DE10205817A1 - Verfahren und Vorrichtung zur Regelung des Kraftstoff-/Luftverhältnisses eines Verbrennungsprozesses - Google Patents

Verfahren und Vorrichtung zur Regelung des Kraftstoff-/Luftverhältnisses eines Verbrennungsprozesses

Info

Publication number
DE10205817A1
DE10205817A1 DE10205817A DE10205817A DE10205817A1 DE 10205817 A1 DE10205817 A1 DE 10205817A1 DE 10205817 A DE10205817 A DE 10205817A DE 10205817 A DE10205817 A DE 10205817A DE 10205817 A1 DE10205817 A1 DE 10205817A1
Authority
DE
Germany
Prior art keywords
oxygen
air
excess
probe
lack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE10205817A
Other languages
English (en)
Inventor
Eberhard Schnaibel
Kersten Wehmeier
Klaus Hirschmann
Richard Hotzel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to DE10205817A priority Critical patent/DE10205817A1/de
Priority to EP02020196A priority patent/EP1336728B1/de
Priority to US10/364,255 priority patent/US20030150209A1/en
Publication of DE10205817A1 publication Critical patent/DE10205817A1/de
Priority to US12/647,717 priority patent/US8141345B2/en
Ceased legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/0295Control according to the amount of oxygen that is stored on the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/06Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by varying fuel-air ratio, e.g. by enriching fuel-air mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/16Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1418Several control loops, either as alternatives or simultaneous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1422Variable gain or coefficients
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/36Control for minimising NOx emissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

Verfahren zur Regelung des Kraftstoff/Luft-Verhältnisses eines Verbrennungsprozesses, der abwechselnd mit Luftüberschuss und Luftmangel betrieben wird, und mit wenigstens einem Katalysatorvolumen im Abgas des Verbrennungsprozesses, das bei Sauerstoffüberschuss im Abgas Sauerstoff speichert und diesen bei Sauerstoffmangel abgibt, bei welchem Verfahren die bei Luftüberschuss erfolgenden Sauerstoffeinträge in das Katalysatorvolumen und die bei Luftmangel erfolgenden Sauerstoffausträge aus dem Katalysatorvolumen bestimmt werden und bei dem das Kraftstoff/Luft-Verhältnis in einen ersten Regelkreis so geregelt wird, dass die Summe der in einem vorbestimmten Intervall bestimmten Sauerstoffeinträge und Sauerstoffausträge einen vorbestimmten Wert annimmt, dadurch gekennzeichnet, dass der Verbrennungsprozess jeweils mindestens solange mit Sauerstoffüberschuss oder Sauerstoffmangel betrieben wird, bis dieser an einer sauerstoffempfindlichen Nernstsonde hinter dem Katalysatorvolumen auftritt.

