DE10361515A1 - Verfahren zur Überwachung, Steuerung und/oder Regelung von Reaktionen eines fluiden Reaktionsgemisches in einem Reaktor mit Thermoblechplatten - Google Patents

Verfahren zur Überwachung, Steuerung und/oder Regelung von Reaktionen eines fluiden Reaktionsgemisches in einem Reaktor mit Thermoblechplatten Download PDF

Info

Publication number
DE10361515A1
DE10361515A1 DE2003161515 DE10361515A DE10361515A1 DE 10361515 A1 DE10361515 A1 DE 10361515A1 DE 2003161515 DE2003161515 DE 2003161515 DE 10361515 A DE10361515 A DE 10361515A DE 10361515 A1 DE10361515 A1 DE 10361515A1
Authority
DE
Germany
Prior art keywords
sleeve
gap
reactor
reaction mixture
sampling tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE2003161515
Other languages
English (en)
Inventor
Gerhard Olbert
Claus Dr. Hechler
Dietmar LÖWEN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to DE2003161515 priority Critical patent/DE10361515A1/de
Priority to TW93138975A priority patent/TWI376267B/zh
Priority to KR1020067012443A priority patent/KR101196082B1/ko
Priority to PCT/EP2004/014532 priority patent/WO2005063374A1/de
Priority to CA2548360A priority patent/CA2548360C/en
Priority to MYPI20045274A priority patent/MY166759A/en
Priority to JP2006546034A priority patent/JP4970953B2/ja
Priority to BRPI0417856-4A priority patent/BRPI0417856B1/pt
Priority to SG200900496-1A priority patent/SG149877A1/en
Priority to EP04804130A priority patent/EP1699550B1/de
Priority to RU2006126514/12A priority patent/RU2356617C2/ru
Priority to CNB2004800389279A priority patent/CN100548461C/zh
Priority to ES04804130T priority patent/ES2402297T3/es
Priority to US11/019,193 priority patent/US20050158217A1/en
Publication of DE10361515A1 publication Critical patent/DE10361515A1/de
Priority to ZA2006/05103A priority patent/ZA200605103B/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0285Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/248Reactors comprising multiple separated flow channels
    • B01J19/249Plate-type reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/001Controlling catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00026Controlling or regulating the heat exchange system
    • B01J2208/00035Controlling or regulating the heat exchange system involving measured parameters
    • B01J2208/00044Temperature measurement
    • B01J2208/00061Temperature measurement of the reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00115Controlling the temperature by indirect heat exchange with heat exchange elements inside the bed of solid particles
    • B01J2208/0015Plates; Cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00628Controlling the composition of the reactive mixture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00946Features relating to the reactants or products
    • B01J2208/00955Sampling of the particulate material, the reactants or the products
    • B01J2208/00964Reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00946Features relating to the reactants or products
    • B01J2208/00955Sampling of the particulate material, the reactants or the products
    • B01J2208/00973Products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00054Controlling or regulating the heat exchange system
    • B01J2219/00056Controlling or regulating the heat exchange system involving measured parameters
    • B01J2219/00058Temperature measurement
    • B01J2219/00063Temperature measurement of the reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00193Sensing a parameter
    • B01J2219/00195Sensing a parameter of the reaction system
    • B01J2219/002Sensing a parameter of the reaction system inside the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2451Geometry of the reactor
    • B01J2219/2453Plates arranged in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2461Heat exchange aspects
    • B01J2219/2462Heat exchange aspects the reactants being in indirect heat exchange with a non reacting heat exchange medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2476Construction materials
    • B01J2219/2477Construction materials of the catalysts
    • B01J2219/2481Catalysts in granular from between plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2476Construction materials
    • B01J2219/2483Construction materials of the plates
    • B01J2219/2485Metals or alloys
    • B01J2219/2486Steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2491Other constructional details
    • B01J2219/2497Size aspects, i.e. concrete sizes are being mentioned in the classified document

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

Es wird ein Verfahren zur Überwachung, Steuerung und/oder Regelung von Reaktionen eines fluiden Reaktionsgemisches in Gegenwart eines heterogenen partikelförmigen Katalysators in einem Reaktor mit zwei oder mehreren, vertikal, parallel zueinander unter Freilassung jeweils eines Spaltes (2) angeordneten Thermoblechplatten (1) vorgeschlagen, wobei in den Spalten (2) der heterogene partikelförmige Katalysator eingebracht ist und das fluide Reaktionsgemisch durch die Spalte (2) geleitet wird, das dadurch gekennzeichnet ist, dass man als Regelsignal die Temperatur wählt, die man in einem oder mehreren Spalten (2), an zwei oder mehreren Messstellen, die über die Höhe jedes Spaltes (2) verteilt angeordnet sind, bestimmt.

