DE10334560A1 - Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft - Google Patents

Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft Download PDF

Info

Publication number
DE10334560A1
DE10334560A1 DE2003134560 DE10334560A DE10334560A1 DE 10334560 A1 DE10334560 A1 DE 10334560A1 DE 2003134560 DE2003134560 DE 2003134560 DE 10334560 A DE10334560 A DE 10334560A DE 10334560 A1 DE10334560 A1 DE 10334560A1
Authority
DE
Germany
Prior art keywords
krypton
column
xenon
crude argon
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE2003134560
Other languages
English (en)
Inventor
Christian Kunz
Dietrich Rottmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to DE2003134560 priority Critical patent/DE10334560A1/de
Priority to DE200450010657 priority patent/DE502004010657D1/de
Priority to AT04011942T priority patent/ATE456014T1/de
Priority to EP20040011942 priority patent/EP1482266B1/de
Publication of DE10334560A1 publication Critical patent/DE10334560A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04872Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04084Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/0469Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser and an intermediate re-boiler/condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04703Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser being arranged in more than one vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04721Producing pure argon, e.g. recovered from a crude argon column
    • F25J3/04727Producing pure argon, e.g. recovered from a crude argon column using an auxiliary pure argon column for nitrogen rejection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04745Krypton and/or Xenon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04872Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
    • F25J3/04878Side by side arrangement of multiple vessels in a main column system, wherein the vessels are normally mounted one upon the other or forming different sections of the same column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/32Processes or apparatus using separation by rectification using a side column fed by a stream from the high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/02Mixing or blending of fluids to yield a certain product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/30Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/32Neon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • F25J2215/54Oxygen production with multiple pressure O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/50Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/58Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being argon or crude argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/40Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
    • F25J2240/46Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval the fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/50Processes or apparatus involving steps for recycling of process streams the recycled stream being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/58Processes or apparatus involving steps for recycling of process streams the recycled stream being argon or crude argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/02Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/04Down-flowing type boiler-condenser, i.e. with evaporation of a falling liquid film
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/10Boiler-condenser with superposed stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/20Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing streams

Abstract

Das Verfahren und die Vorrichtung dienen zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft. Ein erster verdichteter und gereinigter Einsatzluftstrom (1) wird in ein Rektifiziersystem zur Stickstoff-Sauerstoff-Trennung eingeleitet, das mindestens eine Hochdrucksäule (2) und eine Niederdrucksäule (3) aufweist. Eine krypton- und xenonhaltige Fraktion (26) wird einer Krypton-Xenon-Anreicherungssäule (24) zugeleitet. Der Krypton-Xenon-Anreicherungssäule (24) wird ein Krypton-Xenon-Konzentrat (30) entnommen. Ein zweiter verdichteter und gereinigter Einsatzluftstrom (103, 88) wird arbeitsleistend entspannt (87) und stromabwärts seiner arbeitsleistenden Entspannung (87) in die Krypton-Xenon-Anreicherungssäule (24) eingeleitet.

