oder Protease und Cellulase oder aus Cellulase
und Lipase bzw. lipolytisch wirkenden Enzymen oder aus Protease, Amylase und Lipase bzw. lipoly
tisch wirkenden Enzymen oder Protease, Lipase bzw. lipolytisch wirkenden Enzymen und Cellulase,
insbesondere jedoch Protease- und/oder Lipase-haltige Mischungen bzw. Mischungen mit lipolytisch
wirkenden Enzymen von besonderem Interesse. Beispiele für derartige lipolytisch wirkende Enzyme
sind die bekannten Cutinasen. Auch Peroxidasen oder Oxidasen haben sich in einigen Fällen als ge
eignet erwiesen. Zu den geeigneten Amylasen zählen insbesondere α-Amylasen, Iso-Amylasen, Pul
lulanasen und Pektinasen. Als Cellulasen werden vorzugsweise Cellobiohydrolasen, Endoglucanasen
und β-Glucosidasen, die auch Cellobiasen genannt werden, bzw. Mischungen aus diesen eingesetzt.
Da sich die verschiedenen Cellulase-Typen durch ihre CMCase- und Avicelase-Aktivitäten unterschei
den, können durch gezielte Mischungen der Cellulasen die gewünschten Aktivitäten eingestellt werden.
Die Enzyme können an Trägerstoffen adsorbiert und/oder in Hüllsubstanzen eingebettet sein, um sie
gegen vorzeitige Zersetzung zu schützen. Der Anteil der Enzyme, Enzymmischungen oder Enzym
granulate kann beispielsweise etwa 0,1 bis 5 Gew.-%, vorzugsweise 0,1 bis etwa 2 Gew.-% betragen.
Zusätzlich zu den mono- und polyfunktionellen Alkoholen können die Mittel weitere Enrymstabilisa
toren enthalten. Beispielsweise können 0,5 bis 1 Gew.-% Natriumformiat eingesetzt werden. Möglich
ist auch der Einsatz von Proteasen, die mit löslichen Calciumsalzen und einem Calciumgehalt von vor
zugsweise etwa 1,2 Gew.-%, bezogen auf das Enzym, stabilisiert sind. Außer Calciumsalzen dienen
auch Magnesiumsalze als Stabilisatoren. Besonders vorteilhaft ist jedoch der Einsatz von Borverbin
dungen, beispielsweise von Borsäure, Boroxid, Borax und anderen Alkalimetallboraten wie den Salzen
der Orthoborsäure (H3BO3), der Metaborsäure (HBO2) und der Pyroborsäure (Tetraborsäure H2B4O7).
Vergrauungsinhibitoren haben die Aufgabe, den von der Faser abgelösten Schmutz in der Flotte
suspendiert zu halten und so das Wiederaufziehen des Schmutzes zu verhindern. Hierzu sind was
serlösliche Kolloide meist organischer Natur geeignet, beispielsweise die wasserlöslichen Salze poly
merer Carbonsäuren, Leim, Gelatine, Salze von Ethercarbonsäuren oder Ethersulfonsäuren der Stär
ke oder der Cellulose oder Salze von sauren Schwefelsäureestern der Cellulose oder der Stärke.
Auch wasserlösliche, saure Gruppen enthaltende Polyamide sind für diesen Zweck geeignet. Weiter
hin lassen sich lösliche Stärkepräparate und andere als die obengenannten Stärkeprodukte verwen
den, z. B. abgebaute Stärke, Aldehydstärken usw. Auch Polyvinylpyrrolidon ist brauchbar. Bevorzugt
werden jedoch Celluloseether, wie Carboxymethylcellulose (Na-Salz), Methylcellulose, Hydroxyalkyl
cellulose und Mischether, wie Methylhydroxyethylcellulose, Methylhydroxypropylcellulose, Methylcarb
oxymethylcellulose und deren Gemische, sowie Polyvinylpyrrolidon beispielsweise in Mengen von 0,1
bis 5 Gew.-%, bezogen auf die Mittel, eingesetzt.
Die Mittel können als optische Aufheller Derivate der Diaminostilbendisulfonsäure bzw. deren Alkali
metallsalze enthalten. Geeignet sind z. B. Salze der 4,4'-Bis(2-anilino-4-morpholino-1,3,5-triazinyl-6-
amino)stilben-2,2'-disulfonsäure oder gleichartig aufgebaute Verbindungen, die anstelle der Morpho
lino-Gruppe eine Diethanolaminogruppe, eine Methylaminogruppe, eine Anilinogruppe oder eine 2-
Methoxyethylaminogruppe tragen. Weiterhin können Aufheller vom Typ der substituierten Diphenylsty
ryle anwesend sein, z. B. die Alkalisalze des 4,4'-Bis(2-sulfostyryl)-diphenyls, 4,4'-Bis(4-chlor-3-sulfo
styryl)-diphenyls, oder 4-(4-Chlorstyryl)-4'-(2-sulfostyryl)-diphenyls. Auch Gemische der vorgenannten
Aufheller können verwendet werden. Einheitlich weiße Granulate werden erhalten, wenn die Mittel au
ßer den üblichen Aufhellern in üblichen Mengen, beispielsweise zwischen 0,1 und 0,5 Gew.-%, vor
zugsweise zwischen 0,1 und 0,3 Gew.-%, auch geringe Mengen, beispielsweise 10-6 bis 10-3 Gew.-%,
vorzugsweise um 10-5 Gew.-%, eines blauen Farbstoffs enthalten. Ein besonders bevorzugter Farbstoff
ist Tinolux® (Handelsprodukt der Ciba-Geigy).
Als schmutzabweisende Polymere ("soil repellants") kommen solche Stoffe in Frage, die vorzugsweise
Ethylenterephthalat- und/oder Polyethylenglycolterephthalatgruppen enthalten, wobei das Molverhältnis
Ethylenterephthalat zu Polyethylenglycolterephthalat im Bereich von 50 : 50 bis 90 : 10 liegen kann.
Das Molekulargewicht der verknüpfenden Polyethylenglycoleinheiten liegt insbesondere im Bereich von
750 bis 5000, d. h., der Ethoxylierungsgrad der polyethylenglycolgruppenhaltigen Polymere kann ca. 15
bis 100 betragen. Die Polymeren zeichnen sich durch ein durchschnittliches Molekulargewicht von etwa
5000 bis 200 000 aus und können eine Block-, vorzugsweise aber eine Random-Struktur aufweisen.
Bevorzugte Polymere sind solche mit Molverhältnissen Ethylenterephthalat/Polyethylen
glycolterephthalat von etwa 65 : 35 bis etwa 90 : 10, vorzugsweise von etwa 70 : 30 bis 80 : 20. Weiter
hin bevorzugt sind solche Polymeren, die verknüpfende Polyethylenglycoleinheiten mit einem Mole
kulargewicht von 750 bis 5000, vorzugsweise von 1000 bis etwa 3000 und ein Molekulargewicht des
Polymeren von etwa 10 000 bis etwa 50 000 aufweisen. Beispiele für handelsübliche Polymere sind die
Produkte Milease® T (ICI) oder Repelotex® SRP 3 (Rhône-Poulenc).
