DE19650572A1 - Verfahren zur Kühlung einer Wechselstrommaschine, insbesondere Transversalflußmaschine und Wechselstrommaschine, insbesondere Transversalflußmaschine - Google Patents

Verfahren zur Kühlung einer Wechselstrommaschine, insbesondere Transversalflußmaschine und Wechselstrommaschine, insbesondere Transversalflußmaschine

Info

Publication number
DE19650572A1
DE19650572A1 DE19650572A DE19650572A DE19650572A1 DE 19650572 A1 DE19650572 A1 DE 19650572A1 DE 19650572 A DE19650572 A DE 19650572A DE 19650572 A DE19650572 A DE 19650572A DE 19650572 A1 DE19650572 A1 DE 19650572A1
Authority
DE
Germany
Prior art keywords
stator
rotor
machine
cooling
coolant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19650572A
Other languages
English (en)
Inventor
Uwe Muehlberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voith Turbo GmbH and Co KG
Original Assignee
Voith Turbo GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voith Turbo GmbH and Co KG filed Critical Voith Turbo GmbH and Co KG
Priority to DE19650572A priority Critical patent/DE19650572A1/de
Priority to PCT/EP1997/006733 priority patent/WO1998025331A1/de
Priority to EP97953731A priority patent/EP0882322A1/de
Publication of DE19650572A1 publication Critical patent/DE19650572A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/227Heat sinks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Kühlung einer Wechselstrommaschine insbesondere einer Transversalflußmaschine, ferner eine Transversalflußmaschine.
Elektrische Maschinen in Form von Wechselstrommaschinen, die nach dem Transversalflußprinzip arbeiten, sind in verschiedenen Ausführungen aus einer Vielzahl von Druckschriften, beispielsweise
  • (1) DE 35 36 538 A1
  • (2) DE 37 05 089 C1
  • (3) DE 39 04 516 C1
  • (4) DE 41 25 779 C1
bekannt. Diese beschreiben im wesentlichen das Grundprinzip und den Aufbau.
Wechselstrommaschinen, die nach dem Transversalflußprinzip arbeiten, umfassen wenigstens einen Stator mit mindestens einer Ankerwicklung und einen der Ankerwicklung gegenüberliegenden Rotor. Der Rotor besteht dabei aus wenigstens zwei nebeneinander angeordneten, durch eine Zwischenlage aus magnetisch und elektrisch nicht leitenden Material getrennten, Ringelementen, die in Umfangsrichtung eine Vielzahl von wechselweise angeordneten polarisierten Magneten und Weicheisenelementen aufweisen. Eine derartige Anordnung zweier Ringelemente bildet eine Polstruktur. Vorzugsweise sind Transversalflußmaschinen symmetrisch aufgebaut. Diese umfassen dann zwei durch eine zentrale Trägerscheibe getrennte Polstrukturen.
Bei einer derartigen Maschine wird im Betrieb sowohl im Rotor als auch im Stator aufgrund der durch die Wicklungen und die Magnetkerne auftretenden und durch induzierte Wirbelströme bedingten Verlustleistungen Wärme erzeugt. Diese begrenzt bei Nichtergreifung geeigneter Maßnahmen die Belastbarkeit, die Belastungsdauer und damit auch die Einsetzbarkeit der Wechselstrommaschine. Insbesondere sind vor allem Situationen kritisch, bei denen eine solche Maschine bei hoher Last und vor allem hoher Drehzahl arbeitet.
Zur Vermeidung dieses nachteiligen Effektes ist es grundsätzlich bekannt, den Stator an Kühleinrichtungen anzuschließen. Auf diese Weise kann eine Erwärmung der Maschine und deren Komponenten verringert werden.
Aus der DE 43 35 848 A1 sind eine Vielzahl von Möglichkeiten zur Verbesserung der Kühlwirkung bekannt, im einzelnen eine Kühlanordnung derart auszuführen, daß die Kühleinrichtungen mindestens einen Kühlkanal aufweisen, welcher im Bereich oder in der Nähe der Trägerscheibe in den Stator eingebaut und von einem Kühlfluid durchströmbar ist. Jeder Kühlkanal ist dabei von der Trägerscheibe nur durch eine Kanalabdeckung minimaler Dicke und den Luftspalt zwischen Rotor und Stator getrennt.
Ebenfalls aus dieser Druckschrift bekannt, ist eine Ausführung mit axial verlaufendem Kühlkanal in einer Distanzscheibe, welche zwischen einem Paar von Statorabschnitten vorgesehen ist. Die Distanzscheibe liegt der Trägerscheibe radial gegenüber, ist symmetrisch zur Trägerscheibe angeordnet und gegenüber den Statorabschnitten thermisch isoliert. Diese besteht aus einem Material, das magnetisch passiv ist und eine gute Wärmeleitfähigkeit besitzt.
