DE10309985A1 - Humane Nukleinsäuresequenzen aus Prostatakarzinomen - Google Patents

Humane Nukleinsäuresequenzen aus Prostatakarzinomen Download PDF

Info

Publication number
DE10309985A1
DE10309985A1 DE10309985A DE10309985A DE10309985A1 DE 10309985 A1 DE10309985 A1 DE 10309985A1 DE 10309985 A DE10309985 A DE 10309985A DE 10309985 A DE10309985 A DE 10309985A DE 10309985 A1 DE10309985 A1 DE 10309985A1
Authority
DE
Germany
Prior art keywords
protein
nucleic acid
peptide
tissue
binding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE10309985A
Other languages
English (en)
Inventor
Edgar Dr. Dahl
Bernd Hinzmann
Thomas Brümmendorf
Henrik Kinnemann
Stefan Röpcke
André ROSENTHAL
Thomas Specht
Klaus Hermann
Xinzhong Li
Christian Pilarsky
Eike Staub
Glen Dr. Kristiansen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAHL, EDGAR, DR., 51503 RöSRATH, DE
HERMANN, KLAUS, DR., 12679 BERLIN, DE
HINZMANN, BERND, DR., 13127 BERLIN, DE
PILARSKY, CHRISTIAN, DR., 01309 DRESDEN, DE
ROSENTHAL, ANDRE, PROF., 14482 POTSDAM, DE
Original Assignee
Hinzmann, Bernd, Dr.
Edgar Dr. Dahl
Hermann, Klaus, Dr.
Pilarsky, Christian, Dr.
Rosenthal, André, Prof.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hinzmann, Bernd, Dr., Edgar Dr. Dahl, Hermann, Klaus, Dr., Pilarsky, Christian, Dr., Rosenthal, André, Prof. filed Critical Hinzmann, Bernd, Dr.
Priority to DE10309985A priority Critical patent/DE10309985A1/de
Priority to PCT/DE2004/000433 priority patent/WO2004076614A2/de
Publication of DE10309985A1 publication Critical patent/DE10309985A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4748Tumour specific antigens; Tumour rejection antigen precursors [TRAP], e.g. MAGE
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57434Specifically defined cancers of prostate
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/136Screening for pharmacological compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Oncology (AREA)
  • Microbiology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Urology & Nephrology (AREA)
  • Hospice & Palliative Care (AREA)
  • Epidemiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Cell Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Die Erfindung betrifft neue humane Nukleinsäuresequenzen aus Prostatakarzinomen, hierdurch codierte Proteine bzw. Peptide sowie deren Verwendungen im Zusammenhang mit der Diagnose und/oder Behandlung von Prostatakrebs.