Als Entschäumer können wachsartige Verbindungen eingesetzt werden. Als "wachsartig" werden sol
che Verbindungen verstanden, die einen Schmelzpunkt bei Atmosphärendruck über 25°C (Raumtem
peratur), vorzugsweise über 50°C und insbesondere über 70°C aufweisen. Die wachsartigen Ent
schäumersubstanzen sind in Wasser praktisch nicht löslich, d. h. bei 20°C weisen sie in 100 g Wasser
eine Löslichkeit unter 0,1 Gew.-% auf. Prinzipiell können alle aus dem Stand der Technik bekannten
wachsartigen Entschäumersubstanzen enthalten sein. Geeignete wachsartige Verbindungen sind bei
spielsweise Bisamide, Fettalkohole, Fettsäuren, Carbonsäureester von ein- und mehrwertigen Alkoho
len sowie Paraffinwachse oder Mischungen derselben. Alternativ können natürlich auch die für diesen
Zweck bekannten Silikonverbindungen eingesetzt werden.
Geeignete Paraffinwachse stellen im allgemeinen ein komplexes Stoffgemisch ohne scharfen
Schmelzpunkt dar. Zur Charakterisierung bestimmt man üblicherweise seinen Schmelzbereich durch
Differential-Thermo-Analyse (DTA), wie in "The Analyst" 87 (1962), 420, beschrieben, und/oder seinen
Erstarrungspunkt. Darunter versteht man die Temperatur, bei der das Paraffin durch langsames Ab
kühlen aus dem flüssigen in den festen Zustand übergeht. Dabei sind bei Raumtemperatur vollständig
flüssige Paraffine, das heißt solche mit einem Erstarrungspunkt unter 25°C, erfindungsgemäß nicht
brauchbar. Eingesetzt werden können beispielsweise die aus EP 0309931 A1 bekannten Paraf
finwachsgemische aus beispielsweise 26 Gew.-% bis 49 Gew.-% mikrokristallinem Paraffinwachs mit
einem Erstarrungspunkt von 62°C bis 90°C, 20 Gew.-% bis 49 Gew.-% Hartparaffin mit einem Erstar
rungspunkt von 42°C bis 56°C und 2 Gew.-% bis 25 Gew.-% Weichparaffin mit einem Erstarrungs
punkt von 35°C bis 40°C. Vorzugsweise werden Paraffine bzw. Paraffingemische verwendet, die im
Bereich von 30°C bis 90°C erstarren. Dabei ist zu beachten, daß auch bei Raumtemperatur fest er
scheinende Paraffinwachsgemische unterschiedliche Anteile an flüssigem Paraffin enthalten können.
Bei den erfindungsgemäß brauchbaren Paraffinwachsen liegt dieser Flüssiganteil so niedrig wie mög
lich und fehlt vorzugsweise ganz. So weisen besonders bevorzugte Paraffinwachsgemische bei 30°C
einen Flüssiganteil von unter 10 Gew.-%, insbesondere von 2 Gew.-% bis 5 Gew.-%, bei 40°C einen
Flüssiganteil von unter 30 Gew.-%, vorzugsweise von 5 Gew.-% bis 25 Gew.-% und insbesondere von
5 Gew.-% bis 15 Gew.-%, %, bei 60°C einen einen Flüsiganteiganteil von 30 Gew.-% bis 60 Gew.-%, insbesondere
von 40 Gew.-% bis 55 Gew.-%, bei 80°C einen Flüssiganteil von 80 Gew.-% bis 100 Gew.-%, und bei
90°C einen Flüssiganteil von 100 Gew.-% auf. Die Temperatur, bei der ein Flüssiganteil von 100 Gew.-%
des Paraffinwachses erreicht wird, liegt bei besonders bevorzugten Paraffinwachsgemischen noch
unter 85°C, insbesondere bei 75°C bis 82°C. Bei den Paraffinwachsen kann es sich um Petrolatum,
mikrokristalline Wachse bzw. hydrierte oder partiell hydrierte Paraffinwachse handeln.
Geeignete Bisamide als Entschäumer sind solche, die sich von gesättigten Fettsäuren mit 12 bis 22,
vorzugsweise 14 bis 18 C-Atomen sowie von Alkylendiaminen mit 2 bis 7 C-Atomen ableiten. Geeig
nete Fettsäuren sind Laurin-, Myristin-, Stearin-, Arachin- und Behensäure sowie deren Gemische, wie
sie aus natürlichen Fetten beziehungsweise gehärketen Ölen, wie Talg oder hydriertem Palmöl, erhält
lich sind. Geeignete Diamine sind beispielsweise Ethylendiamin, 1,3-Propylendiamin, Tetramethy
lendiamin, Pentamethylendiamin, Hexamethylendiamin, p-Phenylendiamin und Toluylendiamin. Bevor
zugte Diamine sind Ethylendiamin und Hexamethylendiamin. Besonders bevorzugte Bisamide sind
Bismyristoylethylendiamin, Bispalmitoylethylendiamin, Bisstearoylethylendiamin und deren Gemische
sowie die entsprechenden Derivate des Hexamethylendiamins.
Geeignete Carbonsäureester als Entschäumer leiten sich von Carbonsäuren mit 12 bis 28 Kohlen
stoffatomen ab. Insbesondere handelt es sich um Ester von Behensäure, Stearinsäure, Hydroxystea
rinsäure, Ölsäure, Palmitinsäure, Myristinsäure und/oder Laurinsäure. Der Alkoholteil des Carbonsäure
esters enthält einen ein- oder mehrwertigen Alkohol mit 1 bis 28 Kohlenstoffatomen in der Kohlenwas
serstoffkette. Beispiele von geeigneten Alkoholen sind Behenylalkohol, Arachidylalkohol, Kokosalkohol,
12-Hydroxystearylalkohol, Oleylalkohol und Laurylalkohol sowie Ethylenglykol, Glycerin, Polyvinylalko
hol, Saccharose, Erythrit, Pentaerythrit, Sorbitan und/oder Sorbit. Bevorzugte Ester sind solche von
Ethylenglykol, Glycerin und Sorbitan, wobei der Säureteil des Esters insbesondere aus Behensäure,
Stearinsäure, Ölsäure, Palmitinsäure oder Myristinsäure ausgewählt wird. In Frage kommende Ester
mehrwertiger Alkohole sind beispielsweise Xylitmonopalmitat, Pentarythritmonostearat, Glycerin
monostearat, Ethylenglykolmonostearat und Sorbitanmonostearat, Sorbitanpalmitat, Sorbitanmonolau
rat, Sorbitandilaurat, Sorbitandistearat, Sorbitandibehenat, Sorbitandioleat sowie gemischte Talgalkyl
sorbitanmono- und -diester. Brauchbare Glycerinester sind die Mono-, Di- oder Triester von Glycerin
und genannten Carbonsäuren, wobei die Mono- oder Dieester bevorzugt sind. Glycerinmonostearat,
Glycerinmonooleat, Glycerinmonopalmitat, Glycerinmonobehenat und Glycerindistearat sind Beispiele
hierfür. Beispiele für geeignete natürliche Ester als Entschäumer sind Bienenwachs, das hauptsächlich
aus den Estern CH3(CH2)24COO(CH2)27CH3 und CH3(CH2)26COO(CH2)25CH3 besteht, und Carnauba
wachs, das ein Gemisch von Carnaubasäurealkylestern, oft in Kombination mit geringen Anteilen freier
Carnaubasäure, weiteren langkettigen Säuren, hochmolekularen Alkoholen und Kohlenwasserstoffen,
ist.