Eine weitere bekannte Möglichkeit zur Erhöhung der Wärmereduzierung besteht darin, die Trägerscheibe und die im Bereich der Kühlkanäle gegenüberliegenden Bereiche des Stators mit ineinandergreifenden komplementären Zähnen versehen sind, welche im wesentlichen parallel zueinander verlaufende Flächen haben und durch einen Luftspalt voneinander getrennt sind.
Des weiteren ist es bekannt, entweder anstatt der vorstehend beschriebenen Maßnahmen oder zusätzlich einen Rotor zu verwenden, welcher an der Trägerscheibe befestigt, mindestens ein Paar von Sammlerringen aufweist, welche durch einen Isolierring aus magnetisch passiven und elektrisch nicht­ leitendem Material verbunden sind, und bei welchem in den Isolierring, in Umfangsrichtung verteilt, Speicherzellen eingearbeitet sind, die mit einem Phasenübergangsmaterial gefüllt sind.
Die Wirkung dieser bekannten Maßnahmen kann durch eine geeignete Werkstoffauswahl und Oberflächenbehandlung erhöht werden.
Der Nachteil der bekannten Ausführungen besteht darin, daß große Kühleffekte nur mit hohem fertigungstechnischen Aufwand erzielt werden können. Die am stärksten beanspruchten und erwärmten Bereiche des Rotors können oft nicht optimal und vor allem nicht gleichmäßig gekühlt werden. Aufgrund des Aufbaus der Transversalflußmaschine ist die Kühlung einiger Bereiche des Rotors nur indirekt möglich, insbesondere die Verbindungsstellen zwischen den einzelnen Ringelementen einer Polstruktur und/oder die Verbindung zwischen Trägerscheibe und den Polstrukturen. Dies sind jedoch die Bereiche, welche am stärksten einer Erwärmung ausgesetzt sind.
Der Erfindung liegt die Aufgabe zugrunde, eine Kühlanordnung für eine Wechselstrommaschine, insbesondere eine Transversalflußmaschine derart auszuführen, daß neben der Gewährleistung einer wirkungsvollen Kühlung der Wechselstrommaschine, insbesondere des Rotors als besonders stark beanspruchtes Bauteil, ein geringer konstruktiver und kostenmäßiger Aufwand zu verzeichnen ist.
Die erfindungsgemäße Lösung ist durch die Merkmale der Ansprüche 1 und 6 charakterisiert. Vorteilhafte Ausgestaltungen sind in den Unteransprüchen beschrieben.
Bei Ausführungen von Wechselstrommaschinen, insbesondere Transversalflußmaschinen, bei welchen Einrichtungen zur Kühlung des Stators vorgesehen sind, werden erfindungsgemäß die nicht direkt kühlbaren Bereiche des Rotors mittels eines aufgrund von Zerstäubung entstehenden Kühlmittel-Luftgemisches gekühlt. Dazu wird die Wechselstrommaschine, insbesondere die Transversalflußmaschine derart teilbefüllt, so daß sich zumindest im radial äußeren auch als Luftspalt bezeichneten Zwischenraum in Einbaulage zwischen Rotor und Stator betrachtet unterhalb der Rotorachse im mathematischen Sinn ein Kühlmittelsumpf ausbildet. Im Betrieb der Wechselstrommaschine, insbesondere der Transversalflußmaschine, wird das Kühlmittel durch die Rotorrotation mitgerissen und aufgrund der dadurch auf das Kühlmittel wirkenden Kräfte zerstäubt. Es entsteht im wesentlichen in Abhängigkeit von der Drehzahl der Rotorwelle und des Füllungsstandes ein Kühlmittel-Luftgemisch im Luftspalt zwischen Rotor- und Stator. Dieses übernimmt durch Wärmeströmung und Wärmeübergang den Wärmetransport von Rotor zum beispielsweise wassergekühlten Stator. Das Kühlmittel-Luft­ gemisch übernimmt im wesentlichen nur den Wärmetransport, weshalb keine zusätzlichen Einrichtungen zur Kühlung des Kühlmittels vorgesehen werden müssen und eine einmalige Teilbefüllung mit Kühlmittel, welches im Inneren der Wechselstrommaschine verbleibt, ausreicht.
Vorzugsweise wird als Kühlmittel mit geringer Viskosität, d. h. mit einer geringen inneren Reibung infolge von Kraftwirkungen zwischen den Molekülen verwendet, beispielsweise in Form von niederviskosen Öl.
Die erfindungsgemäße Lösung bietet die Möglichkeit der Abfuhr von Wärme auch an den kritischen Bereichen, welche mittels konventionellen Kühlanordnungen bisher nur ungenügend gekühlt werden konnten. Gleichzeitig bietet die Verwendung von Öl zusätzlich die Möglichkeit des Korrossionsschutzes des Rotors.