Description

    Stand der Technik
  • Die Erfindung betrifft ein Verfahren zur Regelung des Kraftstoff/Luft-Verhältnisses eines Verbrennungsprozesses, der abwechselnd mit Luftüberschuss und Luftmangel betrieben wird, mit wenigstens einem Katalysatorvolumen im Abgas des Verbrennungsprozesses, das bei Sauerstoffüberschuss im Abgas Sauerstoff speichert und diesen bei Sauerstoffmangel abgibt, bei welchem Verfahren die bei Luftüberschuss erfolgenden Sauerstoffeinträge in das Katalysatorvolumen und die bei Luftmangel erfolgenden Sauerstoffausträge aus dem Katalysatorvolumen bestimmt werden und bei dem das Kraftstoff/Luft-Verhältnis so geregelt wird, dass die Summe der in einem vorbestimmten Intervall bestimmten Sauerstoffeinträge und Sauerstoffausträge einen vorbestimmten Wert annimmt. Die Erfindung betrifft weiter eine elektronische Steuereinrichtung zur Durchführung des Verfahrens. Ein solches Verfahren und eine solche Vorrichtung sind aus der DE 40 01 616 C2 bekannt.
  • Im allgemeinen betrifft die Erfindung die Regelung des Kraftstoff/Luft-Verhältnisses bzw. des Luftverhältnisses Lambda eines Verbrennungsprozesses. Lambda gibt bekanntlich das Verhältnis der tatsächlich bei dem Verbrennungsprozess beteiligten Luftmenge zu derjenigen Luftmenge an, die für eine stöchiometrische Verbrennung einer bestimmten Kraftstoffmenge benötigt wird. Abgase von Verbrennungsprozessen werden häufig durch einen Katalysator geführt, um Abgasbestandteile wie Stichoxide (NOx), unverbrannte Kohlenwasserstoffe (HC) und Kohlenmonoxid (CO) in Stickstoff, Wasser und Kohlendioxid zu konvertieren. Zum Beispiel werden Dreiwegekatalysatoren zur Abgasreinigung bei Kraftfahrzeugen verwendet.
  • Ein optimaler Wirkungsgrad der Konvertierung, der bei definierten Einträgen von NOx, HC und CO in den Katalysator durch ein Minimum von NOx, HC und CO hinter dem Katalysator charakterisiert ist, erfordert eine möglichst präzise Einstellung eines gewünschten Kraftstoff/Luft-Verhältnisses für den Verbrennungsprozess. Dies kann auch die möglichst präzise Einstellung eines gewünschten zeitlichen Verhaltens einschließen, beispielsweise eine periodische Schwankung von Lambda um einen mittleren Sollwert.
  • Bezüglich der optimierten Konvertierung von Katalysatoranlagen in Kraftfahrzeugen sind verschiedene Ansätze bekannt, die mit einer Abgassonde hinter einem Katalysator dessen schadstoffoptimalen Betrieb gewährleisten. Dabei werden in erster Linie Nernstsonden verwendet. Unter einer Nernstsonde wird hier der bekannte sauerstoffempfindliche Abgassensor verstanden, dessen Kennlinie über der Gemischzusammensetzung im thermodynamischen Gleichgewicht im Bereich der stöchiometrischen Gemischzusammensetzung einen steilen Übergang zwischen einem niedrigen (ca. 100 mV) und einem hohen (ca. 900 mV) Signalpegel aufweist.
  • Hierbei sind Verfahren bekannt, die unter dem Oberbegriff Zweipunktregelung zusammengefasst werden können. Dabei umfasst der Begriff der Zweipunktregelung eine Regelung, bei der ein Istwert des Sondensignals, das einer Ist- Sauerstoffkonzentration im Abgas und damit einem bestimmten Lambda-Istwert entspricht, mit einem Sollwert verglichen wird und bei dem je nach Vorzeichen der Abweichung eine Anfettung oder eine Abmagerung des Kraftstoff/Luft-Verhältnisses erzeugt wird. Diese Regelung zeichnet sich dadurch aus, dass gewissermaßen nur das Vorzeichen, nicht aber der Betrag der Abweichung durch einen Regelalgorithmus verarbeitet wird.
  • Begrifflich werden Zweipunktregelungen sowohl in Bezug auf Zweipunktsonden vor einem Katalysator und hinter einem Katalysator angewandt. Diese Verfahren haben gemeinsam, dass sie auf den genannten steilen Übergang des Sondensignals mit einer sprungartigen Änderung der Stellgröße, beispielsweise einer Einspritzimpulsbreite reagieren. Der sprungartigen Verstellung folgt eine näherungsweise stetige Veränderung der Stellgröße, deren zeitlicher Verlauf einer Rampe (linear) entspricht. Der Lambdawert der optimalen Schadstoffkonvertierung im Katalysator entspricht nicht genau dem Lambdawert der steilen Änderung des Nernstsondensignals. Um dennoch mit der Nernstsonde den optimalen Lambdawert für den Katalysator einstellen zu können, kann eine je nach Richtung des Vorzeichenwechsels unterschiedliche und damit unsymmetrische Sprunghöhe, eine auf einen Sprung folgende und bezüglich der Sprungrichtung unsymmetrische Rampe oder eine vorbestimmte Verzögerungszeit zwischen einer Sondensignaländerung und einer Stellgrößenänderung verwendet werden. Dadurch wird der Mittelwert des zeitlichen Verlauf der Stellgröße so verschoben, dass der Katalysator in seinem optimalen Arbeitspunkt betrieben wird. Dieser liegt zumeist leicht auf der fetten Seite, da hiermit insbesondere ein Sicherheitsabstand zu der mit Blick auf unerwünschte NOx- Emissionen kritischeren mageren Seite vermieden wird. Diese Art der Zweipunktregelung erfolgt häufig auf der Basis des Signals einer vor dem Katalysator angeordneten Abgassonde. Die bei einer Sprung-Rampe-Regelung auftretende Schwingung im Sauerstoffgehalt des Abgases wird durch den Katalysator, sofern dieser funktionsfähig ist, ausgemittelt. Diese Mittelung ergibt sich dadurch, dass der Katalysator während der Halbwelle der Schwingung mit Sauerstoffüberschuss den Sauerstoffüberschuss aus dem Abgas speichert und den gespeicherten Sauerstoff in der Halbwelle der Schwingung mit Sauerstoffmangel wieder an das Abgas abgibt. Eine hinter dem (ausreichend großen) Katalysator angeordnete Abgassonde registriert in diesem Fall den Mittelwert der Schwingung. Da der vorgeschaltete Katalysator die hintere Sonde vor übermäßigen Temperaturschwankungen schützt und außerdem die Einstellung des thermodynamischen Gleichgewichts der Abgasbestandteile fördert, ist das Signal der hinteren Sonde weniger durch Temperatureinflüsse und Querempfindlichkeiten der Abgassonde beeinflusst. Dabei versteht man unter einer Querempfindlichkeit eine unerwünschte Verschiebung der Sondenkennlinie über dem Sauerstoffgehalt des Abgases in Anwesenheit von anderen Abgasbestandteilen. Die hintere Sonde misst daher genauer und kann gewissermaßen zur Führung der vorderen Sonde eingesetzt werden. Wenn beispielsweise die vordere Sonde aufgrund einer Kennlinienverschiebung auf einen nicht korrekten Sollwert regelt, wird dies über das Signal der hinteren Abgassonde erkannt und der Sollwert für den Regelkreis der vorderen Sonde wird entsprechend korrigiert.
  • Weiterhin sind sogenannte stetige Verfahren bekannt. Diese nutzen nicht die steile Änderung des Nernstsondensignals, sondern beispielsweise den vergleichsweise linearen Verlauf des Pumpstroms über dem Lambdawert bei einer Breitbandsonde. Diese Verfahren nutzen nicht nur das Vorzeichen, sondern auch den Betrag der Abweichung eines Istwertes von einem Sollwert. Auch hier ist darauf zu achten, dass der Katalysator mit leicht fettem Gemisch betrieben wird. Da bei diesen Verfahren kleinere Sondensignaländerungen verwertet werden, wirken sich Querempfindlichkeiten, Temperaturempfindlichkeiten und alterungsspezifische Verschiebungen von Schadstoffabhängigkeiten vergleichsweise stark aus.
  • Eine weitere Verfahrensgruppe basiert auf einer optimierten Befüllstrategie des Katalysator. Die Verfahren dieser Gruppe bilanzieren die eingetragenen Komponenten und versuchen eine Fehlbilanz auszugleichen bevor sie an der hinter einem gewissen Katalysatorvolumen angeordneten Sonde zu messen ist. Die Nernstsonde wird hier ebenfalls in Ihrem Fett-Ast betrieben und gleicht nur noch einen falschen Bilanznullpunkt aus. Die oben genannte DE 40 01 616 A1 zeigt ein solches Verfahren zur Regelung des Kraftstoff/Luft- Verhältnisses eines Verbrennungsprozesses, der abwechselnd mit Luftüberschuss und Luftmangel betrieben wird. Ein Katalysatorvolumen im Abgas des Verbrennungsprozesses speichert bei Sauerstoffüberschuss im Abgas den Sauerstoff und gibt diesen bei Sauerstoffmangel wieder ab. Bei diesem bekannten Verfahren werden die bei Luftüberschuss erfolgenden Sauerstoffeinträge in das Katalysatorvolumen und die bei Luftmangel erfolgenden Sauerstoffausträge aus dem Katalysatorvolumen mit Hilfe einer vor dem Katalysator angeordneten Nernstsonde bestimmt und das Kraftstoff/Luft-Verhältnis wird so geregelt, dass die Summe der in einem vorbestimmten Intervall bestimmten Sauerstoffeinträge und Sauerstoffausträge einen vorbestimmten Wert annimmt.
  • Es hat sich gezeigt, dass die künftigen gesetzgeberischen Anforderungen, beispielsweise die SULEV-Forderungen (Super Ultra Low Emission Vehicle) aus den USA weitere Verbesserungen der bekannten Regelstrategien mit Blick auf einen optimierten Katalysatorbetrieb in Verbindung mit einer weiter gesteigerten Robustheit und Regelgeschwindigkeit erfordern.
  • Diese Forderung wird auf der Basis des aus der DE 40 01 616 bekannten Verfahrens dadurch erfüllt, dass der Verbrennungsprozess jeweils mindestens solange mit Sauerstoffüberschuss oder Sauerstoffmangel betrieben wird, bis dieser an einer sauerstoffempfindlichen Nernstsonde hinter dem Katalysatorvolumen auftritt. In Abwandlung des bekannten Verfahrens ist bei einem Ausführungsbeispiel der Erfindung keine Abgassonde vor dem Katalysator erforderlich. Bei einem weiteren Ausführungsbeispiel wird vor dem Katalysator anstelle der Nernstsonde nach dem Stand der Technik eine Breitbandsonde verwendet.