Geeignete Carbonsäuren als weitere Entschäumerverbindung sind insbesondere Behensäure, Stea
rinsäure, Ölsäure, Palmitinsäure, Myristinsäure und Laurinsäure sowie deren Gemische, wie sie aus
natürlichen Fetten bzw. gegebenenfalls gehärteten Ölen, wie Talg oder hydriertem Palmöl, erhältlich
sind. Bevorzugt sind gesättigte Fettsäuren mit 12 bis 22, insbesondere 18 bis 22 C-Atomen.
Geeignete Fettalkohole als weitere Entschäumerverbindung sind die hydrierten Produkte der be
schriebenen Fettsäuren.
Weiterhin können zusätzlich Dialkylether als Entschäumer enthalten sein. Die Ether können asym
metrisch oder aber symmetrisch aufgebaut sein, d. h. zwei gleiche oder verschiedene Alkylketten, vor
zugsweise mit 8 bis 18 Kohlenstoffatomen enthalten. Typische Beispiele sind Di-n-octylether, Di-i-
octylether und Di-n-stearylether, insbesondere geeignet sind Dialkylether, die einen Schmelzpunkt über
25°C, insbesondere über 40°C aufweisen.
Weitere geeignete Entschäumerverbindungen sind Fettketone, die nach den einschlägigen Methoden
der präparativen organischen Chemie erhalten werden können. Zu ihrer Herstellung geht man bei
spielsweise von Carbonsäuremagnesiumsalzen aus, die bei Temperaturen oberhalb von 300°C unter
Abspaltung von Kohlendioxid und Wasser pyrolysiert werden, beispielsweise gemäß der deutschen
Offenlegungsschrift DE 25 53 900 OS. Geeignete Fettketone sind solche, die durch Pyrolyse der Ma
gnesiumsalze von Laurinsäure, Myristinsäure, Palmitinsäure, Palmitoleinsäure, Stearinsäure, Ölsäure,
Elaidinsäure, Petroselinsäure, Arachinsäure, Gadoleinsäure, Behensäure oder Erucasäure hergestellt
werden.
Weitere geeignete Entschäumer sind Fettsäurepolyethylenglykolester, die vorzugsweise durch ba
sisch homogen katalysierte Anlagerung von Ethylenoxid an Fettsäuren erhalten werden. Insbesondere
erfolgt die Anlagerung von Ethylenoxid an die Fettsäuren in Gegenwart von Alkanolaminen als Kataly
satoren. Der Einsatz von Alkanolaminen, speziell Triethanolamin, führt zu einer äußerst selektiven
Ethoxylierung der Fettsäuren, insbesondere dann, wenn es darum geht, niedrig ethoxylierte Verbin
dungen herzustellen. Innerhalb der Gruppe der Fettsäurepolyethylenglykolester werden solche bevor
zugt, die einen Schmelzpunkt über 25°C, insbesondere über 40°C aufweisen.
Innerhalb der Gruppe der wachsartigen Entschäumer werden besonders bevorzugt die beschriebenen
Paraffinwachse alleine als wachsartige Entschäumer eingesetzt oder in Mischung mit einem der ande
ren wachsartigen Entschäumer, wobei der Anteil der Paraffinwachse in der Mischung vorzugsweise
über 50 Gew.-% - bezogen auf wachsartige Entschäumermischung - ausmacht. Die Paraffinwachse
können bei Bedarf auf Träger aufgebracht sein. Als Trägermaterial sind alle bekannten anorganischen
und/oder organischen Trägermaterialien geeignet. Beispiele für typische anorganische Trä
germaterialien sind Alkalicarbonate, Alumosilikate, wasserlösliche Schichtsilikate, Alkalisilikate, Alkali
sulfate, beispielsweise Natriumsulfat, und Alkaliphosphate. Bei den Alkalisilikaten handelt es sich vor
zugsweise um eine Verbindung mit einem Molverhältnis Alkalioxid zu SiO2 von 1 : 1,5 bis 1 : 3,5. Die
Verwendung derartiger Silikate resultiert in besonders guten Korneigenschaften, insbesondere hoher
Abriebsstabilität und dennoch hoher Auflösungsgeschwindigkeit in Wasser. Zu den als Trägermaterial
bezeichneten Alumosilikaten gehören insbesondere die Zeolithe, beispielsweise Zeolith NaA und NaX.
Zu den als wasserlöslichen Schichtsilikaten bezeichneten Verbindungen gehören beispielsweise amor
phes oder kristallines Wasserglas. Weiterhin können Silikate Verwendung finden, welche unter der
Bezeichnung Aerosil® oder Sipernat® im Handel sind. Als organische Trägermaterialien kommen zum
Beispiel filmbildende Polymere, beispielsweise Polyvinylalkohole, Polyvinylpyrrolidone, Poly
(meth)acrylate, Polycarboxylate, Cellulosederivate und Stärke in Frage. Brauchbare Celluloseether sind
insbesondere Alkalicarboxymethylcellulose, Methylcellulose, Ethylcellulose, Hydroxyethylcellulose und
sogenannte Cellulosemischether, wie zum Beispiel Methylhydroxyethylcellulose und Methylhydroxy
propylcellulose, sowie deren Mischungen. Besonders geeignete Mischungen sind aus Natrium-Carb
oxymethylcellulose und Methylcellulose zusammengesetzt, wobei die Carboxymethylcellulose übli
cherweise einen Substitutionsgrad von 0,5 bis 0,8 Carboxymethylgruppen pro Anhydroglukoseeinheit
und die Methylcellulose einen Substitutionsgrad von 1,2 bis 2 Methylgruppen pro Anhydroglukose
einheit aufweist. Die Gemische enthalten vorzugsweise Alkalicarboxymethylcellulose und nichtioni
schen Celluloseether in Gewichtsverhältnissen von 80 : 20 bis 40 : 60, insbesondere von 75 : 25 bis 50 : 50.