Description

  • Gebiet der Erfindung
  • Die Erfindung betrifft neue humane Nukleinsäuresequenzen aus Prostatakarzinomen sowie hierdurch codierte Proteine bzw. Peptide, die Verwendung von hieraus abgeleiteten Sequenzen zum Screenen nach daran bindenden Substanzen, sowie die Verwendung von an solche Nukleinsäuresequenzen und Proteine bzw. Peptide bindenden Substanzen zur Diagnose und/oder Behandlung von Tumorerkrankungen, insbesondere Prostatakrebs.
  • Hintergrund der Erfindung und Stand der Technik
  • Prostatakrebs ist eine mit zunehmendem Alter mit beachtlicher Incidenz auftretende Erkrankung, für dessen Bekämpfung neue Therapien notwendig sind. Gegenwärtig werden Patienten mit einem Prostattumor in zwei Gruppen eingeteilt. Die erste Gruppe umfasst Patienten mit einem operablen Tumor (ca. 90% aller Patienten). Bei diesen wird der Tumor chirugisch möglichst vollständig entfernt (radikale Prostatektomie). Die Entfernung der Prostata hat beachtliche medizinische Risiken und nachteilige Effekte auf die Lebensqualität eines Patienten, wie z.B. Inkontinenz und Impotenz. Die zweite Gruppe (ca. 10% aller Patienten) sind Patienten mit inoperablem Tumor. Diese können nicht kurativ durch eine Operation behandelt werden, da sie bereits Lymphknotenmetastasen aufweisen. Diese Patienten werden zur Zeit palliativ mit Anti-Androgen- oder Strahlentherapie behandelt. Die Anti-Androgen Therapie, welche auf einer Blockierung von Hormonwirkungen beruht, ist sehr häufig nach wenigen Jahren wirkungslos, da der Tumor hormonunabhängig wird, i.e. ohne Hormonwirkung weiterwächst und Metastasen bildet. Ebenso können durch eine Strahlentherapie nicht alle Tumorzellen beseitigt werden.
  • Eine verbesserte Diagnose und Behandlung dieser Krebsart, insbesondere auch ohne das Erfordernis einer Entfernung der Prostata, ist daher in hohem Maße wünschenswert.
  • Das Phänomen Krebs geht häufig einher mit der Über- oder Unterexpression einer Vielzahl von Genen in den entarteten Zellen. Die Identifikation tumor-relevanter Gene ist daher ein wichtiger Ansatzpunkt für die Entwicklung neuer Therapien gegen Prostatakrebs (Welsch et al., Cancer Res 61 (16): 5974–5978 (2001)).
  • Für die Suche nach Tumor-bezogenen Kandidatengenen beim Prostatakarzinom wurden DNA Microarrays verwendet. Die analysierten Tumor- und Normalgewebeproben können durch Mikrodissektion gewonnen werden. Mittels der Mikrodissektion ist es möglich, die zu untersuchenden Gewebe genau, i.e. auf der Ebene einzelner Zellverbände, zu definieren. Vergleichende Untersuchungen haben ergeben, dass durch die Anwendung von Mikrodissektion differentiell exprimierte Gene identifiziert werden können, die in einer Gen-Expressionsuntersuchung von Gesamtgewebe nicht gefunden werden (Ernst et al., Am J Pathol 160(6): 2169–2180 (2002)).
  • Technisches Problem der Erfindung
  • Der Erfindung liegt das technische Problem zugrunde, pharmazeutische Zusammensetzungen zur Diagnose und/oder zur Behandlung von Prostatakrebs-Erkrankungen anzugeben sowie Mittel zu deren Findung.
  • Grundzüge der Erfindung sowie bevorzugte Ausführungsbeispiele.
  • Zur Lösung dieses technischen Problems lehrt die Erfindung zunächst eine Nukleinsäure enthaltend oder bestehend aus einer Nukleinsäuresequenz gemäß einer der Sequenzen Seq.-ID 1 bis 129 sowie ein Peptid oder Protein enthaltend eine Aminosäurensequenz codiert durch eine der Nukleinsäuresequenzen Seq.-ID 1 bis 129 oder bestehend hieraus (siehe hierzu auch Tabelle I). Erfindungsgemäße Nukleinsäuren oder Proteine bzw. Peptide lassen sich mit den üblichen molekularbiologischen Methoden herstellen.
  • Die Erfindung betrifft weiterhin verschiedene Verwendungen der neuen Nukleinsäuren bzw. Peptide oder Protein, ebenso wie (gleiche) Verwendungen bereits bekannter Nukleinsäuren. Diese sind:
    • i) Verwendung einer erfindungsgemäßen Nukleinsäure und/oder eines erfindungsgemäßen Peptids oder Proteins, zur Detektion von Prostatakrebs oder zur Detektion eines Risikos der Erkrankung an Prostatkrebs, wobei eine Prostata-Gewebeprobe auf Übertranskription der Nukleinsäure oder auf Überexpression des Proteins untersucht wird. Dabei kann eine an die Nukleinsäure oder eine an das Protein oder Peptid bindende Detektorsubstanz, vorzugsweise enthaltend eine Reportergruppe, verwendet werden, wobei Bindung besagter Nukleinsäure und/oder besagten Proteins oder Peptids an die Detektorsubstanz halbquantitativ oder quantitativ delektiert wird. Auch kann das Expressionsniveau durch Amplifikation, beispielsweise quantitative PCR, gemessen werden.
    • ii) Verwendung einer erfindungsgemäßen Nukleinsäure oder eines erfindungsgemäßen Proteins oder Peptids zum Screenen nach daran bindenden Substanzen, insbesondere prospektiven Wirkstoffen zur Inhibierung von besagter Nukleinsäure oder besagtem Protein oder Peptid, oder prospektiven Detektorsubstanzen, wobei eine prospektive Substanz oder eine Mischung solcher prospektiver Substanzen mit besagter Nukleinsäure oder besagtem Protein oder Peptid kontaktiert wird, wobei mit einem Bindungsassay Bindungsereignisse festgestellt werden, und wobei eine bindende prospektive Substanz, ggf. nach Dekonvolution, selektiert wird.
    • iii) Verwendung einer eine erfindungsgemäße Nukleinsäure oder ein erfindungsgemäßes Peptid bzw. Protein inhibierenden oder daran bindenden Substanz, insbesondere identifiziert mit dem erfindungsgemäßen Screening Verfahren, zur Herstellung einer pharmazeutischen Zusammensetzung zur Diagnose und/oder Behandlung von Prostatakrebs.
  • Eine im Rahmen der Erfindung eingesetzte Substanz kann ausgewählt sein aus der Gruppe bestehend aus:
    • a) Antisense-Oligonukleotide, siRNA, und Ribozyme gegen eine Nukleinsäure nach Anspruch 1,
    • b) an ein Peptid oder Protein nach Anspruch 2 bindendes, insbesondere nach Anspruch 5 identifiziertes, organisches Molekül mit einem Molekulargewicht unterhalb 5000, vorzugsweise unterhalb 1000, höchstvorzugsweise unterhalb 300,
    • c) Aptamer gegen ein Protein oder Peptid nach Anspruch 2, insbesondere identifiziert nach Anspruch 5,
    • d) (monoklonaler) Antikörper, insbesondere humaner oder humanisierter Antikörper gegen ein Protein oder Peptid nach Anspruch 2,
    • e) anti-idiotypische nicht-humane (monoklonale) Antikörper, generiert mittels eines Antikörpers der Unterguppe d) , und
    • f) vorstehende Substanzen derivatisiert mit einer Reportergruppe, einem Zelltoxin einer immunstimulierenden Komponente und/oder einem Radioisotop.
  • Im Falle a) kann als Ribozyme beispielsweise ein Hammerhead Ribozym eingesetzt werden. Die Ribozym-Schnittstelle wird mit der Maßgabe ausgewählt, dass durch die Aktivität des Ribozymes die Expression des Proteins entweder unterbunden wird, oder eine inaktive Form bzw. ein inaktives Fragment des Proteins exprimiert wird. Beides läßt sich beispielsweise dadurch ermittelt, dass in einem Zellsystem, in welchem ein erfindungsgemäßes Protein auf definiertem Niveau exprimiert wird, dieses Zellsystem mit einem oder mehreren für definierte Schnittstellen modelliertes Ribozym kontaktiert wird und das Expressionsniveau bestimmt bzw. die biologische Aktivität des exprimierten Proteins. Dies wird dann verglichen mit einer Negativprobe bzw. den Ergebnissen ohne Kontaktierung und Ribozyme werden selektiert, die zu niedrigerer Expression oder Aktivität führen. Entsprechend kann im Falle der siRNA oder der antisense Nukleinsäuren vorgegangen werden.