  • Das erfindungsgemäße Verfahren ermöglicht den geforderten optimierten Katalysatorbetrieb und verbessert dabei die oben genannten Verfahren hinsichtlich Robustheit und Regelgeschwindigkeit entscheidend in Arbeitspunkten, in denen die obigen Verfahren keine ausreichende Robustheit aufweisen bzw. in denen diese Verfahren durch Querempfindlichkeiten beeinträchtigt werden. Diese Verbesserung ergibt sich dadurch, dass die Erfindung Teilaspekte der oben dargestellten Verfahren enthält und diese um Anteile ergänzt, die eine wesentliche Steigerung der Robustheit bewirken.
  • Das erfindungsgemäße Verfahren nutzt die Zweipunktcharakteristik einer Nernstsonde hinter dem Katalysator in Verbindung mit einer Bilanzierung, d. h. einer Berücksichtigung von auf den Katalysator bezogenen Sauerstoffeinträgen und Sauerstoffausträgen.
  • Aufgrund der Massenerhaltung müssen diese Einträge und Austräge bei der erfindungsgemäßen Gemischsteuerung gleich sein. Würde dieses Verfahren in seiner einfachsten Form angewandt und vernachlässigt man Nichtlinearitäten, so würde sich hinter einem der Sprungsonde anschließenden Katalysatorvolumen eine Sprungsondenspannung von 450 mV einstellen (Aufgrund von Unsymmetrien kann sich hier auch eine von 450 mV abweichende Spannung einstellen). Dieses entspricht aber nach gängiger Meinung nicht einem optimierten Katalysatorbetrieb.
  • Um den optimierten Betrieb zu gewährleisten wird dem regelnden Teil ein steuernder Teil angeschlossen. Dieser Teil basiert auf einem Bilanzoptimum für den Katalysatorbetrieb. Aufgrund der notwendigen Bilanzoptimierung der regelnden Phase, wird eine bezüglich Bilanznullpunkt notwendige Zusatzmenge ermittelt. Bezogen auf den Bilanznullpunkt wird an die Flanken Fett-Mager bzw. Mager-Fett der Sprungsonde ein gesteuerter Anteil Fett bzw. Mager angehängt. Dieser Anteil ist so zu bemessen, dass sich hinter einem Gesamtkatalysatorsystem ein Schadstoffoptimum einstellt.
  • Eine Weiterbildung der Erfindung sieht daher vor, dass der Wechsel zwischen Sauerstoffüberschuss und Sauerstoffmangel beim Betrieb des Verbrennungsmotors so gesteuert wird, dass die Differenz der bei Luftüberschuss erfolgenden Sauerstoffeinträge in das Katalysatorvolumen und der bei Luftmangel erfolgenden Sauerstoffausträge aus dem Katalysatorvolumen einen vorbestimmten Wert annimmt.
  • Eine weitere Ausführungsform sieht vor, dass zur Bestimmung der bei Luftüberschuss erfolgenden Sauerstoffeinträge in das Katalysatorvolumen und der bei Luftmangel erfolgenden Sauerstoffausträge aus dem Katalysatorvolumen eine Größe benutzt wird, die den Kraftstoffzufluss zum Verbrennungsmotor wenigstens mitbestimmt.
  • Gemäß einer weiteren Ausführungsform wird die genannte Größe auf der Basis einer aus Messgrößen errechneten Ansaugluftmenge und auf der Basis einer zu dieser Ansaugluftmenge zugemessenen Kraftstoffmenge gebildet.
  • Nach einer alternativen bevorzugten Ausführungsform wird die genannte Größe in Abhängigkeit von dem Signal einer vor dem Katalysatorvolumen angeordneten Abgassonde gebildet.
  • Eine weitere Ausführungsform sieht vor, dass die genannte Größe eine Eingangsgröße für einen zweiten Regelkreis ist, in dem das Kraftstoff/Luft-Verhältnis mit einer im Vergleich zum ersten Regelkreis kleineren Zeitkonstante geregelt wird.
  • Eine weitere Ausführungsform zeichnet sich dadurch aus, dass die Bildung der genannten Größe verändert wird, wenn die Sauerstoffeinträge und Sauerstoffausträge voneinander abweichen.
  • Gemäß einer Weiterbildung dieser Ausführungsform erfolgt die Veränderung so, dass die genannte Abweichung kleiner wird.
  • Nach einer bevorzugten Ausführungsform dieser Weiterbildung wird die Veränderung als Funktion des Integrals der genannten Abweichung gebildet.
  • Nach einer weiteren Ausführungsform wird das Kraftstoff/Luft-Verhältnis durch einen überlagerten Regelkreis vorgegeben.
  • Eine weitere Ausgestaltung sieht vor, dass die Werte der bestimmten Sauerstoffeinträge und Sauerstoffausträge genutzt werden, um einen realen Nullwert zwischen Sauerstoffüberschuss und Sauerstoffmangel zu bestimmen.
  • In einer weiteren Ausführungsform kann die Erfindung auch als Verfahren zur Regelung des Kraftstoff/Luft-Verhältnisses eines Verbrennungsprozesses mit einer Lambdasonde hinter einem Teilkatalysatorvolumen verstanden werden, bei dem die Lambdasonde anzeigt, wenn der Grad der Befüllung des Teilkatalysatorvolumens mit Sauerstoff einen ersten vorbestimmten Wert überschreitet oder einen zweiten vorbestimmten Wert unterschreitet. Bei Unterschreiten des zweiten vorbestimmten Wertes wird das Kraftstoff/Luft- Verhältnis im Mittel definiert magerer (kraftstoffärmer) eingestellt. Bei daraus resultierendem Überschreiten des zweiten vorbestimmten Wertes wird entsprechend im Mittel definiert angefettet. Dabei ergibt sich eine für den Betriebspunkt des Verbrennungsprozesses und den Katalysator charakteristische Frequenz der Abmagerungen und Anfettungen. Bei einem Verbrennungsmotor wird ein ein Betriebspunkt beispielsweise durch einen bestimmten Wert der Brennraumfüllung bei einer bestimmten Drehzahl definiert. Im weiteren wird der Sauerstoffeintrag und der Sauerstoffaustrag bilanziert. Die Kraftstoffzumessung erfolgt so, dass sich als Bilanz der Sauerstoffeinträge und der Sauerstoffausträge im Mittel über eine Periode (ein Sauerstoffeintrag und ein Sauerstoffaustrag) ein vorbestimmter Wert, vorzugsweise der Wert Null ergibt, was einem definierten mittleren Lambdawert entspricht. Durch eine definierte Verzögerung des Wechsels zwischen im Mittel fettem und magerem Kraftstoff/Luft-Gemisch läßt sich ein beliebiger mittlerer Lambdawert einstellen, da jede Verzögerung gewissermaßen einen zusätzlichen Eintrag von Sauerstoff (bei verzögertem Wechsel zu fettem Gemisch) oder Austrag von Sauerstoff (bei verzögertem Wechsel zu magerem Gemisch) bewirkt. Die definierte Verzögerung erfolgt bevorzugt so, dass der resultierende Zusatzeintrag oder Zusatzaustrag bezogen auf eine Periode einem vorbestimmten Wert entspricht. Die Erfindung bezieht sich auch auf eine Steuereinrichtung, vorzugsweise eine elektronische Steuereinrichtung zur Durchführung wenigstens einer der oben angegebenen Verfahren, Weiterbildungen und Ausführungsformen.
  • Im folgenden werden Ausführungsbeispiele der Erfindung mit Bezug auf die Figuren erläutert.
  • Fig. 1 zeigt die Struktur eines ersten technischen Umfeldes, in der die Erfindung ihre Wirkung entfaltet.
  • Fig. 2 offenbart ein auf diese Struktur bezogenes Ausführungsbeispiel der Erfindung in der Form einer Funktionsblockdarstellung.
  • Die Fig. 3 und 4 zeigen Signalverläufe zur Veranschaulichung der Wirkung des genannten Ausführungsbeispiels.
  • Fig. 5 zeigt die Struktur eines zweiten technischen Umfeldes für die Anwendung der Erfindung.
  • Fig. 6 offenbart ein darauf bezogenes Ausführungsbeispiel der Erfindung in Funktionsblockdarstellung.
  • Fig. 7 offenbart die Struktur eines zur Erfüllung der o. a. SULEV-Forderungen bevorzugten technischen Umfeldes der Erfindung.
  • Fig. 8 zeigt ein entsprechendes Ausführungsbeispiel der Erfindung in Funktionsblockdarstellung.
  • Die Fig. 9 bis 13 stellen zeitliche Verläufe von Signalen zur Verdeutlichung der Wirkung der Erfindung im Rahmen des bevorzugten technischen Umfeldes dar.
  • Beschreibung
  • Die Ziffer 10 in der Fig. 1 bezeichnet einen Verbrennungsmotor, der ein Gemisch aus Kraftstoff und Luft in einem Verbrennungsprozess verbrennt. Die Menge oder Masse der zum Verbrennungsprozess strömenden Luft wird durch einen Luftmengenmesser 14 erfasst. Das Signal des Luftmengenmessers 14 wird einer elektronischen Steuereinrichtung 18 zugeführt. Die elektronische Steuereinrichtung 18 berechnet daraus und gegebenenfalls aus weiteren Betriebskenngrößen des Verbrennungsprozesses ein Kraftstoffzumesssignal, mit dem ein Kraftstoffzumessmittel 16 angesteuert wird. In der Darstellung der Fig. 1 ist das Kraftstoffzumessmittel 16, beispielsweise ein Einspritzventil oder eine Anordnung von Einspritzventilen, in einem Saugrohr 12 des Verbrennungsmotors angeordnet. In diesem Fall findet die Gemischbildung, das heißt die Vermischung von angesaugter Luft und zugemessenem Kraftstoff im Saugrohr statt. Alternativ kann die Gemischbildung aber auch direkt in den Brennräumen des Verbrennungsmotors stattfinden, wie es vom Dieselmotor und vom Ottomotor mit Benzindirekteinspritzung bekannt ist. Die Abgase des Verbrennungsprozesses im Verbrennungsmotor werden durch ein Abgasrohr 20 zu einem Katalysatorvolumen 22 geleitet. Eine vor dem Katalysatorvolumen 22 angeordnete Abgassonde 24 erfasst vorzugsweise die Sauerstoffkonzentration im Abgas zwischen dem Verbrennungsprozess und dem Katalysatorvolumen 22. Im weiteren wird die Abgassonde 24 auch als Vorkatsonde 24 bezeichnet. Eine weitere Abgassonde ist hinter dem Katalysatorvolumen 22 angeordnet. Diese Abgassonde ist vorzugsweise eine sogenannte Nernstsonde 26, während die Vorkatsonde 24 vorzugsweise als Breitbandsonde realisiert ist. Ein Ausführungsbeispiel einer Nernstsonde 26 ist dem Kraftfahrtechnischen Taschenbuch, 22. Auflage, VDI-Verlag Düsseldorf, ISBN 3-18-419122-2 [Automotive Handbook 