Description

  • Die Erfindung betrifft ein Verfahren zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft gemäß dem Oberbegriff des Patentanspruchs 1.
  • Die Grundlagen der Tieftemperaturzerlegung von Luft im Allgemeinen sowie der Aufbau von Rektifiziersystemen zur Stickstoff-Sauerstoff-Trennung im Speziellen sind in der Monografie "Tieftemperaturtechnik" von Hausen/Linde (2. Auflage, 1985) und in einem Aufsatz von Latimer in Chemical Engineering Progress (Vol. 63, No. 2, 1967, Seite 35) beschrieben. Bei Zwei-Säulen-Systemen wird die Hochdrucksäule unter einem höheren Druck als die Niederdrucksäule betrieben; die beiden Säulen stehen vorzugsweise in Wärmeaustauschbeziehung zueinander, beispielsweise über einen Hauptkondensator, in dem Kopfgas der Hochdrucksäule gegen verdampfende Sumpfflüssigkeit der Niederdrucksäule verflüssigt wird. Das Rektifiziersystem der Erfindung kann als klassisches Doppelsäulensystem ausgebildet sein, aber auch als Drei- oder Mehrsäulensystem. Zusätzlich zu den Kolonnen zur Stickstoff-Sauerstoff-Trennung können weitere Vorrichtungen zur Gewinnung anderer Luftkomponenten, insbesondere von Edelgasen vorhanden sein, beispielsweise eine Argongewinnung.
  • Ein Verfahren zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft und eine entsprechende Vorrichtung sind aus DE 10000017 A1 bekannt. Hier wird eine krypton- und xenonhaltige Fraktion, nämlich die Sumpfflüssigkeit, aus der Hochdrucksäule der Doppelsäule zur Stickstoff-Sauerstoff-Trennung ohne konzentrationsverändernde Maßnahmen in eine weitere Säule geführt, die zur Krypton-Xenon-Gewinnung dient. Weitere einschlägige Verfahren sind in DE 2055099 (= US 3751934 ), H. Springmann, Linde-Berichte aus Technik und Wissenschaft, 39/1976, S. 48–54, DE 2605305 A , EP 1308680 A1 oder offenbart.
  • Prozesse der eingangs genannten Art sind in EP 96610 A und Ullmann's Encyclopedia of Industrial Chemistry, 5th Ed., Vol. A17, 1991, Seite 507 beschrieben. Kälte für den Augleich von Austauschverlusten und gegebenenfalls für die Produktverflüssigung wird hier durch arbeitsleistende Entspannung eines Einsatzluftstroms erzeugt. Die arbeitsleistend entspannte Luft wird in die Niederdrucksäule eingeleitet.
  • Der Erfindung liegt die Aufgabe zugrunde, die Krypton- und Xenon-Gewinnung weiter zu verbessern und insbesondere auf besonders wirtschaftliche Weise durchzuführen.
  • Diese Aufgabe wird dadurch gelöst, dass der zweite Einsatzluftstrom stromabwärts seiner arbeitsleistenden Entspannung in die Krypton-Xenon-Anreicherungssäule eingeleitet wird.
  • Auf diese Weise kann auch das in der arbeitsleistend entspannten Luft enthaltene Krypton und Xenon in das Krypton-Xenon-Konzentrat geschleust werden. Er ergibt sich eine besonders hohe Ausbeute an Krypton und/oder Xenon.
  • Wenn bei dem erfindungsgemäßen Verfahren außerdem eine Rohargonrektifikation zur Argongewinnung vorgesehen ist, kann auf besonders günstige Weise aufsteigender Dampf für die Krypton-Xenon-Säule gebildet werden, indem der Sumpfverdampfer der Krypton-Xenon-Anreicherungssäule mit einem argonangereicherten Dampf aus einem Zwischenbereich der Rohargonrektifikation betrieben wird. Dabei wird außerdem der Umsatz im argonreicheren Teil der Rohargonrektifikation vermindert, ohne dass die Argonausbeute nennenswert verringert würde. Die Rohargonsäule kann in diesem Bereich entsprechend schlanker und damit kostengünstiger ausgeführt werden.
  • Dieser Vorteil kann besonders effizient ausgenutzt werden, falls die Rohargonrektifikation in zwei oder mehr Rohargonsäulen unterteilt ist. Wenn also die Rohargonrektifikation in einer Mehrzahl n (n ≥ 2) seriell verbundenen Rohargonsäulen durchgeführt wird, kann der argonangereicherte Dampf durch einen Teil des Kopfdampfs der ersten bis (n-1)-ten Rohargonsäule gebildet werden. Bei einer zweiteiligen Rohargonrektifikation wird also zum Beispiel ein Teil des Kopfdampfs der ersten, mit der Niederdrucksäule verbundenen Rohargonsäule in den Verdampfungsraum des Sumpfverdampfers der Krypton-Xenon-Anreicherungssäule geleitet und dort mindestens teilweise kondensiert. Das Kondensat strömt zurück in die erste Rohargonsäule und braucht nicht in die zweite Rohargonsäule, aus der in diesem Fall das Rohargonprodukt entnommen wird, eingeleitet zu werden. Entsprechend verringert sich der Umsatz in der zweiten Rohargonsäule. Diese kann entsprechend kostengünstiger ausgeführt werden.
  • Zur Erzeugung von Rücklauf für die Rohargonrektifikation wird mindestens ein Teil des Kopfdampfs der Rohargonrektifikation beziehungsweise der Kopfdampf der n-ten Rohargonsäule in den Verflüssigungsraum eines Rohargon-Kopfkondensators eingeleitet und dort durch indirekten Wärmeaustausch mit einer im Verdampfungsraum des Rohargon-Kopfkondensators verdampfenden Fraktion mindestens teilweise verflüssigt.
  • Analog zu EP 1308680 A1 kann eine Spülflüssigkeit aus dem Verdampfungsraum des Rohargon-Kopfkondensators abgezogen und als krypton- und xenonhaltige Fraktion der Krypton-Xenon-Anreicherungssäule zugeleitet werden.
  • Außerdem kann mindestens ein Teil des in dem Verdampfungsraum des Rohargon-Kopfkondensators gebildeten Dampfes in die Krypton-Xenon-Anreicherungssäule eingeleitet werden.
  • Die Erfindung betrifft außerdem eine Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft gemäß den Patentansprüchen 7 und 8.
  • Die Erfindung sowie weitere Einzelheiten der Erfindung werden im Folgenden anhand von in den Zeichnungen schematisch dargestellten Ausführungsbeispielen näher erläutert. Hierbei zeigen:
  • 1 ein erstes Ausführungsbeispiel der Erfindung mit Ausheizung der KRYPTON-XENON-ANREICHERUNGSSÄULE mit einer Zwischenfraktion der Rohargonrektifikation,
  • 2 ein weiteres Ausführungsbeispiel der Erfindung mit Ausheizung der KRYPTON-XENON-ANREICHERUNGSSÄULE mit Kopfgas der Rohargonrektifikation,
  • 3 ein Ausführungsbeispiel mit Integration von Krypton-Xenon-Anreicherungssäule und Rohargonsäule und
  • 4 und 5 weitere Anlagen mit abweichender Anordnung der Reinargonsäule.
  • Über Leitung 101 von 1 strömt komprimierte Luft (AIR) ein. Sie wird in einen ersten Luftstrom (Direktluft) 102, einen zweiten Luftstrom (Turbinenluft) 103 und einen dritten Luftstrom (Innenverdichtungsluft) 104 aufgeteilt. Der Hauptwärmetauscher weist in dem Ausführungsbeispiel drei parallele Blöcke 105a, 105b, 105c auf. Der erste Luftstrom 102 wird in allen drei Blöcken 105a, 105b, 105c des Hauptwärmetauschers auf etwa Taupunkt abgekühlt und ohne weitere druckverändernde Maßnahmen über Leitung 1 gasförmig in die Hochdrucksäule 2 eines Rektifiziersystems zur Stickstoff-Sauerstoff-Trennung eingeleitet. Das Rektifiziersystem zur Stickstoff-Sauerstoff-Trennung weist außerdem eine Niederdrucksäule 3 und einen Hauptkondensator 4 auf, der in dem Beispiel als kombinierter Fallfilm- und Badverdampfer ausgebildet ist. Gasförmiger Stickstoff 6 vom Kopf der Hochdrucksäule wird dem Kondensationsraum des Hauptkondensators 4 zugeleitet. Das dort gebildete Kondensat 7 wird in die Hochdrucksäule eingeleitet und dort als Rücklauf verwendet. Einige theoretische Böden tiefer wird flüssiger Stickstoff 106 aus der Hochdrucksäule 2 entnommen und bei 107 verzweigt. Ein erster Zweigstrom flüssigen Stickstoffs wird über Leitung 114 als flüssiges Stickstoffprodukt (LIN) gewonnen. Ein anderer Zweigstrom 111 des flüssigen Stickstoffs aus der Hochdrucksäule 2 wird in einer Pumpe 112 in flüssigem Zustand auf einen gewünschten Produktdruck gebracht, im Hauptwärmetauscher-Block 105a verdampft (beziehungsweise im Falle eines überkritischen Drucks pseudo-verdampft) und auf etwa Umgebungstemperatur angewärmt und über Leitung 113 als gasförmiges Druckprodukt (PGAN) abgeführt. Zur Verdampfung des flüssig auf Druck gebrachten Stickstoffs dient der dritte Luftstrom 104, der in einem Nachverdichter 115 mit Nachkühler 116 auf einen entsprechend hohen Druck gebracht wurde.
  • Anstelle dieser Stickstoff-Innenverdichtung kann auch über Leitung 95 ein Druckstickstoff-Produkt direkt aus der Hochdrucksäule 2 entnommen werden.
