DE102021119027A1 - Getriebeeinrichtung, Nockenwellenversteller mit der Getriebeeinrichtung und Brennkraftmaschine - Google Patents

Getriebeeinrichtung, Nockenwellenversteller mit der Getriebeeinrichtung und Brennkraftmaschine Download PDF

Info

Publication number
DE102021119027A1
DE102021119027A1 DE102021119027.4A DE102021119027A DE102021119027A1 DE 102021119027 A1 DE102021119027 A1 DE 102021119027A1 DE 102021119027 A DE102021119027 A DE 102021119027A DE 102021119027 A1 DE102021119027 A1 DE 102021119027A1
Authority
DE
Germany
Prior art keywords
transmission device
cavity
stop
unit
overflow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102021119027.4A
Other languages
English (en)
Inventor
Juergen Weber
Rainer Ottersbach
Resat Aras
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schaeffler Technologies AG and Co KG
Original Assignee
Schaeffler Technologies AG and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG and Co KG filed Critical Schaeffler Technologies AG and Co KG
Publication of DE102021119027A1 publication Critical patent/DE102021119027A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/352Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using bevel or epicyclic gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/46Component parts, details, or accessories, not provided for in preceding subgroups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/352Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using bevel or epicyclic gear
    • F01L2001/3521Harmonic drive of flexspline type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L2013/10Auxiliary actuators for variable valve timing
    • F01L2013/103Electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2250/00Camshaft drives characterised by their transmission means
    • F01L2250/02Camshaft drives characterised by their transmission means the camshaft being driven by chains
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2250/00Camshaft drives characterised by their transmission means
    • F01L2250/04Camshaft drives characterised by their transmission means the camshaft being driven by belts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2810/00Arrangements solving specific problems in relation with valve gears
    • F01L2810/02Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2810/00Arrangements solving specific problems in relation with valve gears
    • F01L2810/03Reducing vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2810/00Arrangements solving specific problems in relation with valve gears
    • F01L2810/04Reducing noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2820/00Details on specific features characterising valve gear arrangements
    • F01L2820/03Auxiliary actuators
    • F01L2820/032Electric motors

Abstract

Die Erfindung betrifft eine Getriebeeinrichtung (101) für ein Kraftfahrzeug wie sie z.B. für die Verstellung einer Nockenwelle in einem Verbrennungsmotor zur Beeinflussung des Phasenwinkels zwischen Kurbelwelle und Nockenwelle verwendet wird. Solche Getriebeeinrichtungen (101) müssen kompakt aufgebaut sein und zudem eine hohe Verschleißfestigkeit aufweisen, insbesondere bei Erreichen von Endanschlägen bei Verstellung des Phasenwinkels. Dazu weist die Getriebeeinrichtung (101) eine hydraulische Endanschlagdämpfung auf, indem die Antriebseinheit (103) und die Abtriebseinheit (105) kommunizierende Kavitäten (113, 115) aufweisen.