  • Im Falle b) können chemische Stoffbibliotheken eingesetzt werden, um nach bindenden Substanzen zu screenen. Eine Validierung bindender Substanzen für therapeutische Zwecke kann durch Bestimmung der biologischen Aktivität des Proteins in einem Zellsystem mit und ohne Kontaktierung und Vergleich der erhaltenen Ergebnisse erfolgen. Für therapeutische Zwecke ausgewählt werden dann solche Stoffe, die zu einer reduzierten biologischen Aktivität führen. Es ist auch möglich, dass im Rahmen eines erfindungsgemäßen Screening Verfahren an Stelle der Bindung die biologische Aktivität bestimmt wird; dann ist eine Validierung im vorstehenden Sinne zugleich mit dem Screening erfolgt. Biologische Aktivität läßt sich beispielsweise dadurch bestimmen, dass natürliche Assoziationspartner des Proteins bestimmt und deren Vorkommen und Form (z.B. Monomer/Dimer) untersucht werden. Es lassen sich auch weiter downstream in einer Stoffwechselkaskade entstehende Substanzen als Indikator verwenden; diese lassen sich beispielsweise dadurch identifizieren, dass zuvor Zellkomponenten analysiert werden für die das Protein exprimierende Zelle und ein Vergleich durchgeführt wird mit gleichen Zellen, in welchen jedoch die Expression gentechnisch deletiert ist.
  • Geeignete Aptamere (c) lassen sich unschwer beispielsweise mittels des wohlbekannten SELEX Verfahren identifizieren, wobei das erfindungsgemäße Protein als Target eingesetzt wird.
  • Antikörper (d), insbesondere monoklonale Antikörper, können in üblicher Weise durch Immunisierung eines nicht-menschlichen Säugetiers mit einem erfindungsgemäßen Protein, einer erfindungsgemäßen Nukleinsäure (z.B. cDNA), einer ein erfindungsgemäßes Protein konstitutiv exprimierenden Zelle (Krebszelle oder beispielsweise mit einer erfindungsgemäßen Nukleinsäure transfizierte Zelle, wie COS oder NIH3T3), oder mittels recombinat hergestelltem erfindungsgemäßem Protein oder Peptid, beispielsweise in E.coli oder Eukaryontenzellen, beispielsweise Insektenzellen, exprimiert, erhalten werden. Monoklonale Antikörper sind durch übliche Selektion und Etabilierung von Hybridomzellen erhältlich. Auch kann die Phage Display Technologie zur Generierung der Antikörper eingesetzt werden.
  • Im Falle der anti-idiotypischen Antikörper (e) sind diese dadurch erzeugbar, dass mittels eines erfindungsgemäßen Antikörpers, welcher nicht notwendigerweise die biologische Aktivität des erfindungsgemäßen Proteins beeinflussen muss, in einem nicht-menschliche Säugetier ein zweiter anti-idiotypischer (monoklonaler) Antikörper generiert wird. Dieser anti-idiotypische Antikörper täuscht dann bei Applikation in humane Zellen dem humanen Immunsystem ein Bild des Zielmoleküls vor und wird aufgrund seiner nicht-humanisierten Form als körperfremdes Epitop erkannt. Der Mensch bildet folglich natürlicherweise Antikörper gegen des anti-idiotypischen Antikörper und somit auch gegen das Protein bzw. gegen das Protein exprimierende Zellen. Diese Variante der Erfindung ist ausschließlich für therapeutische Zwecke verwendbar.
  • Die Erfindung betrifft des weiteren ein Verfahren zur Diagnose einer Prostatakrebserkrankung, wobei eine erfindungsgemäße pharmazeutische Zusammensetzung in der Ausführungsform mit einer Reportergruppe in zu untersuchendes Gewebe in vivo oder in vitro appliziert wird, wobei das zu untersuchende Gewebe dann einer Detektionsverfahrenstufe unterworfen wird, welche sensitiv für die Reportergruppe ist, und wobei im Fall der Detektion eines definierten Mindestwertes der Reportergruppe im Gewebe das Gewebe als Tumorzellen enthaltend qualifiziert wird, sowie ein Verfahren zur Behandlung einer Prostatakrebs-Erkrankung, wobei eine erfindungsgemäße pharmazeutische Zusammensetzung in einer physiologisch wirksamen Dosis einem Patienten dargereicht wird.
  • Die Erfindung beruht auf der Erkenntnis, daß erfindungsgemäße Gene bzw. Genprodukte differentiell in Prostatatumorgewebe exprimiert werden, i.e. in Prostatatumorgewebe ist die Expression höher oder niedriger, insbesondere höher, verglichen mit normalen Zellen gleichen Gewebes. Dies erlaubt es einerseits, insbesondere diese neuen Gene bzw. Genprodukte als Marker zur Identifizierung von Tumorzellen in der Prostata zu nutzen. Auf der anderen Seite bietet die Inhibierung der Gene bzw. Genprodukte, insbesondere auch bei lokaler Applikation, die Möglichkeit, in die Prostatatumor-spezifischen Genprodukt-Assoziationen mit anderen Prozessen in den Tumorzellen einzugreifen und somit letztendlich den tumorzellenspezifisch veränderten Stoffwechsel zu stören und zu einem Absterben oder zumindest einer Wachstumshemmung der Prostatatumorzellen beizutragen.
  • Im Rahmen der Erfindung kann es sich empfehlen, im Vorfeld einer Behandlung mit einer erfindungsgemäßen pharmazeutischen Zusammensetzung eine Probe aus einem Gewebe, welches als Tumorgewebe mit anderen Methoden identifiziert ist, zu entnehmen und die Gewebeprobe auf Expression bzw. Überexpression des erfindungsgemäßen Gens bzw. Genproduktes zu untersuchen. Alternativ kann mit einer erfindungsgemäßen Detektorsubstanz zur Diagnose in vivo auf Abhängigkeit von dem Gen bzw. Genprodukt getestet werden. Wird eine Expression bzw. Überexpression des Gens bzw. Genproduktes gegenüber Normalgewebe gleichen Typs festgestellt, so ist die Anwendung der erfindungsgemäßen pharmazeutischen Zusammensetzung indiziert.
  • Handelt es sich bei dem Tumor um einem Typus, bei welchem Tumorzellen ein erfindungsgemäßes Gen exprimieren, Normalzellen gleichen Gewebetyps jedoch nicht oder nur schwach, so ist es besonders bevorzugt, wenn die an das Gen bzw. das Genprodukt bindende Substanz zusätzlich eine zytotoxische und/oder immunstimulierende Komponente trägt. Dies führt dann letztendlich dazu, dass praktisch ausschließlich Tumorzellen getötet werden, sei es durch die Zytotoxizität, sei es durch Angriff durch das stimulierte Immunsystem, während Normalzellen in dem Gewebe praktisch vollständig erhalten bleiben. In dieser Ausführungsform braucht die bindende Substanz selbst nicht inhibierend auf das Gen bzw. Genprodukt zu wirken, da die bindende Substanz dann lediglich als Marker funktionieren muß, welcher die Komponenten zu Ziel-Tumorzellen trägt. Im Falle des Einsatzes einer zytotoxischen und/oder immunstimulierenden Komponente kann es sich besonders empfehlen, wenn die pharmazeutische Zusammensetzung zur lokalen Applikation in Tumorzellen enthaltendem Gewebe hergerichtet ist, beispielsweise zur Injektion.
  • Sofern im Rahmen der Beschreibung offenbarte und/oder beanspruchte Sequenzen per se vorbekannt sind oder Teile vorbekannter Sequenzen sind, sind die offenbarten Sequenzen, soweit sie mit vorbekannten Sequenzen übereinstimmen, insofern Gegenstand der Erfindung, als dass sie lediglich gemäß den beschriebenen Verwendungen eingesetzt werden. Offenbarte und/oder beanspruchte Sequenzen, welche Teile von vorbekannten Sequenzen sind, können mittels eines Disclaimers oder mehrerer Disclaimer in Ansprüchen so abgegrenzt werden, dass die vorbekannten Sequenzen nicht mit umfasst sind.