  • Über Leitung 9 wird unreiner flüssiger Stickstoff einige theoretische Böden unterhalb des Kopfs aus der Hochdrucksäule 2 entnommen, im Unterkühlungs-Gegenströmer 10 unterkühlt und über Leitung 11 und Drosselventil 12 der Niederdrucksäule 3 am Kopf zugeführt.
  • Die im Rahmen der Innenverdichtung verflüssigte oder überkritische kalte Hochdruckluft 117 wird über Ventil 118 und Leitung 44 mindestens zum Teil in flüssiger Form in die Hochdrucksäule 2 eingedrosselt, und zwar an einer ersten Zwischenstelle einige theoretischen Böden oberhalb des Hochdrucksäulen-Sumpfs. Von einer zweiten Zwischenstelle, die wieden im einige theoretische Böden oberhalb dieser ersten Zwischenstelle angeordnet ist, wird eine sauerstoffhaltige Flüssigkeit 45 aus der Hochdrucksäule abgezogen, die kaum noch schwererflüchtige Komponenten wie insbesondere Krypton und Xenon aufweist. Die im Unterkühlungs-Gegenströmer 10 abgekühlte Flüssigkeit wird über Leitung 46 und Drosselventil 47 in die Niederdrucksäule 3 eingespeist.
  • Die sauerstoffangereicherte Sumpfflüssigkeit 13 der Hochdrucksäule 2 wird ebenfalls im Unterkühlungs-Gegenströmer 10 abgekühlt. Die unterkühlte sauerstoffangereicherte Flüssigkeit 1415 wird in einem Reinargon-Verdampfer 63 weiter abgekühlt und wird schließlich zu einem Teil über Leitung 16 und 16a in den Verdampfungsraum eines Rohargon-Kopfkondensators 17 einer Rohargonrektifikation 18/19 eingeleitet. Ein anderer Teil 16b der unterkühlten sauerstoffhaltigen Flüssigkeit 16 wird in den Verdampfungsraum eines Kopfkondensators 21 einer Reinargonsäule 22 eingespeist.
  • Der Rohargon-Kopfkondensator 17 ist als Umlaufverdampfer ausgebildet, das heißt der Verdampfungsraum enthält ein Flüssigkeitsbad, in das ein Wärmetauscherblock mindestens teilweise, vorzugsweise vollständig eingetaucht ist (nicht dargestellt). Flüssigkeit wird durch den Thermosiphon-Effekt am unteren Ende der Verdampfungspassagen angesaugt. An deren oberem Ende tritt ein Gemisch aus Dampf und unverdampfter Flüssigkeit aus, wobei letztere in das Flüssigkeitsbad zurückströmt. Im Rohargon-Kopfkondensator 17 wird die sauerstoffangereicherte Fraktion 16a partiell verdampft; beispielsweise 0,5 bis 10 mol-%, vorzugsweise 1 bis 5 mol-% der eingeführten Flüssigkeit 16a werden flüssig als Spülflüssigkeit 26 aus dem Verdampfungsraum des Rohargon-Kopfkondensators 17 abgezogen. Durch diese partielle Verdampfung wird die Konzentration von schwererflüchtigen Komponenten, insbesondere von Krypton und Xenon, in der Flüssigkeit erhöht und im Dampf vermindert (jeweils im Vergleich zur Zusammensetzung der Fraktion 16a). Der bei der partiellen Verdampfung erzeugte Dampf wird als gasförmiger Strom 25 aus dem Verdampfungsraum des Rohargon-Kopfkondensators 17 abgezogen. Verbleibende Flüssigkeit wird als "Spülflüssigkeit" 26 aus dem Flüssigkeitsbad abgeführt und der Krypton-Xenon-Anreicherungssäule 24 unmittelbar oberhalb des Sumpfs zugeleitet.
  • Von der Niederdrucksäule 3 werden Unreinstickstoff 33 in Gasform sowie Sauerstoff 34 in flüssiger Form mindestens teilweise als Produkte beziehungsweise Restgas abgezogen. Der gasförmige Unreinstickstoff 33 wird im Unterkühlungs-Gegenströmer 10 und im Hauptwärmetauscher 105a/105c angewärmt. Der flüssige Sauerstoff 34 wird in zwei Teile aufgeteilt. Ein erster Teil 35 wird als Flüssigprodukt (LOX) abgezogen, gegebenenfalls nach teilweiser Unterkühlung im Unterkühlungs-Gegenströmer 10 (nicht dargestellt).
  • Der zweite Teil 41 des flüssigen Sauerstoffs 34 vom Sumpf der Niederdrucksäule 3 wird – ähnlich dem flüssigen Stickstoff 111 aus der Hochdrucksäule – einer Innenverdichtung (internal compression) unterzogen, indem er in einer Pumpe 42 auf den gewünschten Produktdruck gebracht und über Leitung 43 dem Hauptwärmetauscher (Block 105a) zuströmt, wo er verdampft (beziehungsweise – bei überkritischem Produktdruck – pseudo-verdampft) und auf etwa Umgebungstemperatur angewärmt wird. Schließlich wird er über Leitung 120 als gasförmiges Sauerstoff-Druckprodukt gewonnen. Verdampfung und Anwärmung werden in indirektem Wärmeaustausch mit dem Hochdruckluftstrom 104117 durchgeführt.
  • Ein weiterer Sauerstoffstrom 93 wird direkt gasförmig aus der Niederdrucksäule 3 abgezogen, in den Wärmetauscher-Blöcken 105a, 105b angewärmt und schließlich über Leitung 94 als druckloses Gasprodukt (GOX) abgezogen.
  • Über eine Argonübergangs-Leitung 48 wird eine argonhaltige Fraktion aus der Niederdrucksäule 3 in eine Rohargonrektifikation geleitet, die in dem Beispiel in zwei seriell verbundenen Rohargonsäulen 18 und 19 durchgeführt wird (so genannte geteilte Rohargonsäule). Die argonhaltige Fraktion 48 wird der ersten Rohargonsäule 18 unmittelbar über dem Sumpf gasförmig zugeleitet. Der aufsteigende Dampf reichert sich an Argon an. Das Kopfgas 81 der ersten Rohargonsäule 18 strömt zu einem ersten Teil über Leitung 49 weiter zum Sumpf der zweiten Rohargonsäule 19. Ein anderer Teil 82 des Kopfgases 81, etwa zwischen 5 und 10%, dient als Heizmittel für den Sumpfverdampfer 27 der Krypton-Xenon-Anreicherungssäule 24, wird in dessen Verflüssigungsraum eingeleitet und dort kondensiert. Die dabei erzeugte Flüssigkeit 83 wird als Rücklaufflüssigkeit auf die erste Rohargonsäule 18 aufgegeben.
  • Am Kopf der zweiten Rohargonsäule 19 wird gasförmiges Rohargon 50 abgezogen, in den Verflüssigungsraum des Rohargon-Kopfkondensators 17 eingeleitet und dort zum großen Teil kondensiert. Die dabei erzeugte Flüssigkeit 51 wird als Rücklaufflüssigkeit auf die zweite Rohargonsäule 19 aufgegeben.
  • Die im Sumpf der zweiten Rohargonsäule 19 anfallende Flüssigkeit 52 wird mittels einer Pumpe 53 über Leitung 54 zum Kopf der ersten Rohargonsäule 18 gefördert. Sumpfflüssigkeit 55 der ersten Rohargonsäule 18 strömt über eine weitere Pumpe 56 und Leitung 57 in die Niederdrucksäule 3 zurück.
  • Gasförmig verbliebenes Rohargon 58 aus dem Verflüssigungsraum des Kondensator-Verdampfers 17 wird in der Reinargonsäule 22 weiter zerlegt, insbesondere von leichterflüchtigen Bestandteilen wie Stickstoff befreit. Reinargonprodukt (LAR) wird über die Leitungen 59 und 60 in flüssiger Form abgezogen. Ein anderer Teil 61 der Sumpfflüssigkeit der Reinargonsäule 22 wird in dem oben erwähnten Reinargon-Verdampfer 63 mit angeschlossenem Abscheider 62 verdampft und über Leitung 64 als aufsteigender Dampf in die Reinargonsäule 22 zurückgeleitet.
  • Der Kopfkondensator 21 der Reinargonsäule wird wie bereits beschrieben durch eine unterkühlte Flüssigkeit 16b gekühlt. Aus dem Verdampfungsraum des Kopfkondensators 21 werden Dampf 66 und verbliebene Flüssigkeit 65 abgezogen. Der Dampf 66 wird an geeigneter Zwischenstelle in die Niederdrucksäule 3 eingespeist. Die – praktisch Krypton- und Xenon-freie – Flüssigkeit 65 wird auf die Krypton-Xenon-Anreicherungssäule 24 aufgegeben. Im Verflüssigungsraum des Kopfkondensators 21 kondensiert Kopfgas 67 der Reinargonsäule 22 partiell. Dabei erzeugte Rücklaufflüssigkeit 68 wird auf die Reinargonsäule aufgegeben. Restdampf 69 wird in die Atmosphäre abgeblasen.
  • Der zweite Luftstrom 103 wird in einem turbinen-getriebenen Nachverdichter 85 mit Nachkühler 86 weiter verdichtet, im Hauptwärmetauscher-Block 105a auf eine Zwischentemperatur abgekühlt und in einer Luftturbine 87 arbeitsleistend entspannt. Die entspannte Luft 88 wird über Leitung 88 in die Krypton-Xenon-Anreicherungssäule 24 eingeblasen.
  • In dem oben beschriebenen Sumpfverdampfer 27 wird Dampf erzeugt, der zusätzlich zu den Gasen 25 und 88 in der Krypton-Xenon-Anreicherungssäule 24 aufsteigt. Als Rücklaufflüssigkeit wird wie ebenfalls bereits erwähnt die Spülflüssigkeit 65 aus dem Verdampfer des Kopfkondensators 21 der Reinargonsäule 22 auf den Kopf der Krypton-Xenon-Anreicherungssäule 24 aufgegeben. (Alternativ oder zusätzlich könnte mindestens ein Teil der sauerstoffhaltigen – aber weitgehend Krypton- und Xenon-freien-Flüssigkeit 45/46 aus der Hochdrucksäule 2 als Rücklaufflüssigkeit in der Krypton-Xenon-Anreicherungssäule 24 eingesetzt werden – in der Zeichnung nicht dargestellt.) Der aus dem Sumpfverdampfer 27 aufsteigende Dampf und das über Leitung 25 eingeführte Gas sowie die Einblase-Turbinenluft 88 treten in der Krypton-Xenon-Anreichenangssäule in Gegenstrom-Stoffaustausch mit der Flüssigkeit 65, die ärmer an Krypton und Xenon ist. Dadurch werden diese Komponenten in den Sumpf gewaschen, wogegen Methan teilweise mit dem Kopfgas 84 ausgeschleust werden kann. Letzteres wird in dem Ausführungsbeispiel der Niederdrucksäule 3 an einer geeigneten Zwischenstelle zugespeist. Vom Sumpf der Krypton-Xenon-Anreicherungssäule 24 wird ein Krypton-Xenon-Konzentrat 30 in flüssiger Form entnommen (Roh-Kr/Xe), das beispielsweise einen Krypton-Gehalt von etwa 2400 ppm und einen Xenon-Gehalt von etwa 200 ppm enthält: Im Übrigen besteht das Konzentrat 30 hauptsächlich aus Sauerstoff und enthält beispielsweise noch etwa 10 bis 40 mol-% Stickstoff sowie Kohlenwasserstoffe. Das Konzentrat 30 kann in einem Flüssigtank gespeichert oder direkt einer Weiterverarbeitung zur Gewinnung von reinem Krypton und/oder Xenon zugeführt werden.