Description

  • Die Erfindung betrifft ein Verfahren zur Überwachung, Steuerung und/oder Regelung von Reaktionen eines fluiden Reaktionsgemisches in einem Reaktor mit Thermoblechplatten sowie eine Vorrichtung zur Durchführung des Verfahrens.
  • In der chemischen Verfahrenstechnik sind eine Vielzahl von Reaktionen, insbesondere auch Partialoxidationsreaktionen fluider, das heißt gasförmiger, flüssiger oder gasförmig/flüssiger Reaktionsgemische bekannt, die in Gegenwart von heterogenen partikelförmigen Katalysatoren durchgeführt werden. Derartige Umsetzungen sind in der Regel. exotherm, häufig stark exotherm. Sie wurden bislang im großtechnischen Maßstab überwiegend in Rohrbündelreaktoren durchgeführt, mit Kontaktrohren, in denen der heterogene partikelförmige Katalysator eingebracht ist und durch die das fluide Reaktionsgemisch geleitet wird und wobei die freiwerdende Reaktionswärme indirekt, über einen Wärmeträger abgeführt wird, der im Zwischenraum zwischen den Kontaktrohren zirkuliert. Als Wärmeträger wird häufig eine Salzschmelze eingesetzt.
  • Alternativ ist es auch möglich, die Reaktionswärme über einen Wärmeträger abzuführen, der durch plattenförmige Wärmeübertrager geleitet wird. Für plattenförmige Wärmeübertrager werden die Begriffe Wärmetauscherplatten, Wärmeübertragerplatten, Thermobleche, Thermoplatten oder Thermoblechplatten weitgehend synonym verwendet.
  • Wärmeübertragerplatten werden überwiegend als flächenförmige Gebilde definiert, die einen mit Zu- und Abführleitungen versehenen Innenraum mit geringer Dicke im Verhältnis zur Fläche aufweisen. Sie werden in der Regel aus Blechen, häufig aus Stahlblechen, hergestellt. Je nach Anwendungsfall, insbesondere den Eigenschaften des Reaktionsmediums sowie des Wärmeträgers, können jedoch spezielle, insbesondere korrosionsfeste, aber auch beschichtete Werkstoffe zum Einsatz kommen. Die Zu- bzw. Abführeinrichtungen für die Wärmeträger sind in der Regel an einander entgegengesetzten Enden der Wärmetauschplatten angeordnet. Als Wärmeträger kommen häufig Wasser, aber auch Diphyl® (Gemisch aus 70 bis 75 Gew.-% Diphenylether und 25 bis 30 Gew.-% Diphenyl) zum Einsatz, welche auch teilweise in einem Siedevorgang verdampfen; es ist auch der Einsatz anderer organischer Wärmeträger mit niedrigem Dampfdruck und auch ionischer Flüssigkeiten möglich.
  • Die Verwendung ionischer Flüssigkeiten als Wärmeträger ist in der DE-A 103 16 418 beschrieben. Bevorzugt sind ionische Flüssigkeiten, die ein Sulfat-, Phosphat-, Borat- oder Silikatanion enthalten. Besonders geeignet sind auch ionische Flüssigkeiten, die ein einwertiges Metall-Kation, insbesondere ein Alkalimetall-Kation, sowie ein weiteres Kation, insbesondere ein Imidazolium-Kation, enthalten. Vorteilhaft sind auch ionische Flüssigkeiten, die als Kation ein Imidazolium-, Pyridinium- oder Phosphonium-Kation enthalten.
  • Der Begriff Thermobleche oder Thermoblechplatten wird insbesondere für Wärmeübertragerplatten verwendet, deren einzelne, meistens zwei, Bleche durch Punkt- und/oder Rollschweißungen miteinander verbunden und häufig unter Verwendung hydraulischen Drucks plastisch unter Kissenbildung ausgeformt sind.
  • Die Begriffe Wärmetauscherplatte, Wärmeübertragerplatte, Thermobleche, Thermoplatte oder Thermoblechplatte werden vorliegend im Sinne der obigen Definition verwendet.
  • Reaktoren zur Durchführung von Partialoxidationen unter Verwendung von Thermoblechen sind beispielsweise aus DE-A 199 52 964 bekannt. Beschrieben ist die Anordnung eines Katalysators zur Durchführung von Partialoxidationen in einer Schüttung um Wärmeübertragerplatten in einem Reaktor. Das Reaktionsgemisch wird an einem Reaktorende dem Reaktorinnenraum zwischen den Wärmeübertragerplatten zugeführt und am entgegengesetzten Ende abgeführt und durchströmt somit den Zwischenraum zwischen den Wärmeübertragerplatten.
  • Die DE-C 197 54 185 beschreibt einen weiteren Reaktor mit indirekter Wärmeabführung über ein Kühlmedium, das durch Wärmeübertragerplatten strömt, wobei die Wärmeübertragerplatten als Thermobleche ausgebildet sind, die aus zumindest zwei Blechplatten aus Stahl bestehen, die an vorgegebenen Punkten unter Bildung von Strömungskanälen zusammengefügt sind.
  • Eine vorteilhafte Weiterbildung hiervon ist in DE-A 198 48 208 beschrieben, wonach Wärmeübertragerplatten, die als von einem Kühlmedium durchströmte Thermobleche ausgebildet sind, zu Plattenpaketen mit beispielsweise rechteckigem oder quadratischem Querschnitt zusammengefasst sind und die Plattenpakete eine so genannte Einhausung aufweisen. Das eingehauste Plattenpaket ist umfangseitig anpassungsfrei und folglich mit vorgegebenen Abständen zu der Innenwand des zylindrischen Reaktorbehälters eingesetzt. Die Freiflächen zwischen dem Plattenwärmeübertrager bzw. seiner Einhausung und der Behälterinnenwand sind im oberen und unteren Bereich der Einhausung mit Leitblechen abgedeckt, um den Bypass von Reaktionsmedium um die mit Katalysator gefüllten Kammern zu vermeiden.
  • Ein weiterer Reaktor mit Einrichtungen zur Abführung der Reaktionswärme in Form von Plattenwärmeübertragern ist in WO-A 01/85331 beschrieben. Der Reaktor von überwiegend zylindrischer Form enthält ein zusammenhängendes Katalysatorbett, in das ein Plattenwärmeübertrager eingebettet ist.
  • Aus DE-A 103 33 866 ist es bekannt, Probleme, die sich durch Deformationen aufgrund einseitiger hoher Belastung der Thermobleche bei zu großem Druckunterschied zwischen dem Reaktionsgemisch und der äußeren Umgebung ergeben, sowie mechanische Stabilitätsprobleme durch Verformung unter starker thermischer Beanspruchung, die auftreten können, wenn das Reaktionsgemisch unter Überdruck oder Unterdruck steht, zu vermeiden, indem ein Reaktor für Partialoxidationen eines fluiden Reaktionsgemisches in Gegenwart eines heterogenen partikelförmigen Katalysators zur Verfügung gestellt wird, mit
    • – einem oder mehreren quaderförmigen Thermoblechplattenmodulen, die jeweils aus zwei oder mehreren rechteckigen, parallel zueinander unter Freilassung jeweils eines Spaltes angeordneten Thermoblechplatten gebildet sind, der mit dem heterogenen partikelförmigen Katalysator befüllbar ist und der vom fluiden Reaktionsgemisch durchströmt wird, wobei die Reaktionswärme von einem Wärmeträger aufgenommen wird, der die Thermoblechplatten durchströmt und dabei zumindest teilweise verdampft, mit
    • – einer die Thermoblechplattenmodule druckentlastenden, dieselben vollständig umgebenden überwiegend zylinderförmigen Hülle, umfassend einen Zylindermantel und denselben an beiden Enden abschließenden Hauben und deren Längsachse parallel zur Ebene der Thermoblechplatten ausgerichtet ist, sowie mit
    • – einem oder mehreren Abdichtelementen, die dergestalt angeordnet sind, dass das fluide Reaktionsgemisch außer durch die von den Hauben begrenzten Reaktorinnenräume nur durch die Spalte strömt.
  • Es war demgegenüber Aufgabe der Erfindung, ein Verfahren zur Überwachung, Steuerung und/oder Regelung von Reaktionen eines fluiden Reaktionsgemisches zur Verfügung zu stellen, die in einem Reaktor mit darin angeordneten Thermoblechplatten durchgeführt werden, wobei ein heterogener partikelförmiger Katalysator in Spalten zwischen den Thermoblechplatten angeordnet ist und vom Reaktionsmedium durchströmt wird und wobei durch die Thermoblechplatten ein Wärmeträger strömt.