  • Definitionen.
  • Im Rahmen dieser Beschreibung umfaßt eine Sequenz alle humanen Isoformen, bekannt oder neu, auf Nukleinsäuren- oder Aminosäurenbasis. Mit diesen Begriffen mit umfaßt sind auch die im Rahmen dieser Beschreibung offenbarten kurzen Sequenzen, welche aus Isoformen stammen, beispielsweise Immunisierungssequenzen. Weiterhin mit umfaßt sind auch Homologe, wobei die Homologie zumindest 80%, vorzugsweise mehr als 90%, höchstvorzugsweise mehr als 95%, beträgt (berechnet mit dem Programm MEGALIGN, DNASTAR LASERGENE, in der zum Anmeldezeitpunkt aktuellen Fassung). Im Falle der Nukleinsäuresequenzen sind auch komplementäre oder allelische Varianten sowie stille Mutationen mit umfaßt. Weiterhin sind Sequenzen umfaßt, welche lediglich Teilsequenzen der explizit offenbarten Sequenzen, beispielsweise ein Exon oder mehrere Exons, oder komplementärer Sequenzen hierzu darstellen, mit der Maßgabe, daß diese Teilsequenzen im Falle der Nukleinsäuren eine für eine Hybridisierung mit einer erfindungsgemäßen Nukleinsäure hinreichende Länge, zumindest 50 oder 150 Basen, bis zu 1700 Basen und mehr, aufweisen und im Falle der Proteine bzw. Peptide mit zumindest gleicher Affinität an ein protein- oder peptidspezifisches Zielmolekül binden. Weiterhin sind alle mit erfindungsgemäßen Nukleinsäuren hybridisierende Nukleinsäuren umfaßt, nämlich solche, die unter stringenten Bedingungen (5°C bis 25°C unterhalb der Aufschmelztemperatur; siehe ergänzend J.M. Sambrook et al., A laboratory manual, Cold Spring Harbor Laboratory Press (1989) und E.M. Southern, J Mol Biol, 98:503ff (1975)) hybridisieren. Es versteht sich, daß die Erfindung auch Expressionskassetten umfaßt, i.e. eine oder mehrere der erfindungsgemäßen Nukleinsäuresequenzen mit mindestens einer Kontroll- oder regulatorischen Sequenz. Eine solche Expressionskassette kann auch eine Sequenz für ein bekanntes Protein umfassen, wobei im Zuge der Translation ein Fusionsprotein aus einem bekannten Protein und einem erfindungsgemäßen Protein oder Peptid entsteht. Ebenso sind auch antisense Sequenzen zu den vorstehenden Nukleinsäuresequenzen umfaßt. Schließlich sind RNA sowie damit korrelierende DNA und umgekehrt umfaßt, ebenso wie genomische DNA als auch korrelierte cDNA und umgekehrt.
  • Im Zusammenhang mit erfindungsgemäßen Verwendungen umfassen die Begriffe der Nukleinsäuren oder Protein bzw. Peptide neben den Volllängen der offenbarten Sequenzen (siehe auch vorstehender Absatz) auch Teilsequenzen hieraus, und zwar mit einer Mindestlänge von 12 Nukleotiden, vorzugsweise 30 bis 90 Nukleotiden, im Falle der Nukleinsäuren und einer Mindestlänge von 4 Aminosäuren, vorzugsweise 10 bis 30 Aminosäuren, im Falle der Peptide oder Proteine.
  • Die Begriffe der Detektion und/oder der Behandlung von Prostatakrebs umfassen auch die Detektion und/oder Behandlung von Metastasen aus Primärtumoren in sonstigen Geweben. Der Begriff der Behandlung umfaßt auch die Prophylaxe.
  • Als Inhibitor ist eine Verbindung oder Substanz bezeichnet, welche entweder die Bildung von des erfindungsgemäßen Proteins bzw. Peptids inhibiert oder gebildetes Protein bzw. Peptid in der Aktivität reduziert, bezogen auf dessen Aktivität in Abwesenheit des Inhibitors. Insofern kann ein Inhibitor einerseits eine Substanz sein, welche in der Entstehungskaskade des Protein bzw. Peptids inhibierend eingreift. Ruf der anderen Seite kann ein Inhibitor eine Substanz sein, welche mit gebildetem Protein bzw. Peptid eine Bindung eingeht, und zwar dergestalt, dass weitere physiologische Wechselwirkungen mit endogenen Substanzen zumindest reduziert sind.
  • Von der Erfindung mit umfaßte Mimikry-Moleküle sind Verbindungen, die den variablen Bereich, insbesondere den Bindungsbereich eines Antikörpers, nachbilden und an gleicher Stelle eines Zielmoleküls binden, wie der zu Grunde liegende Antikörper.
  • Der Begriff der Antikörper umfaßt polyklonale Antikörper, monoklonale Antikörper, nicht-humane, humane und humanisierte Antikörper, sowie Phage-Display-Antikörper, aber auch chimäre Antikörper und anti-idiotypische Antikörper sowie spezifische Fragmente der leichten und/oder der schweren Kette des variablen Bereiches zu Grunde liegender Antikörper vorstehender Art. Die Herstellung bzw. Gewinnung solcher Antikörper mit vorgegebenen Immunogenen ist dem Durchschnittsfachmann wohl vertraut und braucht nicht näher erläutert zu werden. Weiterhin umfaßt der Begriff der Antikörper bispezifische Antikörper. Bispezifische Antikörper kombinieren eine definierte Immunzellaktivität mit einer spezifischen Tumorzellerkennung, wodurch Tumorzellen getötet werden. Ein bispezifischer Antikörper bindet einerseits an ein Auslösemolekül der Immun-Effektorzelle (z.B. CD3, CD16, CD64) und andererseits an Antigene der Tumorzielzelle.
  • Die galenische Herrichtung einer erfindungsgemäßen pharmazeutischen Zusammensetzung kann in fachüblicher Weise erfolgen. Als Gegenionen für ionische Verbindungen kommen beispielsweise Na+, K+, Li+ oder Cyclohexylammonium infrage. Geeigente feste oder flüssige galenische Zubereitungsformen sind beispielsweise Granulate, Pulver, Dragees, Tabletten, (Mikro-) Kapseln, Suppositorien, Sirupe, Säfte, Suspensionen, Emulsionen, Tropfen oder injizierbare Lösungen (i.v., i.p., i.m.) sowie Präparate mit protrahierter Wirkstoff-Freigabe, bei deren Herstellung übliche Hilfsmittel wie Trägerstoffe, Spreng-, Binde-, Überzugs-, Quellungs-, Gleit- oder Schmiermittel, Geschmacksstoffe, Süßungsmittel und Lösungsvermittler, Verwendung finden. Als Hilfsstoffe sei Magnesiumcarbonat, Titandioxyd, Lactose, Mannit und andere Zucker, Talcum, Milcheiweiß, Gelatine, Stärke, Zellulose und ihre Derivate, tierische und pflanzliche Öle wie Lebertran, Sonnenblumen-, Erdnuss- oder Sesamöl, Polyethylenglycole und Lösungsmittel, wie etwa steriles Wasser und ein- oder mehrwertige Alkohole, beispielsweise Glycerin, genannt. Eine erfindungsgemäße pharmazeutische Zusammensetzung ist dadurch herstellbar, dass mindestens eine erfindungsgemäß verwendete Substanz in definierter Dosis mit einem pharmazeutisch geeigneten und physiologisch verträglichen Träger und ggf. weiteren geeigneten Wirk-, Zusatz- oder Hilfsstoffen mit definierter Substanzdosis gemischt und zu der gewünschten Darreichungsform hergerichtet ist.
  • Tumorzellen exprimieren ein Protein differenziell, wenn Normalzellen des gleichen Gewebetyps dieses nicht oder nur gering exprimieren. Tumorzellen überexprimieren ein Protein spezifisch bzw, differenziell, wenn das Protein im Vergleich zu Normalzellen des gleichen Gewebes zumindest in doppelter Menge exprimiert wird.