  • Zwischen den Blöcken 105a, 105b, 105c des Hauptwärmetauscher-Systems sind Ausgleichsströme 96, 97 vorgesehen.
  • Das Ausführungsbeispiel der 1 zeigt außerdem eine zusätzliche Säule 89 zur Gewinnung eines Helium-Neon-Konzentrats 90, 91 (Roh-HeNe) aus nicht kondensiertem Stickstoff-Dampf 92, der vom Hauptkondensator 4 abgezogen wird. Diese Helium-Neon-Gewinnung ist grundsätzlich unabhängig von der erfindungsgemäßen Krypton-Xenon-Gewinnung.
  • Über Leitung 101 von 2 strömt komprimierte Luft (AIR) ein. Sie wird in einen ersten Luftstrom (Direktluft) 102, einen zweiten Luftstrom (Turbinenluft) 103 und einen dritten Luftstrom (Innenverdichtungsluft) 104 aufgeteilt. Der Hauptwärmetauscher weist in dem Ausführungsbeispiel zwei parallele Blöcke 105a, 105b auf. Der erste Luftstrom 102 wird in beiden Blöcken 105a und 105b des Hauptwärmetauschers auf etwa Taupunkt abgekühlt und ohne weitere druckverändernde Maßnahmen über Leitung 1 gasförmig in die Hochdrucksäule 2 eines Rektifiziersystems zur Stickstoff-Sauerstoff-Trennung eingeleitet. Das Rektifiziersystem zur Stickstoff-Sauerstoff-Trennung weist außerdem eine Niederdrucksäule 3 und einen Hauptkondensator 4 auf, der in dem Beispiel als Fallfilmverdampfer ausgebildet ist. Gasförmiger Stickstoff 6 vom Kopf der Hochdrucksäule wird dem Kondensationsraum des Hauptkondensators 4 zugeleitet. Das dort gebildete Kondensat 7 wird in die Hochdrucksäule eingeleitet und zum Teil dort als Rücklauf verwendet. Ein anderer Teil 106 wird flüssig aus der Hochdrucksäule 2 entnommen und verzweigt bei 107 nochmals. Ein erster Zweigstrom flüssigen Stickstoffs wird in einem Unterkühlungs-Gegenströmer 10 unterkühlt, über Leitung 108 in einen Abscheider (Phasentrenner) 109 eingeleitet und schließlich über Leitung 114 als flüssiges Stickstoffprodukt (LIN) gewonnen. Ein anderer Zweigstrom 111 des flüssigen Stickstoffs vom Kopf der Hochdrucksäule 2 (beziehungsweise vom Hauptkondensator 4) wird in einer Pumpe 112 in flüssigem Zustand auf einen gewünschten Produktdruck gebracht, im Hauptwärmetauscher-Block 105a verdampft (beziehungsweise im Falle eines überkritischen Drucks pseudo-verdampft) und auf etwa Umgebungstemperatur angewärmt und über Leitung 113 als gasförmiges Druckprodukt (PGAN) abgeführt. Zur Verdampfung des flüssig auf Druck gebrachten Stickstoffs dient der dritte Luftstrom 104, der in einem Nachverdichter 115 mit Nachkühler 116 auf einen entsprechend hohen Druck gebracht wurde.
  • Über Leitung 9 wird unreiner flüssiger Stickstoff einige theoretische Böden unterhalb des Kopfs aus der Hochdrucksäule 2 entnommen, im Unterkühlungs-Gegenströmer 10 unterkühlt und über Leitung 11 und Drosselventil 12 der Niederdrucksäule 3 am Kopf zugeführt.
  • Die im Rahmen der Innenverdichtung verflüssigte oder überkritische kalte Hochdruckluft 117 wird über Ventil 118 und Leitung 44 mindestens zum Teil in flüssiger Form in die Hochdrucksäule 2 eingedrosselt, und zwar an einer "ersten Zwischenstelle" einige theoretische Böden oberhalb des Hochdrucksäulen-Sumpfs. Von einer "zweiten Zwischenstelle", die wiederum einige theoretische Böden oberhalb dieser ersten Zwischenstelle angeordnet ist, wird eine sauerstoffhaltige Flüssigkeit 45 aus der Hochdrucksäule abgezogen, die kaum noch schwererflüchtige Komponenten wie insbesondere Krypton und Xenon aufweist. Die im Unterkühlungs-Gegenströmer 10 abgekühlte Flüssigkeit 119 wird zum Teil über Leitung 46 und Drosselventil 47 in die Niederdrucksäule 3 eingespeist. Ein anderer Teil 20 der unterkühlten sauerstoffhaltigen Flüssigkeit 119 wird in den Verdampfungsraum eines Kopfkondensators 21 einer Reinargonsäule 22 eingespeist.
  • Die sauerstoffangereicherte Sumpfflüssigkeit 13 der Hochdrucksäule 2 wird ebenfalls im Unterkühlungs-Gegenströmer 10 abgekühlt. Die unterkühlte sauerstoffangereicherte Flüssigkeit 1415 wird in einem Reinargon-Verdampfer 63 weiter abgekühlt und wird schließlich über Leitung 16 in den Verdampfungsraum eines Rohargon-Kopfkondensators 17 eingeleitet, der den Kopfkondensator einer Rohargonrektifikation 18/19 darstellt.
  • Der Rohargon-Kopfkondensator 17 ist als Umlaufverdampfer ausgebildet, das heißt der Verdampfungsraum enthält ein Flüssigkeitsbad, in das ein Wärmetauscherblock mindestens teilweise, vorzugsweise (in Abweichung von der schematischen Darstellung in der Zeichnung) vollständig eingetaucht ist. Flüssigkeit wird durch den Thermosiphon-Effekt am unteren Ende der Verdampfungspassagen angesaugt. An deren oberem Ende tritt ein Gemisch aus Dampf und unverdampfter Flüssigkeit aus, wobei letztere in das Flüssigkeitsbad zurückströmt. Im Rohargon-Kopfkondensator 17 wird die sauerstoffangereicherte Fraktion 16 partiell verdampft; beispielsweise 0,5 bis 10 mol-%, vorzugsweise 1 bis 5 mol-% der eingeführten Flüssigkeit 16 werden flüssig als Spülflüssigkeit 26 aus dem Verdampfungsraum des Rohargon-Kopfkondensators 17 abgezogen. Durch diese partielle Verdampfung wird die Konzentration von schwererflüchtigen Komponenten, insbesondere von Krypton und Xenon, in der Flüssigkeit erhöht und im Dampf vermindert (jeweils im Vergleich zur Zusammensetzung der sauerstoffangereicherten Fraktion 16). Der bei der partiellen Verdampfung erzeugte Dampf wird als gasförmiger Strom 25 aus dem Verdampfungsraum des Rohargon-Kopfkondensators 17 abgezogen. Verbleibende Flüssigkeit wird als "Spülflüssigkeit" 26 aus dem Flüssigkeitsbad abgeführt und der Krypton-Xenon-Anreicherungssäule 24 unmittelbar oberhalb des Sumpfs zugeleitet.
  • Von der Niederdrucksäule 3 werden Unreinstickstoff 33 in Gasform sowie Sauerstoff 34 in flüssiger Form mindestens teilweise als Produkte beziehungsweise Restgas abgezogen. Der gasförmige Unreinstickstoff 33 wird gemeinsam mit Flashgas 110 aus dem Abscheider 109 im Unterkühlungs-Gegenströmer 10 und im Hauptwärmetauscher 105a/105b angewärmt. Der flüssige Sauerstoff 34 wird in insgesamt drei Teile aufgeteilt. Ein erster und ein zweiter Teil werden zunächst gemeinsam über Leitung 35 und Pumpe 36 gefördert. Der erste Teil 37 strömt zum Verdampfungsraum des Hauptkondensators 4 und wird dort teilweise verdampft. Das dabei gebildete Dampf-Flüssigkeitsgemisch 38 fließt zum Sumpf der Niederdrucksäule 3 zurück. Über die Leitungen 39 und 40 wird der zweite Teil als Flüssigprodukt (LOX) abgezogen, nach teilweiser Unterkühlung im Unterkühlungs-Gegenströmer 10.
  • Der dritte Teil 41 des flüssigen Sauerstoffs 34 vom Sumpf der Niederdrucksäule 3 wird – ähnlich dem flüssigen Stickstoff 111 aus der Hochdrucksäule – einer Innenverdichtung (internal compression) unterzogen, indem er in einer Pumpe 42 auf den gewünschten Produktdruck gebracht und über Leitung 43 dem Hauptwärmetauscher (Block 105a) zuströmt, wo er verdampft (beziehungsweise – bei überkritischem Produktdruck – pseudo-verdampft) und auf etwa Umgebungstemperatur angewärmt wird. Schließlich wird er über Leitung 120 als gasförmiges Sauerstoff-Druckprodukt gewonnen. Verdampfung und Anwärmung werden in indirektem Wärmeaustausch mit dem Hochdruckluftstrom 104117 durchgeführt.