  • Entsprechend wurde ein Verfahren zur Überwachung, Steuerung und/oder Regelung von Reaktionen eines fluiden Reaktionsgemisches in Gegenwart eines heterogenen partikelförmigen Katalysators, in einem Reaktor mit zwei oder mehreren, vertikal, parallel zueinander unter Freilassung jeweils eines Spaltes angeordneten Thermoblechplatten gefunden, wobei in den Spalten der heterogene partikelförmige Katalysator eingebracht ist und das fluide Reaktionsgemisch durch die Spalte geleitet wird, das dadurch gekennzeichnet ist, dass man als Überwachungs-, Steuerungs- und/oder Regelgröße einen oder mehrere Temperaturwerte wählt, die man in einem oder mehreren Spalten, an einer oder mehreren Messstellen, die über die Höhe jedes Spaltes verteilt angeordnet sind, misst.
  • Erfindungsgemäß wählt man als Überwachungs-, Steuerungs- und/oder Regelgröße einen oder mehrere Temperaturwerte, die man in einem oder mehreren Spalten, an einer oder mehreren Messstellen, die über die Höhe jedes Spaltes verteilt angeordnet sind, erfasst.
  • Vorzugsweise wählt man zusätzlich als weitere Überwachungs-, Steuerungs- und/oder Regelgröße die Zusammensetzung des fluiden Reaktionsgemisches in einem oder mehreren Spalten, die man an einer oder mehreren Messstellen, die über die Höhe jedes Spaltes verteilt angeordnet sind, bestimmt.
  • Für die Bestimmung der Betriebsbedingungen von Reaktoren ist die Kenntnis des Temperaturfelds im Katalysatorbett von wesentlicher Bedeutung. Dies betrifft die örtliche Verteilung der Temperatur, wie auch zum Beispiel die Höhe und Lage des Temperaturmaximums (Hot-Spot). Auch der Temperaturverlauf entlang des Strömungsweges des Reaktionsmediums kann für die Steuerung und Regelung des Reaktionssystems wesentlich sein.
  • Neben dem stationären Betrieb müssen auch das An- oder Abfahren oder etwa zeitlich veränderliche Rahmenbedingungen des Betriebs auch über längere Zeiträume zum Beispiel eine Veränderung der Katalysatoraktivität (Desaktivierung) beherrscht werden. Auf Grundlage gemessener Temperaturen kann zum Beispiel ein sicherer Betrieb gewährleistet, aber auch der jeweils bevorzugte, optimale Betriebszustand angesteuert und aufrechterhalten werden. Es sind Rückschlüsse auf die günstigste Betriebsweise zum Beispiel bezüglich Eduktzusammensetzung und Eduktmengenstrom, aber auch Kühltemperatur und Kühlmediumdurchsatz möglich. Darüber hinaus kann durch zusätzliche Konzentrationsmessung in der Katalysatorschüttung der stoffliche Verlauf der Reaktion verfolgt werden und zum Beispiel auch die Reaktionskinetik unter Betriebsbedingungen bestimmt werden. Beispielsweise kann auch das Desaktivierungsverhal ten des Katalysators anhand von Konzentrationsverläufen im Verlauf der Durchströmung insbesondere zusammen mit Temperaturprofilen charakterisiert werden, was zur vorteilhaften Reaktionsführung mit geringer Nebenproduktbildung auch angepasst an Eduktlast und Prozessmengenstrom oder aber auch zur Verbesserung des Katalysators und des Reaktordesigns verwertet werden kann.
  • Die Erfinder haben erkannt, dass es möglich ist, den Temperaturverlauf im partikelförmigen Katalysator, der in den Spalt zwischen zwei Thermoblechplatten eingebracht ist, über die Höhe desselben, das heißt den Temperaturverlauf entlang des Strömungswegs, und weiterhin auch den Konzentrationsverlauf über die Höhe des Katalysators, das heißt den Konzentrationsverlaufs entlang des Strömungswegs zu bestimmen, ohne Störung des Prozesses durch den Messvorgang selbst.
  • Bezüglich der chemischen Reaktionen eines fluiden Reaktionsgemisches in Gegenwart eines heterogenen partikelförmigen Katalysators, die nach dem erfindungsgemäßen Verfahren überwacht, gesteuert und/oder geregelt werden können, gibt es grundsätzlich keine Einschränkungen. Bevorzugt handelt es sich hierbei um Reaktionen gasförmiger Reaktionsgemische, insbesondere um Oxidations- oder Partialoxidationsreaktionen.
  • Reaktoren mit Thermoblechplatten wurden bereits vorstehend beschrieben.
  • Die Thermoblechplatten sind aus vorzugsweise korrosionsfreien Werkstoffen, insbesondere aus Edelstahl, beispielsweise mit der Werkstoffnummer 1.4541 bzw. 1.4404, 1.4571 bzw. 1.4406, 1.4539 aber auch 1.4547 und 1.4301 oder aus anderen legierten Stählen, gefertigt.
  • Die Materialstärke der hierfür eingesetzten Bleche kann zwischen 1 und 4 mm, 1,5 und 3 mm, aber auch zwischen 2 und 2,5 mm, oder zu 2,5 mm gewählt werden.
  • In der Regel werden zwei rechteckige Bleche an ihren Längs- und Stirnseiten zu einer Thermoblechplatte verbunden, wobei eine Rollnaht oder seitliches Zuschweißen oder eine Kombination von beidem möglich ist, so dass der Raum, in dem sich später der Wärmeträger befindet, allseitig dicht ist. Vorteilhaft wird der Rand der Thermoblechplatten an oder schon in der seitlichen Rollnaht der Längskante abgetrennt, damit der schlecht oder nicht gekühlte Randbereich, in dem meist auch Katalysator eingebracht ist, eine möglichst geringe geometrische Ausdehnung hat.
  • Über die Rechteckfläche verteilt werden die Bleche miteinander durch Punktschweißung verbunden. Auch eine zumindest teilweise Verbindung durch gerade oder auch gebogene und auch kreisförmige Rollnähte ist möglich. Auch die Unterteilung des vom Wärmeträger durchströmten Volumens in mehrere getrennte Bereiche durch zusätzliche Rollnähte ist möglich.
  • Eine Möglichkeit der Anordnung der Schweißpunkte auf den Thermoblechplatten ist in Reihen mit äquidistanten Punktabständen von 30 bis 80 mm oder auch 35 bis 70 mm, wobei auch Abstände von 40 bis 60 mm möglich sind, wobei eine weitere Ausführungsform Abstände von 45 bis 50 mm und auch 46 bis 48 mm ist. Typischerweise variieren die Punktabstände fertigungsbedingt bis zu ± 1 mm und die Schweißpunkte unmittelbar benachbarter Reihen sind in Längsrichtung der Platten gesehen, jeweils um einen halben Schweißpunktabstand versetzt angeordnet. Die Reihen der Punktschweißungen in Längsrichtung der Platten können äquidistant mit Abständen von 5 bis 50 mm, aber auch von 8 bis 25 mm, wobei auch Abstände von 10 bis 20 mm und auch 12 bis 14 mm, eingesetzt werden. Weiterhin sind auch dem Anwendungsfall angepasste Paarungen der genannten Schweißpunktabstände und Reihenabstände möglich. Die Reihenabstände können in einem definierten geometrischen Zusammenhang zum Punktabstand, typisch 1/4 der Punktabstände oder etwas geringer sein, so dass sich eine definiert gleichmäßige Aufweitung der Thermobleche bei der Herstellung ergibt. Den vorgegebenen Schweißpunkt- und Reihenabständen ist eine definierte Anzahl von Schweißpunkten je Plattenoberflächeneinheit zugeordnet, mögliche Werte sind 200 bis 3000, typische Werte 1400 bis 2600 Schweißpunkte je m2 Plattenoberfläche. Vorteilhaft liegen 20 bis 35 Schweißpunkte in einem rechteckigen Oberflächenteilbereich von 5 × Schweißpunktabstand und 5 × Reihenabstand.
  • Die Breite der Thermoblechplatten ist im Wesentlichen fertigungstechnisch begrenzt und kann zwischen 100 und 2500 mm, oder auch zwischen 500 und 1500 mm, liegen. Die Länge der Thermoblechplatten ist abhängig von der Reaktion, insbesondere vom Temperaturprofil der Reaktion, und kann zwischen 500 und 7000 mm, oder auch zwischen 3000 und 4000 mm liegen.