Vorzugsweise wird eine Teilbefüllung gewählt, welche im Nichtbetrieb der Wechselstrommaschine einen Kühlmittelspiegel in einer Höhe ermöglicht, welche im Bereich des bzw. der bezogen auf die Rotorachse radial innen liegenden Zwischenräume zwischen Rotor und Stator liegt. Diese Zwischenräume werden auch als Luftspalten bezeichnet. Eine Befüllung mit einem höheren Kühlmittelspiegel ist ebenfalls denkbar.
Die erfindungsgemäße Lösung ist bei Wechselstrommaschinen unterschiedlichsten Aufbaus anwendbar. Diese ist daher sowohl bei Wechselstrommaschinen, insbesondere Transversalflußmaschinen mit im wesentlichen symmetrischen Aufbau, d. h. mit einem Rotor mit sich beidseitig von einer zentralen Trägerscheibe in axialer Richtung erstreckenden Polstrukturen als auch bei Ausführungen mit nur einer Polstruktur einsetzbar. Auch müssen nicht unbedingt zwei in radialer Richtung übereinander angeordnete Luftspalte vorgesehen sein, einer genügt.
Diese Möglichkeit kann als Maßnahme zur zusätzlichen Kühlung in Kombination mit herkömmlichen Kühlmaßnahmen bei jeder Art von Wechselstrommaschinen eingesetzt werden. Bei Maschinen mit geringer Leistung könnte bereits auch die Teilbefüllung in Kombination mit einer einfachen Statorkühlung ausreichend sein.
Die Auswahl der geeigneten Kombinationen der erfindungsgemäßen Ölnebelkühlung mit herkömmlichen Kühlanordnungen zur Statorkühlung liegt im Ermessen des Fachmannes und richtet sich nach dem konkreten Einsatzfall.
Die Kühlung des Stators kann auf unterschiedliche Art und Weise erfolgen, direkt oder indirekt mittels unterschiedlicher Kühlmedien. Im einfachsten Fall ist dieser an entsprechende Kühleinrichtungen angeschlossen oder es sind mit Kühlmittel befüllbare Kühlmittelkanäle im Statorgrundkörper vorgesehen.
Zusätzlich besteht jedoch die Möglichkeit, die erfindungsgemäße Kühlung des Rotors mit bereits bekannten Maßnahmen zur Kühlung des Rotors, insbesondere zur lokalen Kühlung von Rotorabschnitten zu kombinieren.
Nachfolgend sind einige Beispiele genannt:
  • - Beispielsweise ist es denkbar, im Stator in der Nähe der Trägerscheibe wenigstens einen Kühlkanal vorzusehen, welcher von einem Kühlfluid durchströmbar ist, wobei der Kühlkanal von der Trägerscheibe nur durch eine Kanalabdeckung minimaler Dicke und den Zwischenraum zwischen Rotor und Stator abgetrennt ist.
  • - In einer speziellen Ausführungsform kann der Kühlkanal axial verlaufen und in eine Distanzscheibe eingebaut sein, welche zwischen einem Paar von Statorabschnitten angeordnet ist. Die Distanzscheibe ist symmetrisch in radialer Richtung gegenüberliegend zur Trägerscheibe angeordnet und gegenüber den Statorabschnitten thermisch isoliert. Die Distanzscheibe besteht vorzugsweise aus einem Material, welches magnetisch passiv ist und eine gute Wärmeleitfähigkeit besitzt. Sie weist auf beiden Seiten des Kühlkanales im wesentlichen radial verlaufende breitflächige Hohlräume auf, welche eine thermische Isolierung gegenüber den benachbarten Bereichen des Stators bilden. Die Hohlräume können mit Luft oder anderen Isolationsmaterialen gefüllt sein.
  • - Des weiteren kann der Kühlkanal im Grundkörper des Stators angeordnet sein.
  • - Denkbar ist eine Ausführung, bei welcher die Trägerscheibe und die im Bereich der Kühlkanäle gegenüberliegenden Bereiche des Stators mit zueinander komplementären Verzahnungen zu versehen, die im wesentlichen parallel zueinander verlaufende Flächen aufweisen und durch einen Luftspalt voneinander getrennt sind.
  • - Anstatt oder zusätzlich zu den vorstehend aufgeführten Beispielen ist die Bauform des Rotors derart modifiziert, daß der Rotor an der Trägerscheibe befestigt mindesten-eine Polstruktur aufweist, bei welcher die ringförmigen Anordnungen aus wechselweise magnetisierbaren Magneten und Weicheisenelementen durch einen Isolierring aus magnetisch passiven und elektrisch nicht leitendem Material verbunden sind. In diesen Isolierring sind in Umfangsrichtung Speicherzellen eingearbeitet, welche mit Phasenübergangsmaterial gefüllt sind, dessen Schmelzpunkt unterhalb einer vorgegebenen Temperatur liegt.