4th Edition, SAE Society of Automotive Engineers, USA, ISBN 1-56091-918-3, auf der Seite 491 (491)] offenbart. Auf der folgenden Seite 492 (492) des gleichen Buches ist auch eine Breitbandsonde als Ausführungsbeispiel der Vorkatsonde 24 offenbart. Die Breitbandsonde 24 weist einen Messspalt auf, der über eine Gaseinlassöffnung mit dem Abgas verbunden ist. Der Messspalt ist weiter mit einer elektrochemischen Pumpzelle versehen, mit der Sauerstoff aus dem Messspalt heraus oder in den Messspalt hinein gepumpt werden kann. Eine elektronische Schaltung regelt die an der Pumpzelle anliegende Spannung so, dass die Zusammensetzung des Gases im Messspalt konstant bei Lambda = 1 liegt. Der dazu notwendige Pumpstrom Isvk liefert ein Maß für den Sauerstoffgehalt des Abgases. Mit anderen Worten: die Breitbandsonde liefert ein Stromsignal I Sonde-Vor-Kat. Die Nernstsonde 26 liefert dagegen ein Spannungssignal U Sonde- Hinter-Kat. Die Signale der beiden Abgassonden 24 und 26 werden ebenfalls der elektronischen Steuereinrichtung 18 zugeführt und beeinflussen ergänzend die Kraftstoffzumessung. Der Verbrennungsmotor 10 stellt gewissermaßen eine Regelstrecke als Bestandteil eines ersten Regelkreises aus Verbrennungsmotor 10, Abgassonde 24, elektronischer Steuereinrichtung 18 und Kraftstoffzumesseinrichtung 16 dar. Ein Sauerstoffmangel im Abgas wird von der Abgassonde 24 registriert und führt durch eine entsprechende Verarbeitung durch einen Regelalgorithmus in der elektronischen Steuereinrichtung 18 zu einer Vergrößerung der Einspritzimpulsbreite, mit der das Kraftstoffzumessmittel 16 angesteuert wird. Diesem Regelkreis ist ein weiterer Regelkreis überlagert, der auf dem Signal der Nernstsonde 26 basiert. Das erfindungsgemäße Zusammenwirken der beiden Regelkreise wird im Folgenden mit Blick auf die Struktur der Fig. 2 erläutert. Die gestrichelte Linie 27 in der Fig. 2 trennt die mit der Ziffer 18 bezeichnete Funktionsstruktur der erfindungsgemäßen elektronischen Steuereinrichtung von den übrigen Bestandteilen der Struktur der Fig. 1, insbesondere von dem Verbrennungsmotor 10, der Vorkatsonde 24, dem Katalysatorvolumen 22 und der Nernstsonde 26. Die Ziffer 28 bezeichnet ein Kennfeld, das beispielsweise von Eingangsgrößen wie der gemessenen Luftmenge und der Drehzahl des Verbrennungsmotors adressiert wird und das eine Basisimpulsbreite t_Basis als Ausgangswert für die Kraftstoffzumessung liefert. Dieser Ausgangswert wird in der Regelverknüpfung 30 mit einem Regelfaktor fr aus einem ersten Regler 34 verknüpft. Das Resultat dieser Verknüpfung bestimmt als Einspritzimpulsbreite ti die Kraftstoffmenge, die dem Verbrennungsprozess in dem Verbrennungsmotor 10 zugeführt wird. Aus dem Verbrennungsprozess resultiert eine bestimmte Sauerstoffkonzentration im Abgas, die sich im Signal Ushk der Nernstsonde 26 abbildet. Dieses Signal Ushk der Nernstsonde 26 wird einem Zweipunktregler 36 zugeführt. Dieser Zweipunktregler 36 stellt einen echten Zweipunktregler im klassischen Sinne dar, bei dem die Stellgröße nur jeweils einem von zwei Werten entsprechen kann. Im Fall des Reglers 36 wird das Signal Ushk der Abgassonde 26 mit einem Schwellenwert von beispielsweise 450 Millivolt verglichen. Wenn hinter dem Katalysator 22 Sauerstoffüberschuss vorliegt, besitzt das Signal Ushk eine Größenordnung von circa 100 Millivolt. In diesem Fall fettet der Zweipunktregler 36 an, indem er beispielsweise einen Faktor 1,02 ausgibt, mit dem die im ersten Regler gebildete Stellgröße multiplikativ vergrößert wird, was letztlich zu einer Vergrößerung der Einspritzimpulsbreite und damit zu einer Anfettung des Gemisches führt. Liegt dagegen hinter dem Katalysatorvolumen 22 Sauerstoffmangel vor, so besitzt das Signal Ushk eine Größenordnung von circa 900 Millivolt und der Zweipunktregler 36 magert entsprechend ab, indem er beispielsweise einen Faktor 0,98 ausgibt. Dieser Faktor 0,98 verkleinert im ersten Regler 34 die Stellgröße fr, was letztlich zu einer Verkürzung der Einspritzimpulsbreiten ti und damit zu einer Abmagerung führt. Die Nernstsonde 26 bildet damit in Verbindung mit dem Zweipunktregler 36 und der übrigen Regelstrecke (34, 30, 10, 24, 22) einen zweiten Regelkreis. Dieser zweite Regelkreis sorgt dafür, dass das Katalysatorvolumen 22 mit einem im Mittel mageren Gemisch befüllt wird, wenn die Sonde hinter dem Katalysatorvolumen 22 Sauerstoffmangel anzeigt. Dieses magere Gemisch sorgt dafür, dass die Nernstsonde 26 hinter dem Katalysatorvolumen 22 irgendwann Sauerstoffüberschuss anzeigt. Wenn dies passiert, wird das Katalysatorvolumen 22 anschließend mit einem im Mittel fetten Gemisch (Sauerstoffmangel = Reduktionsmitteleintrag) befüllt und das Signal der Nernstsonde 26 springt irgendwann wieder nach 900 Millivolt.
  • Somit befüllt und entleert der Zweipunktregelalgorithmus das Katalysatorvolumen 22 immer wieder. Da der Sauerstoffspeicher nur die Menge an Sauerstoff abgeben kann, die er vorher gespeichert hat, müssen die realen Sauerstoffüberschuss- und Sauerstoffmangel-Mengen gleich sein. Mit anderen Worten: Der in Sauerstoffüberschussphasen in das Katalysatorvolumen 22 eingetragene Sauerstoff entspricht in seiner Menge dem im Sauerstoffmangel aus dem Katalysatorvolumen 22 ausgetragenen Sauerstoff. Erfindungsgemäß werden diese beiden per Definition gleichen Mengen messtechnisch erfasst und zur Korrektur des ersten Regelkreises verwendet. Zu diesem Zweck weist die Fig. 2 die Struktur 38, 40, 42, 44, 46 und 32 auf. Dabei bezeichnet die Ziffer 38 einen Triggersignalpfad, mit dem ein Signalintegrator 40 auf Null gesetzt und ausgelöst wird. Dem Signalintegrator 40 wird parallel zu dem Triggersignal 38 das Signal Isvk der Vorkatsonde 24, beziehungsweise ein korrigiertes Signal Isvk_korr der Vorkatsonde 24 zugeführt. Dieser Signalintegrator ist so beschaltet und ausgelegt, dass er nur den Sauerstoffüberschussteil des Signals Isvk integriert. Die Integration wird ausgelöst, wenn der Zweipunktregler 36 ein abmagerndes Signal ausgibt und sie wird gestoppt, wenn der Zweipunktregler 36 auf anfettendes Gemisch umschaltet. Der Endwert des Sauerstoffspeicherintegrators 40 liefert damit ein Maß für die Sauerstoffspeicherfähigkeit des Katalysators (Oxygen Storage Capacity OSC). Analog berechnet der Integrator 42 in Sauerstoffmangelphasen eine negative Sauerstoffmangel einen Sauerstoffaustrag -OSC.
  • In der Differenzverknüpfung 44 werden die Ausgangssignale der Integratoren 40 und 42 voneinander subtrahiert. Da sie physikalisch per Definition gleich sein müssen, zeigt ein von null abweichendes Ergebnis der Differenzverknüpfung 44gewissermaßen einen Berechnungsfehler an. Im Rahmen dieser Erfindung geht man davon aus, dass ein solcher Berechnungsfehler auf einer Kennlinienverschiebung des Signals Isvk der Vorkatsonde 24 beruht. Eine Kennlinienverschiebung hat zur Folge, beispielsweise schon fettes Gemisch signalisiert, obwohl real noch mageres Gemisch vorliegt. Als Folge wird der Wert des MINUS_OSCIntegrators 42 größer sein als der Wert des OSC- Integrators 40. Die Differenz beider Werte wird einem Integrator 46 zugeführt, dessen Ausgangssignal über eine Offsetkorrekturverknüpfung 32 das Signal Isvk der Vorkatsonde 24 korrigiert. Dadurch wird gewissermaßen die verschobene Kennlinie ausgeglichen, so dass die Werte des OSC-Integrators 40 und des MINUS_OSCIntegrators 42 nach eingeschwungener Korrektur wieder gleich sind. Diese Zusammenhänge werden durch die Fig. 3 in Verbindung mit der Fig. 4 weiter verdeutlicht. Die Ziffer 52 in der Fig. 3 bezeichnet einen ersten Zeitbereich, in dem die Offsetkorrektur noch nicht eingeschwungen ist. Dagegen bezeichnet die Ziffer 54 in der Fig. 3 einen zweiten Zeitbereich, in dem die Offsetkorrektur eingeschwungen ist. Insgesamt zeigt die Fig. 3 den zeitlichen Verlauf des Signals Isvk über Zeit t. Die gestrichelte Linie 48 markiert den (falschen) Mess-Nullwert der Vorkatsonde 24. Der Nullwert, das heißt der Wert, der Sauerstoffüberschuss vom Sauerstoffmangel trennt, ist von grundlegender Bedeutung für die Bildung der genannten OSC- und MINUS_OSC-Mengen. Dieser "Nullwert" zwischen Sauerstoffüberschuss und Sauerstoffmangel wird von einer Sonde vor dem Katalysator geliefert oder es wird ein gespeicherter Wert verwendet, beispielsweise eine Einspritzzeit, bei der man stöchiometrische Gemischzusammensetzung annimmt. Dieser Nullwert kann aber fehlerhaft sein. Erfindungsgemäß werden die Sauerstoffüberschuss- respektive Sauerstoffmangel-Mengen bezogen auf diesen - möglicherweise fehlerbehafteten Nullwert bestimmt. Die relative Abweichung von dem angenommenen Nullwert ist bekannt. Mit der gemessenen Luftmenge läßt sich daraus der Absolutwert für den Sauerstoffeintrag bzw. Sauerstoffaustrag bestimmen. Da der Sauerstoffspeicher nur die Menge an Sauerstoff abgeben kann, die er vorher gespeichert hat, müssen die realen Sauerstoffüberschuss- und Sauerstoffmangel-Mengen gleich sein. Wenn die berechneten Mengen nicht gleich sind, kann dies nur daran liegen, dass der angenommene Nullwert nicht dem realen Nullwert entspricht, so dass bspw. bei der Berechnung ein realer Eintrag als Austrag gewertet wurde. Anschließend wird der angenommene Nullwert verändert und zwar in die Richtung der größeren Menge. Das heißt, wenn bei der vorherigen Berechnung die Sauerstoffüberschussmenge größer war als die Sauerstoffmangelmenge, wird der Nullwert in Richtung Sauerstoffüberschuss verschoben. Ausgehend von diesem neuen Nullwert wird wieder mit gleichen Beträgen angefettet und abgemagert. Diese Vorgehensweise wird solange wiederholt, bis die genannten berechneten Mengen gleich sind. Der zugehörige Nullwert entspricht dem realen Nullwert. Mit anderen Worten: Die Werte der bestimmten Sauerstoffeinträge und Sauerstoffausträge werden genutzt, um einen realen Nullwert zwischen Sauerstoffüberschuss und Sauerstoffmangel zu bestimmen.