  • Über eine Argonübergangs-Leitung 48 wird eine argonhaltige Fraktion aus der Niederdrucksäule 3 in eine Rohargonrektifikation geleitet, die in dem Beispiel in zwei seriell verbundenen Rohargonsäulen 18 und 19 durchgeführt wird (so genannte geteilte Rohargonsäule). Die argonhaltige Fraktion 48 wird der ersten Rohargonsäule 18 unmittelbar über dem Sumpf gasförmig zugeleitet. Der aufsteigende Dampf reichert sich an Argon an. Das Kopfgas der ersten Rohargonsäule 18 strömt über Leitung 49 weiter zum Sumpf der zweiten Rohargonsäule 19.
  • Am Kopf der zweiten Rohargonsäule 19 wird gasförmiges Rohargon 121 abgezogen. Ein erster Teil 50 davon, etwa 90%, wird in den Verflüssigungsraum des Rohargon-Kopfkondensators 17 eingeleitet und dort zum großen Teil kondensiert. Die dabei erzeugte Flüssigkeit 51 wird als Rücklaufflüssigkeit auf die zweite Rohargonsäule 19 aufgegeben. Ein anderer Teil 122, etwa 10%, des Rohargons 121, dient als Heizmittel für den Sumpfverdampfer 27 der Krypton-Xenon-Anreicherungssäule 24. Im Sumpfverdampfer 27 gebildete Flüssigkeit strömt über Leitung 123 zurück zum Kopf der zweiten Rohargonsäule 19.
  • Die im Sumpf der zweiten Rohargonsäule 19 anfallende Flüssigkeit 52 wird mittels einer Pumpe 53 über Leitung 54 zum Kopf der ersten Rohargonsäule 18 gefördert. Sumpfflüssigkeit 55 der ersten Rohargonsäule 18 strömt über eine weitere Pumpe 56 und Leitung 57 in die Niederdrucksäule 3 zurück.
  • Gasförmig verbliebenes Rohargon 58 aus dem Verflüssigungsraum des Rohargon-Kopfkondensators 17 wird in der Reinargonsäule 22 weiter zerlegt, insbesondere von leichterflüchtigen Bestandteilen wie Stickstoff befreit. Reinargonprodukt (LAR) wird über die Leitungen 59 und 60 in flüssiger Form abgezogen. Ein anderer Teil 61 der Sumpfflüssigkeit der Reinargonsäule 22 wird in dem oben erwähnten Reinargon-Verdampfer 63 mit angeschlossenem Abscheider 62 verdampft und über Leitung 64 als aufsteigender Dampf in die Reinargonsäule 22 zurückgeleitet.
  • Der Kopfkondensator 21 der Reinargonsäule wird wie bereits beschrieben durch eine unterkühlte Flüssigkeit 20 gekühlt. Aus dem Verdampfungsraum des Kopfkondensators 21 werden Dampf 66 und verbliebene Flüssigkeit 65 abgezogen. Der Dampf 66 wird an geeigneter Zwischenstelle in die Niederdrucksäule 3 eingespeist. Die – praktisch Krypton- und Xenon-freie-Flüssigkeit 65 wird auf die Krypton-Xenon-Anreicherungssäule 24 aufgegeben. Im Verflüssigungsraum des Kopfkondensators 21 kondensiert Kopfgas 67 der Reinargonsäule 22 partiell. Dabei erzeugte Rücklaufflüssigkeit 68 wird auf die Reinargonsäule aufgegeben. Restdampf 69 wird in die Atmosphäre abgeblasen.
  • Der zweite Luftstrom 103 wird in einem turbinen-getriebenen Nachverdichter 85 mit Nachkühler 86 weiter verdichtet, im Hauptwärmetauscher-Block 105a auf eine Zwischentemperatur abgekühlt und in einer Luftturbine 87 arbeitsleistend entspannt. Die entspannte Luft 88 wird über Leitung 88 in die Krypton-Xenon-Anreicherungssäule 24 eingeblasen.
  • In dem oben beschriebenen Rohargon-beheizten Sumpfverdampfer 27 wird Dampf erzeugt, der zusätzlich zu dem Gas 25 und der Einblase-Turbinenluft 88 in der Krypton-Xenon-Anreicherungssäule 24 aufsteigt. Als Rücklaufflüssigkeit wird wie ebenfalls bereits erwähnt die Spülflüssigkeit 65 aus dem Verdampfer des Kopfkondensators 21 der Reinargonsäule 22 auf den Kopf der Krypton-Xenon- Anreicherungssäule 24 aufgegeben. Der aus dem Sumpfverdampfer 27 aufsteigende Dampf und das über Leitung 25 eingeführte Gas treten in der Krypton-Xenon-Anreicherungssäule in Gegenstrom-Stoffaustausch mit der Flüssigkeit 65, die ärmer an Krypton und Xenon ist. Dadurch werden diese Komponenten in den Sumpf gewaschen, wogegen Methan teilweise mit dem Kopfgas 84 ausgeschleust werden kann. Letzteres wird in dem Ausführungsbeispiel der Niederdrucksäule 3 an einer geeigneten Zwischenstelle zugespeist. Vom Sumpf der Krypton-Xenon-Anreicherungssäule 24 wird ein Krypton-Xenon-Konzentrat 30 in flüssiger Form entnommen (Roh-KrXe), das beispielsweise einen Krypton-Gehalt von etwa 2400 ppm und einen Xenon-Gehalt von etwa 200 ppm enthält: Im Übrigen besteht das Konzentrat 30 hauptsächlich aus Sauerstoff und enthält noch etwa 10 mol-% Stickstoff sowie Kohlenwasserstoffe. Das Konzentrat 30 kann in einem Flüssigtank gespeichert oder direkt einer Weiterverarbeitung zur Gewinnung von reinem Krypton und/oder Xenon zugeführt werden.
  • 3 unterscheidet sich hinsichtlich der Abfolge der Verfahrensschritte nicht von 2. Allerdings ist die Anordnung der Krypton-Xenon-Anreicherungssäule 24 verschieden. Während sie in 2 als separater Behälter oberhalb der ersten Rohargonsäule 18 angebracht ist, befindet sie sich in 3 zwischen dem Rohargon-Kopfkondensator 17 und dem Stoffaustauschbereich der zweiten Rohargonsäule 19. Krypton-Xenon-Anreicherungssäule 24 und zweite Rohargonsäule 19 bilden damit gewissermaßen eine Doppelsäule mit dem zweiten Kondensator-Verdampfer als "Hauptkondensator". Da die Krypton-Xenon-Anreichenangssäule und die Rohargonsäulen 18, 19 einen ähnlichen Durchmesser aufweisen, kann eine derartige Anordnung apparativ besonders günstig sein.
  • In den Ausführungsbeispielen der 2 und 3 sind die Krypton-Xenon-Anreicherungssäule 24, die zweite Rohargonsäule 19 und die Reinargonsäule 22 sowie deren Kondensatoren 27, 17, 21 so angeordnet, dass die Flüssigkeiten 26, 51, 65, 68 und 123 allein aufgrund des geodätischen Gefälles ihrem Ziel zuströmen. Diese Anordnung ist jedoch aus räumlichen Gründen nicht immer optimal.
  • Bei 4 ist die Reinargonsäule 22 niedriger angeordnet als in 2, sodass die Flüssigkeit 65 nach oben fließen muss. Dazu wird der Verdampfungsraum des Kopfkondensators 21 der Reinargonsäule 22 unter etwas höherem Druck als in 2 betrieben, sodass die Spülflüssigkeit 65 aufgrund des entsprechenden Druckgefälles in die Krypton-Xenon-Anreicherungssäule gedrückt wird. Eine entsprechende Druckdifferenz wird in der Gasleitung 66 durch die Regelklappe 294 aufrecht erhalten.
  • Die Reinargonsäule der 5 steht ebenfalls niedriger als in 2. Allerdings wird hier kein erhöhter Druck im Verdampfungsraum des Kopfkondensators 21 benötigt, da die Spülflüssigkeit 465 aus dem Kopfkondensator 21 der Reinargonsäule 22 direkt bei einer Zwischenstelle 492 in die Niederdrucksäule 3 eingeleitet wird, die tiefer als der Kondensator 21 liegt. Die Einsatzflüssigkeit 493 für die Krypton-Xenon-Anreicherungssäule wird hier bereits stromaufwärts des Kopfkondensators 21 aus der Flüssigkeit 20 abgezweigt, die über die Leitungen 45 und 119 von der zweiten Zwischenstelle der Hochdrucksäule 2 abgezogen wurde. Ein anderer Teil dieser Flüssigkeit 20 strömt in den Verdampfungsraum des Kopfkondensators 21 der Reinargonsäule 22.
  • Auch die Ausführungsbeispiele der nicht vorveröffentlichten deutschen Patentanmeldung 10153252 und der dazu korrespondierenden Anmeldungen in weiteren Ländern (zum Beispiel der europäischen Patentanmeldung Nr. 02001356) werden hier einbezogen. Sie stellen – modifiziert durch die Verwendung eines Teils des Rohargons vom Kopf der Rohargonrektifikation als Heizmittel für den Sumpfverdampfer der Krypton-Xenon-Anreicherungssäule – Ausführungsformen der Erfindung dar.
  • Bei allen Ausführungsformen der Erfindung kann als Hauptkondensator statt des in den Zeichnungen dargestellten Fallfilmverdampfers 4 eine Kombination aus Fallfilmverdampfer und Umlaufverdampfer eingesetzt werden, die verdampfungsseitig seriell verbunden sind. In diesem Fall kann die Erfindung einen weiteren Vorteil bewirken: Dadurch dass nur eine äußerst geringe Menge an schwererflüchtigen Bestandteilen der Luft in die Niederdrucksäule gelangt, kann die Umwälzpumpe 36 für den Fallfilmverdampfer eingespart werden.
  • Bei einem "Fallfilmverdampfer" strömt das zu verdampfende Fluid von oben nach unten durch den Verdampfungsraum und wird dabei teilweise verdampft. Bei einem "Umlaufverdampfer" (auch Flüssigkeitsbadverdampfer) genannt steht der Wärmetauscherblock in einem Flüssigkeitsbad des zu verdampfenden Fluids. Dieses strömt mittels des Thermosiphon-Effekts von unten nach oben durch die Verdampfungspassagen und tritt oben als Zwei-Phasen-Gemisch wieder aus. Die verbleibende Flüssigkeit strömt außerhalb des Wärmetauscherblocks in das Flüssigkeitsbad zurück. (Bei einem Umlaufverdampfer kann der Verdampfungsraum sowohl die Verdampfungspassagen als auch den Außenraum um den Wärmetauscherblock umfassen.)