    Bezüglich weiterer möglicher Maßnahmen wird auf die DE 43 35 848 A1 verwiesen, deren Offenbarungsgehalt für mögliche Kombinationen der erfindungsgemäßen Lösung mit bekannten Kühlanordnungen voll umfänglich in diese Anmeldung mit einbezogen werden soll.
Vorrichtungsmäßig sind der Wechselstrommaschine jeweils nur Mittel zur Realisierung der Teilbefüllung zuzuordnen. Die Teilbefüllung kann sich dabei
  • 1) allein nur auf die Zwischenräume zwischen Rotor und Stator bzw. Rotor und Statorgrundkörper oder aber
  • 2) generell auf das den im Statorgrundkörper gelagerten Stator umschließende Statorgehäuse beziehen.
Die erstgenannte Möglichkeit wird dabei vor allem bei Ausführungen von Wechselstrommaschinen, insbesondere Transversalflußmaschinen bevorzugt, welche zusätzliche Kühleinrichtungen am Statorgrundkörper aufweisen.
Bei der zweiten Möglichkeit bildet sich bei Teilbefüllung ein Kühlmittelsumpf im Gehäuse in welchen der Statorgrundkörper eintaucht. Es sind dann Möglichkeiten vorzusehen, daß Kühlmittel vom Gehäuse in die Zwischenräume gelangen zu lassen. Denkbar sind hierzu beispielsweise Durchgangsöffnungen im Statorgrundkörper, die den Gehäuseinnenraum mit den Zwischenräumen verbinden.
Die erfindungsgemäße Lösung der Aufgabe wird nachfolgend anhand von Figuren erläutert.
Es zeigen:
Fig. 1 einen Ausschnitt aus einer Schnittdarstellung einer Transversalflußmaschine mit erfindungsgemäßer Teilbefüllung;
Fig. 2-5 zusätzliche zur Kombination mit der Teilbefüllung geeignete Möglichkeiten zur Rotorkühlung.
Die Fig. 1 verdeutlicht in einer Schnittdarstellung den Aufbau einer Wechselstrommaschine in Form einer Transversalflußmaschine 1 in Einbaulage. Diese umfaßt einen Rotor 2 und einen Stator 3. Der Rotor 2 umfaßt eine in einem Statorgehäuse 4 gelagerte Rotorwelle 5 mit einer darauf drehfest befestigten und sich im wesentlichen in radialer Richtung erstreckenden zentralen Trägerscheibe 6, an deren Stirnseiten beidseitig jeweils zur Rotordrehachse A koaxial angeordnete Polstrukturen - eine erste Polstruktur 7 und eine zweite Polstruktur 8 vorgesehen sind. Jede Polstruktur 7 bzw. 8 umfaßt zwei in axialer Richtung nebeneinander angeordnete und jeweils durch eine Zwischenlage 9 bzw. 10 aus magnetisch und elektrisch nicht leitendem Material getrennte Reihen 11 und 12 bzw. 13 und 14 aus in Umfangsrichtung wechselweise magnetisierten Magneten mit dazwischenliegenden Weicheisenelementen 16. Stirnseitig ist im dargestellten Fall jeder Polstruktur 7 bzw. 8 ein Endring 17 bzw. 18 zugeordnet.
Der Stator 3 weist einen Grundkörper 19 auf, in welchem in Umfangsrichtung verlaufende, radial äußere und radial innere Ankerwicklungen 21 bzw. 23 und 20 bzw. 22 untergebracht sind. Diese sind von axial verlaufenden Schnittbandkernen 24, 25 bzw. 26 und 27 umgeben. Die Ankerwicklungen 20 und 22 bilden mit den zugehörigen Schnittbandkernen 24 und 26 bezogen auf die Einbaulage in radialer Richtung jeweils einen inneren Statorteil 28 bzw. 29, die Ankerwicklungen 21 und 23 bilden mit den Schnittbandkernen 25 und 27 jeweils einen äußeren Statorteil 30 bzw. 31.
Der innere Durchmesser di und der Außendurchmesser da des Rotors 2 ist derart zu den Abmessungen der Statorteile 28 und 29 bzw. 30 und 31 gewählt, daß zwischen Rotor und Stator auch als Luftspalt bezeichnete Zwischenräume ausgebildet sind. Ein erster Zwischenraum zwischen inneren Statorteil 28 und dem Rotor 2, ein zweiter Zwischenraum 33 zwischen innerem Statorteil 29 und ein dritter sowie vierter Zwischenraum 34 und 35 sind jeweils zwischen den äußeren Statorteilen 30 und 31 und dem Rotor 2 gebildet.