Description

  • Die Erfindung betrifft eine Getriebeeinrichtung mit einer Antriebseinheit, einer Abtriebseinheit und einer Verstelleinheit, wobei mittels der Verstelleinheit die Phasenlage der Abtriebseinheit relativ zur Antriebseinheit veränderbar ist.
  • Derartige Getriebeeinrichtungen werden auch Dreiwellengetriebe genannt und beispielsweise in Kraftfahrzeugen verwendet, um an rotatorisch beweglichen Einheiten, welche mit einem Riemen oder einer Kette angetrieben werden, eine Phasenverstellung zwischen Eingangswinkellage und Ausgangswinkellage während deren Betrieb vornehmen zu können. Dies wird beispielsweise zur Verstellung einer Nockenwelle in einem Verbrennungsmotor genutzt, um den Phasenwinkel der Nockenwelle in Bezug zur Kurbelwelle angepasst an unterschiedliche Lastzustände oder/oder Drehzahlen des Verbrennungsmotors einzustellen und damit die Leistungsfähigkeit oder auch die Brennstoffökonomie des Verbrennungsmotors zu steigern oder die Umweltbelastung zu senken.
  • Dazu weisen diese Getriebeeinrichtungen elektrische Verstelleinheiten auf, die im Gegensatz zu hydraulisch aktuierten Verstelleinheiten hohe Verstellgeschwindigkeiten in einem verhältnismäßig großen Temperaturfenster ermöglichen. Besonders leistungsfähig sind solche Getriebeeinrichtungen, wenn sie als Planeten-, Exzenter- oder Wellgetriebe eine hohe Übersetzung ermöglichen.
  • Um eine schnelle Verstellung zu gewährleisten und dennoch eine Beschädigung durch ein hartes Anschlagen in Endlagen der Winkelverstellung zu vermeiden, verfügen einige dieser Getriebeeinrichtungen über Dämpfungsmittel an den Endanschlägen der Phasenverstellung, welche eine Dämpfung des Anschlagens in den Endlagen vornehmen. Diese Dämpfungselemente können mechanisch, aber auch hydraulisch ausgeführt sein und sind vielfach nur sehr aufwendig herzustellen oder bieten nicht ausreichend Schutz gegen Beschädigungen. Andere Getriebeeinheiten weisen keinen Schutz gegen einen harten Endanschlag auf.
  • Die DE 10 2017 128 423 A1 offenbart eine elektrisch aktuierte Getriebeeinheit mit Endanschlägen, welche eine mechanische Verdrehwinkelbegrenzung zwischen Abtriebselement und Antriebselement umfasst. Eine gesonderte Dämpfung dieser Endanschläge erfolgt nicht.
  • Die EP 2 638 257 B1 offenbart eine Getriebeeinheit zur Verstellung einer Nockenwelle mit einer hydraulischen Anschlagdämpfung. Öl innerhalb einer Kavität zwischen Antriebselement und Abtriebselement kann bei Erreichen einer Endstellung nur gedrosselt über einen radial eingebrachten Kanal im Abtriebselement abfließen und dämpft damit den Endanschlag. Hierbei ist nachteilig, dass die Herstellung auf Grund des radial eingebrachten Kanals aufwendig ist und zudem eine Dämpfung auf Grund der gewählten Geometrien nicht gut an die verschiedenen Betriebszustände der Getriebeeinheit anpassbar ist. Ein weiterer Nockenwellenversteller ist in DE 10 2012 211 526 A1 gezeigt.
  • DE 10 2017 128 731 A1 zeigt in 2 einen Nockenwellenversteller mit einer Antriebseinheit und einer Abtriebseinheit und gedämpften Endanschlägen. Dazu sind vor den Endanschlägen Kavitäten gebildet. Diese sind über Bohrungen in den Stirnseiten der Endanschläge mit Kanälen verbunden, die durch ein radial innen liegendes Reservoir mit Öl befüllbar sind. Abströmen kann das Öl über radial außen angeordnete Öldrosseln. Nachteilig an dieser Endanschlagsdämpfung ist, dass zum einen beständig Öl gefördert werden muss, was die Leistung der Ölpumpe beansprucht. Weiterhin muss nicht nur in Endanschlagnähe, sondern permanent gegen den Öldruck verstellt werden, was das Ansprechverhalten und die Verstellgeschwindigkeit herabsetzt. Außerdem ist die Fertigung der im Wesentlichen radial verlaufenden Ölkanäle aufwändig, und die Stabilität der Endanschläge aufgrund der eingebrachten Bohrungen herabgesetzt.
  • Die Aufgabe der Erfindung ist es, den Stand der Technik zu verbessern.
  • Gelöst wird diese Aufgabe durch eine Getriebeeinrichtung gemäß Anspruch 1. Durch diesen Aufbau wird es ermöglicht, die hydraulische Anschlagdämpfung der Endanschläge innerhalb der Getriebeeinrichtung kompakt und mit einer direkten Verbindung zwischen der jeweiligen ersten Kavität und der jeweiligen zweiten Kavität auszubilden, wodurch eine effektive Anschlagdämpfung realisiert wird und Schäden an der Antriebseinheit oder der Abtriebseinheit vermieden werden. Dabei ist sichergestellt, dass die Dämpfung nur im Bereich der Endanschläge einsetzt, weil nur in den Phasenlagen an den Endanschlägen oder kurz vor den Endanschlägen eine Querschnittsverengung auftritt. Ohne die Querschnittsverengung kann das hydraulische Mittel relativ ungehindert von der einen Kavität in die andere strömen, so dass die Verstellperformance in dem Mittenbereich nicht oder nur unwesentlich beeinflusst ist. Im Bereich der Querschnittsverengungen kann das hydraulische Mittel nicht mehr schnell genug abfließen, so dass dadurch die Dämpfung realisiert wird.
  • In einer Ausbildung der Erfindung kann vorgesehen sein, dass der Überstromweg in keiner Phasenlage vollständig verschlossen ist. Dadurch wird die Anschlagsbelastung in den meisten Betriebssituationen wirksam auf einen relativ niedrigen Wert herabgesetzt, ohne dass das Erreichen des Endanschlags übermäßig verzögert würde. Die Verstellperformance ist damit auch im Endanschlagsbereich zufriedenstellend.
  • In einer anderen Ausbildung der Erfindung ist der Überströmweg am Endanschlag nicht nur teilweise, sondern vollständig verschlossen. Das Verschließen des Überstromwegs kann auch schon vor Erreichen des Endanschlags erfolgen. Dadurch kann sichergestellt werden, dass auch bei hohen Verstellgeschwindigkeiten stets ein mechanisches Anschlagen verhindert wird. Eine Verstellung an den Endanschlags kann in diesen Fällen nur über Leckageverluste erfolgen. Allerdings kann es auch wünschenswert sein, stets ein Ölkissen zwischen der Antriebseinheit und der Abtriebseinheit vorzusehen.
  • Die Querschnittsverengung wird vorzugsweise durch die Mantelflächen der Antriebseinheit und der Abtriebseinheit in bestimmten Drehwinkelpositionen gebildet. Ein aktiver Mechanismus wie ein Aktuator ist damit nicht erforderlich, wenn die Querschnittsverengung bei der Phasenlagenänderung allein durch die Geometrie der Bauteile realisiert ist. Der Überstromweg braucht damit nicht gesondert gefertigt werden, sondern ergibt sich werkzeugfallend bei der Bauteileherstellung.