Claims (8)

  1. Verfahren zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft, bei dem • ein erster verdichteter und gereinigter Einsatzluftstrom (1) in ein Rektifiziersystem zur Stickstoff-Sauerstoff-Trennung eingeleitet wird, das mindestens eine Hochdrucksäule (2) und eine Niederdrucksäule (3) aufweist, wobei • eine krypton- und xenonhaltige Fraktion (26) einer Krypton-Xenon-Anreicherungssäule (24) zugeleitet wird, • der Krypton-Xenon-Anreicherungssäule (24) ein Krypton-Xenon-Konzentrat (30) entnommen wird und • ein zweiter verdichteter und gereinigter Einsatzluftstrom (103) arbeitsleistend entspannt (87) wird, dadurch gekennzeichnet, dass der zweite Einsatzluftstrom (88) stromabwärts seiner arbeitsleistenden Entspannung (87) in die Krypton-Xenon-Anreicherungssäule (24) eingeleitet wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass • eine argonhaltige Fraktion (48) aus der Niederdrucksäule (2) in eine Rohargonrektifikation (18, 19) eingeleitet wird, • eine Flüssigkeit aus dem unteren Bereich der Krypton-Xenon-Anreicherungssäule (24) in einen Sumpfverdampfer (27) eingeleitet wird und dort mindestens teilweise verdampft wird und • ein argonangereicherter Dampf (81, 82) aus einem Zwischenbereich der Rohargonrektifikation (18, 19) in dem Sumpfverdampfer (27) in indirekten Wärmeaustausch mit der Flüssigkeit aus dem unteren Bereich der Krypton-Xenon-Anreicherungssäule (24) tritt.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Rohargonrektifikation in einer Mehrzahl n (n ≥ 2) seriell verbundenen Rohargonsäulen (18, 19) durchgeführt wird, wobei der argonangereicherte Dampf durch einen Teil (82) des Kopfdampfs (81) der ersten bis (n-1)-ten Rohargonsäule (18) gebildet wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass mindestens ein Teil des Kopfdampfs der Rohargonrektifikation beziehungsweise der Kopfdampf (50) der n-ten Rohargonsäule (19) in den Verflüssigungsraum eines Rohargon-Kopfkondensators (17) eingeleitet und dort durch indirekten Wärmeaustausch mit einer im Verdampfungsraum des Rohargon-Kopfkondensators verdampfenden Fraktion (16a) mindestens teilweise verflüssigt wird.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass eine Spülflüssigkeit (26) aus dem Verdampfungsraum des Rohargon-Kopfkondensators (17) abgezogen und als krypton- und xenonhaltige Fraktion der Krypton-Xenon-Anreicherungssäule (24) zugeleitet wird.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass mindestens ein Teil des in dem Verdampfungsraum des Rohargon-Kopfkondensators (17) gebildeten Dampfes (25) in die Krypton-Xenon-Anreicherungssäule (24) eingeleitet wird.
  7. Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft, • mit einer ersten Einsatzluftleitung (1) zur Einleitung verdichteter und vorgereinigter Einsatzluft in ein Rektifiziersystem zur Stickstoff-Sauerstoff-Trennung, das mindestens eine Hochdrucksäule (2) und eine Niederdrucksäule (3) aufweist, • mit einer Zufuhrleitung (26) zur Einführung einer krypton- und xenonhaltigen Fraktion in eine Krypton-Xenon-Anreicherungssäule (24), • wobei die Krypton-Xenon-Anreicherungssäule (24) eine Produktleitung (30) für ein Krypton-Xenon-Konzentrat aufweist, • mit einer zweiten Einsatzluftleitung (103, 88), die durch Mittel (87) zur arbeitsleistenden Entspannung führt, dadurch gekennzeichnet, dass die zweite Einsatzluftleitung (103, 88) stromabwärts der Mittel (87) zur arbeitsleistenden Entspannung mit der Krypton-Xenon-Anreicherungssäule (24) verbunden ist.
  8. Vorrichtung nach Anspruch 7, gekennzeichnet durch • eine Rohargonrektifikation (18, 19), die in Strömungsverbindung mit der Niederdrucksäule (2) steht, • einen Sumpfverdampfer (27), der einen Verdampfungsraum und einen Verflüssigungsraum aufweist, wobei der Verdampfungsraum des Sumpfverdampfers in Strömungsverbindung mit dem unteren Bereich der Krypton-Xenon-Anreicherungssäule (24) steht und • Mittel zur Einleitung eines argonangereicherten Dampfs (81, 82) aus einem Zwischenbereich der Rohargonrektifikation (18, 19) in den Verflüssigungsraum des zweiten Kondensator-Verdampfers (27).
DE2003134560 2003-05-28 2003-07-29 Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft Withdrawn DE10334560A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE2003134560 DE10334560A1 (de) 2003-05-28 2003-07-29 Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
DE200450010657 DE502004010657D1 (de) 2003-05-28 2004-05-19 Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
AT04011942T ATE456014T1 (de) 2003-05-28 2004-05-19 Verfahren und vorrichtung zur gewinnung von krypton und/oder xenon durch tieftemperaturzerlegung von luft
EP20040011942 EP1482266B1 (de) 2003-05-28 2004-05-19 Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10324542.1 2003-05-28
DE10324542 2003-05-28
DE2003134560 DE10334560A1 (de) 2003-05-28 2003-07-29 Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
EP03022546 2003-10-02
EP20040011942 EP1482266B1 (de) 2003-05-28 2004-05-19 Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft

