DE102019118797A1 - Verfahren zum Herstellen einer Bauteilanordnung für ein Package, Verfahren zum Herstellen eines Packages mit einer Bauteilanordnung, Bauteilanordnung und Package - Google Patents

Verfahren zum Herstellen einer Bauteilanordnung für ein Package, Verfahren zum Herstellen eines Packages mit einer Bauteilanordnung, Bauteilanordnung und Package Download PDF

Info

Publication number
DE102019118797A1
DE102019118797A1 DE102019118797.4A DE102019118797A DE102019118797A1 DE 102019118797 A1 DE102019118797 A1 DE 102019118797A1 DE 102019118797 A DE102019118797 A DE 102019118797A DE 102019118797 A1 DE102019118797 A1 DE 102019118797A1
Authority
DE
Germany
Prior art keywords
component
wafer
optical
package
produced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE102019118797.4A
Other languages
English (en)
Other versions
DE102019118797B4 (de
Inventor
Simon Maus
Ulli Hansen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MSG LITHOGLAS GmbH
Original Assignee
MSG LITHOGLAS GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MSG LITHOGLAS GmbH filed Critical MSG LITHOGLAS GmbH
Priority to CN202080045827.8A priority Critical patent/CN114008876A/zh
Priority to KR1020227002001A priority patent/KR20220024776A/ko
Priority to PCT/DE2020/100529 priority patent/WO2020259755A1/de
Priority to US17/618,920 priority patent/US20220415645A1/en
Priority to JP2021575462A priority patent/JP2022539450A/ja
Priority to EP20737085.9A priority patent/EP3987326A1/de
Priority to TW109121743A priority patent/TW202101619A/zh
Publication of DE102019118797A1 publication Critical patent/DE102019118797A1/de
Application granted granted Critical
Publication of DE102019118797B4 publication Critical patent/DE102019118797B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0808Mirrors having a single reflecting layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02255Out-coupling of light using beam deflecting elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02019Chemical etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • H01S5/02326Arrangements for relative positioning of laser diodes and optical components, e.g. grooves in the mount to fix optical fibres or lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • H01S5/02345Wire-bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0239Combinations of electrical or optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item

Abstract

Die Erfindung betrifft ein Verfahren zum Herstellen einer Bauteilanordnung für ein Package, mit Bereitstellen eines Wafers aus einem Halbleitermaterial mit einer polierten Waferoberfläche; Ausbilden einer Öffnung in dem Wafer mittels anisotropen Ätzen, wobei hierbei eine anisotrop geätzten Oberfläche im Bereich der Öffnung hergestellt wird; Vereinzeln eines Bauteils von dem anisotrop geätzten Wafer, wobei das vereinzelte Bauteil die folgenden Flächen aufweisend hergestellt wird: eine optische Fläche, die im Bereich eines Oberflächenabschnitts der polierten Waferoberfläche gebildet ist, und eine Montagefläche, die im Bereich der anisotrop geätzten Oberfläche gebildet ist; und Montieren des vereinzelten Bauteils auf einer Substratoberfläche eines Trägersubstrats unter Verwendung der Montagefläche, so dass die anisotrop geätzte Oberfläche mit der Substratoberfläche verbunden wird, wobei hierbei die optische Fläche als geneigte freiliegende Fläche angeordnet wird. Weiterhin ist eine Bauteilanordnung sowie ein Package mit einer Bauteilanordnung vorgesehen.

Description

  • Die Erfindung betrifft ein Verfahren zum Herstellen einer Bauteilanordnung für ein Package, ein Verfahren zum Herstellen eines Packages mit einer Bauteilanordnung, einer Bauteilanordnung und Package.
  • Hintergrund
  • In Verbindung mit den Bauteilanordnungen ist es bekannt, Bauteile oder Bauelemente, beispielsweise optische Bauelemente, die Licht abgeben oder empfangen, in einem Gehäuse anzuordnen. Die Bauteilanordnung kann verwendet werden, um ein Package herzustellen, also allgemein eine Ummantelung oder das Ausbilden eines Gehäuses, welches die Bauteilanordnung inklusive der Anschlussstellen aufnimmt.
  • Ein Verfahren zum Herstellen einer solchen Bauteilanordnung ist beispielsweise aus dem Dokument WO 2011 / 035783 A1 bekannt. Auf einem Trägersubstrat wird ein Abstandshalter angeordnet derart, dass der Abstandshalter einen Bauraum umgibt, in dem ein Bauelement angeordnet wird. Der Bauraum wird verschlossen in dem auf dem Abstandshalter ein Decksubstrat angeordnet wird. Mit dem Decksubstrat kann eine lichtdurchlässige Austrittsöffnung bereitgestellt sein, durch die hindurch Licht abgegeben oder empfangen werden kann. Dem Bauraum zugewandte Wandflächen des Abstandshalters können mit einer Metallisierung versehen sein, um eine lichtreflektierende Verspiegelung bereitzustellen.