  • Besonders einfach lässt sich der Überstromweg realisieren, wenn er an der Grenzfläche zwischen dem Antriebsbauteil und dem Abtriebsbauteil ausgebildet ist. Dazu verläuft er vorzugsweise im Wesentlichen in Umfangsrichtung der Getriebeeinheit. Radiale Bohrungen, die als Ölkanäle dienen, sind dadurch nicht mehr erforderlich. Die Integration der Kavitäten in die Oberflächen der An- und Abtriebseinheit ist bauraumsparend und benötigt keine zusätzlichen Bauteile. Beispielsweise können die Antriebseinheit gesintert und die Kavitäten werkzeugfallend hergestellt werden.
  • Bei einem radialen Abgang des Überstromwegs brauchen die Endanschläge nicht bearbeitet werden, so dass die Gefahr von Kantenbruch minimiert ist und die gesamte geometrische Querschnittsfläche als Anschlagsfläche zur Verfügung steht.
  • Folgende Begriffe seien an dieser Stelle erläutert:
    • Eine „Getriebeeinrichtung“ kann jede Anordnung von Mitteln zur Übersetzung oder Übertragung von zumeist rotatorischen Wirkungen von einer Antriebsseite zu einer Abtriebsseite mit oder ohne Heraufsetzung oder Herabsetzung von Drehzahl, Phasenlage oder übertragenem Drehmoment sein. Insbesondere kann dies eine Getriebeeinrichtung zur Verstellung einer Nockenwelle eines Verbrennungsmotors sein, welche den Phasenwinkel zwischen Antriebsseite und Abtriebsseite während der Rotation verstellen kann. Vorzugsweise ist die Getriebeeinrichtung als ein Wellgetriebe ausgebildet.
  • Beispielsweise kann eine „Antriebseinheit“ jeder Teil einer Getriebeeinrichtung sein, welcher auf der Antriebsseite ein eingehendes Drehmoment oder eine eingehende Drehzahl aufnimmt und an die Getriebeeinrichtung weiterleitet. Dazu kann die Antriebseinheit als ein Hohlrad ausgebildet sein.
  • Ein als „Abtriebseinheit“ bezeichnete Element kann jeder Teil einer Getriebeeinrichtung sein, welcher auf einer Abtriebsseite das von der Getriebeeinrichtung weitergeleitete oder umgesetzte Drehmoment oder eine entsprechend weitergeleitete oder umgesetzte Drehzahl an weitere Mittel oder Bauteile abgeben kann. Diese Abgabe kann dann z.B. von der Abtriebseinheit durch eine mechanische Verbindung an die Nockenwelle eines Verbrennungsmotors erfolgen. Eine kompakte Bauweise wird ermöglicht, wenn die Abtriebseinheit radial innerhalb der Antriebseinheit angeordnet ist.
  • Eine „Verstelleinheit“ kann jede mechanische, elektrische, hydraulische oder anderweitig ausgeführte Einheit sein, die eine Verstellung zwischen der Antriebseinheit und der Abtriebseinheit automatisch oder durch äußeren Einfluss oder äußere Ansteuerung ermöglicht oder ausführt. Dabei kann die Verstelleinheit insbesondere dahingehend wirken, dass der relative Winkel zwischen der Antriebseinheit und der Abtriebseinheit um die gemeinsame Drehachse herum verändert oder eingestellt wird.
  • Die „Phasenlage“, auch Verstellwinkel genannt, ist der relative Winkel zwischen der Antriebseinheit und der Abtriebseinheit in Rotationsrichtung um die gemeinsame Drehachse in Bezug auf einen definierten Referenzpunkt. Insbesondere beschreibt die Phasenlage diesen relativen Winkel bei gemeinsamer Rotation der Antriebseinheit und der Abtriebseinheit um die gemeinsame Achse, so dass der relative Winkel den Drehwinkel zwischen der Antriebseinheit und der Abtriebseinheit bildet.
  • Beispielsweise kann jede mechanische Paarung ein „Gleitlager“ sein, in der zwei sich relativ zueinander bewegliche, nicht aneinander abwälzende Teile entweder direkten Kontakt oder indirekten Kontakt mittles eines zwischen den beweglichen Teilen befindlichen Schmiermittels haben. Als rotatorisches Gleitlager kann dies jede Paarung aus einem Außenteil und einem Innenteil sein, welche eine Rotation zwischen Außenteil und Innenteil möglichst reibungsarm zulässt.
  • Ein „Anschlagelement“ kann jedes Mittel sein, welches eine mechanische Begrenzung der Bewegung von zwei Bauteilen zueinander herstellt. Insbesondere sind dies Nocken, Rastnasen, Vorsprünge und dazu passend ausgeformte entsprechende Vertiefungen sowie jedes andere Mittel, welches diese Funktion erfüllt. Diese Anschlagelemente wirken insbesondere in rotatorischer Richtung und begrenzen dadurch den maximal möglichen Verstellwinkel der mit den Anschlagelementen versehenen Bauteile. In jede Verstellrichtung können ein oder mehrere Anschlagelemente wirksam angeordnet sein.
  • Mit „Mantelflächensegmenten“ sind Teilringabschnitte des Antriebselements oder des Abtriebselements bezeichnet. Im vorliegenden Fall kann dies z.B. eine Abfolge von Anschlagelementen und entsprechenden Vorsprüngen und Rücksprüngen innerhalb einer rotationssymmetrischen Abfolge sein.
  • „Hydraulische Mittel“ können alle solchen Mittel sein, welche mittels eines hydraulischen Mediums, also einer inkompressiblen oder nahezu inkompressiblen Flüssigkeit eine mechanische Funktion auslösen, eine Untersetzung oder Übersetzung von mechanischen Kräften durchführen. Das hydraulische Medium kann dabei z.B. ein Öl, Motorenöl oder Schmieröl sein oder auch Wasser mit oder ohne Zusatzstoffen. Insbesondere kann das hydraulische Medium zum Betrieb der hydraulischen Mittel das Motoröl eines Verbrennungsmotors sein, in welchem die Getriebeeinrichtung verwendet wird.
  • Eine „Anschlagdämpfung“ beschreibt insbesondere jede Dämpfung einer mechanischen Bewegung bei Annäherung oder Erreichen einer mechanischen Begrenzung oder einer Endposition einer möglichen Bewegung zweier Bauteile zueinander. Dies kann linear oder rotatorisch erfolgen. Insbesondere dient dies der Reduzierung von Spitzenkräften bei Erreichen einer Endlage von Antriebseinheit und Abtriebseinheit nach Änderung deren relativen Winkels zueinander um eine gemeinsame Drehachse. Vorzugsweise ist jedes Anschlagselement bedämpft.
  • Die genannte „Kavität“ kann jeder Hohlraum sein, der zwischen zwei oder mehreren Bauteilen gebildet ist. Dabei kann dies auch ein nicht ausschließlich durch zwei Bauteile gebildeter Hohlraum sein, in dem z.B. ein hydraulisches Medium einströmen und ausströmen kann oder in der Kavität zeitweise oder dauerhaft verbleibt. Insbesondere werden Kavitäten gebildet durch Segmente der Antriebseinheit und der Abtriebseinheit und zwar durch deren Ineinandergreifen. Eine solche Kavität kann dabei durch weitere Bauteile abgeschlossen sein oder erst durch diese weiteren Bauteile vollständig umschlossen werden.
  • Bevorzugt weist die Getriebeeinrichtung paarweise Kavitäten auf, so dass diese in jede Verstellrichtung wirken können. Besonders bevorzugt ist, dass jeweils zwei Kavitäten wechselseitig miteinander kommunizieren. Darunter wird verstanden, dass die zweite Kavität das aus der ersten Kavität verdrängte hydraulische Mittel aufnimmt und umgekehrt. In einer Ausführungsform sind mehrere erste Kavitäten und mehrere zweite Kavitäten vorgesehen, zwischen denen das hydraulische Mittel jeweils nur paarweise kommunizieren kann. In einer anderen Ausführungsform stehen die mehreren ersten bzw. mehreren zweiten Kavitäten ebenfalls untereinander in Verbindung.