Der Transversalflußmaschine sind hier im einzelnen nicht im Detail dargestellte Mittel zur Befüllung mit einem Betriebsmittel zugeordnet. Die Befüllung erfolgt wenigstens über einen Teil der in radialer Richtung äußeren Zwischenräume 34 und 35. Vorzugsweise wird jedoch ein Füllstand des Kühlmittelsumpfes im Nichtbetrieb wie in der Fig. 1 dargestellt im Bereich der radialen Ausdehnung der inneren Zwischenraumes gewählt. Denkbar ist dabei, nur die Zwischenräume, d. h. den Bereich zwischen Rotor 2 und Grundkörper 19 zu befüllen. Es ist jedoch auch möglich, einen Teil des Grundkörpers 19 in einen Kühlmittelsumpf einzutauchen, wobei jeweils Verbindungen zu den Zwischenräumen geschaffen werden müssen. Dieser letztgenannte Fall bietet gleichzeitig die Möglichkeit einer vereinfachten Statorkühlung.
Bei Inbetriebnahme der Wechselstrommaschine, insbesondere der Transversalflußmaschine wird das Kühlmittel durch die Rotorrotation mitgerissen und aufgrund der dadurch auf das Kühlmittel wirkenden Kräfte zerstäubt. Es entsteht im wesentlichen in Abhängigkeit von der Drehzahl der Rotorwelle und des Füllungsstandes ein Kühlmittel-Luftgemisch in den Zwischenräumen 32 bis 35 zwischen Rotor 2 und Stator 3. Dieses übernimmt durch Wärmeströmung und Wärmeübergang den Wärmetransport vom Rotor 2 zum beispielsweise wassergekühlten Stator. Das Kühlmittel-Luftgemisch übernimmt im wesentlichen nur den Wärmetransport, weshalb keine zusätzlichen Einrichtungen zur Kühlung des Kühlmittels vorgesehen werden müssen und eine einmalige Teilbefüllung mit Kühlmittel, welche im Inneren der Wechselstrommaschine verbleibt, ausreicht.
Zur direkten Kühlung des Stators 3 sind Kühlkanäle 37, 38, 39 und 40 vorgesehen, welche von einer Kühlflüssigkeit durchströmbar sind.
Möglichkeiten zur zusätzlichen Kühlung des Rotors 2 sind in den Fig. 2 bis 5 beschrieben. Diese sind mit der erfindungsgemäßen Teilbefüllung kombinierbar. Für gleiche Elemente sind gleiche Bezugszeichen verwendet.
Fig. 2 verdeutlicht eine Möglichkeit anhand einer Einzelheit aus Fig. 1. Aus dieser Figur ist eine Distanzscheibe 42 ersichtlich, welche auf der radial außenliegenden Seite des Grundkörpers 19 zwischen den beiden Statorteilen 30 und 31 angeordnet und mit Vergußmasse 43 am Grundkörper 19 befestigt ist. Die Distanzscheibe 42 weist in deren radial innen liegenden Bereich einen breitflächig ausgeführten Kühlkanal 44 auf, welcher nur durch die Wand 45 einer Kanalabdeckung 45 vom gegenüberliegenden Bereich der Trägerscheibe 6 getrennt ist. Auf diese Weise kann über die gesamte axiale Breite der Distanzscheibe in Umfangsrichtung in diesem Bereich Wärme von der Trägerscheibe 6 entzogen werden, wobei die Trägerscheibe 6 vorzugsweise aus einem Material mit sehr guter Wärmeleitfähigkeit besteht.
Eine bevorzugte Ausgestaltung besteht im Vorsehen einer thermischen Isolierung 47 gegenüber den benachbarten Statorbereichen. Diese kann beispielsweise von einem Hohlraum gebildet werden.
Alternativ oder zusätzlich zum Kühlkanal 44 gemäß Fig. 2 besteht die Möglichkeit, einen radial verlaufenden breitflächig ausgebildeten Kühlkanal 46 vorzusehen, welcher einem entsprechenden Bereich der Trägerscheibe 6 des Rotors 2 gegenüber liegt. Hier befindet sich der Kühlkanal 46 in einem Bereich mit geringem Abstand zur Rotorwelle 5. Zusätzlich kann die Kühlwirkung dadurch unterstützt werden, daß an der Trägerscheibe 6 und dem Grundkörper 19 komplementäre ineinandergreifende Zähne 48 und 49 aufweisen, die einander berührungslos zugeordnet und jederzeit durch einen Luftspalt voneinander getrennt sind.
Eine weitere spezielle Bauform eines Rotors 2 für eine Wechselstrommaschine ist in den Fig. 4 und 5 dargestellt.
Fig. 4 verdeutlicht einen Ausschnitt einer Schnittdarstellung durch einen Rotor 2. Dargestellt sind die Trägerscheibe 6 und die Polstruktur 8 mit den zwei durch eine Zwischenlage 9 voneinander getrennte, jedoch mechanisch miteinander verbundene Reihen 10 und 11. Die Zwischenlage 9 enthält, wie in der Fig. 5 in einer Ansicht A entsprechend Fig. 4 dargestellt, eine Vielzahl von über den Umfang verteilt angeordneten Speicherzellen 49. Diese Speicherzellen enthalten ein Phasenübergangsmaterial, dessen Schmelzpunkt bzw. Siedepunkt unterhalb einer vorgegebenen Temperatur liegt. In der Praxis wird diese vorgegebene Temperatur zweckmäßigerweise so gewählt, daß sie unterhalb der kritischen Temperatur der Permanentmagneten liegt, welche in die Polstrukturen eingebettet sind.