Als Träger ist auch native Stärke geeignet, die aus Amylose und Amylopectin aufgebaut ist. Als
native Stärke wird Stärke bezeichnet, wie sie als Extrakt aus natürlichen Quellen zugänglich ist, bei
spielsweise aus Reis, Kartoffeln, Mais und Weizen. Native Stärke ist ein handelsübliches Produkt und
damit leicht zugänglich. Als Trägermaterialien können einzeln oder mehrere der vorstehend genannten
Verbindungen eingesetzt werden, insbesondere ausgewählt aus der Gruppe der Alkalicarbonate, Alka
lisulfate, Alkaliphosphate, Zeolithe, wasserlösliche Schichtsilikate, Alkalisilikate, Polycarboxylate, Cel
luloseether, Polyacrylat/Polymethacrylat und Stärke. Besonders geeignet sind Mischungen von Alkali
carbonaten, insbesondere Natriumcarbonat, Alkalisilikaten, insbesondere Natriumsilikat, Alkalisulfaten,
insbesondere Natriumsulfat und Zeolithen.
Geeignete Silikone sind übliche Organopolysiloxane, die einen Gehalt an feinteiliger Kieselsäure, die
wiederum auch silaniert sein kann, aufweisen können. Derartige Organopolysiloxane sind beispielswei
se in der europäischen Patentanmeldung EP 0496510 A1 beschrieben. Besonders bevorzugt sind
Polydiorganosiloxane, die aus dem Stand der Technik bekannt sind. Es können aber auch über Siloxan
vernetzte Verbindungen eingesetzt werden, wie sie dem Fachmann unter der Bezeichnung Silikonhar
ze bekannt sind. In der Regel enthalten die Polydiorganosiloxane feinteilige Kieselsäure, die auch sila
niert sein kann. Insbesondere geeignet sind kieselsäurehaltige Dimethylpolysiloxane. Vorteilhafterweise
haben die Polydiorganosiloxane eine Viskosität nach Brookfield bei 25°C im Bereich von 5000 mPa.s
bis 30 000 mPa.s, insbesondere von 15 000 bis 25 000 mPa.s. Die Silikone sind vorzugsweise auf Trä
germaterialien aufgebracht. Geeignete Trägermaterialien sind bereits im Zusammenhang mit den Par
affinen beschrieben worden. Die Trägermaterialien sind in der Regel in Mengen von 40 bis 90 Gew.-%,
vorzugsweise in Mengen von 45 bis 75 Gew.-% - bezogen auf Entschäumer - enthalten.
Als Parfümöle bzw. Duftstoffe können einzelne Riechstoffverbindungen, z. B. die synthetischen Pro
dukte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe verwendet wer
den. Riechstoffverbindungen vom Typ der Ester sind z. B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.-
Butylcyclohexylacetat, Linalylacetat, Dimethylbenzylcarbinylacetat, Phenylethylacetat, Linalylbenzoat,
Benzylformiat, Ethylmethylphenylglycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsa
licylat. Zu den Ethem zählen beispielsweise Benzylethylether, zu den Aldehyden z. B. die linearen Alka
nale mit 8-18 C-Atomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitro
nellal, Lilial und Bourgeonal, zu den Ketonen z. B. die Jonone, α-Isomethylionon und Methylcedrylke
ton, zu den Alkoholen Anethol, Citronellol, Eugenol, Geraniol, Linalool, Phenylethylalkohol und Terpi
neol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene wie Limonen und Pinen. Bevor
zugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine anspre
chende Duftnote erzeugen. Solche Parfümöle können auch natürliche Riechstoffgemische enthalten,
wie sie aus pflanzlichen Quellen zugänglich sind, z. B. Pine-, Citrus-, Jasmin-, Patchouly-, Rosen- oder
Ylang-Ylang-Öl. Ebenfalls geeignet sind Muskateller, Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzöl,
Zimtblätteröl, Lindenblütenöl, Wacholderbeeröl, Vetiveröl, Olibanumöl, Galbanumöl und Labdanumöl
sowie Orangenblütenöl, Neroliol, Orangenschalenöl und Sandelholzöl.
Die Duftstoffe können direkt in die erfindungsgemäßen Mittel eingearbeitet werden, es kann aber auch
vorteilhaft sein, die Duftstoffe auf Träger aufzubringen, welche die Haftung des Parfüms auf der Wä
sche verstärken und durch eine langsamere Duftfreisetzung für langanhaltenden Duft der Textilien sor
gen. Als solche Trägermaterialien haben sich beispielsweise Cyclodextrine bewährt, wobei die Cyclo
dextrin-Parfüm-Komplexe zusätzlich noch mit weiteren Hilfsstoffen beschichtet werden können.
Falls gewünscht können die Endzubereitungen noch anorganische Salze als Füll- bzw. Stellmittel
enthalten, wie beispielsweise Natriumsulfat, welches vorzugsweise in Mengen von 0 bis 10, insbeson
dere 1 bis 5 Gew.-% - bezogen auf Mittel - enthalten ist.
Die unter Einsatz der erfindungsgemäßen Zusatzstoffe erhältlichen Waschmittel können in Form von
Pulvern, Extrudaten, Granulaten oder Agglomeraten hergestellt bzw. eingesetzt werden. Es kann sich
dabei sowohl um Universal- als auch Fein- bzw. Colorwaschmittel, gegebenenfalls in Form von Kom
paktaten oder Superkompaktaten handeln. Zur Herstellung solcher Mittel sind die entsprechenden, aus
dem Stand der Technik bekannten Verfahren, geeignet. Bevorzugt werden die Mittel dadurch herge
stellt, daß verschiedene teilchenförmige Komponenten, die Waschmittelinhaltsstoffe enthalten, mitein
ander vermischt werden. Die teilchenförmigen Komponenten können durch Sprühtrocknung, einfaches
Mischen oder komplexe Granulationsverfahren, beispielsweise Wirbelschichtgranulation, hergestellt
werden. Bevorzugt ist dabei insbesondere, daß mindestens eine tensidhaltige Komponente durch Wir
belschichtgranulation hergestellt wird. Weiter kann es insbesondere bevorzugt sein, wenn wäßrige
Zubereitungen des Alkalisilicats und des Alkalicarbonats gemeinsam mit anderen Waschmittel
inhaltsstoffen in einer Trockeneinrichtung versprüht werden, wobei gleichzeitig mit der Trocknung eine
Granulation stattfinden kann.
Bei der Trockeneinrichtung, in die die wäßrige Zubereitung versprüht wird, kann es sich um beliebige
Trockenapparaturen handeln. In einer bevorzugten Verfahrensführung wird die Trocknung als Sprüh
trocknung in einem Trockenturm durchgeführt. Dabei werden die wäßrigen Zubereitungen in be
kannter Weise einem Trocknungsgasstrom in feinverteilter Form ausgesetzt. In Patentveröffentlichun
gen der Firma Henkel wird eine Ausführungsform der Sprühtrocknung mit überhitztem Wasserdampf
beschrieben. Das dort offenbarte Arbeitsprinzip wird hiermit ausdrücklich auch zum Gegenstand der
vorliegenden Erfindungsoffenbarung gemacht. Verwiesen wird hier insbesondere auf die nachfol
genden Druckschriften: DE 40 30 688 A1 sowie die weiterführenden Veröffentlichungen gemäß DE
42 04 035 A1; DE 42 04 090 A1; DE 42 06 050 A1; DE 42 06 521 A1; DE 42 06 495 A1; DE 42 08 773 A1; DE
42 09 432 A1 und DE 42 34 376 A1. Dieses Verfahren wurde schon im Zusammenhang mit der Herstel
lung des Entschäumerkorn vorgestellt.