  • Ein „Überströmweg“ kann jede Vertiefung oder Bohrung oder kanalartige Fräsung oder anderweitig erzeugte Einprägung sein, durch die das hydraulische Medium fließen kann. Ein Überströmweg ist dabei bevorzugt zwischen zwei, insbesondere aneinander angrenzende, Kavitäten gebildet und ermöglicht ein Strömen des hydraulischen Mediums von einer Kavität zur anderen Kavität. Ein solcher Überströmweg kann dabei zusammen mit mehreren Kavitäten ein hydraulisches Mittel wie oben beschrieben bilden. Der Überstromweg kann auch durch die geometrische Anordnung der Antriebseinheit und der Abtriebseinheit gebildet sein. Vorteilhafterweise muss der Überstromweg dann nicht durch Materialbearbeitung erzeugt werden, sondern bildet durch die beiden Bauteile lokal eine Verengung aus.
  • Insbesondere ist eine „direkte Verbindung“ im Sinne dieser Anmeldung die über einen möglichst kurzen oder sogar direkten Weg realisierte Verbindung eines Überströmweges derart, dass ein möglichst geringer Strömungswiderstand und/oder ein möglichst geringer Strömungsweg oder zudem eine Vereinfachung der Fertigung dieses Überströmweges erreicht wird.
  • In einer Ausführungsform ist der Überströmweg in eine in Achsrichtung der Getriebeeinheit weisende Seitenfläche der Abtriebseinheit oder der Antriebseinheit eingebracht.
  • Durch diese Ausgestaltung ist es möglich, die Fertigung der Antriebseinheit oder der Abtriebseinheit zu vereinfachen und zwar derart, dass der Überströmweg z.B. mittels Fräsen in die Seitenfläche der Antriebseinheit oder der Abtriebseinheit eingebracht werden kann. Weiterhin ist es z.B. bei der Herstellung der Antriebseinheit und/oder der Abtriebseinheit im sintermetallurgischen Verfahren möglich, die dafür notwendigen Werkzeuge so zu gestalten, dass trotz Einformung des Überströmwegs oder der Überströmwege das Werkstück aus dem Werkzeug entformbar bleibt.
  • Um eine besonders widerstandsarme und gut dosierbare Wirkweise der hydraulischen Mittel zu gewährleisten und die Fertigung zusätzlich zu vereinfachen, ist der Überströmweg im Wesentlichen in Umfangsrichtung der Getriebeeinheit zwischen einer der ersten Kavitäten und einer der zweiten Kavitäten angeordnet.
  • In einer weiteren Ausführungsform ist der Überströmweg bis vor Erreichen einer Endlage der Winkelbegrenzung oder beider Endlagen der Winkelbegrenzung ausgebildet, so dass eine Anschlagdämpfung realisiert ist. Der Überströmweg kann beispielsweise als ein radialer Vorsprung der An- oder Abtriebseinheit gebildet sein, der beim Verstellen in den Endbereich des möglichen Verstellweges durch das Antriebsbauteil und das Abtriebsbauteil selbst verschlossen wird, so dass eine wirksame hydraulische Dämpfung erst unmittelbar vor Erreichen der Endlage erfolgt.
  • Durch diese Ausgestaltung ist es möglich, die hydraulischen Mittel so auszuführen, dass ein Reservoir oder Kissen innerhalb mindestens einer Kavität vor Erreichen der Endlage aus hydraulischem Medium entsteht, welches einen materialschonenden Betrieb der Getriebeeinrichtung derart ermöglicht, dass ein hartes Anschlagen der Anschlagelemente aneinander sicher verhindert wird.
  • Um besonders zuverlässig zu verhindern, dass die Anschlagelemente aneinanderschlagen und dennoch ein weiches Arbeitsverhalten der Getriebeeinrichtung bei Veränderung der Phasenlage zu erreichen, hat es sich als vorteilhaft herausgestellt, dass der Überströmweg in einem radialen Koordinatensystem um eine Drehachse der Getriebeeinrichtung 1° bis 10°, insbesondere 3° oder 5° vor Erreichen einer Endlage oder beider Endlagen ausgebildet ist.
  • In einer weiteren Ausführungsform weist eine in einer rotatorischen Wirkrichtung angeordnete Eingangsseite des Überströmwegs einen anderen Querschnitt auf als eine abgewandt der rotatorischen Wirkrichtung der Getriebeeinrichtung angeordnete Ausgangsseite des Überströmwegs.
  • Eine „rotatorische Wirkrichtung“ ist eine in Polarkoordinaten ausgezeichnete Bezugsrichtung für die Definition der Eingangsseite und Ausgangsseite der hydraulischen Mittel und des Überströmwegs, wobei diese rotatorische Wirkrichtung z.B. die Drehrichtung zur Phasenverstellung der Antriebseinheit und der Abtriebseinheit ist, in der eine Verstellung der Phasenlage in eine positive Drehrichtung erfolgt. Es kann allerdings auch in gegenteiliger Richtung definiert sein, wenn diese für die Beschreibung der Funktion der Getriebeeinrichtung sinnvoll ist.
  • Eine „Eingangsseite“ ist jener Endbereich des Überströmwegs, in welchem das hydraulische Medium bei Ausführung der bestimmungsgemäßen Funktion der Getriebeeinrichtung während des Überströmens von einer Kavität in eine andere Kavität der hydraulischen Mittel einströmt.
  • Eine „Ausgangsseite“ ist jener Endbereich des Überströmwegs, aus welchem das hydraulische Medium bei Ausführung der bestimmungsgemäßen Funktion der Getriebeeinrichtung während des Überströmens von einer Kavität in eine andere Kavität der hydraulischen Mittel ausströmt.
  • Um die hydraulischen Mittel gegen ein Austreten von hydraulischem Medium, insbesondere Öl, abzudichten und sicherzustellen, dass kein hydraulisches Medium derart austritt, dass eine mangelnde Funktion der Getriebeeinrichtung folgt, ist oder sind ein Dichtelement oder mehrere Dichtelemente vorgesehen zur axialen Abdichtung der Antriebseinheit und der Abtriebseinheit gegeneinander.
  • Ein „Dichtelement“ kann dabei jedes Mittel sein, dass eine wirksame Abdichtung gegenüber einem Durchtritt von Öl oder einem anderen hydraulischen Medium durch eine gewünschte Dichtebene erzielt und dabei das hydraulische Medium vollständig oder nahezu vollständig zurückhält.
  • In einer weiteren Ausführungsform ist oder sind das Dichtelement oder die Dichtelemente ein axial wirkender O-Ring oder ein axial wirkender X-Ring. Durch den Einsatz eines O-Ringes oder eines X-Ringes kann ein günstiges und erprobtes Dichtungssystem geschaffen werden, welches das hydraulische Medium sicher und zuverlässig wie oben beschrieben zurückhält. Damit ist die Funktion der Getriebeeinrichtung zuverlässig sichergestellt.
  • Das Dichtungssystem kann auch derart ausgeführt sein, dass es bei Drehwinkeländerungen abseits der Endanschläge vollständig dichtet und nur Annäherung an die Endanschläge, die zum Überschreiten eines Mindestöldrucks führt, über das Dichtungssystem ein kontrollierter Druckabbau erfolgt.