  • Zytotoxische Komponenten bzw. Gruppen sind Verbindungen, welche direkt oder indirekt Apoptose einleiten bzw. zu Nekrose führen oder zumindest wachstumshemmend wirken. Solche Gruppen bzw. Verbindungen können neben Radioisotopen (z.B. 188Re, 213Bi, 99mTc, 90Y, 131J, 177Lu) insbesondere Zytostatika sein, welche in der Tumortherapie eingesetzt werden. Beispiele hierfür sind: Alkylantien (z.B. Mechlorethamin, Ifosfamid, Chlorambucil, Cyclophosphamid, Melphalan, Alkylsulfonate, Busulphan, Nitrosoharnstoffe, Carmustin, Lomustin, Semustin, Triazene, Dacarbazin), Antimetaboliten (z.B. Folsäure-Antagonisten, Methotrexat, Pyrimidin-Analoga, Fluoruracil, Fluordesoxyuridin, Cytarabin, Gemcitabin, Purin-Analoga, Mercaptopurin), Mitosehemmer (z.B. Vincaalkaloide, Voncristin, Vinblastin, Paclitaxal, Docetaxel, Protaxel), Epipodophyllotoxine (z.B. Etoposid, Teniposid), Antibiotika (z.B. Dactinomycin, Daunorubicin, Idarubicin, Anthracycline, Bleomycin, L-Asparaginase), Platinkomplexverbindungen (z.B. Cisplatin), Hormone und verwandte Verbindungen (z.B. Nebennierenrindensteroide, Aminogluthetimid, Gestagene, Östrogene, Androgene, Antiöstrogene, Tamoxifen, Steriodanaloga, Flutamid). Bei Bindung einer solchen Verbindung mit einer an Targetmoleküle bindenden Substanz erfolgt die Kopplung dergestalt, daß die Affinität zur Nukleinsäure bzw, zum Protein um nicht mehr als 90%, vorzugsweise 50%, bezogen auf die Substanz ohne zytostatische Gruppe, reduziert ist und die zytostatische Wirkung der Gruppe um nicht mehr als 90%, vorzugsweise 50%, bezogen auf die Verbindung ohne Substanz, reduziert ist.
  • Eine immunstimulierende Komponente ist meist ein Protein oder ein wirksamer Bestandteil hiervon, welches Zellen des Immunsystems stimuliert. Beispiele hierfür sind: Zytokine, wie M-CSF, GM-CSF, G-CSF, Interferone, wie IFN-alpha, -beta, -gamma, Interleukine wie IL-1 bis -16 (außer -8), human LIF, Chemokine wie Rantes, MCAF, MIP-1-alpha, -beta, NAP-1 und IL-8.
  • Eine Reportergruppe ist ein Atom, Molekül oder eine Verbindung, welche in Verbindung mit einem hierauf abgestellten Assay den Nachweis der Reportergruppe und der somit mit der Reportergruppe verbundenen Verbindung oder Substanz ermöglicht. Beispiele für Reportergruppen und hiermit assoziierte Detektionsmethoden sind: 32P-Labeling und Intensitätsmessung mittels Phosphoimager. Viele weitere Beispiele sind dem Durchschnittsfachmann bekannt und bedürfen nicht der detaillierten Aufzählung.
  • Eine an Targetmoleküle bindende Substanz kann eine Substanz sein, welche ein Target-Protein oder an eine Target-RNA bindet.
  • Im Rahmen der vorstehenden Definition gegenüber dem engen Wortsinn erweiterte Begriffsbestimmungen umfassen auch die bestimmten Begriffe im engen Wortsinn.
  • Beispiele.
  • Im Folgenden wird die Erfindung anhand von lediglich bevorzugte Ausführungsformen darstellenden Beispielen und Figuren näher erläutert. Es zeigen:
  • 1: Chip-Analyse zur differenziellen Expression von CD24 im Prostatatumorgewebe, an 54 Normal/Tumor Gewebeproben analysiert.
  • 2: Immunhistochemie mit einem CD24 Antikörper (maus anti human CD24, Klon 24CO2), CD24 ist im primären Prostatakarzinom deutlich stärker exprimiert als im benignen Gewebe.
  • 3: Immunhistochemie mit einem CD24 Antikörper (maus anti human CD24, Klon 24CO2), CD24 ist in Lymphknotenmetastasen deutlich stärker exprimiert als im primären Prostatakarzinom,
  • 4: erfindungsgemäße Nukleinsäuresequenzen,
  • 5: erfindungsgemäße Aminosäuresequenzen,
  • 6: Tabelle mit Informationen zu den erfindungsgemäßen Sequenzen.
  • Beispiel 1: Mikrodissektion
  • Prostatatumor- und -normalgewebe aus jeweils einem Patienten wurde gefroren und in 10 μm Proben geschnitten. Aus jedem Patienten wurden zumindest 30 Proben gewonnen. Normal und maligne Bereiche wurden durch einen Pathologen mit Hilfe eines Mikroskopes identifiziert und markiert. Die jeweiligen Bereiche wurden unter dem Mikroskop resektiert unter Verwendung einer Nadel und jeweils separat auf –80°C eingefroren in 150 μl GTC Puffer enthaltend 2% β-Mercaptoethanol.
  • Beispiel 2: Chipanalyse
  • Aus Proben aus Beispiel 1 wird RNA isoliert, amplifiziert und markiert. Die so erhaltene RNA wird einem Genchip aufgegeben, welcher eine Vielzahl von verschiedenen Oligonukleotiden enthält, wobei jeweils eines (oder auch mehrere, zu Kontrollzwecken) für ein definiertes Gen repräsentativ ist, i.e. eine charakteristische Teilsequenz hieraus aufweist. Man erhält sowohl qualitative, wie auch quantitative Information, ob eine betreffende Normal- und/oder Tumorprobe ein betreffendes Gen exprimiert, und zwar auch im Verhältnis Tumor/Normal. In Fällen, in welchen ein Gen in Tumorgewebe höher exprimiert ist, als im korrelierten Normalgewebe liegt diffentielle Expression vor, i.e. das Gen ist im Tumorgewebe hochreguliert. Wenn das Gen dagegen in Tumorgewebe geringer exprimiert ist, liegt Herunterregulation vor. Es wurde gefunden, dass die erfindungsgemäßen Sequenzen differenziell im Tumorgewebe hochreguliert sind. Die Ergebnisse sind im einzelnen der Tabelle 1 entnehmbar.
  • Beispiel 3: Untersuchung der Expression bzw. Überexpression mittels quantitativer PCR.
  • Eine Poly-A+-RNA Präparation erfolgt unter Verwendung eines modifizierten Protokolls gemäß dem Poly-A-Tract 1000 Kit (Amersham, Freiburg, Deutschland). Gewebeproben, beispielsweise aber nicht notwendigerweise erhalten gemäß Beispiel 1, werden langsam auf Eis aufgetaut, zerkleinert und mit 300 μl Verdünnungspuffer, enthaltend 1% β-Mercaptoethanol, sowie biotinyliertem Oligo-dT Primer versetzt, und für 5 min. auf 70°C erhitzt. Die Proben werden dann für 5 min. bei 20°C gehalten und anschließend bei 20000 g für 10 min. zentrifugiert. Dem Überstand werden 120 μl gewaschener Streptavidin-gekoppelter paramagnetischer Partikel (SA-PMP) zugebenen und es wurde bei 20°C für 5 min. inkubiert. Die mRNA wurde dann durch magnetische Trennung isoliert. Nach drei Waschschritten mit 0,5x SSC Lösung wird die mRNA in Nuklease-freiem Wasser verdünnt, eingedampft unter Vakuum und umgehend in cDNA prozessiert.
  • Anschließend erfolgt die cDNA Synthese. Die erhaltene mRNA aus 2 wird in 10 μl Nuklease-freiem Wasser gelöst. 1 μl T7-dT24-(GGCCAG) Primer (100 pmol/μl) wird zugegeben und es wurde auf 70°C für 5 min. erhitzt. Dann wurde die Probe auf Eis gelegt und es werden 4 μl 5x first strand buffer (Invitrogen), 2 μl DTT (0,1M), 1 μl dNTP's (10 mM), und 14U anti-RNAse (Ambion) zugegeben, gefolgt von einer Inkubation für 2 min. bei 37°C. Dann werden 1 μl Superscript II Reverse Transskriptase (Invitrogen) zugegeben, gefolgt von einer Inkubation für 1 h bei 37°C.
  • Anschließend erfolgt die Zweitstrangsynthese und DNA Reinigung. Sofort nach der Synthese des ersten Stranges, wie vorstehend, werden 91 μl Wasser, 30 μl 5x second strand buffer, 3 μl dNTP's (10 mM), 10U E. coli DNA-ligase, 40U DNA Polymerase I und 2U RNAse H (alle von Invitrogen) zugegeben und die Mischung wird für 2 h bei 16°C inkubiert. Dann werden 10U T4 DNA Polymerase (Invitrogen) zugegeben und weitere 5 min. inkubiert. Die Reaktion wird durch Zugabe von 10 μl 0,5 mM EDTA abgebrochen. Die Reinigung der DNA erfolgt gemäß den Vorschriften des GFX PCR DNA and Gel Band Purification Kits (Amersham). Gereinigte DNA wird unter Vakuum eingedampft und bei –20°C gelagert.
  • Dann erfolgt die in vitro Transkription und cRNA Reinigung. Die in vitro Transskription wird gemäß dem Herstellerprotokoll von Ambion (Huntigdon, UK) durchgeführt. Das DNA Pellet wird in 8 μl Wasser gelöst und 7,5 μl dNTP's (75 mM), 2 μl 10x reaction buffer (Ambion), 2 μl 10 T7 Enzymmix (Ambion) und 14U anti-RNAse (Ambion) werden zugegeben, gefolgt von einer Inkubation von 6 h bei 37°C. Die Reinigung der erhaltenen cRNA erfolgt gemäß dem Herstellerprotokoll zum Rneasy Mini Kit (Qiagen, Hilden, Deutschland). Nach Elution von der Säule wird die verdünnte cRNA eingedampft unter Vakuum und auf –80°C eingefroren.