Claims (12)

1. Verfahren zur Kühlung einer Wechselstrommaschine, insbesondere einer Transversalflußmaschine, mit einem Rotor und einem Stator, welche wenigstens jeweils einen radial inneren und/oder einen radial äußeren Zwischenraum miteinander bilden;
  • 1.1 bei welchem wenigstens ein Teilbereich des Stators gekühlt wird;
  • 1.2 bei welchem die Wechselstrommaschine zusätzlich derart mit einem Kühlmittel teilweise befüllt wird, daß
  • 1.2.1 sich im Nichtbetrieb in Einbaulage ein Kühlmittelsumpf bildet, dessen Spiegel sich wenigstens im Bereich des unterhalb der Symmetrieachse der Wechselstrommaschine liegenden radial äußeren Zwischenraumes zwischen Rotor und Stator einstellt und
  • 1.2.2 bei Betrieb der Wechselstrommaschine durch die Rotorrotation das Kühlmittel im Zwischenraum zerstäubt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Spiegel des Kühlmittels sich im Bereich des radial inneren Zwischenraumes zwischen Rotor und Stator einstellt.
3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß lediglich der Zwischenraum zwischen einem, den Stator tragenden Grundkörper, dem Stator und dem Rotor befüllt wird.
4. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß ein, den Stator umschließendes Gehäuse, dessen Innenraum mit den zwischen Rotor und Stator gebildeten Zwischenräumen gekoppelt ist, befüllt und das Kühlmittel in den Zwischenraum zwischen Rotor und Stator geleitet wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß als Kühlflüssigkeit ein Öl mit geringer Viskosität verwendet wird.
6. Wechselstrommaschine, insbesondere Transversalflußmaschine
  • 6.1 mit einem Rotor;
  • 6.2 mit einem, in einem Grundkörper angeordneten Stator;
  • 6.3 mit wenigstens einer Kühleinrichtung, die dem Stator zugeordnet ist;
  • 6.4 Rotor und Stator bilden in radialer Richtung wenigstens jeweils einen inneren und einen äußeren Zwischenraum;
    gekennzeichnet durch das folgende Merkmal:
  • 6.5 es sind Mittel zur Befüllung wenigstens eines Teilbereiches der Zwischenräume mit einem Kühlmittel vorgesehen.
7. Wechselstrommaschine nach Anspruch 6, dadurch gekennzeichnet, daß die Mittel zur Befüllung wenigstens eines Teilbereiches der Zwischenräume zwischen Rotor und Stator wenigstens einen im Grundkörper vorgesehenen und wenigstens indirekt mit einer Kühlmittelversorgungseinrichtung koppelbaren Kanal umfassen.
8. Wechselstrommaschine nach Anspruch 7, gekennzeichnet durch folgende Merkmale:
  • 8.1 mit einem, den Grundkörper umschließenden Gehäuse;
  • 8.2 die Mittel zur Befüllung der Zwischenräume umfassen einen mit dem Innenraum des Gehäuses verbundenen und verschließbaren an eine Kühlmitteleinrichtung koppelbaren Zuführkanal;
  • 8.3 der Zuführkanal ist über den Innenraum des Gehäuses mit dem im Grundkörper vorgesehenen Kanal gekoppelt.
9. Wechselstrommaschine nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, daß die dem Stator zugeordnete Kühleinrichtung wenigstens einen mit einem Kühlmedium befüllbaren und im Grundkörper angeordneten Kanal umfaßt.
10. Wechselstrommaschine nach einem der Ansprüche 6 bis 9, gekennzeichnet durch die folgenden Merkmale:
  • 10.1 der Rotor umfaßt eine Trägerscheibe und wenigstens eine sich in axialer Richtung von der Trägerscheibe weg erstreckende und an dieser angeordnete Polstruktur;
  • 10.2 es ist wenigstens ein Kühlkanal im Grundkörper in der Nähe der Trägerscheibe vorgesehen, welcher von einem Kühlmedium durchströmbar ist;
  • 10.3 jeder Kühlkanal ist von der Trägerscheibe nur durch eine Kanalabdeckung minimaler Dicke und den Zwischenraum zwischen Rotor und Stator getrennt.
11. Wechselstrommaschine nach einem der Ansprüche 6 bis 10, dadurch gekennzeichnet, daß die Trägerscheibe und die im Bereich der Kühlkanäle gegenüberliegenden Bereiche des Stators mit ineinandergreifenden komplementären durch einen Luftspalt voneinander getrennten Zähnen versehen sind.
12. Wechselstrommaschine nach einem der Ansprüche 6 bis 11, gekennzeichnet durch folgende Merkmale:
  • 12.1 jede Polstruktur umfaßt zwei nebeneinanderliegende, durch eine Zwischenlage aus magnetisch und elektrisch nicht leitenden Material (Zwischenring) getrennte Reihen aus in Umfangsrichtung wechselweise magnetisierten Magneten mit dazwischenliegenden Weicheisenelementen;
  • 12.2 in die Zwischenlage sind in Umfangsrichtung verteilt Speicherzellen eingearbeitet, welche mit einem Phasenübergangsmaterial gefüllt sind.
DE19650572A 1996-12-06 1996-12-06 Verfahren zur Kühlung einer Wechselstrommaschine, insbesondere Transversalflußmaschine und Wechselstrommaschine, insbesondere Transversalflußmaschine Withdrawn DE19650572A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE19650572A DE19650572A1 (de) 1996-12-06 1996-12-06 Verfahren zur Kühlung einer Wechselstrommaschine, insbesondere Transversalflußmaschine und Wechselstrommaschine, insbesondere Transversalflußmaschine
PCT/EP1997/006733 WO1998025331A1 (de) 1996-12-06 1997-12-02 Verfahren zur kühlung einer wechselstrommaschine, insbesondere transversalflussmaschine und wechselstrommaschine, insbesondere transversalflussmaschine
EP97953731A EP0882322A1 (de) 1996-12-06 1997-12-02 Verfahren zur kühlung einer wechselstrommaschine, insbesondere transversalflussmaschine und wechselstrommaschine, insbesondere transversalflussmaschine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19650572A DE19650572A1 (de) 1996-12-06 1996-12-06 Verfahren zur Kühlung einer Wechselstrommaschine, insbesondere Transversalflußmaschine und Wechselstrommaschine, insbesondere Transversalflußmaschine