  • In einem weiteren Aspekt wird die Aufgabe gelöst durch einen elektrischen Nockenwellenversteller mit einer Getriebeeinrichtung gemäß einer der vorherigen Ausführungsformen. Dieser kann ein vom Motorölkreislauf unabhängiges hydraulisches Mittel aufweisen. Alternativ kann das Motoröl verwendet werden, um die Endanschlagsdämpfung zu realisieren und in einer Doppelfunktion den Nockenwellenversteller zu kühlen.
  • In einem weiteren Aspekt wird die Aufgabe gelöst durch eine Brennkraftmaschine mit einem Nockenwellenversteller, der eine Getriebeeinrichtung der vorhergehenden Ausführungsformen aufweist. Die Getriebeeinrichtung kann bei Verbrennungsmotoren auch zur Verstellung des Verdichtungsverhältnisses eingesetzt werden. Sie ist in ihrer Verwendung nicht auf den Fahrzeugbereich, beispielsweise Motorenanwendungen, Lenkung oder der Anhängerstabilisierung begrenzt, sondern kann auch bei Robotern oder anderen, bevorzugt hoch kompakt bauenden Vorrichtungen Verwendung finden.
  • Im Weiteren wird die Erfindung anhand von Ausführungsbeispielen erläutert. Es zeigen
    • 1a eine schematische Darstellung einer linken Hälfte einer erfindungsgemäßen Getriebeeinrichtung in einer Seitenansicht,
    • 1b eine Detailansicht der Getriebeeinrichtung der 1a aus einer nicht in 1a gezeigten rechten Hälfte der Getriebeeinrichtung,
    • 2a eine schematische Darstellung einer rechten Hälfte einer erfindungsgemäßen Getriebeeinrichtung in einer Seitenansicht, und
    • 2b eine Detailansicht der Getriebeeinrichtung der 2a.
  • Ein Wellgetriebe ist als Getriebeeinrichtung 101 zur Verstellung einer nicht gezeigten Nockenwelle ausgelegt und weist eine Antriebseinheit in Form eines Antriebsrads 103 und eine Abtriebseinheit in Form eines Abtriebsrads 105 auf, welche ineinander liegend mit der gleichen Drehachse angeordnet sind.
  • Das Antriebsrad 103 weist eine Außenverzahnung 104 auf, welche zur Aufnahme eines nicht gezeigten Zahnriemens dient. Mittels dieses Zahnriemens kann die Getriebeeinrichtung 101 in einem Verbrennungsmotor angetrieben werden. Hierzu ist der Zahnriemen mit der Kurbelwelle des Verbrennungsmotors verbunden und so übersetzt, dass das Antriebsrad 103 mit halber Kurbelwellendrehzahl angetrieben wird.
  • Das Abtriebsrad 105 weist eine Innenverzahnung 106 auf, in welche eine Verstelleinheit 107 eingreift und somit mit dem Abtriebsrad 105 verbunden ist. Weiterhin ist das Abtriebsrad 105 drehfest mit der Nockenwelle des Verbrennungsmotors verbunden, so dass die Nockenwelle in Abhängigkeit von der Motordrehzahl gemeinsam mit dem Getriebeeinrichtung 101 mit halber Kurbelwellendrehzahl rotiert.
  • Die Verstelleinheit 107 ist im gezeigten Beispiel ein Wellgetriebe, welches jedoch nicht im Detail ausgeführt wird. Mittels der Verstelleinheit 107 wird ein Phasenverstellwinkel 129 beeinflusst, welcher um die gemeinsame Drehachse von Antriebsrad 103 und Abtriebsrad 105 definiert ist und die Verdrehung des Antriebsrades 103 gegen das Abtriebsrad 105 um diese Achse beschreibt.
  • Mittels der Verstellung des Phasenverstellwinkels 129 kann nun bei laufendem Verbrennungsmotor bei gleichbleibender Übersetzung zwischen der Kurbelwelle und der Getriebeeinrichtung 101 und damit auch linear abhängiger Drehzahl der Nockenwelle in Bezug zur Kurbelwelle der Phasenwinkel der Nockenwelle in Bezug zur Kurbelwelle innerhalb festgelegter Grenzen verstellt werden.
  • Zwischen einer inneren Mantelfläche 109 des Antriebsrades 103 und einer äußeren Mantelfläche 111 des Abtriebsrades 105 ist ein Gleitlager gebildet, welches eine störungsfreie Rotation des Abtriebsrades 105 innerhalb des Antriebsrades 103 ermöglicht.
  • Innerhalb des Antriebsrades 103 an der inneren Mantelfläche 109 sind Anschlagnocken 113 und im Bereich der äußeren Mantelfläche 111 des Abtriebsrades 105 sind Anschlagnocken 114 ausgebildet, welche entlang des jeweiligen Umfangs in gleichmäßigen Abständen aufgebracht sind und damit jeweils eine Segmentierung ausbilden, die zwischen Antriebsrad 103 und Abtriebsrad 105 ineinandergreift.
  • Mittels dieser Segmentierung durch die Anschlagnocken 113 und Anschlagnocken 114 wird der Phasenverstellwinkel 129 mechanisch begrenzt. Die Darstellung zeigt dabei eine linksseitige Endlage des Abtriebsrades 105 innerhalb des Antriebsrades 103. Das Abtriebsrad 105 kann innerhalb des Antriebsrades 103 den vollständigen Phasenverstellwinkel 129 zwischen zwei benachbarten Anschlagnocken 113 verdreht werden.
  • Zwischen den Anschlagnocken 113 sind innerhalb der Segmentierung des Antriebsrades 103 Kavitäten ausgebildet, die durch die Anschlagnocken 114 des Abtriebsrades voneinander getrennt werden. Erste Kavitäten 115 und zweite Kavitäten 117 bilden jeweils mit einem Anschlagnocken 114 eine hydraulische Wirkeinheit, welche mit dem Motoröl des Verbrennungsmotors als hydraulisches Medium gefüllt ist.
  • Das Getriebeeinrichtung ist seitlich, also aus Richtung der Seitenfläche 123 und 124 sowie von einer nicht gezeigten, abgewandten Seite her, mittels weiterer Bauteile gegen Austritt des Öls abgedichtet. Diese Bauteile können z.B. Abdeckscheiben sein oder auch Bestandteile der Verstelleinheit 107. Die Abdichtung gegen Ölaustritt erfolgt dann mittels zwischen diesen Bauteilen und den Seitenflächen 123 und 124 angeordneten O-Ringe.
  • Für die unten folgende Funktionsbeschreibung zweier Ausgestaltungen sei erwähnt, dass im abgebildeten Betriebszustand die erste Kavität 115 zu ihrer vollen Ausdehnung hin vergrößert ist und die zweite Kavität 117 durch Erreichen des jeweiligen Endanschlages zwischen Anschlagnocken 113 und Anschlagnocken 114 auf eine Größe nahe null verkleinert. An dieser Stelle verbleibt lediglich ein minimaler Ölfilm zwischen den Anschlagnocken 113 und Anschlagnocken 114, welcher nicht darstellbar ist.
  • Bei einer ersten Ausgestaltung ist innerhalb der Anschlagnocken 114 im Abtriebsrad 105 ein Kanal 121 eingebracht. Dieser Kanal ist von einer Seitenfläche 124 des Abtriebsrades 105 her als Vertiefung ausgebildet und kann daher mittels Fräsen oder in einem sintermetallurgischen Prozess einfach hergestellt werden. Im vorliegenden Fall sind das Antriebsrad 103 und das Abtriebsrad 105 in einem solchen sintermetallurgischen Verfahren hergestellt worden.
  • Eine jeweilige Eingangsseite 125 und eine jeweilige Ausgangsseite 127 der Kanäle 121 ist unterschiedlich ausgebildet und zwar derart, dass die Kanäle 121 an der Eingangsseite 125 einen größeren Querschnitt aufweisen als an der Ausgangsseite 127.
  • Die Eingangsseite 125 und die Ausgangsseite 127 sind dabei so angeordnet, dass eine jeweilige erste Kavität 125 und eine jeweilige zweite Kavität durch den jeweiligen Kanal 121 bei Erreichen eines entsprechend zugeordneten Endanschlages des Abtriebsrades 105 innerhalb des Antriebsrades 103 vollständig von Öl befreit werden können.