  • Anschließend wird die zweite in vitro Transskriptionsrunde durchgeführt. Die zweite Verstärkungsrunde wird mit nur geringen Abweichungen von der ersten Runde durchgeführt. Die Synthese des ersten Stranges erfolgt mit random hexamer primer (250 ng/μl). Nach Inkubation über 60 min. wird das cRNA-cDNA Hybrid für 20 min. mit 2U RNase H inkubiert, gefolgt von einem 2-minütigen Inaktivierungsschritt bei 37°C.
  • Schließlich erfolgt die quantitative PCR und Auswertung. Die Synthese des ersten Stranges erfolgt mit der cRNA aus der vorgehenden Stufe. 1 ng cDNA werden für die Amplifikation eingesetzt mit 2,5 μl 10x SYBR®Green PCR Puffer, 3 μl Magnesiumchlorid (25 mM), 2 μl dNTP's (mit dUTP; 12,5 mM) und 0,625U Ampli Taq Gold in einem Reaktionsvolumen von 25 μl. Die Reaktion wird in einem GeneAmp 5700 Sequence Detection System (Applied Biosystems, Weiterstadt, Deutschland) durchgeführt. Die Bedingungen sind: 2 min. 50°C, 10 min. 95°C, 15 s 95°C, 1 min. 60°C, die letzten beiden Phasen in 40 Zyklen. Für die jeweiligen Gene werden die geeigneten Vorwärts- bzw. Rückwärtsprimer verwendet. Die Auswertung erfolgt nach der ΔΔCt Methode nach Herstellervorschrift. Der Ct Wert von beta actin wurde bei einer Grenze von 0,1 gemessen. Zur Normalisierung wird der Ct Wert des beta actin vom Ct Wert des untersuchten Gens abgezogen. Dieser normalisierte Ct Wert wird im Falle der Tumorgewebe auf die Normalgewebe bezogen bzw. normalisiert, wodurch der ΔΔCt erhalten wird. Wird dieser Wert als Potenz zur Basis 2 eingesetzt, so wird eine relative Größe der Über- oder Unterexpression in Tumorgewebe gegenüber dem Normalgewebe des gleichen Patienten erhalten. Im Ergebnis kann so bestimmt werden, ob ein spezifisches Tumorgewebe eines bestimmten Patienten sensitiv für eine erfindungsgemäße Behandlung ist. Auch kann mit dieser Methode bestimmt werden, ob nicht klassifiziertes Gewebe als Tumorzellen enthaltend einzustufen ist. In letzterem Falle erfolgt ein Vergleich zu Referenzwerten bzw. klassifiziertem Normalgewebe des gleichen Patienten oder von anderen Personen.
  • Beispiel 4: differenzielle Expression gemessen mittels der Genechip-Technologie, am Beispiel CD24.
  • Beispielhaft ist in 1 das Ergebnis von Experimenten gemäß Beispiel 2 anhand von CD24 dargestellt. Man erkennt, dass in einer signifikanten Anzahl der Proben aus 54 Patienten CD24 hochreguliert ist. Analoge Ergebnisse wurde für die weiteren erfindungsgemäßen Sequenzen erhalten, welche der Übersichtlichkeit halber nicht dargestellt sind.
  • Beispiel 5: Nachweis eines überexprimierten Gens mittels Antikörpern.
  • In diesem Beispiel wird die Markierung von Tumorzellen durch einen gegen ein erfindungsgemäßes Protein gerichteten Antikörper in vivo (Mausmodell) beschrieben. Ein solcher erfindungsgemäßer Antikörper wird mit einem Markermolekül (z.B. Radioisotop) markiert. In NMRI-Nacktmäuse werden mit einem erfindungsgemäßen Gen transfizierte humane Zellen transplantiert. Nach einem definierten Zeitraum, beispielsweise 30 Tage, wird den Mäusen der markierte Antikörper injiziert. Die Kontrolltiere werden mit einem nicht relevanten Antikörper behandelt. Wenige Stunden nach der Antikörperapplikation werden die Tiere getötet und aus allen Organen Gewebeschnitte angefertigt. Diese Schnitte werden auf die Gegenwart von markiertem Antikörper untersucht.
  • Bei den Antikörpern kann es sich im einfachsten Fall um polyklonale Antikörper gegen humanes Protein, konjugiert mit einem Trägerprotein, in Kaninchen gezogen und mit den spezifischen immobilisierten Peptiden affinitätsgereinigt, handeln. Geeignete Immunisierungspeptide sind beispielsweise aus Teilsequenzen eines erfindungsgemäßen Proteins gebildet. Als Immunogene können ebenso mit cDNA des Gens, oder Teilsequenzen hiervon transfizierte Zellen, wie beispielsweise COS-Zellen oder NIH3T3-Zellen, eingesetzt werden. Ebenso sind Tumorzellen, die endogen das Protein exprimieren, geeignet. Weiterhin kann auch rekombinant hergestelltes Protein bzw. Teilsequenzen hieraus, die in Producerzellen, wie E. coli oder Eukaryontenzellen, wie Insektenzellen, exprimiert werden, zur Immunisierung eingesetzt werden. Selbstverständlich können stattdessen auch entsprechende monoklonale Antikörper oder Fragmente hiervon eingesetzt werden.
  • Beispiel 6: Immunhistochemischer Nachweis von Tumorzellen.
  • Gewebe wird aus einem Patienten mit Krebs oder dem Verdacht auf Krebs isoliert und als Paraffin- bzw. Gefrierschnitte präpariert. Diese Schnitte werden mit einem gegen ein erfindungsgemäßes Protein gerichteten Antikörper auf die Überexpression des Proteins in Tumorzellen untersucht. Die immunhistologische Untersuchung mit dem Antikörper zeigt höhere Expression des Proteins in den Tumorzellen im Vergleich zu umliegenden Normalgewebe. Die Untersuchung erfolgt im Einzelnen durch Inkubation mit dem Antikörper als primärem Antikörper, einem biotinyliertem sekundären anti-Kaninchen Antikörper und einer Streptavidin-gekoppelten Meerrettichperoxidase. Die Färbung erfolgt mit mit DRB als chromogenen Substrat (braune Färbung). Die Gegenfärbung erfolgt mit Hemalaun-Lösung (blaue Färbung). Es sind maligne und nichtmaligne Zellen unterscheidbar, wobei die malignen Zellen eine starke Färbung, i.e. hohen Gehalt an erfindungsgemäßem Protein, aufweisen, während die nichtmalignen Zellen nur moderat gefärbt sind.
  • Die 2 und 3 zeigen beispielhafte Ergebnisse anhand von CD24. In 2 wurde mit einem CD24 Antikörper (Maus, anti human CD24, Klon 24CO2) gearbeitet. In 2, links wurde benignes Gewebe eingesetzt. Man erkennt, dass benigne Atrophie starke Färbung in der apikalen Membran zeigt. In 2, rechts, wurde dagegen mit primärem Prostatakarzinom gearbeitet. In 15 von 63 analysierten Adenocarzinomen wurde eine sehr starke Membran- und Zytoplasma-Färbung festgestellt. In 3 ist ein Vergleich primärer Tumor (links) mit Lymphknotenmetastasen (rechts) unter Verwendung der gleichen Antikörper dargestellt. Man erkennt vergleichsweise höhere Expression in den Lymphknotenmetastasen.
  • Beispiel 7: Erzeugung von anti-idiotypischen monoklonalen Antikörpern zu therapeutischen Zwecken
  • Ausgehend von einem erfindungsgemäßen Protein wird in fachüblicher Weise ein monoklonaler Antikörper Ab1 erzeugt, welcher in der Lage ist, das Protein spezifisch zu erkennen und daran zu binden. Dabei ist es unwesentlich, ob eine funktionale Domäne oder ein anderer zugänglicher Bereich erkannt wird. Mit Hilfe des erzeugten Antikörpers Ab1 wird in ebenso fachüblicher Weise ein zweiter anti-idiotypischer nicht humanisierter, beispielsweise Maus, monoklonaler Antikörper aAB1 erzeugt, welcher zur Herstellung einer pharmazeutischen Zusammensetzung zur Behandlung von Prostatatumoren geeignet ist. Die Funktion des Antikörpers aAB1 beruht dabei darauf, dass dieser dem humanen Immunsystem ein Image des (humanen) Protein-Antigens gleichsam vortäuscht, wobei das Immunsystem den Antikörper aAB1 aufgrund seiner mangelnden Humanisierung als körperfremd erkennt. Der humane Körper bildet folglich eigene Antikörper, die gegen aAB1 und somit auch gegen das humane Protein bzw. dieses exprimierende Tumorzellen gerichtet sind.