Publications (1)

Publication Number Publication Date
DE19650572A1 true DE19650572A1 (de) 1998-06-10

Family

ID=7813781

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19650572A Withdrawn DE19650572A1 (de) 1996-12-06 1996-12-06 Verfahren zur Kühlung einer Wechselstrommaschine, insbesondere Transversalflußmaschine und Wechselstrommaschine, insbesondere Transversalflußmaschine

Country Status (1)

Country Link
DE (1) DE19650572A1 (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8193679B2 (en) 2008-11-03 2012-06-05 Motor Excellence Llc Polyphase transverse and/or commutated flux systems
US8222786B2 (en) 2010-03-15 2012-07-17 Motor Excellence Llc Transverse and/or commutated flux systems having phase offset
US8395291B2 (en) 2010-03-15 2013-03-12 Electric Torque Machines, Inc. Transverse and/or commutated flux systems for electric bicycles
US8405275B2 (en) 2010-11-17 2013-03-26 Electric Torque Machines, Inc. Transverse and/or commutated flux systems having segmented stator laminations
US8415848B2 (en) 2010-03-15 2013-04-09 Electric Torque Machines, Inc. Transverse and/or commutated flux systems configured to provide reduced flux leakage, hysteresis loss reduction, and phase matching
US8836196B2 (en) 2010-11-17 2014-09-16 Electric Torque Machines, Inc. Transverse and/or commutated flux systems having segmented stator laminations
US8952590B2 (en) 2010-11-17 2015-02-10 Electric Torque Machines Inc Transverse and/or commutated flux systems having laminated and powdered metal portions
DE102016200423A1 (de) 2016-01-15 2017-07-20 Continental Automotive Gmbh Elektrische Maschine
DE102017202752A1 (de) 2017-02-21 2018-08-23 Continental Automotive Gmbh Rotor für eine elektrische Maschine