  • Wird nun mittels der Verstelleinheit 107 eine Phasenverstellung zwischen Antriebsrad 103 und Abtriebsrad 105 vorgenommen, so muss diese für einen weichen Motorlauf des Verbrennungsmotors und für eine gleichbleibend hohe Leistungsabgabe möglichst gleichmäßig und schnell erfolgen. Andererseits führt ein zu schnelles Verstellen mit Anschlagen der Anschlagnocken 114 an die Anschlagnocken 113 zu einem hohen Verschleiß oder sogar Bruch der Anschlagnocken 113 oder 114 mit Zerstörung der Funktionsfähigkeit des Wellgetriebes 101.
  • Es wird die Funktion zwischen einer ersten Kavität 115 und einer zweiten Kavität 117 innerhalb einer Wirkeinheit beschrieben. Diese Beschreibung ist selbstverständlich für jede Wirkeinheit aus ersten Kavitäten 115 und zweiten Kavitäten 117 anwendbar. In der Summe ergibt sich das Funktionsverhalten des Wellgetriebes dann aus der überlagerten Funktion mehrerer Wirkeinheiten analog.
  • Durch das Öl, welches in der ersten Kavität 115 eingeschlossen ist, wird mittels der Anschlagnocke 114 eine Verdrehung des Abtriebsrades 105 gegenüber dem Antriebsrad 103 behindert. Wird nun mittels der Verstelleinheit 107 eine Verdrehung eingeleitet, so muss das Öl durch den Kanal 121 im Anschlagnocken 114 strömen und erfährt hier einen erhöhten Widerstand. Dieser Widerstand wird in seiner Größe beeinflusst durch den Querschnitt der Eingangsseite 125, den Querschnitt der Ausgangsseite 127 und den Querschnitt des Kanals 121 selbst.
  • Erreicht nun das Abtriebsrad 105 innerhalb des Antriebsrades 103 seinen Endanschlag, so wird der Rest Öl, welcher in Dickenrichtung des Wellgetriebes noch zwischen dem Anschlagnocken 111 und dem Anschlagnocken 113 in einer Kavität 115 oder 117 vorhanden ist, aus dieser Kavität gepresst. Durch diesen Vorgang erfolgt bei Erreichen des Endanschlages eine Anschlagdämpfung des Verstellvorgangs, wodurch eine Beschädigung des Wellgetriebes 101 sicher vermieden wird.
  • Bei einer zweiten (alternativen) Ausgestaltung eines Wellgetriebes 101 ist innerhalb der Seitenfläche 123 im Antriebsrad 103 ist ein Kanal 222 eingebracht. Dieser Kanal ist von der Seitenfläche 123 des Antriebsrades 103 her als Vertiefung ausgebildet und kann daher mittels Fräsen oder in einem sintermetallurgischen Prozess einfach hergestellt werden. Im vorliegenden Fall sind das Antriebsrad 103 und das Abtriebsrad 105 in einem solchen sintermetallurgischen Verfahren hergestellt worden.
  • Eine jeweilige Eingangsseite 226 und eine jeweilige Ausgangsseite 228 der Kanäle 222 ist unterschiedlich ausgebildet und zwar derart, dass die Kanäle 222 an der Eingangsseite 226 einen größeren Querschnitt aufweisen als an der Ausgangsseite 228.
  • Die Eingangsseite 226 und die Ausgangsseite 228 sind dabei so angeordnet, dass eine jeweilige erste Kavität 115 und eine jeweilige zweite Kavität 117 durch den jeweiligen Kanal 222 bei Erreichen eines entsprechend zugeordneten Endanschlages des Abtriebsrades 105 innerhalb des Antriebsrades 103 bis zu einem Winkel von ca. 3° in Rotationsrichtung vor Erreichen des endgültigen Endanschlages vollständig von Öl befreit werden können, weil das Öl frei zwischen den Kavitäten durch den Kanal 222 strömen kann. Für die verbleibenden 3° bildet sich in der verbleibenden Kavität 117 ein Kissen aus Öl, welches den Endanschlag zusätzlich dämpft.
  • Wird nun mittels der Verstelleinheit 107 eine Phasenverstellung zwischen Antriebsrad 103 und Abtriebsrad 105 vorgenommen, so muss diese für einen weichen Motorlauf des Verbrennungsmotors und für eine gleichbleibend hohe Leistungsabgabe möglichst gleichmäßig und schnell erfolgen. Andererseits führt ein zu schnelles Verstellen mit Anschlagen der Anschlagnocken 114 an die Anschlagnocken 113 zu einem hohen Verschleiß oder sogar Bruch der Anschlagnocken 113 oder 114 mit Zerstörung der Funktionsfähigkeit des Wellgetriebes 101.
  • Es wird wiederum die Funktion zwischen einer ersten Kavität 115 und einer zweiten Kavität 117 innerhalb einer Wirkeinheit beschrieben. Diese Beschreibung ist auch für die zweite Ausgestaltung selbstverständlich für jede Wirkeinheit aus ersten Kavitäten 115 und zweiten Kavitäten 117 anwendbar. In der Summe ergibt sich das Funktionsverhalten des Wellgetriebes dann aus der überlagerten Funktion mehrerer Wirkeinheiten analog.
  • Durch das Öl, welches in der ersten Kavität 115 eingeschlossen ist, wird mittels der Anschlagnocke 114 eine Verdrehung des Abtriebsrades 105 gegenüber dem Antriebsrad 103 behindert. Wird nun mittels der Verstelleinheit 107 eine Verdrehung eingeleitet, so muss das Öl durch den Kanal 222 im der Seitenfläche 123 strömen und erfährt hier einen erhöhten Widerstand. Dieser Widerstand wird in seiner Größe beeinflusst durch den Querschnitt der Eingangsseite 226, den Querschnitt der Ausgangsseite 228 und den Querschnitt des Kanals 222 selbst.
  • Erreicht nun das Abtriebsrad 105 innerhalb des Antriebsrades 103 eine Position von ca. 3° vor seinem mechanischen Endanschlag, so wird der Rest Öl, welcher in Dickenrichtung des Wellgetriebes 101 noch zwischen dem Anschlagnocken 113 und dem Anschlagnocken 114 in einer Kavität 115 oder 117 vorhanden ist, durch die Position der Eingangsseite 226 oder der Ausgangsseite 228 je nach Drehrichtung nicht sofort aus dieser Kavität gepresst sondern verbleibt als kissenartige Restmenge zunächst in der entsprechenden Kavität 115, 117. Durch diesen Vorgang erfolgt schon vor Erreichen des Endanschlages eine Anschlagdämpfung des Verstellvorgangs, wodurch eine Beschädigung des Wellgetriebes 101 noch sicherer und für extremere Betriebszustände oder Fehlansteuerungen vermieden wird und zusätzlich ein weicheres Stellverhalten für die Nockenwelle erreicht wird.
  • Bezugszeichenliste
  • 101
    Getriebeeinrichtung, Wellgetriebe
    103
    Antriebseinheit, Antriebsrad
    104
    Außenverzahnung
    105
    Abtriebseinheit, Abtriebsrad
    106
    Innenverzahnung
    107
    Verstelleinheit
    109
    innere Mantelfläche
    111
    äußere Mantelfläche
    113
    erstes Anschlagelement
    114
    zweites Anschlagselement
    115
    erste Kavität
    117
    zweite Kavität
    121
    Überströmweg, Kanal
    123
    Seitenfläche
    124
    Seitenfläche
    125
    Eingangsseite
    127
    Ausgangsseite
    129
    Phasenverstellwinkel
    222
    Überströmweg, Kanal
    226
    Eingangsseite
    228
    Ausgangsseite
    229
    Phasenverstellwinkel
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • DE 102017128423 A1 [0005]
    • EP 2638257 B1 [0006]
    • DE 102012211526 A1 [0006]
    • DE 102017128731 A1 [0007]