  • Jeweils zwei oder mehrere Thermoblechplatten sind parallel und beabstandet zueinander, unter Bildung eines Thermoblechplattenmodules, angeordnet. Dadurch entstehen zwischen unmittelbar benachbarten Blechplatten schachtartige Spalte, die an den engsten Stellen des Plattenabstandes beispielsweise eine Breite zwischen 8 und 150 mm, aber auch 10 bis 100 mm aufweisen. Eine mögliche Ausführung sind auch Breiten von 12 bis 50 mm oder aber 14 bis 25 mm, wobei auch 16 bis 20 mm gewählt werden können. Es wurde auch schon ein Spaltabstand von 17 mm erprobt.
  • Zwischen den einzelnen Thermoblechplatten eines Thermoblechplattenmodules können, z.B. bei großflächigen Platten, zusätzlich Distanzhalter eingebaut werden, um Verformungen vorzubeugen, welche Plattenabstand oder -position verändern können. Zum Einbau dieser Distanzhalter können Teilbereiche der Bleche durch zum Beispiel kreisförmige Rollnähte oder Schweißpunkte größeren Durchmessers vom Durchflussbereich des Wärmeträgers abgetrennt werden, um in deren Mitte dort beispielsweise Löcher für stabförmige Distanzhalter, die verschraubt oder verschweißt sein können, in die Platten einbringen zu können.
  • Die Spalte zwischen den einzelnen Platten können gleichen Abstand besitzen, bei Erfordernis können die Spalte aber auch unterschiedlich breit sein, wenn die Reaktion dies zulässt oder die gewünschte Reaktion es erfordert, oder apparative oder kühltechnische Vorteile erzielt werden können.
  • Die mit Katalysatorpartikeln gefüllten Spalte eines Thermoblechplattenmodules können gegeneinander gedichtet, z.B. dichtgeschweißt sein oder auch prozessseitig zueinander Verbindung besitzen.
  • Zur Einstellung des gewünschten Spaltabstandes beim Zusammenfügen der einzelnen Thermoblechplatten zu einem Modul werden die Platten in ihrer Position und im Abstand fixiert.
  • Die Schweißpunkte unmittelbar benachbarter Thermoblechplatten können sich gegenüberliegen oder versetzt zueinander sein.
  • Gegenstand der Erfindung ist weiterhin eine Vorrichtung zur Durchführung des vorstehend beschriebenen Verfahrens, gekennzeichnet durch eine Hülse, die im Spalt zwischen zwei Thermoblechplatten, vorzugsweise in Längsrichtung angeordnet ist und außerhalb des Reaktors mündet und die einen Temperaturmesseinsatz, zum Beispiel ein oder mehrere Thermoelemente mit einer oder mehrerer Messstellen umhüllt.
  • Vorzugsweise sind die Thermoblechplatten in
    • – einem oder mehreren quaderförmigen Thermoblechplattenmodulen angeordnet, die jeweils aus zwei oder mehreren rechteckigen, parallel zueinander unter Freilassung jeweils eines Spaltes angeordneten Thermoblechplatten gebildet sind, wobei
    • – die Thermoblechplattenmodule mit einer druckentlastenden, überwiegend zylinderförmigen Hülle, umfassend einen Zylindermantel und denselben an beiden Enden abschließenden Hauben und deren Längsachse parallel zur Ebene der Thermoblechplatten ausgerichtet ist, vollständig umgeben sind, wobei
    • – ein oder mehrere Abdichtelemente dergestalt angeordnet sind, dass das fluide Reaktionsgemisch außer durch die von den Hauben begrenzten Reaktorinnenräume nur durch die Spalte strömt und wobei
    • – jedes Thermoblechplattenmodul mit einem oder mehreren voneinander unabhängigen Temperaturmesseinsätzen, bevorzugt mit zwei oder drei, besonders bevorzugt mit drei Temperaturmesseinsätzen ausgestattet ist.
  • Indem jedes Thermoblechplattenmodul mit jeweils mindestens einem unabhängigen Temperaturmesseinsatz ausgestattet ist, kann jedes Thermoblechplattenmodul einzeln beurteilt und überwacht werden. Vorteilhaft ist es, für jedes Thermoblechplattenmodul mehr als einen Temperaturmesseinsatz vorzusehen, so dass bei Ausfall eines einzelnen Temperaturmesseinsatzes dennoch der sichere Betrieb gewährleistet ist. Beim Einsatz von jeweils drei Temperaturmesseinsätzen pro Thermoblechplattenmodul ist es möglich, den sicheren Betrieb bei Prüfung, Wartung oder Ausfall eines Temperaturmesseinsatzes aufrechtzuerhalten, insbesondere auch dann, wenn die Temperatursignale funktionell in einer Schutzschaltung genutzt werden.
  • Die Hülse ist ein bevorzugt metallisches Rohr, insbesondere mit einem Außendurchmesser im Bereich von 4 bis 15, insbesondere von 6 bis 10 mm, häufig von 6 bis 8 mm und weiter bevorzugt mit einer Wandstärke von 0,8 bis 1,5 mm, bevorzugt von 1 mm. Es kommen für die Hülse prinzipiell die gleichen Werkstoffe in Frage, die für die Thermoblechplatten eingesetzt werden können, wobei Hülse und Thermoblechplatten nicht aus demselben Werkstoff sein müssen. Es können als Hülse auch Nicht-Eisen-Werkstoffe zum Einsatz kommen.
  • Bei Rohrbündelreaktoren ist es nach dem Stand der Technik erforderlich, beim Einsatz von Temperaturmesshülsen oder Temperaturmesseinsätzen in der Katalysatorschüttung speziell angefertigte Rohre mit vergrößertem Innendurchmesser zu verwenden, um in diesen Rohren einen mit den übrigen, normalen Reaktionsrohren gleichwertigen Reaktionsablauf und somit eine repräsentative Temperaturmessung zu ermöglichen.
  • Während es bei der üblichen Anordnung von Hülsen zur Aufnahme von Messelementen in Reaktionsrohren, zentrisch, in Längsachse derselben, zu einer starken Verfälschung des Strömungs- und Temperaturprofils gegenüber Reaktionsrohren ohne eingebaute Hülsen kommt, und daher besondere Ausgestaltungen des Reaktionsrohres, der Katalysatorfüllung und auch der Hülse, beispielsweise mit unterschiedlicher Wandstärke über ihrem Querschnitt oder besondere Anordnungen der Hülse im Kontaktrohr erforderlich sind, wie in DE-A 101 10 847 beschrieben, wurde überraschend gefunden, dass es bei Reaktoren mit Thermoblechplatten zur Messung des Temperaturprofils im Katalysatorbett in den Spalten zwischen den Thermoblechplatten derartiger spezieller Anordnungen nicht zwingend bedarf.
  • Es ist lediglich erforderlich, den Temperaturmesseinsatz selbst oder die Hülse, die den Temperaturmesseinsatz umhüllt, im Spalt, bevorzugt in Längsrichtung zwischen zwei Thermoblechplatten anzuordnen.
  • Der Abstand des Temperaturmesseinsatzes oder der Hülse zu den beiden Thermoblechplatten kann dabei vorzugsweise jeweils gleich sein, das heißt der Temperaturmesseinsatz ist in einer Ausführungsform mittig im Spalt angeordnet.
  • Zur Einführung der Hülse in den Spalt zwischen den Thermoblechplatten ist es besonders vorteilhaft, wenn die Thermoblechplatten jeweils gleiche Schweißpunktmuster aufweisen und die Schweißpunkte benachbarter Thermoblechplatten einander gegenüberliegen.
  • Die Hülsen können außerhalb des Reaktors sowohl oberhalb als auch unterhalb desselben münden. In einer bevorzugten Ausführungsform ist es möglich, dass die Hülsen sowohl oberhalb als auch unterhalb des Reaktors münden. Dabei kann der Temperaturmesseinsatz kontinuierlich in der Hülse verschoben werden, so dass eine kontinuierliche Abbildung des Temperaturprofils bestimmt werden kann, nicht nur diskrete Temperaturmesswerte. Hierfür kann ein einzelnes Messelement, vorteilhaft aber auch ein Mehrfachmesselement, besonders vorteilhaft mit äquidistanten Messabständen verwendet werden, da der notwendige Verschiebeweg zur lückenlosen Messung des Temperaturprofils dann nur einen Messstellenabstand beträgt.
  • Die Hülsen können nahtlos durch die äußere Reaktorummantelung geführt werden oder auch Verbindungselemente im Bereich oberhalb der katalysatorgefüllten Thermoplattenmodule, bzw. bei Einführung von unten unterhalb der Thermoblechplattenmodule aufweisen. In einer besonders vorteilhaften Variante sind die Hülsen im Reaktorinnenraum mit Trennstellen versehen, die insbesondere als Schneid- oder Klemmringverbindung ausgeführt sind, so dass die Montage erheblich erleichtert ist.