  • Damit kann entweder eine vordere Sonde oder ein vorgesteuerter Nullwert korrigiert werden. Dieses Vorgehen wird unter fortlaufendem Bezug auf die Fig. 3 weiter erläutert. Die gestrichelte Linie 50 bezeichnet den realen Nullwert. Bei der Breitbandsonde entspricht der niedrige Signalpegel fettem Gemisch, also Sauerstoffmangel, und der hohe Signalpegel entspricht magerem Gemisch, also Sauerstoffüberschuss. Die schraffierte Fläche 64 stellt das Integral einer Sauerstoffüberschussperiode über dem realen Nullwert 50 dar. Die schraffierte Fläche 66 stellt entsprechend das Integral einer Sauerstoffmangelperiode über dem realen Nullwert 50 dar. Beide Flächen sind gleich, weil die Umschaltung zwischen fettem und magerem Gemisch durch die genau messende Nernstsonde 26 hinter dem Katalysatorvolumen 22 vorgenommen wird. Die schraffierte Fläche 68 entspricht dem Integral über dem (falschen) Messnullwert der Abgassonde 24 während einer Sauerstoffüberschussperiode und die Fläche 70 entspricht dem Integral eines Sauerstoffmangels über dem falschen Messnullwert während einer Sauerstoffmangelperiode. Die Flächen 68 und 70 werden messtechnisch jeweils durch die Integratoren 40 und 42 erfasst. Es ist deutlich ersichtlich, dass im nicht eingeschwungenen Zustand der OSC-Wert (68) stark vom MINUS_OSCWert (70) abweicht. Der zweite Zeitbereich (54) zeigt dagegen den eingeschwungenen Zustand. Als Ergebnis der Integration im Block 46 und des Eingriffs in der Offsetkorrekturverknüpfung 32 ist das Signal Isvk so nach unten verschoben, dass die Messnulllinie 48 mit der realen Nulllinie 50 zusammenfällt. Das Signal im zweiten Zeitbereich 54 spiegelt damit den Verlauf des korrigierten Signals Isvk_korr wieder. Wie aus der Zeichnung ersichtlich, sind in diesem Fall die OSC-Mengen (72) und MINUS_OSCMengen (74) gleich. In der Fig. 4 ist das zum Signalverlauf der Fig. 3 korrespondierende Signal Ushk der Nernstsonde 26 dargestellt. Das Signal Isvk gibt gewissermaßen die Sauerstoffkonzentration vor dem Katalysator an und das Signal Ushk gibt gewissermaßen die Sauerstoffkonzentration hinter dem Katalysator an. Aus dem Vergleich der Fig. 3 und Fig. 4 wird ersichtlich, dass vor dem Katalysator solange Sauerstoffüberschuss (mageres Gemisch) erzeugt wird, wie die hintere Abgassonde 26 Sauerstoffmangel registriert. Umgekehrt wird vor dem Katalysator solange Sauerstoffmangel (fettes Gemisch) erzeugt, wie die hinter dem Katalysator angeordnete Abgassonde 26 mageres Gemisch signalisiert. Die hintere Abgassonde misst prinzipbedingt den Übergang von fettem zu magerem Gemisch und umgekehrt sehr genau, da sie dort den steilen Signalpegelwechsel zwischen 900 und 100 Millivolt aufweist. Sie misst weiter deshalb sehr genau, weil der vorgeschaltete Katalysator 22 die Abgassonde 26 vor größeren Temperaturschwankungen schützt und außerdem die Abgasbestandteile ins thermodynamische Gleichgewicht bringt.
  • Mit anderen Worten: Es handelt sich um ein bilanzierendes Gesamtsystem, welches sich auf den Sprung der Lambda-Sonde hinter einem Teilkatalysatorvolumen stützt bzw. kalibriert. Bezüglich der Zweipunktregelung wird aufgrund von Symmetriegedanken als auch Robustheitsaspekten nach Ablauf einer Periode (möglich auch nach Halbperiode) bewertet, welche O2-Menge in den Katalysator ein- und ausgetragen wurde. Aufgrund der Bilanz müssen diese Flächen gleich sein. Falls sich ein Ungleichgewicht ergibt, wird der Offset (der Sondenkennlinie) vor Katalysator so verstellt, dass die Bilanz wieder erfüllt ist. Falls es aufgrund von Gaslaufzeiten zu einer verzögerten Systemreaktion aufgrund des Sprung der Sonde kommt, kann dieser Anteil ebenfalls in der Bilanzierung berücksichtigt werden. Ergibt sich bei diesem Verfahren ein sprungförmig auftretender Fehler, der größer als die Amplitude Schwankung der Sauerstoffkonzentration ist, so wird die Regelung nicht mehr arbeiten können. Daher wird nach einem Maximumkriterium entschieden, dass eine kritischen Zeit überschritten ist und darauf der Offset solange verstellt, bis es wieder zu einem Sondensprung kommt.
  • Die Fig. 5 zeigt eine Abwandlung der Struktur der Fig. 1. Im Unterschied zu Fig. 1 ist bei der Struktur der Fig. 5 keine Vorkatsonde 24 vorgesehen. Die Struktur der Fig. 6 offenbart ein Ausführungsbeispiel der Erfindung ohne Vorkatsonde 24. Wieder bestimmen die Einspritzimpulsbreiten ti die Kraftstoffmenge, die dem Verbrennungsmotor 10 passend zu der gemessenen Luftmenge zugemessen wird. Die hinter dem Katalysatorvolumen 22 angeordnete Nernstsonde 26 liefert wieder das Spannungssignal Ushk an den Zweipunktregler 36. Der Zweipunktregler 36 moduliert durch eine multiplikative Verknüpfung 30 von einem Vorsteuerkennfeld 28 gelieferte Basisimpulsbreiten t_basis. Er verlängert diese Basisimpulsbreiten beispielsweise dadurch, indem er bei magerem Gemisch hinter dem Katalysatorvolumen 22 einen anfettenden Faktor 1,02 ausgibt. Analog magert er bei Sauerstoffmangel hinter dem Katalysatorvolumen 22 durch Ausgabe eines Faktors 0,98 ab. Die Einspritzimpulsbreiten ti werden auch einer Differenzverknüpfung 58 zugeführt, der zusätzlich Vergleichsimpulsbreiten ti_L1 zugeführt werden. Die ti_L1 Werte stellen gewissermaßen angenommene Nullwerte in dem Sinne dar, dass bei ti > ti_L1 fettes Gemisch und bei ti_L1 > ti mageres Gemisch angenommen wird. Analog zur Erläuterung der Fig. 2 liefert auch hier der Integrator 40 ein Maß für die Sauerstoffspeicherfähigkeit des Katalysatorvolumens und der Integrator 42 liefert ein Maß für die Reduktionsmittelspeicherfähigkeit des Katalysators. Auch hier wird die Differenz beider Werte in der Differenzverknüpfung 44 gebildet und im Integrator 46 integriert. Der Integratorausgang wirkt über die Offsetkorrekturverknüpfung 32 auf die Einspritzzeiten ein. Die Wirkungsweise der Struktur nach den Fig. 5 und 6 entspricht damit weitgehend der Wirkungsweise der Strukturen nach den Fig. 1 und 2. Die Fig. 3 lässt sich auch auf die Struktur der Fig. 5 und Fig. 6 lesen. Dazu ist in der Fig. 3 lediglich der Wert Isvk durch die Einspritzzeit ti zu ersetzen. Die Nulllinie 48 entspricht im Fall der Fig. 6 dann einem Wert ti_L1. Wenn dieser Wert ti_L1 nicht den wirklichen Lambda1-Wert liefert, ergeben sich die im ersten Zeitbereich 52 der Fig. 3 dargestellte n Verhältnisse. Durch das Einschwingen der Korrektur ergeben sich dann die im zweiten Zeitbereich 54 dargestellten Verhältnisse. Mit anderen Worten: durch die Offsetkorrektur werden die Einspritzzeiten ti gleichmäßig soweit verkürzt, dass sich die gewünschte symmetrische Schwingung um den realen Lambda = 1-Wert ergibt. Die Struktur der Fig. 5 und 6 besitzt gegenüber der Struktur der Fig. 1 und Fig. 2 den großen Vorteil, dass eine Vorkatsonde 24 eingespart werden kann.
  • Die Struktur der Fig. 7 und 8 stellt ein derzeit bevorzugtes Ausführungsbeispiel dar. Dieses Ausführungsbeispiel unterscheidet sich vom Gegenstand der Fig. 1 und 2 durch ein Hauptkatalysatorvolumen 60 hinter der Nernstsonde 26 und durch eine weitere Nernstsonde 62 hinter dem Hauptkatalysatorvolumen 60. Grundsätzlich hat das Hauptkatalysatorvolumen 60 die Funktion, die zwangsläufig bei diesem Regelkonzept auftretende Schwingung im Sauerstoffgehalt des Abgases hinter dem Teilkatalysatorvolumen 22 auszugleichen. Da für einen optimalen Katalysatorbetrieb ein im Mittel leicht fetter Betrieb gewünscht wird, muss die bisher beschriebene Struktur noch um eine Komponente erweitert werden, die diese gewünschte Fettverschiebung oder, in anderen Fällen, gegebenenfalls eine gewünschte Magerverschiebung, liefert. Dazu dient im Rahmen dieses bevorzugten Ausführungsbeispiels die weitere Nernstsonde 62. Deren Signal UsnHK (U-Sonde-nach-Haupt-Kat) wirkt auf ein Verzögerungszeitglied 63 ein, das Signalübergänge im Ausgang des Zweipunktreglers 36 verzögert an den ersten Regler 34 weitergibt. Dadurch ergibt sich das in den Fig. 9 bis 13 dargestellte gewünschte Signalverhalten. Die Fig. 9 und 10 zeigen die bereits bisher erläuterten Signale Ushk und Isvk im eingeschwungenen Zustand. Die Fig. 11 zeigt den Verlauf des Signals Ushk im Rahmen dieses Ausführungsbeispiels. Aus der Fig. 12 ist ersichtlich, dass ein Wechsel von mager nach fett im Signal Ushk erst zeitverzögert um eine Verzögerungszeitspanne tv an den Regler 34 weitergegeben wird, was sich im zeitlichen Verlauf des Isvk-Signals zeigt. Die schraffierten Flächen 76 repräsentieren damit einen gewünschten zusätzlichen MINUS_OSCEintrag in die Katalysatorvolumina, wodurch sich im Endeffekt das in der Fig. 13 gezeigte, relativ gleichmäßig im fetten Bereich oberhalb von 450 Millivolt verlaufende Signal der weiteren Nernstsonde 62 zeigt.