Claims (10)

  1. Getriebeeinrichtung (101), aufweisend: - eine Antriebseinheit (103), - eine Abtriebseinheit (105), die zur Antriebseinheit (103) um einen Drehwinkel in eine Phasenlage verdrehbar ist, - eine Verstelleinheit (107), mittels der die Phasenlage veränderbar ist, - ein Gleitlager mit einer inneren Mantelfläche (109) und einer äußeren Mantelfläche (111), wobei die eine der Mantelflächen (111, 109) einen Teil der Antriebseinheit (103) und die andere der Mantelflächen (109, 111) einen Teil der Abtriebseinheit (105) bilden, - einem ersten Anschlagselement (113), das durch ein Mantelflächensegment der Antriebseinheit (103) gebildet ist, - einem zweiten Anschlagselement (114), das durch ein Mantelflächensegment der Antriebseinheit (103) gebildet ist und mit dem ersten Anschlagselement (114) einen Anschlag zur Begrenzung der möglichen Phasenlagen bildet, - ein hydraulisches Mittel zur Ausbildung einer Anschlagdämpfung für die Anschlagelemente (113, 114) - eine erste Kavität (115) und eine zweite Kavität (117) zwischen der Antriebseinheit (103) und der Abtriebseinheit (105), welche durch die Mantelflächensegmente ausgebildet sind, - einen Überströmweg (121, 222), welcher ein Überströmen des hydraulischen Mittels von der ersten Kavität (115) zu der zweiten Kavität (117) ermöglicht, wobei der Querschnitt des Überstromwegs beim Erreichen des Anschlags gegenüber dem Querschnitt des Überstromwegs in einer Mittenposition der Phasenlage verengt ist.
  2. Getriebeeinrichtung gemäß Anspruch 1, dadurch gekennzeichnet, dass der Überströmweg (121, 222) zwischen der ersten Kavität (115) und der zweiten Kavität (117) in Umfangsrichtung der Getriebeeinheit angeordnet ist.
  3. Getriebeeinrichtung gemäß einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Überströmweg (121, 222) vor Erreichen des Endanschlags verschlossen ist.
  4. Getriebeeinrichtung gemäß einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die phasenlagenabhängige Querschnittsverengung des Überströmwegs (121, 222) durch eine der Mantelflächen (109, 111) erfolgt.
  5. Getriebeeinrichtung gemäß einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass eine in einer rotatorischen Wirkrichtung angeordnete Eingangsseite (125, 226) des Überströmwegs (121, 222) einen anderen Querschnitt aufweist als eine abgewandt der rotatorischen Wirkrichtung angeordnete Ausgangsseite (127, 228) des Überströmwegs.
  6. Getriebeeinrichtung gemäß einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Überströmweg (121, 222) durch die Anordnung der Antriebseinheit (103) und der Abtriebseinheit (105) werkzeugfallend gebildet ist.
  7. Getriebeeinrichtung gemäß einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die ersten und zweiten Kavitäten (115, 117) durch ein oder mehrere Dichtelemente abgedichtet sind.
  8. Getriebeeinrichtung gemäß Anspruch 7, dadurch gekennzeichnet, dass das hydraulische Mittel in der Getriebeeinrichtung (101) gekapselt ist.
  9. Elektrischer Nockenwellenversteller mit einer Getriebeeinrichtung (101) nach einem der vorhergehenden Ansprüche.
  10. Brennkraftmaschine mit einem Nockenwellenversteller, der eine Getriebeeinrichtung (101) nach einem der Ansprüche 1 bis 8 aufweist, dadurch gekennzeichnet, dass das hydraulische Mittel durch das Motoröl der Brennkraftmaschine gebildet ist.
DE102021119027.4A 2020-07-27 2021-07-22 Getriebeeinrichtung, Nockenwellenversteller mit der Getriebeeinrichtung und Brennkraftmaschine Pending DE102021119027A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020119695 2020-07-27
DE102020119695.4 2020-07-27