In einer anderen, insbesondere wenn Mittel hoher Schüttdichte erhalten werden sollen, bevorzugten
Variante werden die Gemische anschließend einem Kompaktierungsschritt unterworfen, wobei weitere
Inhaltsstoffe den Mitteln erst nach dem Kompaktierungsschritt zugemischt werden. Die Kompaktierung
der Inhaltsstoffe findet in einer bevorzugten Ausführungsform der Erfindung in einem Preßagglomerati
onsverfahren statt. Der Preßagglomerationsvorgang, dem das feste Vorgemisch (getrocknetes Basis
waschmittel) unterworfen wird, kann dabei in verschiedenen Apparaten realisiert werden. Je nach dem
Typ des verwendeten Agglomerators werden unterschiedliche Preßagglomerationsverfahren unter
schieden. Die vier häufigsten und im Rahmen der vorliegenden Erfindung bevorzugten Preßagglome
rationsverfahren sind dabei die Extrusion, das Walzenpressen bzw. -kompaktieren, das Lochpressen
(Pelletieren) und das Tablettieren, so daß im Rahmen der vorliegenden Erfindung bevorzugte Preßag
glomerationsvorgänge Extrusions-, Walzenkompaktierungs-, Pelletierungs- oder Tablettierungsvorgän
ge sind.
Allen Verfahren ist gemeinsam, daß das Vorgemisch unter Druck verdichtet und plastifiziert wird und
die einzelnen Partikel unter Verringerung der Porosität aneinandergedrückt werden und aneinander
haften. Bei allen Verfahren (bei der Tablettierung mit Einschränkungen) lassen sich die Werkzeuge
dabei auf höhere Temperaturen aufheizen oder zur Abführung der durch Scherkräfte entstehenden
Wärme kühlen.
In allen Verfahren kann als Hilfsmittel zur Verdichtung ein oder mehrere Bindemittel eingesetzt werden.
Dabei soll jedoch klargestellt sein, daß an sich immer auch der Einsatz von mehreren, verschiedenen
Bindemitteln und Mischungen aus verschiedenen Bindemitteln möglich ist. In einer bevorzugten Aus
führungsform der Erfindung wird ein Bindemittel eingesetzt, daß bei Temperaturen bis maximal 130°C,
vorzugsweise bis maximal 100°C und insbesondere bis 90°C bereits vollständig als Schmelze vor
liegt. Das Bindemittel muß also je nach Verfahren und Verfahrensbedingungen ausgewählt werden
oder die Verfahrensbedingungen, insbesondere die Verfahrenstemperatur, müssen - falls ein be
stimmtes Bindemittel gewünscht wird - an das Bindemittel angepaßt werden.
Der eigentliche Verdichtungsprozeß erfolgt dabei vorzugsweise bei Verarbeitungstemperaturen, die
zumindest im Verdichtungsschritt mindestens der Temperatur des Erweichungspunkts, wenn nicht so
gar der Temperatur des Schmelzpunkts des Bindemittels entsprechen. In einer bevorzugten Aus
führungsform der Erfindung liegt die Verfahrenstemperatur signifikant über dem Schmelzpunkt bzw.
oberhalb der Temperatur, bei der das Bindemittel als Schmelze vorliegt. Insbesondere ist es aber be
vorzugt, daß die Verfahrenstemperatur im Verdichtungsschritt nicht mehr als 20°C über der Schmelz
temperatur bzw. der oberen Grenze des Schmelzbereichs des Bindemittels liegt. Zwar ist es technisch
durchaus möglich, auch noch höhere Temperaturen einzustellen; es hat sich aber gezeigt, daß eine
Temperaturdifferenz zur Schmelztemperatur bzw. zur Erweichungstemperatur des Bindemittels von 20°C
im allgemeinen durchaus ausreichend ist und noch höhere Temperaturen keine zusätzlichen Vor
teile bewirken. Deshalb ist es - insbesondere auch aus energetischen Gründen - besonders bevorzugt,
zwar oberhalb, jedoch so nah wie möglich am Schmelzpunkt bzw. an der oberen Temperaturgrenze
des Schmelzbereichs des Bindemittels zu arbeiten. Eine derartige Temperaturführung besitzt den wei
teren Vorteil, daß auch thermisch empfindliche Rohstoffe, beispielsweise Peroxybleichmittel wie Perbo
rat und/oder Percarbonat, aber auch Enzyme, zunehmend ohne gravierende Aktivsubstanzverluste ver
arbeitet werden können. Die Möglichkeit der genauen Temperatursteuerung des Binders insbesondere
im entscheidenden Schritt der Verdichtung, also zwischen der Vermischung/Homogenisierung des
Vorgemisches und der Formgebung, erlaubt eine energetisch sehr günstige und für die temperatur
empfindlichen Bestandteile des Vorgemisches extrem schonende Verfahrensführung, da das Vor
gemisch nur für kurze Zeit den höheren Temperaturen ausgesetzt ist. In bevorzugten Preßagglomerati
onsverfahren weisen die Arbeitswerkzeuge des Preßagglomerators (die Schnecke(n) des Extruders,
die Walze(n) des Walzenkompaktors sowie die Preßwalze(n) der Pelletpresse) eine Temperatur von
maximal 150°C, vorzugsweise maximal 100°C und insbesondere maximal 75°C auf und die Verfah
renstemperatur liegt bei 30°C und insbesondere maximal 20°C oberhalb der Schmelztemperatur bzw.
der oberen Temperaturgrenze des Schmelzbereichs des Bindemittels. Vorzugsweise beträgt die Dauer
der Temperatureinwirkung im Kompressionsbereich der Preßagglomeratoren maximal 2 Minuten und
liegt insbesondere in einem Bereich zwischen 30 Sekunden und 1 Minute.