Claims (13)

1. Verfahren zur Regelung des Kraftstoff/Luft-Verhältnisses eines Verbrennungsprozesses, der abwechselnd mit Luftüberschuss und Luftmangel betrieben wird, und mit wenigstens einem Katalysatorvolumen im Abgas des Verbrennungsprozesses, das bei Sauerstoffüberschuss im Abgas Sauerstoff speichert und diesen bei Sauerstoffmangel abgibt bei welchem Verfahren die bei Luftüberschuss erfolgenden Sauerstoffeinträge in das Katalysatorvolumen und die bei Luftmangel erfolgenden Sauerstoffausträge aus dem Katalysatorvolumen bestimmt werden und bei dem das Kraftstoff/Luft-Verhältnis in einem ersten Regelkreis so eingestellt wird, dass die Summe der in einem vorbestimmten Intervall bestimmten Sauerstoffeinträge und Sauerstoffausträge einen vorbestimmten Wert annimmt, dadurch gekennzeichnet, dass der Verbrennungsprozess jeweils mindestens solange im Mittel mit Sauerstoffüberschuss oder Sauerstoffmangel betrieben wird, bis dieser an einer sauerstoffempfindlichen Nernstsonde hinter dem Katalysatorvolumen auftritt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass sich das vorbestimmte Intervall übe r eine Periode erstreckt, in der der Verbrennungsprozess einmal in Mittel mit Sauerstoffüberschuss und einmal im Mittel mit Sauerstoffmangel betrieben wird.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Wechsel zwischen Sauerstoffüberschuss und Sauerstoffmangel beim Betrieb des Verbrennungsmotors so gesteuert wird, dass die Differenz der bei Luftüberschuss erfolgenden Sauerstoffeinträge in das Katalysatorvolumen und der bei Luftmangel erfolgenden Sauerstoffausträge aus dem Katalysatorvolumen einen vorbestimmten Wert annimmt.
4. Verfahren nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass zur Bestimmung der bei Luftüberschuss erfolgenden Sauerstoffeinträge in das Katalysatorvolumen und der bei Luftmangel erfolgenden Sauerstoffausträge aus dem Katalysatorvolumen eine Größe benutzt wird, die den Kraftstoffzufluss zum Verbrennungsmotor wenigstens mitbestimmt.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die genannte Größe auf der Basis einer aus Messgrößen errechneten Ansaugluftmenge und auf der Basis einer zu dieser Ansaugluftmenge zugemessenen Kraftstoffmenge gebildet wird.
6. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die genannte Größe in Abhängigkeit des Signals einer vor dem Katalysator angeordneten Abgassonde gebildet wird, die im weiteren als Vorkatsonde bezeichnet wird.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die genannte Größe eine Eingangsgröße für einen zweiten Regelkreis ist, in dem das Kraftstoff/Luft-Verhältnis mit einer im Vergleich zum ersten Regelkreis kleineren Zeitkonstante geregelt wird.
8. Verfahren nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass die Bildung der genannten Größe verändert wird, wenn die Sauerstoffeinträge und Sauerstoffausträge voneinander abweichen.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Veränderung so erfolgt, dass die genannte Abweichung kleiner wird.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass die Veränderung als Funktion des Integrals der genannten Abweichung gebildet wird.
11. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Kraftstoff/Luft-Verhältnis durch einen überlagerten Regelkreis (24, 18, 16, 10) vorgegeben wird.
12. Verfahren nach Anspruch 3 oder 4, dadurch gekennzeichnet, das die Werte der bestimmten Sauerstoffeinträge und Sauerstoffausträge genutzt werden, um einen realen Nullwert zwischen Sauerstoffüberschuss und Sauerstoffmangel zu bestimmen.
13. Steuereinrichtung zur Durchführung wenigstens eines der Verfahren nach den Ansprüchen 1 bis 10.
DE10205817A 2002-02-13 2002-02-13 Verfahren und Vorrichtung zur Regelung des Kraftstoff-/Luftverhältnisses eines Verbrennungsprozesses Ceased DE10205817A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE10205817A DE10205817A1 (de) 2002-02-13 2002-02-13 Verfahren und Vorrichtung zur Regelung des Kraftstoff-/Luftverhältnisses eines Verbrennungsprozesses
EP02020196A EP1336728B1 (de) 2002-02-13 2002-09-10 Verfahren und Vorrichtung zur Regelung des Kraftstoff/Luft-Verhältnisses eines Verbrennungsprozesses
US10/364,255 US20030150209A1 (en) 2002-02-13 2003-02-11 Method and device for regulating the fuel/air ratio of a combustion process
US12/647,717 US8141345B2 (en) 2002-02-13 2009-12-28 Method and device for regulating the fuel/air ratio of a combustion process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10205817A DE10205817A1 (de) 2002-02-13 2002-02-13 Verfahren und Vorrichtung zur Regelung des Kraftstoff-/Luftverhältnisses eines Verbrennungsprozesses