Publications (1)

Publication Number Publication Date
DE102021119027A1 true DE102021119027A1 (de) 2022-01-27

Family

ID=77264875

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102021119027.4A Pending DE102021119027A1 (de) 2020-07-27 2021-07-22 Getriebeeinrichtung, Nockenwellenversteller mit der Getriebeeinrichtung und Brennkraftmaschine

Country Status (4)

Country Link
US (1) US11905862B2 (de)
CN (1) CN115956157A (de)
DE (1) DE102021119027A1 (de)
WO (1) WO2022022772A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023202748A1 (de) 2022-04-22 2023-10-26 Schaeffler Technologies AG & Co. KG Verbrennungsmotor mit einem nockenwellenversteller, nockenwellenversteller und verfahren zum starten eines verbrennungsmotors mit einem nockenwellenversteller

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012211526A1 (de) 2012-07-03 2014-01-09 Schaeffler Technologies AG & Co. KG Hydraulischer Nockenwellenversteller mit interner Dämpfung
EP2638257B1 (de) 2010-11-09 2014-07-16 Schaeffler Technologies GmbH & Co. KG Getriebeeinrichtung und nockenwellenversteller mit einer solchen getriebeeinrichtung
DE102017128731A1 (de) 2017-12-04 2019-06-06 Schaeffler Technologies AG & Co. KG Elektrischer Nockenwellenversteller zur variablen Ventilsteuerung in einer Brennkraftmaschine
DE102017128423A1 (de) 2017-11-30 2019-06-06 Schaeffler Technologies AG & Co. KG Wellgetriebe

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011004069A1 (de) * 2011-02-14 2012-08-16 Schaeffler Technologies Gmbh & Co. Kg 3-Wellen-Verstellgetriebe mit elastischem Koppelglied

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2638257B1 (de) 2010-11-09 2014-07-16 Schaeffler Technologies GmbH & Co. KG Getriebeeinrichtung und nockenwellenversteller mit einer solchen getriebeeinrichtung
DE102012211526A1 (de) 2012-07-03 2014-01-09 Schaeffler Technologies AG & Co. KG Hydraulischer Nockenwellenversteller mit interner Dämpfung
DE102017128423A1 (de) 2017-11-30 2019-06-06 Schaeffler Technologies AG & Co. KG Wellgetriebe
DE102017128731A1 (de) 2017-12-04 2019-06-06 Schaeffler Technologies AG & Co. KG Elektrischer Nockenwellenversteller zur variablen Ventilsteuerung in einer Brennkraftmaschine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023202748A1 (de) 2022-04-22 2023-10-26 Schaeffler Technologies AG & Co. KG Verbrennungsmotor mit einem nockenwellenversteller, nockenwellenversteller und verfahren zum starten eines verbrennungsmotors mit einem nockenwellenversteller

Also Published As

Publication number Publication date
WO2022022772A1 (de) 2022-02-03
US11905862B2 (en) 2024-02-20
CN115956157A (zh) 2023-04-11
US20230272727A1 (en) 2023-08-31

Similar Documents

Publication Publication Date Title
DE102012112461A1 (de) Umschaltventil und Verbrennungsmotor mit einem derartigen Umschaltventil
EP0712997B1 (de) Sauggeregelte Zahnring-/Innenzahnradpumpe
DE102013225063A1 (de) Pleuelstange einer Brennkraftmaschine mit variabler Länge
EP2638257B1 (de) Getriebeeinrichtung und nockenwellenversteller mit einer solchen getriebeeinrichtung
DE102010019005A1 (de) Hydraulikventil
EP0978638B1 (de) Vorrichtung zur relativen Drehlagenänderung einer Welle zum Antriebsrad
EP0422338B1 (de) Hydraulischer Schwingungsdämpfer
DE102016008306A1 (de) Pleuel mit verstellbarer Pleuellänge
DE102015110664A1 (de) Umschaltventil und Verbrennungsmotor
DE102010061362A1 (de) Umschaltventil und Verbrennungsmotor mit einem derartigen Umschaltventil
DE102007015333B4 (de) Steuerventil und Herstellungsverfahren für das Steuerventil
DE102021119027A1 (de) Getriebeeinrichtung, Nockenwellenversteller mit der Getriebeeinrichtung und Brennkraftmaschine
DE102016108876A1 (de) Vorrichtung zur Betätigung eines Eingangsglieds
DE102015213338A1 (de) Aktuatoreinheit
DE102015205770B4 (de) Nockenwellenbaugruppe
DE102008010644A1 (de) Nockenwellenversteller und Nockenwelle für eine Brennkraftmaschine
EP2929217B1 (de) Vorrichtung zur steuerung des betriebs eines mittels eines hydromotors antreibbaren lüfters einer kühleinrichtung
DE102017107719A1 (de) Hydraulikventil zum Einstellen eines Hydraulikflüssigkeitsstroms eines Pleuels für eine Brennkraftmaschine mit variabler Verdichtung
DE102015211477A1 (de) Hydrostatischer Kupplungsaktor
DE102017210661A1 (de) Ventiltriebvorrichtung für eine mehrzylindrige Brennkraftmaschine
EP3361069B1 (de) Pleuel einer brennkraftmaschine mit variabler verdichtung mit einem rückschlagventil
DE10223523B4 (de) Vorrichtung zur Steuerung der Ventiltaktung
EP3502436A1 (de) Pleuel für eine brennkraftmaschine mit variabler verdichtung mit einem umschaltventil
DE102021203811A1 (de) Dichtungsanordnung für eine Welle und Verfahren zum Betrieb einer Dichtungsanordnung
DE102015015884A1 (de) Kolbenanordnung für einen ein veränderbares Kompressionsverhältnis aufweisenden Brennraum einer Verbrennungskraftmaschine

Legal Events

Date Code Title Description
R083 Amendment of/additions to inventor(s)