  • Der Temperaturmesseinsatz weist in der Regel mehrere, über seine Länge und somit über die Höhe des Spaltes verteilt angeordnete Messstellen auf. Als Temperaturmesseinsätze kommen vorzugsweise Vielfach-Messeinsätze (so genannte Multithermoelemente) in Frage, es können aber auch alle anderen, insbesondere physikalischen Temperaturmessprinzipien wie Platin-Widerstandsthermometer, beispielsweise PT-100 oder PT-1000, Widerstandsthermometer oder Halbleitersensoren verwendet werden. Es kommen je nach Einsatztemperatur alle in DIN43710 und DIN EN 60584 beschrie benen Thermoelemente in Frage, vorzugsweise Thermoelemente des Typs K nach DIN EN 60584.
  • Die verteilt angeordneten Messstellen können äquidistant angeordnet sein, besonders vorteilhaft jedoch in Reaktorbereichen mit zu erwartendem Temperaturextrema und/oder besonders großer Temperaturgradienten mit geringerem Abstand zueinander und in den übrigen Reaktorbereichen mit größerem Abstand zueinander.
  • Vorteilhaft weist der Temperaturmesseinsatz 5 bis 60 Messstellen, bevorzugt 10 bis 50 Messstellen, besonders bevorzugt 15 bis 40 Messstellen und weiter bevorzugt 20 bis 30 Messstellen auf.
  • In einer bevorzugten Ausführungsform weist der Temperaturmesseinsatz 20 Messstellen und einen Außendurchmesser von etwa 3,8 mm auf, so dass der Temperaturmesseinsatz in einer Hülse mit einem Außendurchmesser von 6 mm oder von 1/4 Zoll und einem Innendurchmesser von 4 mm oder von 5/32 Zoll montiert werden kann.
  • In einer weiteren bevorzugten Ausführungsform weist der Temperaturmesseinsatz 40 Messstellen auf und einen Außendurchmesser von etwa 2,5 mm, so dass er in einer Hülse mit einem Außendurchmesser von 5 mm oder von 3/16 Zoll und einem Innendurchmesser von 3 mm oder von 1/8 Zoll montiert werden kann.
  • In einer Ausführungsform kann die Hülse, die das Thermoelement umhüllt, an der seitlichen Begrenzung des Spaltes zwischen zwei Thermoblechplatten angeordnet sein. Um eine Messverfälschung zu vermeiden, ist hierbei bevorzugt ein Isolierkörper zwischen der seitlichen Begrenzung des Spaltes und der Hülse vorzusehen, so dass auch am Rand der Schüttung ein repräsentatives Temperatursignal erfasst werden kann. Besonders vorteilhaft ist hierbei, dass die Hülse fest im Spalt eingebaut ist und bleiben kann und nicht zusammen mit der Katalysatorfüllung ein- bzw. ausgebaut werden muss. Die Hülse kann in diesem Fall auch mit nicht-zylindrischer Geometrie, beispielsweise mit einem Quadrat- oder Halbkreisquerschnitt ausgeführt sein.
  • Es ist darüber hinaus auch möglich, die Hülse, die den Temperaturmesseinsatz umhüllt, horizontal im Spalt zwischen zwei Thermoblechplatten anzuordnen. Dadurch kann der Temperaturverlauf über den Querschnitt des Spaltes bestimmt werden.
  • In einer weiteren, bevorzugten Ausführungsform der erfindungsgemäßen Vorrichtung ist zusätzlich zu der vorstehend beschriebenen Hülse mit Temperaturmessung in einem oder mehreren Spalten jeweils eine Hülse vorgesehen, die Perforationen aufweist sowie mindestens ein Probenahmeröhrchen zum Einführen in das Innere der Hülse, welches dort dergestalt angeordnet ist, dass das fluide Reaktionsgemisch über die Perforationen in der Hülse in das Innere des Probenahmeröhrchen einströmt und aus dem Probenahmeröhrchen nach außerhalb des Reaktors abgezogen und analysiert wird.
  • Als Hülse wird in der Regel ein metallisches Rohr, bevorzugt mit einem Außendurchmesser im Bereich von 5 bis 15, insbesondere von 8 bis 10 mm und einer Wandstärke von bevorzugt 1 mm, eingesetzt. Die Hülse weist erfindungsgemäß Perforationen auf, das heißt Öffnungen zum Reaktionsraum hin, wobei dieselben grundsätzlich bezüglich der geometrischen Form nicht eingeschränkt sind. Bevorzugt sind die Öffnungen jedoch kreisförmig ausgebildet. Insbesondere ist auch eine schlitzförmige Ausführung mit Anordnung der Schlitze in Längsrichtung des , Probenahmeröhrchens, möglich. Die Perforationen weisen bevorzugt eine Gesamtoberfläche von 1 bis 50 %, bevorzugt von 1 bis 10 %, bezogen auf die gesamte Mantelfläche der Hülse auf. Sie dienen dazu, das fluide Reaktionsgemisch in die Hülse einströmen zu lassen, und somit in das im Innern der Hülse angeordnete Probenahmeröhrchen über die Öffnung desselben zu gelangen. Die aus dem Probenahmeröhrchen außerhalb des Reaktors abgezogene Probe kann zum Beispiel mit der vorhandenen Betriebsanalytik analysiert werden. Es ist gleichermaßen möglich, Proben kontinuierlich oder in bestimmten Zeitabständen abzuziehen und zu analysieren.
  • Das Entnehmen der Proben kann hierbei durch den Eigendruck des Reaktionssystems über ein Regelventil oder Überströmeinrichtung oder aber mittels einer Pumpe bzw. Verdichters oder eines Strahlers/Ejektors erfolgen, wobei die Probe in ein System mit Atmosphärendruck aber auch Unter- oder Überdruck zur Atmosphäre eingeleitet werden kann. Vorzugsweise ist das Analysesystem, in welches die Probe eingeleitet wird zur Erhöhung der Messgenauigkeit auf konstanten Druck eingeregelt.
  • In einer bevorzugten Ausgestaltung ist die perforierte Hülse mittig im Spalt angeordnet. Bei dieser Anordnung ist die Symmetrie des Strömungsbildes im Spalt besonders wenig gestört. Der Einbau kann hierbei vertikal von oben oder unten erfolgen, wobei der Einbau vorzugsweise von derselben Seite des Reaktors erfolgt, wie die Zuführung des fluiden Reaktionsgemisches.
  • In der Ausführungsvariante, in der sowohl der Einbau der Hülsen sowie die Zuführung des fluiden Reaktionsgemisches jeweils von oben in den Reaktor erfolgen, weisen die Hülsen vorteilhaft lediglich im oberen Bereich des Spaltes, insbesondere bis etwa zur Mitte desselben, mit Perforationen versehen. Da sich das Probenahmeröhrchen nur im oberen Bereich der Hülse, bis zu der Stelle, an der die Probe zwecks Bestimmung ihrer Zusammensetzung über die Öffnung aufgenommen wird, erstreckt, würde der darunter angeordnete, leere Bereich der Hülse ansonsten einen Bypass für das Reaktionsgemisch darstellen. Dies wird verhindert, indem Perforationen in der Hülse nur im oberen Bereich des Spaltes vorgesehen werden.
  • Analog ist es möglich, dass der Einbau der Hülsen sowie die Zuführung des fluiden Reaktionsgemisches in den Reaktor jeweils von unten erfolgen und dass bevorzugt durch die Thermoblechplatten ein Wärmeträger geleitet wird, der unter Reaktionsbedingungen partiell oder vollständig siedet.
  • Bevorzugt kann das Probenahmeröhrchen mit der Hülse fest verbunden sein, dergestalt, dass die Öffnung des Probenahmeröhrchens unmittelbar an einer Perforation der Hülse angeordnet ist, die Öffnungen von Probenahmeröhrchen und Hülse sich somit überlagern.
  • In einer weiteren bevorzugten Ausgestaltung ist das Probenahmeröhrchen drehbar in der perforierten Hülse angeordnet und weist mindestens zwei, über seine Mantelfläche versetzt angeordnete Öffnungen auf, dergestalt, dass das fluide Reaktionsgemisch stets nur über eine der Öffnungen in das Probenahmeröhrchen einströmt. Bevorzugt sind die Öffnungen des Probenahmeröhrchens als Schlitze in Längsrichtung desselben angeordnet, wodurch mehr Spielraum beim Anpassen der Öffnungen von Hülse und Probenahmeröhrchen zur Verfügung steht.
  • Durch diese Ausgestaltung können mittels eines einzigen Probenahmeröhrchens Proben von mehreren Stellen, die über die Höhe des Spaltes verteilt angeordnet sind, entnommen werden.