  • Dokument WO 2016 / 055520 A1 beschreibt das Herstellen eines Packages für ein Laserbauelement mit einem Gehäuse, das einen Träger umfasst, der eine Kavität mit einer Bodenfläche und einer Seitenwand aufweist. Die Kavität weitet sich ausgehend von der Bodenfläche auf. In der Kavität ist ein Laserchip an der Bodenfläche angeordnet, dessen Emissionsrichtung parallel zu der Bodenfläche orientiert ist. In der Kavität ist außerdem ein reflektierendes Element angeordnet, das an einer Kante zwischen der Bodenfläche und der Seitenwand anliegt. Eine reflektierende Oberfläche des reflektierenden Elements schließt mit der Bodenfläche der Kavität einen Winkel von 45Grad ein. Die Emissionsrichtung schließt mit der reflektierenden Oberfläche des reflektierenden Elements ebenfalls einen Winkel von 45 Grad ein.
  • Bauteilanordnung ist weiterhin aus dem Dokument WO 20171 149573 A1 bekannt.
  • Im Dokument US 7 177 331 B2 ist eine Laserdiode in einem sogenannten TO-Gehäuse verbaut.
  • Zusammenfassung
  • Aufgabe der Erfindung ist es, ein Verfahren zum Herstellen einer Bauteilanordnung für ein Package und zum Herstellen eines Packages sowie eine Bauteilanordnung und ein Package anzugeben, bei denen eine optische Funktionsfläche effizienter und mit verbesserter Qualität hinsichtlich der optischen Eigenschaften hergestellt werden kann.
  • Zur Lösung der Aufgabe sind ein Verfahren zum Herstellen einer Bauteilanordnung für ein Package sowie ein Verfahren zum Herstellen eines Packages mit einer Bauteilanordnung nach den unabhängigen Ansprüchen 1 und 11 geschaffen. Weiterhin sind eine Bauteilanordnung nach dem unabhängigen Anspruch 12 sowie ein Package nach dem nebengeordneten Anspruch 13 vorgesehen. Ausgestaltungen sind Gegenstand von abhängigen Unteransprüchen.
  • Nach einem Aspekt ist ein Verfahren zum Herstellen einer Bauteilanordnung für ein Package geschaffen, wobei das Verfahren Folgendes aufweist: Bereitstellen eines Wafers aus einem Halbleitermaterial mit einer polierten Waferoberfläche, wobei hierbei eine anisotrop geätzten Oberfläche im Bereich der Öffnung hergestellt wird; Ausbilden einer Öffnung in dem Wafer mittels anisotropen Ätzen; Vereinzeln eines Bauteils von dem anisotrop geätzten Wafer, wobei das vereinzelte Bauteil eine optische Fläche, die im Bereich eines Oberflächenabschnitts der polierten Waferoberfläche gebildet ist, und eine Montagefläche aufweisend hergestellt wird, die im Bereich der anisotrop geätzten Oberfläche gebildet ist; und Montieren des vereinzelten Bauteils auf einer Substratoberfläche eines Trägersubstrats unter Verwendung der Montagefläche, so dass die anisotrop geätzte Oberfläche mit der Substratoberfläche verbunden wird, wobei hierbei die optische Fläche als geneigte freiliegende Fläche angeordnet wird.
  • Weiterhin ist ein Verfahren zum Herstellen eines Packages mit einer solchen Bauteilanordnung vorgesehen, wobei mittels eines Gehäusebauteils ein Gehäuse hergestellt wird, in welchem zumindest das vereinzelte Bauteil aufgenommen ist.
  • Nach einem weiteren Aspekt ist eine Bauteilanordnung mit einem Trägersubstrat und einem hierauf angeordneten Bauteil vorgesehen, welches aus einem Wafer aus einem Halbleitermaterial vereinzelt wurde. Das Bauteil weist auf einer anisotrop geätzten Oberfläche eine Montagefläche auf und ist unter Verwendung der Montagefläche auf einer Substratoberfläche des Trägersubstrats montiert. Das Bauteil weist eine optische Fläche auf, die in einem Oberflächenabschnitt einer polierten Waferoberfläche des Wafers Die optische Fläche ist als geneigte freiliegende Fläche angeordnet.