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8193679B2 (en) 2008-11-03 2012-06-05 Motor Excellence Llc Polyphase transverse and/or commutated flux systems
US8242658B2 (en) 2008-11-03 2012-08-14 Electric Torque Machines Inc. Transverse and/or commutated flux system rotor concepts
US8222786B2 (en) 2010-03-15 2012-07-17 Motor Excellence Llc Transverse and/or commutated flux systems having phase offset
US8395291B2 (en) 2010-03-15 2013-03-12 Electric Torque Machines, Inc. Transverse and/or commutated flux systems for electric bicycles
US8415848B2 (en) 2010-03-15 2013-04-09 Electric Torque Machines, Inc. Transverse and/or commutated flux systems configured to provide reduced flux leakage, hysteresis loss reduction, and phase matching
US8405275B2 (en) 2010-11-17 2013-03-26 Electric Torque Machines, Inc. Transverse and/or commutated flux systems having segmented stator laminations
US8836196B2 (en) 2010-11-17 2014-09-16 Electric Torque Machines, Inc. Transverse and/or commutated flux systems having segmented stator laminations
US8854171B2 (en) 2010-11-17 2014-10-07 Electric Torque Machines Inc. Transverse and/or commutated flux system coil concepts
US8952590B2 (en) 2010-11-17 2015-02-10 Electric Torque Machines Inc Transverse and/or commutated flux systems having laminated and powdered metal portions
DE102016200423A1 (de) 2016-01-15 2017-07-20 Continental Automotive Gmbh Elektrische Maschine
US11018539B2 (en) 2016-01-15 2021-05-25 Vitesco Technologies GmbH Electric machine with helical cooling channels
DE102017202752A1 (de) 2017-02-21 2018-08-23 Continental Automotive Gmbh Rotor für eine elektrische Maschine

Similar Documents

Publication Publication Date Title
DE4335848C2 (de) Kühlanordnung für eine Transversalflußmaschine
DE10201012B4 (de) Elektrische Maschine mit lamellierten Kühlringen
DE102018219219B4 (de) Stator für eine elektrische Maschine
DE69002137T2 (de) Magnetische lager.
DE1538800A1 (de) Elektrische Maschine
DE102019125871A1 (de) Axialflussmaschine
DE2638908C2 (de) Gasgekühlte dynamoelektrische Maschine
EP1869757B1 (de) Primärteil eines linearmotors und linearmotor hiermit
DE69014642T2 (de) Läufer mit reduzierten ventilationsverlusten.
WO2016062438A1 (de) Als scheibenläufer ausgebildete elektrische maschine mit kühlkanalanordnung
DE19650572A1 (de) Verfahren zur Kühlung einer Wechselstrommaschine, insbesondere Transversalflußmaschine und Wechselstrommaschine, insbesondere Transversalflußmaschine
DE29621166U1 (de) Wechselstrommaschine, insbesondere Transversalflußmaschine
DE3009470C2 (de) Entladungswiderstand
WO1992018344A1 (de) Elektromotor
DE10145447A1 (de) Verfahren zur Kühlung einer Synchronmaschine mit transversaler Flußführung und Synchronmaschine mit transversaler Flußführung
DE19753320A1 (de) Verfahren zur Kühlung einer Wechselstrommaschine, insbesondere Transversalflußmaschine und Wechselstrommaschine
DE102014205034A1 (de) Statoreinheit für eine elektrische Maschine sowie elektrische Maschine
EP0604646A1 (de) Elektrische maschine
DE60019916T2 (de) Scheibenläufermotor
WO2022214146A1 (de) Stator einer elektrischen axialflussmaschine und axialflussmaschine
EP1722998A1 (de) Magnetpol für magnetschwebefahrzeuge
DE3443441A1 (de) Rotor einer elektromaschine
EP3813237B1 (de) Spulenmodul für eine elektrische maschine
DE3606207C2 (de)
WO1998025331A1 (de) Verfahren zur kühlung einer wechselstrommaschine, insbesondere transversalflussmaschine und wechselstrommaschine, insbesondere transversalflussmaschine

Legal Events

Date Code Title Description
8141 Disposal/no request for examination