Bevorzugte Bindemittel, die allein oder in Mischung mit anderen Bindemitteln eingesetzt werden kön
nen, sind Polyethylenglykole, 1,2-Polypropylenglykole sowie modifizierte Polyethylenglykole und Poly
propylenglykole. Zu den modifizierten Polyalkylenglykoten zählen insbesondere die Sulfate und/oder
die Disulfate von Polyethylenglykolen oder Polypropylenglykolen mit einer relativen Molekülmasse zwi
schen 600 und 12 000 und insbesondere zwischen 1000 und 4000. Eine weitere Gruppe besteht aus
Mono- und/oder Disuccinaten der Polyalkylenglykole, welche wiederum relative Molekülmassen zwi
schen 600 und 6000, vorzugsweise zwischen 1000 und 4000 aufweisen. Für eine genauere Be
schreibung der modifizierten Polyalkylenglykolether wird auf die Offenbarung der internationalen Pa
tentanmeldung WO 93/02176 verwiesen. Im Rahmen dieser Erfindung zählen zu Polyethylenglykolen
solche Polymere, bei deren Herstellung neben Ethylenglykol ebenso C3-C5-Glykole sowie Glycerin und
Mischungen aus diesen als Startmoleküle eingesetzt werden. Ferner werden auch ethoxylierte Derivate
wie Trimethylolpropan mit 5 bis 30 EO umfaßt. Die vorzugsweise eingesetzten Polyethylenglykole kön
nen eine lineare oder verzweigte Struktur aufweisen, wobei insbesondere lineare Polyethylenglykole
bevorzugt sind. Zu den insbesondere bevorzugten Polyethylenglykolen gehören solche mit relativen
Molekülmassen zwischen 2000 und 12 000, vorteilhafterweise um 4000, wobei Polyethylenglykole mit
relativen Molekülmassen unterhalb 3500 und oberhalb 5000 insbesondere in Kombination mit Poly
ethylenglykolen mit einer relativen Molekülmasse um 4000 eingesetzt werden können und derartige
Kombinationen vorteilhafterweise zu mehr als 50 Gew.-%, bezogen auf die gesamte Menge der Polye
thylenglykole, Polyethylenglykole mit einer relativen Molekülmasse zwischen 3500 und 5000 aufwei
sen. Als Bindemittel können jedoch auch Polyethylenglykole eingesetzt werden, welche an sich bei
Raumtemperatur und einem Druck von 1 bar in flüssigem Stand vorliegen; hier ist vor allem von Poly
ethylenglykol mit einer relativen Molekülmasse von 200, 400 und 600 die Rede. Allerdings sollten diese
an sich flüssigen Polyethylenglykole nur in einer Mischung mit mindestens einem weiteren Bindemittel
eingesetzt werden, wobei diese Mischung wieder den erfindungsgemäßen Anforderungen genügen
muß, also einen Schmelzpunkt bzw. Erweichungspunkt von mindestens oberhalb 45°C aufweisen
muß. Ebenso eignen sich als Bindemittel niedermolekulare Polyvinylpyrrolidone und Derivate von die
sen mit relativen Molekülmassen bis maximal 30 000. Bevorzugt sind hierbei relative Mo
lekülmassenbereiche zwischen 3 000 und 30 000, beispielsweise um 10 000. Polyvinylpyrrolidone wer
den vorzugsweise nicht als alleinige Bindemittel, sondern in Kombination mit anderen, insbesondere in
Kombination mit Polyethylenglykolen, eingesetzt.
Das verdichtete Gut weist direkt nach dem Austritt aus dem Herstellungsapparat vorzugsweise Tempe
raturen nicht oberhalb von 90°C auf, wobei Temperaturen zwischen 35 und 85°C besonders bevor
zugt sind. Es hat sich herausgestellt, daß Austrittstemperaturen - vor allem im Extrusionsverfahren -
von 40 bis 80°C, beispielsweise bis 70°C, besonders vorteilhaft sind.
In einer bevorzugten Ausführungsform wird das erfindungsgemäße Waschmittel mittels einer Extrusion
hergestellt, wie sie beispielsweise in dem europäischen Patent EP 0486592 B1 oder den interna
tionalen Patentanmeldungen WO 93/02176 und WO 94/09111 bzw. WO 98/12299 beschrieben wer
den. Dabei wird ein festes Vorgemisch unter Druck strangförmig verpreßt und der Strang nach Austritt
aus der Lochform mittels einer Schneidevorrichtung auf die vorbestimmbare Granulatdimension zuge
schnitten. Das homogene und feste Vorgemisch enthält ein Plastifizier- und/oder Gleitmittel, welches
bewirkt, daß das Vorgemisch unter dem Druck bzw. unter dem Eintrag spezifischer Arbeit plastisch
erweicht und extrudierbar wird. Bevorzugte Plastifizier- und/oder Gleitmittel sind Tenside und/oder Po
lymere. Zur Erläuterung des eigentlichen Extrusionsverfahrens wird hiermit ausdrücklich auf die oben
genannten Patente und Patentanmeldungen verwiesen. Vorzugsweise wird dabei das Vorgemisch
vorzugsweise einem Planetwalzenextruder oder einem 2-Wellen-Extruder bzw. 2-Schnecken-Extruder
mit gleichlaufender oder gegenlaufender Schneckenführung zugeführt, dessen Gehäuse und dessen
Extruder-Granulierkopf auf die vorbestimmte Extrudiertemperatur aufgeheizt sein können. Unter der
Schereinwirkung der Extruderschnecken wird das Vorgemisch unter Druck, der vorzugsweise minde
stens 25 bar beträgt, bei extrem hohen Durchsätzen in Abhängigkeit von dem eingesetzten Apparat
aber auch darunter liegen kann, verdichtet, plastifiziert, in Form feiner Stränge durch die Lochdüsen
platte im Extruderkopf extrudiert und schließlich das Extrudat mittels eines rotierenden Abschlag
messers vorzugsweise zu etwa kugelförmigen bis zylindrischen Granulatkörnern verkleinert. Der Loch
durchmesser der Lochdüsenplatte und die Strangschnittlänge werden dabei auf die gewählte Granulat
dimension abgestimmt. So gelingt die Herstellung von Granulaten einer im wesentlichen gleichmäßig
vorherbestimmbaren Teilchengröße, wobei im einzelnen die absoluten Teilchengrößen dem beabsich
tigten Einsatzzweck angepaßt sein können. Im allgemeinen werden Teilchendurchmesser bis höch
stens 0,8 cm bevorzugt. Wichtige Ausführungsformen sehen hier die Herstellung von einheitlichen Gra
nulaten im Millimeterbereich, beispielsweise im Bereich von 0,5 bis 5 mm und insbesondere im Bereich
von etwa 0,8 bis 3 mm vor. Das Länge/Durchmesser-Verhältnis der abgeschlagenen primären Granu
late liegt dabei vorzugsweise im Bereich von etwa 1 : 1 bis etwa 3 : 1. Weiterhin ist es bevorzugt, das
noch plastische Primärgranulat einem weiteren formgebenden Verarbeitungsschritt zuzuführen; dabei
werden am Rohextrudat vorliegende Kanten abgerundet, so daß letztlich kugelförmig bis annähernd
kugelförmige Extrudatkörner erhalten werden können. Falls gewünscht können in dieser Stufe geringe
Mengen an Trockenpulver, beispielsweise Zeolithpulver wie Zeolith NaA-Pulver, mitverwendet werden.