  • Weiter ist ein Package mit einer solchen Bauteilanordnung vorgesehen, wobei mittels eines Gehäusebauteils ein Gehäuse gebildet ist, in welchem zumindest das Bauteil aufgenommen ist.
  • Die optische Fläche kann in Bezug einfallende Lichtstrahlen wenigstens teilweise lichtreflektierend, lichtstreuend und / oder lichtabsorbierend ausgebildet sein. Auch kann die optische Fläche in einer Ausgestaltung einfallendes Licht polarisierend (lichtpolarisierend) ausgebildet sein.
  • Das anisotrope Ätzen kann mittels nasschemischen Ätzen ausgeführt werden, beispielsweise mit Hilfe von Ätzen mit Kalilauge (KOH). Weitere nutzbare Ätzlösungen für das anisotrope Ätzen sind zum Beispiel Tetramethylammoniumhydroxid (TMAH) oder eine Mischung aus Ethylendiamin und Wasser mit Beimengungen von Brenzkatechin und Pyrazin (EDP, Ethylendiamin-Pyrokatechol), insbesondere in Verbindung mit Silizium. Aber auch ein Trockenätzen kann genutzt werden.
  • Zum Ausbilden der optischen Fläche kann die polierte Oberfläche selbst genutzt werden, also ohne hierauf Schichtmaterial abzuscheiden oder anzuordnen.
  • Die optische Fläche kann mit einer optischen Funktionsfläche hergestellt werden, wobei hierbei in dem Oberflächenabschnitt der polierten Waferoberfläche eine optische Funktionsschicht aufgebracht wird, derart, dass die optischen Eigenschaften der polierten Waferoberfläche in dem Oberflächenabschnitt verändert werden. Die optische Funktionsschicht, mit der die optische Funktionsfläche im Bereich der polierten Waferoberfläche gebildet ist, verändert gezielt die optischen Eigenschaften des Oberflächenabschnitts gegenüber dessen optischen Eigenschaften ohne die optische Funktionsschicht, also im Zustand der polierten Waferoberfläche. Mittels der optischen Funktionsschicht können unter-schiedliche optische Eigenschaften in dem Oberflächenabschnitt bereitgestellt werden, insbesondere das Verhalten hinsichtlich Lichtreflexion, Lichtabsorption und / oder Lichtstreuung. Die optische Funktionsfläche kann in Bezug einfallende Lichtstrahlen wenigstens teilweise lichtreflektierend, lichtstreuend und / oder lichtabsorbierend ausgebildet sein. Das Herstellen der optischen Funktionsfläche im Bereich der polierten Waferoberfläche hat den Vorteil, dass hierbei die optische Funktionsschicht auf einem Untergrund aufgebracht wird, nämlich der polierten Waferoberfläche, welcher auf Wafer-Level reproduzierbar mit gewünschten Oberflächeneigenschaften herstellbar ist, insbesondere hinsichtlich seiner Glattheit.
  • Die optische Funktionsfläche mit der optischen Funktionsschicht kann auf Wafer-Level vor dem Vereinzeln aufgebracht werden. Es können auf Wafer-Level mehrere getrennte optische Funktionsflächen im Bereich der polierten Waferoberfläche hergestellt werden, die dann beim Vereinzeln als optische Funktionsfläche bei getrennten Bauteilen dienen. Alternativ zum Aufbringen der optischen Funktionsfläche(en) auf Wafer-Level kann die optische Funktionsfläche nach dem Vereinzeln hergestellt werden.
  • Die optische Funktionsfläche kann mit einer mikrostrukturierten Schicht hergestellt werden. Mit Hilfe der mikrostrukturierten Schicht ist es ermöglicht, die optische Funktionsfläche oder -schicht mit gewünschten optischen Eigenschaften bereitzustellen. Beispielsweise kann vorgesehen sein, dass die mikrostrukturierte Schicht einfallende Lichtstrahlen fokussierend / aufweitend und / oder streuend reflektiert. Im Bereich der mikrostrukturierten Schicht können zumindest bereichsweise Fresnel-Linsen vorgesehen sein.
  • Zum Ausbilden der optischen Funktionsschicht kann ein Schichtmaterial wie zum Beispiel Glas oder Kunststoff auf die polierte Waferoberfläche aufgebracht werden. Eine Mikrostrukturierung der optischen Funktionsschicht kann eine Bearbeitung mittels eines oder mehrerer Verfahren aus der folgenden Gruppe umfassen: Abformen, Prägen, Molden, Ätzen, 3D-Drucken und Plasmabearbeiten, zum Beispiel zum Herstellen einer oder mehrerer Linsen (zum Beispiel Mulde(n)) in dem Schichtmaterial. Alternativ kann die polierte Waferoberfläche im Wafer-Level bearbeitet werden, also ohne Aufbringen der optischen Funktionsschicht, zum Beispiel zum Herstellen mindestens einer Linse. Die hergestellte Mikrostruktur kann dann in den verschiedenen Ausführungsformen mit einer Verspiegelung versehen werden.