Publications (1)

Publication Number Publication Date
DE10205817A1 true DE10205817A1 (de) 2003-08-14

Family

ID=27588561

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10205817A Ceased DE10205817A1 (de) 2002-02-13 2002-02-13 Verfahren und Vorrichtung zur Regelung des Kraftstoff-/Luftverhältnisses eines Verbrennungsprozesses

Country Status (3)

Country Link
US (2) US20030150209A1 (de)
EP (1) EP1336728B1 (de)
DE (1) DE10205817A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10351590A1 (de) * 2003-11-05 2005-06-02 Audi Ag Verfahren zum Betreiben einer Brennkraftmaschine eines Fahrzeuges, insbesondere eines Kraftfahrzeuges
DE102007000002B4 (de) * 2006-01-10 2017-01-26 Denso Corporation Wärmevorrichtungssteuergerät für einen Gassensor
DE102018208034A1 (de) * 2018-05-23 2019-11-28 Audi Ag Verfahren zum Betreiben einer Antriebseinrichtung sowie entsprechende Antriebseinrichtung
WO2022073767A1 (de) * 2020-10-08 2022-04-14 Robert Bosch Gmbh Verfahren zum betreiben einer brennkraftmaschine, recheneinheit und computerprogramm
DE102020128753A1 (de) 2020-11-02 2022-05-05 Volkswagen Aktiengesellschaft Abgasnachbehandlungssystem für einen Verbrennungsmotor sowie Verfahren zur Abgasnachbehandlung

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004029899A1 (de) * 2004-06-19 2006-01-12 Audi Ag Verfahren und Vorrichtung zur Regelung des einer Brennkraftmaschine zugeführten Luft/Kraftstoffverhältnisses in Abhängigkeit von dem mittleren Befüllungsgrad des Sauerstoffspeichers eines Abgaskatalysators
DE102004055231B3 (de) * 2004-11-16 2006-07-20 Siemens Ag Verfahren und Vorrichtung zur Lambda-Regelung bei einer Brennkraftmaschine
DE102005044729A1 (de) * 2005-09-19 2007-03-22 Volkswagen Ag Lambdaregelung mit Sauerstoffmengenbilanzierung
DE102006059587A1 (de) * 2006-12-16 2008-06-19 Volkswagen Ag Ermittlung eines Zustandswertes eines Katalysators
DE102006061684A1 (de) * 2006-12-28 2008-07-03 Robert Bosch Gmbh Verfahren zur Regelung eines Sauerstoff-Füllstands einer Abgasreinigungsanlage
DE102006062516A1 (de) 2006-12-29 2008-07-03 Volkswagen Ag Ermittlung der Sauerstoffspeicherfähigkeit mit Katalysatorreferenzzustand
DE102008005110B4 (de) 2008-01-15 2018-10-25 Volkswagen Ag Verfahren und Steuerung zum Betreiben und Einstellen einer Lambda-Sonde
DE102010002586A1 (de) * 2010-03-04 2011-09-08 Robert Bosch Gmbh Verfahren zum Betreiben eines Verbrennungsmotors
EP2739839B1 (de) * 2011-08-05 2018-10-10 Husqvarna AB Einstellung eines luft-kraftstoff-verhältnisses eines zweitakt-verbrennungsmotors
US10563606B2 (en) * 2012-03-01 2020-02-18 Ford Global Technologies, Llc Post catalyst dynamic scheduling and control
BR112015018169B1 (pt) * 2013-01-29 2021-08-31 Toyota Jidosha Kabushiki Kaisha Sistema de controle do motor de combustão interna
DE102013201734A1 (de) 2013-02-04 2014-08-07 Robert Bosch Gmbh Verfahren zum Betreiben einer Lambdasondenanordnung im Abgassystem einer Brennkraftmaschine
JP6094438B2 (ja) * 2013-09-27 2017-03-15 トヨタ自動車株式会社 内燃機関の制御装置
JP6183295B2 (ja) * 2014-05-30 2017-08-23 トヨタ自動車株式会社 内燃機関の制御装置
DE102015201400A1 (de) * 2015-01-28 2016-07-28 Robert Bosch Gmbh Verfahren zum Bestimmen von Grenzen einer Bestimmung eines Offsets zumindest in einem Bereich einer Spannungs-Lambda-Kennlinie einer in einem Abgaskanal einer Brennkraftmaschine angeordneten ersten Lambdasonde gegenüber einer Referenz-Spannungs-Lambda-Kennlinie
JP6308150B2 (ja) * 2015-03-12 2018-04-11 トヨタ自動車株式会社 内燃機関の排気浄化装置
DE102015222022B4 (de) * 2015-11-09 2019-04-18 Volkswagen Ag Verfahren und Vorrichtung zur Korrektur einer Kennlinie einer Lambdasonde
DE102018208683A1 (de) * 2018-06-01 2019-12-05 Robert Bosch Gmbh Verfahren und Steuergerät zur Regelung eines Füllstands eines Speichers eines Katalysators für eine Abgaskomponente
DE102018210739A1 (de) * 2018-06-29 2020-01-02 Robert Bosch Gmbh Verfahren zur Regelung einer Füllung eines Abgaskomponentenspeichers eines Katalysators im Abgas eines Verbrennungsmotors
JP7074076B2 (ja) * 2019-01-09 2022-05-24 トヨタ自動車株式会社 内燃機関の制御装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2570265B2 (ja) 1986-07-26 1997-01-08 トヨタ自動車株式会社 内燃機関の空燃比制御装置
DE4001616C2 (de) * 1990-01-20 1998-12-10 Bosch Gmbh Robert Verfahren und Vorrichtung zur Kraftstoffmengenregelung für eine Brennkraftmaschine mit Katalysator
US5077970A (en) * 1990-06-11 1992-01-07 Ford Motor Company Method of on-board detection of automotive catalyst degradation
JP3306930B2 (ja) 1992-07-03 2002-07-24 株式会社デンソー 内燃機関の空燃比制御装置
US5255512A (en) * 1992-11-03 1993-10-26 Ford Motor Company Air fuel ratio feedback control
US5359852A (en) * 1993-09-07 1994-11-01 Ford Motor Company Air fuel ratio feedback control
JP3356878B2 (ja) * 1994-05-09 2002-12-16 本田技研工業株式会社 内燃機関の空燃比制御装置
DE19606652B4 (de) * 1996-02-23 2004-02-12 Robert Bosch Gmbh Verfahren der Einstellung des Kraftstoff-Luftverhältnisses für eine Brennkraftmaschine mit nachgeschaltetem Katalysator
US5842340A (en) * 1997-02-26 1998-12-01 Motorola Inc. Method for controlling the level of oxygen stored by a catalyst within a catalytic converter
GB9722950D0 (en) * 1997-10-30 1998-01-07 Lotus Car A method of monitoring efficiency of a catalytic converter and a control systemsuitable for use in the method
IT1305375B1 (it) * 1998-08-25 2001-05-04 Magneti Marelli Spa Metodo di controllo del titolo della miscela aria / combustibilealimentata ad un motore endotermico
JP2001050086A (ja) * 1999-08-09 2001-02-23 Denso Corp 内燃機関の空燃比制御装置
US6253542B1 (en) * 1999-08-17 2001-07-03 Ford Global Technologies, Inc. Air-fuel ratio feedback control
JP3528739B2 (ja) * 2000-02-16 2004-05-24 日産自動車株式会社 エンジンの排気浄化装置
JP3622661B2 (ja) * 2000-10-06 2005-02-23 トヨタ自動車株式会社 内燃機関の空燃比制御装置
JP3912054B2 (ja) * 2001-08-01 2007-05-09 日産自動車株式会社 内燃機関の排気浄化装置
EP1300571A1 (de) * 2001-10-04 2003-04-09 Visteon Global Technologies, Inc. Kraftstoffregelung für Brennkraftmaschine
US20040006973A1 (en) * 2001-11-21 2004-01-15 Makki Imad Hassan System and method for controlling an engine
GB2391324B (en) * 2002-07-29 2004-07-14 Visteon Global Tech Inc Open loop fuel controller
JP4016905B2 (ja) * 2003-08-08 2007-12-05 トヨタ自動車株式会社 内燃機関の制御装置
DE102004060125B4 (de) * 2004-12-13 2007-11-08 Audi Ag Verfahren zur Steuerung der Be- und Entladung des Sauerstoffspeichers eines Abgaskatalysators