Publications (1)

Publication Number Publication Date
DE10334560A1 true DE10334560A1 (de) 2004-12-16

Family

ID=33136034

Family Applications (1)

Application Number Title Priority Date Filing Date
DE2003134560 Withdrawn DE10334560A1 (de) 2003-05-28 2003-07-29 Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft

Country Status (2)

Country Link
EP (1) EP1482266B1 (de)
DE (1) DE10334560A1 (de)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009034979A1 (de) 2009-04-28 2010-11-04 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von gasförmigem Drucksauerstoff
EP2312248A1 (de) 2009-10-07 2011-04-20 Linde Aktiengesellschaft Verfahren und Vorrichtung Gewinnung von Drucksauerstoff und Krypton/Xenon
EP2458311A1 (de) 2010-11-25 2012-05-30 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102010052544A1 (de) 2010-11-25 2012-05-31 Linde Ag Verfahren zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2520886A1 (de) 2011-05-05 2012-11-07 Linde AG Verfahren und Vorrichtung zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2568242A1 (de) 2011-09-08 2013-03-13 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Stahl
EP2600090A1 (de) 2011-12-01 2013-06-05 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von Drucksauerstoff durch Tieftemperaturzerlegung von Luft
DE102011121314A1 (de) 2011-12-16 2013-06-20 Linde Aktiengesellschaft Verfahren zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102013017590A1 (de) 2013-10-22 2014-01-02 Linde Aktiengesellschaft Verfahren zur Gewinnung eines Krypton und Xenon enthaltenden Fluids und hierfür eingerichtete Luftzerlegungsanlage
EP2784420A1 (de) 2013-03-26 2014-10-01 Linde Aktiengesellschaft Verfahren zur Luftzerlegung und Luftzerlegungsanlage
WO2014154339A2 (de) 2013-03-26 2014-10-02 Linde Aktiengesellschaft Verfahren zur luftzerlegung und luftzerlegungsanlage
EP2801777A1 (de) 2013-05-08 2014-11-12 Linde Aktiengesellschaft Luftzerlegungsanlage mit Hauptverdichterantrieb
EP2963369A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
EP2963367A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft mit variablem Energieverbrauch
EP2963370A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
EP2963371A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und vorrichtung zur gewinnung eines druckgasprodukts durch tieftemperaturzerlegung von luft