Diese Formgebung kann in marktgängigen Rondiergeräten erfolgen. Dabei ist darauf zu achten, daß in
dieser Stufe nur geringe Mengen an Feinkornanteil entstehen. Eine Trocknung, welche in den obenge
nannten Dokumenten des Standes der Technik als bevorzugte Ausführungsform beschrieben wird, ist
anschließend möglich, aber nicht zwingend erforderlich. Es kann gerade bevorzugt sein, nach dem
Kompaktierungsschritt keine Trocknung mehr durchzuführen. Alternativ können Extrusio
nen/Verpressungen auch in Niedrigdruckextrudern, in der Kahl-Presse (Fa. Amandus Kahl) oder im
Bextruder der Fa. Bepex durchgeführt werden. Bevorzugt ist die Temperaturführung im Übergangsbe
reich der Schnecke, des Vorverteilers und der Düsenplatte derart gestaltet, daß die Schmelztemperatur
des Bindemittels bzw. die obere Grenze des Schmelzbereichs des Bindemittels zumindest erreicht,
vorzugsweise aber überschritten wird. Dabei liegt die Dauer der Temperatureinwirkung im Kompressi
onsbereich der Extrusion vorzugsweise unterhalb von 2 Minuten und insbesondere in einem Bereich
zwischen 30 Sekunden und 1 Minute.
Die erfindungsgemäßen Waschmittel können auch mittels einer Walzenkompaktierung hergestellt
werden. Hierbei wird das Vorgemisch gezielt zwischen zwei glatte oder mit Vertiefungen von definierter
Form versehene Walzen eindosiert und zwischen den beiden Walzen unter Druck zu einem blattförmi
gen Kompaktat, der sogenannten Schülpe, ausgewalzt. Die Walzen üben auf das Vorgemisch einen
hohen Liniendruck aus und können je nach Bedarf zusätzlich geheizt bzw. gekühlt werden. Bei der
Verwendung von Glattwalzen erhält man glatte, unstrukturierte Schülpenbänder, während durch die
Verwendung strukturierter Walzen entsprechend strukturierte Schülpen erzeugt werden können, in
denen beispielsweise bestimmte Formen der späteren Waschmittelteilchen vorgegeben werden kön
nen. Das Schülpenband wird nachfolgend durch einen Abschlag- und Zerkleinerungsvorgang in kleine
re Stücke gebrochen und kann auf diese Weise zu Granulatkörnern verarbeitet werden, die durch wei
tere an sich bekannte Oberflächenbehandlungsverfahren veredelt, insbesondere in annähernd kugel
förmige Gestalt gebracht werden können. Auch bei der Walzenkompaktierung liegt die Temperatur der
pressenden Werkzeuge, also der Walzen, bevorzugt bei maximal 150°C, vorzugsweise bei maximal
100°C und insbesondere bei maximal 75°C. Besonders bevorzugte Herstellungsverfahren arbeiten
bei der Walzenkompaktierung mit Verfahrenstemperaturen, die 10°C, insbesondere maximal 5°C
oberhalb der Schmelztemperatur bzw. der oberen Temperaturgrenze des Schmelzbereichs des Binde
mittels liegen. Hierbei ist es weiter bevorzugt, daß die Dauer der Temperatureinwirkung im Kompressi
onsbereich der glatten oder mit Vertiefungen von definierter Form versehenen Walzen maximal 2 Mi
nuten beträgt und insbesondere in einem Bereich zwischen 30 Sekunden und 1 Minute liegt.
Das erfindungsgemäße Waschmittel kann auch mittels einer Pelletierung hergestellt werden. Hierbei
wird das Vorgemisch auf eine perforierte Fläche aufgebracht und mittels eines druckgebenden Körpers
unter Plastifizierung durch die Löcher gedrückt. Bei üblichen Ausführungsformen von Pelletpressen
wird das Vorgemisch unter Druck verdichtet, plastifiziert, mittels einer rotierenden Walze in Form feiner
Stränge durch eine perforierte Fläche gedrückt und schließlich mit einer Abschlagvorrichtung zu Gra
nulatkörnern zerkleinert. Hierbei sind die unterschiedlichsten Ausgestaltungen von Druckwalze und
perforierter Matrize denkbar. So finden beispielsweise flache perforierte Teller ebenso Anwendung wie
konkave oder konvexe Ringmatrizen, durch die das Material mittels einer oder mehrerer Druckwalzen
hindurchgepreßt wird. Die Preßrollen können bei den Tellergeräten auch konisch geformt sein, in den
ringförmigen Geräten können Matrizen und Preßrolle(n) gleichläufigen oder gegenläufigen Drehsinn
besitzen. Ein zur Durchführung des Verfahrens geeigneter Apparat wird beispielsweise in der deut
schen Offenlegungsschrift DE 38 16 842 A1 beschrieben. Die in dieser Schrift offenbarte Ringmatrizen
presse besteht aus einer rotierenden, von Preßkanälen durchsetzten Ringmatrize und wenigstens einer
mit deren Innenfläche in Wirkverbindung stehenden Preßrolle, die das dem Matrizenraum zugeführte
Material durch die Preßkanäle in einen Materialaustrag preßt. Hierbei sind Ringmatrize und Preßrolle
gleichsinnig antreibbar, wodurch eine verringerte Scherbelastung und damit geringere Temperaturer
höhung des Vorgemischs realisierbar ist. Selbstverständlich kann aber auch bei der Pelletierung mit
heiz- oder kühlbaren Walzen gearbeitet werden, um eine gewünschte Temperatur des Vorgemischs
einzustellen. Auch bei der Pelletierung liegt die Temperatur der pressenden Werkzeuge, also der
Druckwalzen oder Preßrollen, bevorzugt bei maximal 150°C, vorzugsweise bei maximal 100°C und
insbesondere bei maximal 75°C. Besonders bevorzugte Herstellungsverfahren arbeiten bei der Wal
zenkompaktierung mit Verfahrenstemperaturen, die 10°C, insbesondere maximal 5°C oberhalb der
Schmelztemperatur bzw. der oberen Temperaturgrenze des Schmelzbereichs des Bindemittels liegen.
Ein weiterer Gegenstand der Erfindung betrifft schließlich die Verwendung von Proteinen und Protein
derivaten, insbesondere Proteinhydrolysaten und Proteinfettsäurekondensaten als Avivagemittel zur
Herstellung von Waschmitteln, in denen sie in Mengen von 0,1 bis 10, vorzugsweise 1 bis 8 und insbe
sondere 3 bis 5 Gew.-% - bezogen auf die Mittel - enthalten sein können.
In einer Waschmaschine (Miele W 918) wurden
3,5 kg Standard-Wäsche und ein Frottiertuch (welches zur Vorbehandlung zweimal mit einem Univer
salwaschmittel gewaschen wurde) in einem Vollwaschgang bei 90°C gewaschen. Jeweils 84 g
Waschmittel der Zusammensetzung nach Tabelle 1 wurden unmittelbar vor dem Versuch in die Ein
spülkammer gegeben. Nach dem Waschgang wurde das Frottiertuch 24 Stunden bei Raumtemperatur
getrocknet und anschließend einem Panel-Test von 20 Personen unterzogen. Jede Person vergab eine
Note zwischen 1 und 4 (1 = hart; 4 = sehr weich). Aus dem Durchschnitt ergab sich die Bewertung für
die Produkte, die ebenfalls Tabelle 1 zu entnehmen ist.
Claims (10)
1. Waschmittel, enthaltend
- a) anionische, nichtionische und/oder amphotere Tenside,
- b) nicht-enzymatische Proteine und/oder deren Derivate, und
- c) Zeolithe.