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10351590A1 (de) * 2003-11-05 2005-06-02 Audi Ag Verfahren zum Betreiben einer Brennkraftmaschine eines Fahrzeuges, insbesondere eines Kraftfahrzeuges
DE102007000002B4 (de) * 2006-01-10 2017-01-26 Denso Corporation Wärmevorrichtungssteuergerät für einen Gassensor
DE102018208034A1 (de) * 2018-05-23 2019-11-28 Audi Ag Verfahren zum Betreiben einer Antriebseinrichtung sowie entsprechende Antriebseinrichtung
DE102018208034B4 (de) * 2018-05-23 2021-01-14 Audi Ag Verfahren zum Betreiben einer Antriebseinrichtung sowie entsprechende Antriebseinrichtung
WO2022073767A1 (de) * 2020-10-08 2022-04-14 Robert Bosch Gmbh Verfahren zum betreiben einer brennkraftmaschine, recheneinheit und computerprogramm
DE102020128753A1 (de) 2020-11-02 2022-05-05 Volkswagen Aktiengesellschaft Abgasnachbehandlungssystem für einen Verbrennungsmotor sowie Verfahren zur Abgasnachbehandlung

Also Published As

Publication number Publication date
US8141345B2 (en) 2012-03-27
EP1336728A2 (de) 2003-08-20
US20100212291A1 (en) 2010-08-26
EP1336728A3 (de) 2006-04-05
EP1336728B1 (de) 2012-03-21
US20030150209A1 (en) 2003-08-14

Similar Documents

Publication Publication Date Title
EP1336728B1 (de) Verfahren und Vorrichtung zur Regelung des Kraftstoff/Luft-Verhältnisses eines Verbrennungsprozesses
DE69122822T2 (de) Vorrichtung zum Feststellen des Reinigungsfaktors eines Katalysators in einem katalytischen Konverter für einen Innenverbrennungsmotor
DE10020639B4 (de) Verfahren und Vorrichtung zur Regelung der Temperatur einer Schadstoffbegrenzungsvorrichtung im Abgasstrom eines Verbrennungsmotors
DE19606652B4 (de) Verfahren der Einstellung des Kraftstoff-Luftverhältnisses für eine Brennkraftmaschine mit nachgeschaltetem Katalysator
EP1049861B1 (de) MAGER-REGENERATION VON NOx-SPEICHERN
DE102016222418A1 (de) Verfahren zur Regelung einer Füllung eines Speichers eines Katalysators für eine Abgaskomponente
DE60115303T2 (de) Steuersystem für das Luft-Kraftstoff-Verhältnis einer Brennkraftmaschine
EP1478834B1 (de) Verfahren zur einstellung einer definierten sauerstoffbeladung mit binärer lambdaregelung zur durchführung der abgaskatalysatordiagnose
DE10103772C2 (de) Verfahren zum Betreiben eines Dreiweg-Katalysators, welcher eine Sauerstoff speichernde Komponente enthält
DE19711295A1 (de) System zur Ermittlung einer Verschlechterung eines Katalysators zur Abgasreinigung
DE19612212B4 (de) Diagnosevorrichtung für einen Luft/Brennstoffverhältnis-Sensor
WO2008095904A1 (de) Diagnoseverfahren und -vorrichtung zum betreiben einer brennkraftmaschine
EP3312405A1 (de) Verfahren zum betreiben einer antriebseinrichtung sowie entsprechende antriebseinrichtung
DE102018216980A1 (de) Verfahren zur Regelung einer Füllung eines Speichers eines Katalysators für eine Abgaskomponente in Abhängigkeit von einer Alterung des Katalysators
DE102018251720A1 (de) Verfahren zur Ermittlung einer maximalen Speicherfähigkeit eines Abgaskomponentenspeichers eines Katalysators
DE4322344B4 (de) Luft/Brennstoff-Verhältnis-Steuerungssystem für eine Brennkraftmaschine
WO2007068541A2 (de) Verfahren und vorrichtung zum kalibrieren einer abgassonde und verfahren und vorrichtung zum betreiben einer brennkraftmaschine
WO2005083250A1 (de) Verfahren zur ermittlung der aktuellen sauerstoffbeladung eines 3-wege-katalysators einer lambdageregelten brennkraftmaschine
WO2007073997A1 (de) Lambdaregelungsverfahren für einen verbrennungsmotor
EP1298304A2 (de) Verfahren zur Regelung des Kraftstoff/Luftverhältnisses für einen Verbrennungsmotor
DE19926146A1 (de) Verfahren zur Initiierung und Überwachung einer Entschwefelung von wenigstens einem in einem Abgaskanal einer Verbrennungskraftmaschine angeordneten NOx-Speicherkatalysator
EP1730391B1 (de) Verfahren und vorrichtung zum steuern einer brennkraftmaschi­ne
DE102019201293A1 (de) Verfahren zur Unterscheidung zwischen Modellungenauigkeiten und Lambdaoffsets für eine modellgestützte Regelung des Füllstands eines Katalysators
DE102018251725A1 (de) Verfahren zur Regelung einer Füllung eines Abgaskomponentenspeichers eines Katalysators
DE102021102456B3 (de) Verfahren zum Betreiben einer Antriebseinrichtung sowie entsprechende Antriebseinrichtung

Legal Events

Date Code Title Description
8110 Request for examination paragraph 44
R016 Response to examination communication
R002 Refusal decision in examination/registration proceedings
R003 Refusal decision now final

Effective date: 20130830