  • Die optische Funktionsschicht kann als ein Mehrschichtsystem aufgebracht werden. Mehrschichtsysteme unterstützen weiter das Ausbilden gewünschter optischer Eigenschaften, die im Bereich des Oberflächenabschnitts der polierten Waferoberfläche mittels der optischen Funktionsschicht bereitgestellt werden. Zum Beispiel kann so ein dielektrischer Spiegel aufgebracht werden. Bei solchen oder anderen Spiegelschichten kann vorgesehen sein, eine metallische Schicht als Spiegel zu nutzen, zum Beispiel aus Aluminium, Silber, Kupfer oder Gold.
  • Die anisotrop geätzte Oberfläche kann mit einem Neigungswinkel von etwa 45 Grad zur polierten Waferoberfläche hergestellt werden. Die optische Funktionsfläche kann zur Oberfläche des Trägersubstrats (und zur polierten Waferoberfläche) einen Neigungswinkel von etwa 45 Grad aufweisen. Mit entsprechend hergestellten Kristallen - zum Beispiel Verkippung zur 100 Orientierung eines Siliziumkristalls - sind beinahe beliebige Neigungswinkel präzise einstellbar.
  • Es kann vorgesehen sein, einer Wafer aus Silizium bereitzustellen und anisotrop zu ätzen.
  • Die Montagefläche kann mit einer Montagefunktionsschicht ausgebildet werden, die im Bereich der Montagefläche hergestellt wird
  • Die Montagefunktionsschicht kann eine lötbare Metallisierung aufweisend hergestellt werden. Beim Montieren des vereinzelten Bauteils auf der Substratoberfläche des Trägersubstrats wird dieses dann unter Nutzung der lötbaren Metallisierung aufgelötet. Die Montagefunktionsschicht kann eine Klebeschicht aufweisend hergestellt werden.
  • Die Montagefunktionsschicht kann auf Wafer-Level vor dem Vereinzeln aufgebracht werden. Im Bereich der anisotrop geätzten Oberflächen können mehrere getrennte Montagefunktionsschichten in unterschiedlichen Bereichen hergestellt werden, so dass diese dann nach dem Vereinzeln für verschiedene Bauteile als jeweilige Montagefunktionsschicht dienen, was es ermöglicht, dass jeweils vereinzelte Bauteil zu montieren. Werden Montagefunktionsschichten in unterschiedlichen Abschnitten der anisotrop geätzten Oberflächen hergestellt, ermöglicht dies, Bauteile mit jeweiliger optischer Funktionsfläche nach dem Vereinzeln bereitzustellen, bei denen die optische Funktionsfläche unterschiedliche Neigungswinkel in Bezug auf die polierte Waferoberfläche aufweist. Dies nutzt unterschiedliche Neigungswinkel aus, die beim Ätzen entstehen.
  • Alternativ zum Aufbringen der Montagefunktionsschicht(en) auf Wafer-Level kann die Montagefunktionsschicht nach dem Vereinzeln hergestellt werden.
  • Die vorangehend erläuterten Ausgestaltungen in Verbindung mit dem Verfahren zum Herstellen einer Bauteilanordnung für ein Package können im Zusammenhang mit dem Verfahren zum Herstellen eines Packages, der Bauteilanordnung und dem Package entsprechend vorgesehen sein.
  • Bei der Bauteilanordnung oder dem Package kann die optische Funktionsfläche dazu dienen, Lichtstrahlen, die von einem optischen Bauelement, zum Beispiel einer lichtemittierenden Diode, abgegeben werden, aus der Bauteilanordnung oder dem Package heraus umzulenken oder zu reflektieren, so dass die Lichtstrahlen abgegeben werden. Umgekehrt kann die optische Funktionsfläche an dem vereinzelten Bauteil auf dem Trägersubstrat genutzt werden, um von außen auf die Bauteilanordnung oder das Package einfallende Lichtstrahlen auf ein lichtempfangendes oder -empfindliches Bauelement einzukoppeln, zum Beispiel eine lichtempfindliche Diode oder einen lichtempfindlichen Transistor. Im Fall des Packages, bei dem das vereinzelnde Bauelement mit der optischen Funktionsfläche in einem Gehäuse aufgenommen ist, weist ein Gehäusebauteil ein optisches Fenster auf, durch welches hindurch Lichtstrahlen abgegeben und / oder empfangen werden können.