Claims (10)

  1. Nukleinsäure enthaltend oder bestehend aus einer Nukleinsäuresequenz gemäß einer der Sequenzen Seq.-ID 1 bis 129 (4).
  2. Peptid oder Protein enthaltend eine Aminosäurensequenz codiert durch eine der Nukleinsäuresequenzen Seq.-ID 1 bis 129 (4) oder bestehend hieraus oder enthaltend oder bestehend aus einer Aminosäuresequenz Seq.-ID 130 bis 258 (5).
  3. Verwendung einer Nukleinsäure und/oder eines Peptids oder Proteins nach Anspruch 1 oder 2, zur Detektion von Prostatakrebs oder zur Detektion eines Risikos der Erkrankung an Prostatkrebs, wobei eine Prostata-Gewebeprobe auf Übertranskription der Nukleinsäure oder auf Überexpression des Proteins untersucht wird.
  4. Verwendung nach Anspruch 3, wobei eine an die Nukleinsäure oder eine an das Protein oder Peptid bindende Detektorsubstanz, vorzugsweise enthaltend eine Reportergruppe, verwendet wird, wobei Bindung besagter Nukleinsäure und/oder besagten Proteins oder Peptids an die Detektorsubstanz halbquantitativ oder quantitativ detektiert wird.
  5. Verwendung einer Nukleinsäure oder eines Proteins oder Peptids nach Anspruch 1 oder 2, zum Screenen nach daran bindenden Substanzen, insbesondere prospektiven Wirkstoffen zur Inhibierung von besagter Nukleinsäure oder besagtem Protein oder Peptid, oder prospektiven Detektorsubstanzen, wobei eine prospektive Substanz oder eine Mischung solcher prospektiver Substanzen mit besagter Nukleinsäure oder besagtem Protein oder Peptid kontaktiert wird, wobei mit einem Bindungsassay Bindungsereignisse festgestellt werden, und wobei eine bindende prospektive Substanz, ggf. nach Dekonvolution, selektiert wird.
  6. Verwendung einer eine Nukleinsäure oder ein Peptid bzw. Protein nach Anspruch 1 oder 2 inhibierenden oder daran bindenden Substanz, insbesondere identifiziert nach Anspruch 5, zur Herstellung einer pharmazeutischen Zusammensetzung zur Diagnose und/oder Behandlung von Prostatakrebs.
  7. Verwendung nach Anspruch 6, wobei die Substanz ausgewählt ist aus der Gruppe bestehend aus: a) Antisense-Oligonukleotide, siRNA, und Ribozyme gegen eine Nukleinsäure nach Anspruch 1, b) an ein Peptid oder Protein nach Anspruch 2 bindendes, insbesondere nach Anspruch 5 identifiziertes, organisches Molekül mit einem Molekulargewicht unterhalb 5000, vorzugsweise unterhalb 1000, höchstvorzugsweise unterhalb 300, c) Aptamer gegen ein Protein oder Peptid nach Anspruch 2, insbesondere identifiziert nach Anspruch 5, d) (monoklonaler) Antikörper, insbesondere humaner oder humanisierter Antikörper, gegen ein Protein oder Peptid nach Anspruch 2, e) anti-idiotypische nicht-humane (monoklonale) Antikörper, generiert mittels eines Antikörpers der Unterguppe d), und f) vorstehende Substanzen derivatisiert mit einer Reportergruppe, einem Zelltoxin einer immunstimulierenden Komponente und/oder einem Radioisotop.
  8. Verwendung nach einem der Ansprüche 6 oder 7, wobei die pharmazeutische Zusammensetzung zur lokalen Applikation in Tumorzellen enthaltendem Gewebe hergerichtet ist.
  9. Verfahren zur Diagnose einer Prostatakrebserkrankung, wobei eine pharmazeutische Zusammensetzung nach einem der Ansprüche 6 bis 8 in der Ausführungsform mit einer Reportergruppe in zu untersuchendes Gewebe in vivo oder in vitro appliziert wird, wobei das zu untersuchende Gewebe dann einer Detektionsverfahrenstufe unterworfen wird, welche sensitiv für die Reportergruppe ist, und wobei im Fall der Detektion eines definierten Mindestwertes der Reportergruppe im Gewebe das Gewebe als Tumorzellen enthaltend qualifiziert wird.
  10. Verfahren zur Behandlung einer Prostatakrebs-Erkrankung, wobei eine pharmazeutische Zusammensetzung nach einem der Ansprüche 6 bis 8 in einer physiologisch wirksamen Dosis einem Patienten dargereicht wird.
DE10309985A 2003-02-27 2003-02-27 Humane Nukleinsäuresequenzen aus Prostatakarzinomen Withdrawn DE10309985A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE10309985A DE10309985A1 (de) 2003-02-27 2003-02-27 Humane Nukleinsäuresequenzen aus Prostatakarzinomen
PCT/DE2004/000433 WO2004076614A2 (de) 2003-02-27 2004-02-22 Humane nukleinsäuresequenzen aus prostatakarzinomen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10309985A DE10309985A1 (de) 2003-02-27 2003-02-27 Humane Nukleinsäuresequenzen aus Prostatakarzinomen