2. Waschmittel nach Anspruch 1, dadurch gekennzeichnet, daß sie anionische Tenside enthalten,
die ausgesucht sind aus der Gruppe, die gebildet wird von Alkylbenzolsulfonaten, Alkylsulfaten,
Seifen, Alkansulfonaten, Olefinsulfonaten und Methylestersulfonaten.
3. Waschmittel nach den Ansprüchen 1 und/oder 2, dadurch gekennzeichnet, daß sie nichtionische
Tenside enthalten, die ausgewählt sind aus der Gruppe, die gebildet wird von Fettalkoholpolygly
colethern, alkoxylierten Fettsäureniedrigalkylestern und Alkyl- und/oder Alkenyloligoglykosiden.
4. Waschmittel nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß sie
die Tenside in Mengen von 1 bis 50 Gew.-% - bezogen auf die Waschmittel - enthalten.
5. Waschmittel nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß sie
Proteine enthalten, die ausgewählt sind aus der Gruppe, die gebildet wird von Keratin, Elastin,
Kollagen, Weizenproteinen, Milchproteinen, Eiweißproteinen, Seidenproteinen, Mandelproteinen
und Sojaproteinen
6. Waschmittel nach Anspruch 5, dadurch gekennzeichnet, daß sie die Proteine in Form ihrer Hy
drolysate bzw. Kondensationsprodukte der Hydrolysate mit Fettsäuren enthalten.
7. Waschmittel nach mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß sie
die Proteine bzw. deren Derivate in Mengen von 0,1 bis 10 Gew.-% - bezogen auf die Mittel - ent
halten.
8. Waschmittel nach mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß sie
Zeolith A, Zeolith P, Zeolith X oder deren Gemische enthalten.
9. Waschmittel nach mindestens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß sie
die Zeolithe in Mengen von 10 bis 60 Gew.-% - bezogen auf die Mittel - enthalten.
10. Verwendung von Proteinen und Proteinderivaten als Avivagemittel zur Herstellung von Wasch
mitteln.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE1999142538 DE19942538A1 (de) | 1999-09-07 | 1999-09-07 | Waschmittel |
EP00118648A EP1083215A1 (de) | 1999-09-07 | 2000-08-29 | Waschmittel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE1999142538 DE19942538A1 (de) | 1999-09-07 | 1999-09-07 | Waschmittel |
Publications (1)
Publication Number | Publication Date |
---|---|
DE19942538A1 true DE19942538A1 (de) | 2001-03-08 |
Family
ID=7921011
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE1999142538 Withdrawn DE19942538A1 (de) | 1999-09-07 | 1999-09-07 | Waschmittel |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP1083215A1 (de) |
DE (1) | DE19942538A1 (de) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3939579A1 (de) * | 1989-11-30 | 1991-06-06 | Henkel Kgaa | Geformte koerperreinigungsmittel |
DE4131807A1 (de) * | 1990-04-30 | 1993-03-25 | Protein Tech Int | Wasch-detergens mit verbesserten anti-vergrauungseigenschaften und verfahren zu seiner herstellung |
WO1996022352A1 (en) * | 1995-01-20 | 1996-07-25 | The Procter & Gamble Company | Detergent compositions comprising stabilised polyamino acid compounds |
DE19544453A1 (de) * | 1995-11-29 | 1997-06-05 | Henkel Kgaa | Syndet-Seifenmassen |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55116798A (en) * | 1979-03-02 | 1980-09-08 | Ajinomoto Kk | Deodorant detergent composition |
DE3228479A1 (de) * | 1982-07-30 | 1984-02-09 | Dénes 7312 Kirchheim Pötschke | Waschmittel fuer textilien |
DE4329065A1 (de) * | 1993-08-28 | 1995-03-02 | Henkel Kgaa | Flüssigwaschmittel |
-
1999
- 1999-09-07 DE DE1999142538 patent/DE19942538A1/de not_active Withdrawn
-
2000
- 2000-08-29 EP EP00118648A patent/EP1083215A1/de not_active Withdrawn
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3939579A1 (de) * | 1989-11-30 | 1991-06-06 | Henkel Kgaa | Geformte koerperreinigungsmittel |
DE4131807A1 (de) * | 1990-04-30 | 1993-03-25 | Protein Tech Int | Wasch-detergens mit verbesserten anti-vergrauungseigenschaften und verfahren zu seiner herstellung |
WO1996022352A1 (en) * | 1995-01-20 | 1996-07-25 | The Procter & Gamble Company | Detergent compositions comprising stabilised polyamino acid compounds |
DE19544453A1 (de) * | 1995-11-29 | 1997-06-05 | Henkel Kgaa | Syndet-Seifenmassen |
Non-Patent Citations (1)
Title |
---|
Ausdruck aus Depatis R vom 7.7.00 des IP-Abstraktsmit Anmeldenummer 1988 12717 (25.1.88) * |
Also Published As
Publication number | Publication date |
---|---|
EP1083215A1 (de) | 2001-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1240290B1 (de) | Tensidgranulate mit verbesserter auflösegeschwindigkeit | |
EP1235897B1 (de) | Waschmitteltabletten | |
EP1106675B1 (de) | Verwendung von Partialglyceridpolyglycolethern | |
DE19962859A1 (de) | Feste Waschmittel | |
DE19962883A1 (de) | Waschmitteltabletten | |
EP1188817A2 (de) | Waschmittel | |
DE19956803A1 (de) | Tensidgranulate mit verbesserter Auflösegeschwindigkeit | |
DE19953796A1 (de) | Feste Wasch-, Spül- und Reinigungsmittel | |
EP1191094A2 (de) | Waschmittel | |
DE19953793A1 (de) | Tensidgranulate mit verbesserter Auflösegeschwindigkeit | |
DE10003124A1 (de) | Verfahren zur Herstellung von Tensidgranulaten | |
DE19941934A1 (de) | Detergentien in fester Form | |
EP1214389B1 (de) | Tensidmischungen | |
DE19942539A1 (de) | Waschmittel | |
EP1212400B1 (de) | Waschmitteltabletten | |
DE19953792A1 (de) | Waschmitteltabletten | |
DE19939806A1 (de) | Schaumkontrollierte feste Waschmittel | |
DE19928923A1 (de) | Schaumkontrollierte feste Waschmittel | |
EP1090979A1 (de) | Entschäumergranulate | |
DE19939804A1 (de) | Schaumkontrollierte feste Waschmittel | |
DE19942538A1 (de) | Waschmittel | |
DE19944218A1 (de) | Waschmitteltabletten | |
DE19948671A1 (de) | Waschmittel | |
DE19939805A1 (de) | Schaumkontrollierte feste Waschmittel | |
DE19948670A1 (de) | Waschmittel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OP8 | Request for examination as to paragraph 44 patent law | ||
8127 | New person/name/address of the applicant |
Owner name: COGNIS DEUTSCHLAND GMBH & CO. KG, 40589 DUESSELDOR |
|
8139 | Disposal/non-payment of the annual fee |