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009014556A1 (de) 2009-03-24 2010-09-30 Linde Aktiengesellschaft Verfahren zur Beheizung einer Trennkolonne
CN101634515B (zh) * 2009-08-13 2012-09-05 上海启元科技发展有限公司 一种纯氪和纯氙的全精馏提取方法
CN102788476B (zh) * 2012-05-23 2014-08-06 苏州制氧机有限责任公司 一种深冷空气分离设备主产高纯氮并附产液氧的空分工艺
US10690408B2 (en) * 2014-10-16 2020-06-23 Linde Aktiengesellschaft Method and device for variably obtaining argon by means of low-temperature separation
CN108362074B (zh) * 2018-03-26 2023-11-24 四川空分设备(集团)有限责任公司 一种从特大型空分设备中提取氪和氙的方法和装置
CN108413706B (zh) * 2018-05-15 2023-10-03 瀚沫能源科技(上海)有限公司 一种氪氙浓缩和氖氦浓缩含循环氮气的整合装置及方法
FR3108970B1 (fr) 2020-04-02 2022-10-28 Air Liquide Procédé de démarrage d’une colonne de séparation d’argon d’un appareil de séparation d’air par distillation cryogénique et unité pour mise en œuvre du procédé
CN115839601B (zh) * 2023-02-27 2023-05-12 中科富海(杭州)气体工程科技有限公司 液体空分及氪氙预浓缩一体化设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR938020A (fr) * 1944-02-10 1948-09-02 Egyesu Lt Izzolampa Es Villamo Procédé pour l'obtention du crypton à partir de l'air
DE2605305A1 (de) * 1976-02-11 1977-08-18 Messer Griesheim Gmbh Verfahren zur gewinnung von krypton und xenon
DE10153252A1 (de) * 2001-10-31 2003-05-15 Linde Ag Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
DE10228111A1 (de) * 2002-06-24 2004-01-15 Linde Ag Luftzerlegungsverfahren und -anlage mit Mischsäule und Krypton-Xenon-Gewinnung

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009034979A1 (de) 2009-04-28 2010-11-04 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von gasförmigem Drucksauerstoff
EP2312248A1 (de) 2009-10-07 2011-04-20 Linde Aktiengesellschaft Verfahren und Vorrichtung Gewinnung von Drucksauerstoff und Krypton/Xenon
EP2458311A1 (de) 2010-11-25 2012-05-30 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102010052544A1 (de) 2010-11-25 2012-05-31 Linde Ag Verfahren zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102010052545A1 (de) 2010-11-25 2012-05-31 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2466236A1 (de) 2010-11-25 2012-06-20 Linde Aktiengesellschaft Verfahren zur Gewinnung eines gasförmigen Druckprodukts durch Tiefemperaturzerlegung von Luft
EP2520886A1 (de) 2011-05-05 2012-11-07 Linde AG Verfahren und Vorrichtung zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2568242A1 (de) 2011-09-08 2013-03-13 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Stahl
DE102011112909A1 (de) 2011-09-08 2013-03-14 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Stahl
EP2600090A1 (de) 2011-12-01 2013-06-05 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von Drucksauerstoff durch Tieftemperaturzerlegung von Luft
DE102011121314A1 (de) 2011-12-16 2013-06-20 Linde Aktiengesellschaft Verfahren zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2784420A1 (de) 2013-03-26 2014-10-01 Linde Aktiengesellschaft Verfahren zur Luftzerlegung und Luftzerlegungsanlage
WO2014154339A2 (de) 2013-03-26 2014-10-02 Linde Aktiengesellschaft Verfahren zur luftzerlegung und luftzerlegungsanlage
EP2801777A1 (de) 2013-05-08 2014-11-12 Linde Aktiengesellschaft Luftzerlegungsanlage mit Hauptverdichterantrieb
DE102013017590A1 (de) 2013-10-22 2014-01-02 Linde Aktiengesellschaft Verfahren zur Gewinnung eines Krypton und Xenon enthaltenden Fluids und hierfür eingerichtete Luftzerlegungsanlage
EP2963369A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
EP2963367A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft mit variablem Energieverbrauch
EP2963370A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
EP2963371A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und vorrichtung zur gewinnung eines druckgasprodukts durch tieftemperaturzerlegung von luft
WO2016005031A1 (de) 2014-07-05 2016-01-14 Linde Aktiengesellschaft Verfahren und vorrichtung zur tieftemperaturzerlegung von luft mit variablem energieverbrauch

Also Published As

Publication number Publication date
EP1482266A1 (de) 2004-12-01
EP1482266B1 (de) 2010-01-20

Similar Documents

Publication Publication Date Title
EP1482266B1 (de) Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
EP2235460B1 (de) Verfahren und vorrichtung zur tieftemperatur-luftzerlegung
EP1308680B1 (de) Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
EP1243882B1 (de) Argongewinnung mit einem Drei-Säulen-System zur Luftzerlegung und einer Rohargonsäule
EP1357342B1 (de) Drei-Säulen-System zur Tieftemperaturzerlegung mit Argongewinnung
EP1376037B1 (de) Luftzerlegungsverfahren und -anlage mit Mischsäule und Krypton-Xenon-Gewinnung
EP2236964B1 (de) Verfahren und Vorrichtung zur Tieftemperatur-Luftzerlegung
DE10334559A1 (de) Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
DE10332863A1 (de) Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
EP1757884A2 (de) Verfahren zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
DE10103968A1 (de) Drei-Säulen-System zur Tieftemperaturzerlegung von Luft
WO2021104668A1 (de) Verfahren und anlage zur tieftemperaturzerlegung von luft
DE19855487A1 (de) Verfahren und Vorrichtung zur Gewinnung von Drucksauerstoff und Krypton/Xenon durch Tieftemperaturzerlegung von Luft
DE10232430A1 (de) Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
DE19933558C5 (de) Dreisäulenverfahren und -vorrichtung zur Tieftemperaturzerlegung von Luft
EP2914913B1 (de) Verfahren zur tieftemperaturzerlegung von luft in einer luftzerlegungsanlage und luftzerlegungsanlage
EP3557166A1 (de) Verfahren zur tieftemperaturzerlegung von luft und luftzerlegungsanlage
EP3067650B1 (de) Anlage und verfahren zur erzeugung von sauerstoff durch tieftemperaturzerlegung von luft
EP2600090A1 (de) Verfahren und Vorrichtung zur Erzeugung von Drucksauerstoff durch Tieftemperaturzerlegung von Luft
DE10332862A1 (de) Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung
DE10153919A1 (de) Verfahren und Vorrichtung zur Gewinnung hoch reinen Sauerstoffs aus weniger reinem Sauerstoff
EP1189001A1 (de) Verfahren und Vorrichtung zur Erzeugung hoch reinen Stickstoffs durch Tieftemperatur-Luftzerlegung
DE102010056569A1 (de) Verfahren und Vorrichtung zur Gewinnung von Druckstickstoff durch Tieftemperaturzerlegung von Luft
DE10248656A1 (de) Verfahren zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
DE102007051182A1 (de) Elektronikindustrieanlage und Verfahren zum Betreiben einer Elektronikindustrieanlage

Legal Events

Date Code Title Description
8127 New person/name/address of the applicant

Owner name: LINDE AG, 80807 MUENCHEN, DE

8139 Disposal/non-payment of the annual fee