Publications (1)

Publication Number Publication Date
DE10309985A1 true DE10309985A1 (de) 2004-09-30

Family

ID=32920683

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10309985A Withdrawn DE10309985A1 (de) 2003-02-27 2003-02-27 Humane Nukleinsäuresequenzen aus Prostatakarzinomen

Country Status (1)

Country Link
DE (1) DE10309985A1 (de)

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
GOLUB, T. R.: DNA microarrays in clinical oncology. 2002. In: Journal of Clinical Oncology, Vol. 20, S. 1932-1941. Abstr. *
Internet-Recherche am 14. 08. 2003: <http://www. jco.org/cgi/content/abstract/20/7/1932?maxtoshow= HITS>RAMASWAMY, S. *
Internet-Recherche am 14. 08. 2003: <http://www. jco.org/cgi/content/abstract/20/7/1932?maxtoshow= HITS>RAMASWAMY, S.; GOLUB, T. R.: DNA microarrays in clinical oncology. 2002. In: Journal of Clinical Oncology, Vol. 20, S. 1932-1941. Abstr.
Internet-Recherche am 14. 08. 2003: <http://www. ncbi.nlm.nih.gov/entrez> Accession Nummer: Z30094 *
Internet-Recherche am 14. 08. 2003: <http://www. ncbi.nlm.nih.gov/entrez> Sequenzvergleich von Sequenz Seq_ID1 aus Fig. 4 mit Z30094
nternet-Recherche am 14. 08. 2003: <http://www. ncbi.nlm.nih.gov/entrez> Sequenzvergleich von Sequenz Seq_ID1 aus Fig. 4 mit Z30094 *

Similar Documents

Publication Publication Date Title
DE10316701A1 (de) Humane Nukleinsäuresequenzen aus Bronchialkarzinomen
DE112005002742B4 (de) Verbindungen und Methoden zur Behandlung, Diagnose und Prognose bei Pankreaserkrankungen
WO2004076614A2 (de) Humane nukleinsäuresequenzen aus prostatakarzinomen
EP1483389B1 (de) Differentiell in tumoren exprimierte genprodukte und deren verwendung
DE10215321A1 (de) Trp-p8 Splice Varianten und regulatorische RNA
DE60128368T2 (de) Diagnose und behandlung von prostatakrebs
DE10339820A1 (de) Verwendung von an GPR49 bindenden Substanzen zur Diagnose und Behandlung von Krebs
EP0805204B1 (de) Nebenhoden-spezifisches Rezeptorprotein und dessen Verwendung
WO2004029631A2 (de) Verfahren zur identifizierung bhs-spezifischer proteine und fragmente davon
DE10309729A1 (de) Humane Nukleinsäuresequenzen aus Harnblasenkarzinomen
DE10230631A1 (de) Verwendungen von an Ngal bindenden Substanzen zur Diagnose und Behandlung von Krebserkrankungen
DE10215320A1 (de) Verwendungen von TFF3 bindenden Substanzen zur Diagnose und Behandlung von Krebserkrankungen
DE10309985A1 (de) Humane Nukleinsäuresequenzen aus Prostatakarzinomen
DE10322134A1 (de) Humane Nukleinsäuresequenzen aus Prostatakarzinomen
DE10315834A1 (de) Humane Nukleinsäuresequenzen aus Pankreaskarzinomen
DE10300861A1 (de) Verwendung von an FABP4 bindenden Substanzen zur Diagnose und Behandlung des Harnblasenkarzinoms
WO2004064710A2 (de) Verwendungen von an gstm bindenden substanzen zur diagnose und behandlung des harnblasenkarzinoms
DE10234901A1 (de) Verwendung von am Mrp4 bindenden Substanzen zur Diagnose und Behandlung von Krebserkrankungen
EP1364965A1 (de) Slit1 und MEGF4 Isoformen und deren Verwendung
EP0595241A2 (de) Nachweis und Inhibierung von Malatenzym in Tumorzellen
DE602004006566T2 (de) Verfahren zur Diagnose und Behandlung von Metastasen und dafür nützliche Zusammensetzung
EP1522599A1 (de) Verwendung von an metaRING bindenden Substanzen zur Diagnose und Behandlung von Krebs
DE10258051A1 (de) Verwendung von an HAT bindenden Substanzen zur Diagnose und Behandlung des Plattenepithelkarzinoms der Lunge
DE10225180A1 (de) Protein oder Peptid (MIMPD), hierfür codierende Nukleinsäure sowie Verwendungen dieser Stoffe
EP4237078A1 (de) Nkd2 als target zur behandlung von nierenfibrose

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8127 New person/name/address of the applicant

Owner name: HINZMANN, BERND, DR., 13127 BERLIN, DE

Owner name: DAHL, EDGAR, DR., 51503 RöSRATH, DE

Owner name: ROSENTHAL, ANDRE, PROF., 14482 POTSDAM, DE

Owner name: HERMANN, KLAUS, DR., 12679 BERLIN, DE

Owner name: PILARSKY, CHRISTIAN, DR., 01309 DRESDEN, DE

8139 Disposal/non-payment of the annual fee