  • In einer weiteren bevorzugten Variante weist jedes Probenahmeröhrchen mindestens zwei, bevorzugt zwei bis vier voneinander getrennte Kammern auf, mit jeweils einer Öffnung, in die das fluide Reaktionsgemisch über die Perforationen der Hülse einströmt und wobei das fluide Reaktionsgemisch aus jeder Kammer getrennt abgezogen und analysiert wird. Die Kammern können dabei nebeneinander oder konzentrisch zueinander angeordnet sein.
  • Durch Ausbildung von zwei oder mehreren voneinander getrennten Kammern in den Probenahmeröhrchen wird die Zahl der Messstellen, an denen Proben des fluiden Reaktionsgemisches abgezogen werden können, erhöht.
  • Besonders bevorzugt ist die Ausführungsvariante, in der ein Probenahmeröhrchen mit mehreren Kammern vorgesehen ist, das zusätzlich um seine Längsachse drehbar angeordnet ist. Dadurch können für jede Kammer zwei oder mehrere, bevorzugt vier gegeneinander versetzte Schlitze zur Aufnahme des fluiden Reaktionsgemisches angeordnet sein, wobei das fluide Reaktionsgemisch in jede Kammer stets jeweils nur über eine Öffnung einströmt. Durch diese Ausgestaltung wird die Zahl der Messstellen für die Zusammensetzung des fluiden Reaktionsgemisches weiter erhöht.
  • In einer weiteren bevorzugten Ausführungsvariante sind zwei oder mehrere Probenahmeröhrchen vorgesehen, die jeweils mit der Hülse fest verbunden sind, dergestalt, dass die Öffnung jedes Probenahmeröhrchens unmittelbar an einer Perforation der Hülse angeordnet ist und wobei die einzelnen Probenahmeröhrchen auf jeweils unterschiedlicher Höhe im Spalt münden. Darüber hinaus ist es auch möglich, die Hülse selbst als Probenahmeröhrchen auszugestalten, indem lediglich an den Stellen, an denen eine direkte Verbindung mit jeweils einem Probenahmeröhrchen besteht, Perforationen vorgesehen sind und darüber hinaus auf einer von der Mündung der Probenahmeröhrchen verschiedenen Stelle eine einzige weitere Perforation in der Hülse vorgesehen ist, über die fluides Reaktionsgemisch einströmt.
  • Durch das erfindungsgemäße Verfahren und die Vorrichtung ist somit eine genaue Kenntnis des tatsächlichen Reaktionsgeschehens und der realen Temperaturen, bevorzugt auch der für den Hot-Spot maßgeblichen Temperatur in einfacher Weise, unter Nutzung der vorhandenen Betriebsanalytik, möglich. Dadurch kann wesentlich näher an der Belastungsgrenze des Katalysators gefahren werden, der Katalysator kann somit besser ausgenutzt werden, wobei gleichzeitig Beschädigungen durch unerwünscht starke Hot Spot-Bildung vermieden werden. Weiterhin kann in Kenntnis des tatsächlichen Reaktionsgeschehens die Katalysatoraktivität räumlich im Spalt differenziert, angepasst an das tatsächliche Reaktionsgeschehen, ausgestaltet werden. Dadurch wird der Katalysator geschont, insbesondere in den thermisch stärker belasteten Bereichen, und somit seine Alterung im Sinne einer längeren oder vorteilhafteren Nutzung günstiger gestaltet.
  • Darüber hinaus kann der Reaktor wesentlich gleichförmiger betrieben werden, wodurch die Gesamtselektivität der darin stattfindenden Reaktionen positiv beeinflusst wird. Weiterhin kann durch Anpassung der Katalysatoraktivität an das tatsächliche Reaktionsgeschehen die benötigte Menge an Wärmeträger reduziert werden.
  • Die Erfindung wird im Folgenden anhand einer Zeichnung näher erläutert.
  • Es zeigen im Einzelnen:
  • 1 einen Ausschnitt aus einem Reaktor mit Thermoblechplatten mit mittig angeordneter Hülse zur Aufnahme eines Thermoelementes, im Längsschnitt, mit Querschnittsdarstellung in 1A,
  • 2 einen Ausschnitt durch eine weitere Ausführungsform mit seitlich angeordneter Hülse, im Längsschnitt, mit Querschnittsdarstellung in 2A,
  • 3 eine weitere Ausführungsform mit horizontal im Spalt angeordneter Hülse, im Längsschnitt, mit Querschnittsdarstellung in 3A und Detaildarstellung in 3B,
  • 4 einen Ausschnitt aus einer weiteren Ausführungsform mit einer Hülse mit Perforationen und Probenahmeröhrchen, im Längsschnitt, mit Querschnittsdarstellung in 4A,
  • 5 die schematische Darstellung für den Einbau einer erfindungsgemäßen Hülse in ein Thermoblechplattenmodul und
  • 6 schematisch bevorzugte Schweißpunktverteilungen auf der Oberfläche von Thermoblechplatten.
  • In den Figuren bezeichnen gleiche Bezugszeichen gleiche oder entsprechende Merkmale.
  • 1 zeigt schematisch einen Ausschnitt aus einem Reaktor mit Thermoblechplatten 1 mit dazwischen angeordnetem Spalt 2, in den das Katalysatorfestbett eingebracht ist. Im Spalt 2 ist, in der dargestellten bevorzugten Ausführungsform, mittig eine Hülse 3 angeordnet, die ein Thermoelement 4 umhüllt, das beispielhaft 4 Messpunkte aufweist. Die Hülse 3 und das Thermoelement 4 ragen über einen Stutzen am Reaktormantel aus dem Reaktor heraus.
  • Die Querschnittsdarstellung in 1A verdeutlicht die kreiszylindrische Geometrie der Hülse 3 mit darin angeordnetem Thermoelement 4.
  • Die schematische Darstellung in 2 zeigt einen Ausschnitt aus einem Reaktor in Längsrichtung, im Bereich eines Spaltes 2 zwischen zwei nicht dargestellten Thermoblechplatten. Im Spalt 2 ist, an der seitlichen Begrenzung 6 desselben, eine Hülse 3 mit Thermoelement 4 angeordnet. Zwischen Hülse 3 und seitlicher Begrenzung des Spaltes 2 ist eine Isolierkörper 5 vorgesehen.
  • Die Querschnittsdarstellung in 2 verdeutlicht die Thermoblechplatten 1, einschließlich deren Befestigung an der seitlichen Begrenzung 6, sowie die kreiszylindrische Ausbildung der Hülse 3 mit Thermoelement 4 und formschlüssiger Ausbildung des Isolierkörpers 5.
  • 3 zeigt schematisch einen Ausschnitt aus einer weiteren Ausführungsform, mit horizontaler Anordnung einer Hülse 3 mit Thermoelement 4 in einem Spalt 2. Die Hülse weist in der Nähe ihres in den Spalt hineinragenden Endes Perforationen 7 auf, durch die Proben des Reaktionsgemisches abgezogen werden können.
  • Die schematische Darstellung in 4 zeigt einen Längsschnitt durch eine weitere Ausführungsform mit einer Hülse 3 mit Perforationen 7 in der Hülse 3 zur Aufnahme von Proben in die Probenahmeröhrchen 8. Die Hülse 3 mit Probenahmeröhrchen 8 ragen über den Stutzen 9 aus dem Reaktor hinaus.
  • Die Querschnittsdarstellung in 4A verdeutlicht die Ausgestaltung der Hülse 3 im Querschnitt, mit Öffnung 7 und Probenahmeröhrchen B.
  • 5 zeigt schematisch einen Ausschnitt aus einem Reaktor mit parallel angeordneten Thermoblechplatten 1, mit dazwischen liegenden Spalten 2. Beispielhaft ist eine Hülse 3 dargestellt, die in einen Spalt 2 zwischen zwei Thermoblechplatten 1, in Längsrichtung desselben, hineinragt, und die über einen Stutzen 9 am Reaktormantel außerhalb des Reaktors mündet.
  • 6 zeigt zwei bevorzugte Schweißpunktverteilungen auf der Oberfläche von Thermoblechplatten: dargestellt ist jeweils ein rechteckiger Oberflächenteilbereich einer Thermoblechplatte 1, entsprechend dem fünffachen Schweißpunktabstand auf der horizontalen Achse und dem fünffachen Reihenabstand auf der vertikalen Achse. Die obere Darstellung in 6 zeigt eine bevorzugte Schweißpunktverteilung mit insgesamt 33 Schweißpunkten auf dem dargestellten Oberflächenteilbereich einer Thermoblechplatte 1 mit dem fünffachen Schweißpunktabstand und dem fünffachen Reihenabstand und die untere Darstellung eine weitere bevorzugte Anordnung mit 25 Schweißpunkten auf einem Oberflächenteilbereich gleicher Abmessung.

Claims (29)

  1. Verfahren zur Überwachung, Steuerung und/oder Regelung von Reaktionen eines fluiden Reaktionsgemisches in Gegenwart eines heterogenen partikelförmigen Katalysators, in einem Reaktor mit zwei oder mehreren, vertikal, parallel zueinander unter Freilassung jeweils eines Spaltes (2) angeordneten Thermoblechplatten (1), wobei in den Spalten (2) der heterogene partikelförmige Katalysator eingebracht ist und das fluide Reaktionsgemisch durch die Spalte (2) geleitet wird, dadurch gekennzeichnet, dass man als Überwachungs-, Steuerungs- und/oder Regelgröße einen oder mehrere Temperaturwerte wählt, die man in einem oder mehreren Spalten (2), an einer oder mehreren Messstellen, die über die Höhe jedes Spaltes (2) verteilt angeordnet sind, misst.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass man als weitere Überwachungs-, Steuerungs- und/oder Regelgröße die Zusammensetzung des fluiden Reaktionsgemisches in einem oder mehreren Spalten (2) wählt, die man an einer oder mehreren Messstellen, die über die Höhe jedes Spaltes (2) verteilt angeordnet sind, bestimmt.
  3. Vorrichtung zur Durchführung des Verfahrens nach Anspruch 1, gekennzeichnet durch eine Hülse (3), die im Spalt (2) angeordnet ist, die außerhalb des Reaktors mündet und die jeweils einen Temperaturmesseinsatz (4) mit einer oder mehreren Messstellen umhüllt.
  4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass die Hülse in Längsrichtung im Spalt (2) angeordnet ist.
  5. Vorrichtung nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass die Thermoblechplatten (1) in – einem oder mehreren quaderförmigen Thermoblechplattenmodulen (10) angeordnet sind, die jeweils aus zwei oder mehreren rechteckigen, parallel zueinander unter Freilassung jeweils eines Spaltes (2) angeordneten Thermoblechplatten (1) gebildet sind, dass – die Thermoblechplattenmodule (10) mit einer druckentlastenden, überwiegend zylinderförmigen Hülle (11, 12, 13), umfassend einen Zylindermantel (11) und denselben an beiden Enden abschließenden Hauben (12, 13) und deren Längsachse parallel zur Ebene der Thermoblechplatten (1) ausgerichtet ist, vollständig umgeben sind, dass – ein oder mehrere Abdichtelemente (14, 15) dergestalt angeordnet sind, dass das fluide Reaktionsgemisch außer durch die von den Hauben (12, 13) begrenzten Reaktorinnenräume nur durch die Spalte (2) strömt und dass – jedes Thermoblechplattenmodul (10) mit einem oder mehreren voneinander unabhängigen Temperaturmesseinsätzen (4), bevorzugt mit zwei oder drei, besonders bevorzugt mit drei Temperaturmesseinsätzen (4) ausgestattet ist.
  6. Vorrichtung nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, dass der Temperaturmesseinsatz (4) ein Mehrfachmesseinsatz, bevorzugt ein Multithermoelement ist.
  7. Vorrichtung nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, dass die Hülse ein bevorzugt metallisches Rohr ist, insbesondere mit einem Außendurchmesser im Bereich von 4 bis 15 mm, bevorzugt im Bereich von 6 bis 10 mm, besonders bevorzugt im Bereich von 6 bis 8 mm und weiter bevorzugt mit einer Wandstärke von 0,8 bis 1,5 mm, bevorzugt von 1 mm.
  8. Vorrichtung nach einem der Ansprüche 3 bis 7, dadurch gekennzeichnet, dass die Hülse (3) eine oder mehrere Trennstellen innerhalb des Reaktorinnenraumes aufweist.
  9. Vorrichtung nach einem der Ansprüche 3 bis 8, dadurch gekennzeichnet, dass die Messstellen des Temperaturmesseinsatzes (4) in Reaktorbereichen mit zu erwartenden Temperaturextrema und/oder besonders großer Temperaturgradienten mit geringerem Abstand zueinander angeordnet sind und in den übrigen Reaktorbereichen mit größerem Abstand zueinander angeordnet sind.
  10. Vorrichtung nach einem der Ansprüche 3 bis 9, dadurch gekennzeichnet, dass die Hülse (3) die den Temperaturmesseinsatz (4) umhüllt, sowohl oberhalb als auch unterhalb des Reaktors mündet, dergestalt, dass der Temperaturmesseinsatz (4), der bevorzugt mit äquidistant angeordneten Messstellen ausgestattet ist, kontinuierlich in der Hülse (3) zur lückenlosen Messung des Temperaturprofils verschoben werden kann.
  11. Vorrichtung nach einem der Ansprüche 3 bis 10, dadurch gekennzeichnet, dass der Temperaturmesseinsatz (4) 5 bis 60 Messstellen, bevorzugt 10 bis 50, besonders bevorzugt 15 bis 40 und weiter bevorzugt 20 bis 30 Messstellen aufweist.
  12. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, dass der Temperaturmesseinsatz (4) 20 Messstellen und einen Außendurchmesser von etwa 3,8 mm aufweist und dass die Hülse (3) einen Außendurchmesser von 6 mm oder von 1/4 Zoll und einen Innendurchmesser von 4 mm oder von 5/32 Zoll aufweist.
  13. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, dass der Temperaturmesseinsatz (4) 40 Messstellen und einen Außendurchmesser von etwa 2,5 mm aufweist und dass die Hülse (3) einen Außendurchmesser von 5 mm oder von 3/16 Zoll und einen Innendurchmesser von 3 mm oder von 1/8 Zoll aufweist.
  14. Vorrichtung nach einem der Ansprüche 4 bis 13, dadurch gekennzeichnet, dass die Hülse (3) mittig in Längsrichtung im Spalt (2) angeordnet ist.
  15. Vorrichtung nach einem der Ansprüche 4 bis 13, dadurch gekennzeichnet, dass die Hülse (3) an der seitlichen Begrenzung (6) des Spaltes (2) angeordnet ist.
  16. Vorrichtung nach Anspruch 15, dadurch gekennzeichnet, dass zwischen der seitlichen Begrenzung (6) des Spaltes (2) und der Hülse (3) ein Isolierkörper vorgesehen ist, dass die Hülse (3) bevorzugt fest im Spalt (2) eingebaut ist und dass die Hülse (3) weiter bevorzugt einen Quadrat- oder Halbkreisquerschnitt aufweist.
  17. Vorrichtung nach einem der Ansprüche 3 oder 5 bis 13, dadurch gekennzeichnet, dass die Hülse (3) horizontal im Spalt (2) angeordnet ist.
  18. Vorrichtung zur Durchführung des Verfahrens nach Anspruch 2, dadurch gekennzeichnet, dass in einem oder mehreren Spalten (2) zusätzlich zu der in einem der Ansprüche 3 bis 16 definierten Vorrichtung jeweils eine Hülse (3) vorgesehen ist, die Perforationen (7) aufweist sowie mindestens ein Probenahmeröhrchen (8) zum Einführen in die Hülse (3), das in der Hülse (3) dergestalt angeordnet ist, dass das fluide Reaktionsgemisch über die Perforationen (7) in der Hülse (3) in das Probenahmeröhrchen (8) einströmt und aus dem Probenahmeröhrchen (8) außerhalb des Reaktors abgezogen und analysiert wird.
  19. Vorrichtung nach Anspruch 18, dadurch gekennzeichnet, dass das Probenahmeröhrchen (8) mit der Hülse (3) fest verbunden ist, dergestalt, dass eine Öffnung des Probenahmeröhrchens (8) unmittelbar an einer Perforation (7) der Hülse (3) angeordnet ist.
  20. Vorrichtung nach Anspruch 18, dadurch gekennzeichnet, dass das Probenahmeröhrchen (8) drehbar in der perforierten Hülse (3) angeordnet ist und zwei oder mehrere, über seine Mantelfläche versetzt angeordnete Öffnungen aufweist, dergestalt, dass das fluide Reaktionsgemisch stets nur über eine der Öffnungen in das Probenahmeröhrchen (8) einströmt.
  21. Vorrichtung nach Anspruch 20, dadurch gekennzeichnet, dass die Öffnungen des Probenahmeröhrchens (8) als Schlitze in der Längsrichtung desselben ausgebildet sind.
  22. Vorrichtung nach einem der Ansprüche 18 bis 21, dadurch gekennzeichnet, dass jedes Probenahmeröhrchen (8) zwei oder mehrere, bevorzugt 2 bis 4, voneinander getrennte Kammern aufweist, mit jeweils einer Öffnung, in die das fluide Reaktionsgemisch über die Perforationen (7) in der Hülse (3) einströmt und wobei das fluide Reaktionsgemisch aus jeder Kammer getrennt abgezogen und analysiert wird.
  23. Vorrichtung nach Anspruch 22, dadurch gekennzeichnet, dass die Kammern nebeneinander oder konzentrisch zueinander angeordnet sind.
  24. Vorrichtung nach Anspruch 21 oder 22, dadurch gekennzeichnet, dass das mehrere Kammern aufweisende Probenahmeröhrchen (8) um seine Längsachse drehbar ausgebildet ist.
  25. Vorrichtung nach einem der Ansprüche 18 bis 24, dadurch gekennzeichnet, dass zwei oder mehrere Probenahmeröhrchen (8) vorgesehen sind, die jeweils fest mit der Hülse (3) verbunden sind, dergestalt, dass die Öffnung jedes Probenahmeröhrchens (8) unmittelbar an eine Perforation (7) der Hülse (3) angeordnet ist und wobei die einzelnen Probenahmeröhrchen (8) auf jeweils unterschiedlicher Höhe im Spalt (2) münden.
  26. Vorrichtung nach Anspruch 18, dadurch gekennzeichnet, dass die Hülse (3) selbst als Probenahmeröhrchen (8) ausgebildet ist.
  27. Verfahren zum Einbau einer Vorrichtung nach einem der Ansprüche 3 bis 17 und/oder nach einem der Ansprüche 18 bis 26 in einen Reaktor, dadurch gekennzeichnet, dass der Einbau der Vorrichtungen) von derselben Seite des Reaktors erfolgt, wie die Zuführung des fluiden Reaktionsgemisches.
  28. Verfahren nach Anspruch 27, dadurch gekennzeichnet, dass der Einbau der Vorrichtungen) sowie die Zuführung des fluiden Reaktionsgemisches jeweils von oben in den Reaktor erfolgen und dass die Hülse (3) lediglich im oberen Bereich des Spaltes (2) Perforationen (7) aufweist, insbesondere bis etwa zur Mitte des Spaltes (2).
  29. Verfahren nach Anspruch 27, dadurch gekennzeichnet, dass der Einbau der Vorrichtungen) sowie die Zuführung des fluiden Reaktionsgemisches in den Reaktor jeweils von unten erfolgen und dass bevorzugt durch die Thermoblechplatten (1) ein Wärmeträger geleitet wird, der unter Reaktionsbedingungen partiell oder vollständig verdampft.
DE2003161515 2003-12-23 2003-12-23 Verfahren zur Überwachung, Steuerung und/oder Regelung von Reaktionen eines fluiden Reaktionsgemisches in einem Reaktor mit Thermoblechplatten Withdrawn DE10361515A1 (de)

Priority Applications (15)

Application Number Priority Date Filing Date Title
DE2003161515 DE10361515A1 (de) 2003-12-23 2003-12-23 Verfahren zur Überwachung, Steuerung und/oder Regelung von Reaktionen eines fluiden Reaktionsgemisches in einem Reaktor mit Thermoblechplatten
TW93138975A TWI376267B (en) 2003-12-23 2004-12-15 Monitoring, control and/or regulation of reactions of a fluid reaction mixture in a reactor having thermoplates
BRPI0417856-4A BRPI0417856B1 (pt) 2003-12-23 2004-12-21 Processo para monitorar, controlar e/ou regular as reações de uma mistura de reação fluida, e para incorporar um dispositivo, e, dispositivo para executar o processo
EP04804130A EP1699550B1 (de) 2003-12-23 2004-12-21 Verfahren zur überwachung, steuerung und/oder regelung von reaktionen eines fluiden reaktionsgemisches in einem reaktor mit thermoblechplatten
CA2548360A CA2548360C (en) 2003-12-23 2004-12-21 Method for monitoring, controlling and/or regulating the reactions of a fluidic reaction mixture in a reactor using thermal sheet metal plates
MYPI20045274A MY166759A (en) 2003-12-23 2004-12-21 Monitoring, control and/or regulation of reactions of a fluid reaction mixture in a reactor having thermoplates
JP2006546034A JP4970953B2 (ja) 2003-12-23 2004-12-21 サーモプレートを使用して反応器中の流体反応混合物の反応を監視、制御および/または調節する方法
KR1020067012443A KR101196082B1 (ko) 2003-12-23 2004-12-21 써모플레이트를 사용하여 반응기 내에서의 유체 반응혼합물의 반응을 모니터링, 제어 및(또는) 조절하는 방법
SG200900496-1A SG149877A1 (en) 2003-12-23 2004-12-21 Method for monitoring, controlling and/or regulating the reactions of a fluidic reaction mixture in a reactor using thermal sheet metal plates
PCT/EP2004/014532 WO2005063374A1 (de) 2003-12-23 2004-12-21 Verfahren zur überwachung, steuerung und/oder regelung von reaktionen eines fluiden reaktionsgemisches in einem reaktor mit thermoblechplatten
RU2006126514/12A RU2356617C2 (ru) 2003-12-23 2004-12-21 Устройство для контроля, управления и/или регулирования реакциями текучей реакционной смеси
CNB2004800389279A CN100548461C (zh) 2003-12-23 2004-12-21 监视、控制和/或调节流体反应混合物在使用热片金属板的反应器中的反应的方法
ES04804130T ES2402297T3 (es) 2003-12-23 2004-12-21 Método para monitorear, controlar y/o regular las reacciones de una mezcla fluida de reacción en un reactor que tiene placas de chapas metálicas térmicas
US11/019,193 US20050158217A1 (en) 2003-12-23 2004-12-23 Monitoring, control and/or regulation of reactions of a fluid reaction mixture in a reactor having thermoplates
ZA2006/05103A ZA200605103B (en) 2003-12-23 2006-06-21 Method for monitoring controlling and/or regulating the reactions of a fluidic reaction mixture in a reactor using thermal sheet metal plates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2003161515 DE10361515A1 (de) 2003-12-23 2003-12-23 Verfahren zur Überwachung, Steuerung und/oder Regelung von Reaktionen eines fluiden Reaktionsgemisches in einem Reaktor mit Thermoblechplatten

Publications (1)

Publication Number Publication Date
DE10361515A1 true DE10361515A1 (de) 2005-07-28

Family

ID=34706650

Family Applications (1)

Application Number Title Priority Date Filing Date
DE2003161515 Withdrawn DE10361515A1 (de) 2003-12-23 2003-12-23 Verfahren zur Überwachung, Steuerung und/oder Regelung von Reaktionen eines fluiden Reaktionsgemisches in einem Reaktor mit Thermoblechplatten

Country Status (4)

Country Link
DE (1) DE10361515A1 (de)
ES (1) ES2402297T3 (de)
MY (1) MY166759A (de)
TW (1) TWI376267B (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007028332A1 (de) 2007-06-15 2008-12-18 Basf Se Verfahren zum Beschicken eines Reaktors mit einem Katalysatorfestbett, das wenigstens ringförmige Katalysatorformkörper K umfasst
DE102009047291A1 (de) 2009-11-30 2010-09-23 Basf Se Verfahren zur Herstellung von (Meth)acrolein durch heterogen katalysierte Gasphasen-Partialoxidation
WO2012163931A1 (de) 2011-06-03 2012-12-06 Basf Se Wässrige lösung, enthaltend acrylsäure und deren konjugierte base
WO2021121453A1 (de) 2019-12-17 2021-06-24 Silica Verfahrenstechnik Gmbh Verfahren und vorrichtung zum behandeln eines mit schad- und/oder nutzkomponenten belasteten gases

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007028332A1 (de) 2007-06-15 2008-12-18 Basf Se Verfahren zum Beschicken eines Reaktors mit einem Katalysatorfestbett, das wenigstens ringförmige Katalysatorformkörper K umfasst
US8517180B2 (en) 2007-06-15 2013-08-27 Basf Se Process for charging a reactor with a fixed catalyst bed which comprises at least annular shaped catalyst bodies K
DE102009047291A1 (de) 2009-11-30 2010-09-23 Basf Se Verfahren zur Herstellung von (Meth)acrolein durch heterogen katalysierte Gasphasen-Partialoxidation
US8399711B2 (en) 2009-11-30 2013-03-19 Basf Se Process for preparing (meth)acrolein by heterogeneously catalyzed gas phase partial oxidation
WO2012163931A1 (de) 2011-06-03 2012-12-06 Basf Se Wässrige lösung, enthaltend acrylsäure und deren konjugierte base
US9150483B2 (en) 2011-06-03 2015-10-06 Basf Se Aqueous solution comprising acrylic acid and the conjugate base thereof
WO2021121453A1 (de) 2019-12-17 2021-06-24 Silica Verfahrenstechnik Gmbh Verfahren und vorrichtung zum behandeln eines mit schad- und/oder nutzkomponenten belasteten gases
WO2021121451A1 (de) 2019-12-17 2021-06-24 Silica Verfahrenstechnik Gmbh Verfahren und reaktor für exotherme katalytische reaktionen in der gasphase
WO2021121452A1 (de) 2019-12-17 2021-06-24 Silica Verfahrenstechnik Gmbh Verfahren und hohlprofiladsorber zum behandeln eines mit schad- und/oder nutzkomponenten belasteten gases

Also Published As

Publication number Publication date
TWI376267B (en) 2012-11-11
MY166759A (en) 2018-07-20
TW200528191A (en) 2005-09-01
ES2402297T3 (es) 2013-04-30

Similar Documents

Publication Publication Date Title
EP2075058B1 (de) Rohrbündelreaktor
DE60108071T2 (de) Chemischer reaktor mit wärmeaustauscher
DE60129686T2 (de) Reaktor für exothermische oder endothermische heterogene reaktionen
DE60102391T2 (de) Verfahren und vorrichtung zut durchführung chemischer reaktionen in einem reaktor mit spaltförmigen reaktionsräumen
EP1485195B1 (de) Verfahren zur herstellung von phosgen
EP2234713B1 (de) Verwendung eines Wärmetauschers zur Durchführung chemischer Reaktionen
WO2004052776A1 (de) Verfahren zur herstellung von chlor durch gasphasenoxidation von chlorwasserstoff
WO2016097190A1 (de) Faseroptische temperaturmessung in einer katalysatorschüttung
DE10361456A1 (de) Verfahren zur Herstellung von (Meth)acrolein und/oder (Meth)acrylsäure durch heterogen katalysierte Partialoxidation von C3 und/oder C4-Vorläuferverbindungen
EP1699550B1 (de) Verfahren zur überwachung, steuerung und/oder regelung von reaktionen eines fluiden reaktionsgemisches in einem reaktor mit thermoblechplatten
EP1699749B1 (de) Verfahren zur herstellung von (meth)acrolein und/oder (meth)acrylsäure durch heterogen katalysierte partialoxidation von c3 und/oder c4-vorlä uferverbindungen
DE102020007214A1 (de) Verfahren und Reaktor für exotherme Reaktionen in der Gasphase
EP2872443B1 (de) Vorrichtung und verfahren zur herstellung von phosgen
DE10361515A1 (de) Verfahren zur Überwachung, Steuerung und/oder Regelung von Reaktionen eines fluiden Reaktionsgemisches in einem Reaktor mit Thermoblechplatten
EP1401566A1 (de) Reaktor zum testen von katalysatorsystemen
DE102004017150A1 (de) Verfahren zur Herstellung von (Meth)acrolein und/oder (Meth)acrylsäure durch heterogen katalysierte Partialoxidation von C3- und/oder C4-Vorläuferverbindungen in einem Reaktor mit Thermoblechplattenmodulen
EP1027922B1 (de) Reaktor zur Durchführung einer katalytischen, exothermen Reaktion an Substanzen, die in einer Gasströmung enthalten sind
WO2019233674A1 (de) Verfahren und reaktorsystem zur durchführung katalytischer gasphasenreaktionen
WO2021156092A1 (de) Verfahren und reaktor zur herstellung von phosgen
EP1621250B1 (de) Reaktor zur Durchführung von Reaktionen mit starker Wärmetönung und Druckaufkommen
DE2317893B2 (de) Vorrichtung zur Durchführung katalytischer endothermer Reaktionen
DE10110847A1 (de) Meßverfahren und -einrichtung zur Überwachung und Steuerung von Reaktionen in Kontaktrohrbündelreaktoren
DE102004017151A1 (de) Reaktor für Partialoxidationen mit Thermoblechplattenmodulen
AT254224B (de) Verfahren und Vorrichtung zur Durchführung exothermer katalytischer Gasreaktionen
DE2712371A1 (de) Radialstromreaktor mit beheizbarer katalysator-fuellung

Legal Events

Date Code Title Description
8130 Withdrawal