  • Mit Hilfe der vorgeschlagenen Technologie ist es ermöglicht, in dem im Package bereitgestellten Bauraum in horizontaler Richtung verlaufende Lichtstrahlen an der etwa 45 Grad geneigten optischen Funktionsfläche umzulenken in die horizontale Richtung, und umgekehrt. Von dem optischen Bauelement abgegebenes Licht kann so aus der horizontalen Richtung in die vertikale Richtung umgelenkt werden, um die Lichtstrahlen durch ein optisches Fenster hindurch abzugeben. Umgekehrt kann in vertikaler Richtung durch das optische Fenster einfallendes Licht an der optischen Funktionsfläche in die horizontale Richtung umgelenkt werden.
  • Das optische Bauteil im Package kann als lichtimitierendes oder lichtabsorbierendes Bauteil ausgebildet sein, beispielsweise als lichtimitierende Diode oder lichtabsorbierende Fotodiode, zum Beispiel Avalanche-Photodiode oder Laserdiode. Das lichtemittierende Bauteil kann Lichtstrahlen in gerichteter und gebündelter Form abgebend ausgeführt sein, zum Beispiel in Form von im Wesentlichen gerichteter Laserstrahlung mit zentrischer Abgabe des Intensitätsmaximums mit wahlweise vorhandener Strahlendivergenz (Strahlenaufweitung).
  • Die vorgeschlagene Technologie ermöglicht es, das optische Bauelement in dem Bauraum des Packages derart anzuordnen, dass der Austritt der abgegebenen Lichtstrahlen oder der Eintritt der zu empfangenen Lichtstrahlen in vertikaler Richtung erfolgen kann. Um Lichtstrahlen in vertikaler Richtung (in Bezug auf die Oberfläche des Trägersubstrats) abzugeben, ist es im Unterschied zum Stand der Technik nicht notwendig, das optische Bauelement in dem Bauraum aufrechtstehend anzuordnen, wie dies im Stand der Technik vorgesehen ist (vergleiche zum Beispiel US 7 177 331 B2 ). Mit Hilfe der vorgeschlagenen Technologie kann die Bauhöhe der Bauteilanordnung und des Packages reduziert und die Montage vereinfacht werden.
  • Kontaktverbindungen können eine Durchkontaktierung durch das Trägersubstrat hindurch aufweisen, wobei außenliegende Kontakte auf der Unterseite des Trägersubstrats angeordnet sein können. Es kann eine seitlich aus dem Bauraum heraus geführte Kontaktverbindung vorgesehen sein, beispielsweise auf der dem Bauraum zugewandten Oberfläche des Trägersubstrats, insbesondere derart, dass die seitlich herausgeführte Kontaktverbindung zwischen Trägersubstrat und Abstandshalter hindurch gebildet sind. Die Kontaktverbindung kann mehrere einzelne Kontaktverbindungen umfassen.
  • Das optische Bauelement kann auf einem Submount angeordnet sein, welches auf dem Trägersubstrat angeordnet ist. Der Submount kann beispielsweise aus Siliziumcarbit, Aluminiumnitrid, Aluminiumoxid oder Silizium gebildet sein.
  • Zum Herstellen des Packages kann vorgesehen sein, hierfür das Packaging im Nutzen oder im Wafer-Level zu verwenden.
  • Beim Herstellen unter Verwendung von Wafer-Level Prozessen können ein einzelnes oder mehrere Elemente mit einer um 45 Grad geneigten optischen Funktionsfläche im Wafer-Level hergestellt werden. Vorteil ist, dass im Wafer-Level viele Elemente gleichzeitig hergestellt werden können. Die einzelnen Bauelemente, zum Beispiel Spiegelelemente, entstehen dann nach Vereinzelung, zum Beispiel durch Sägen des Substrats. Die Häusung des Bauelements kann erfolgen, indem eine vereinzelte Kappe auf einem Board aufgebracht wird, auf dem ein Chip oder Bauelement vormontiert ist, beispielweise ein optisches Bauelement mit einem Spiegelelement. Die Bauelemente können auch in einem Nutzen vormontiert sein, d.h.. dass auf einem Trägersubstrat bereits mehrere Bauelemente montiert sind, die dann durch das Aufbringen von Einzelkappen oder Kappenarrays (vereinzelter Nutzen mit mehreren Kappenstrukturen aus einem im Wafer-Level hergestellten Kappensubstrat) gehäust werden.
  • Wafer-Level-Packaging in der hier verwendeten Bedeutung bezieht sich dann darauf, alle Bauteile auf einem Wafer in einem Schritt mit einem Decksubstrat in Waferform zu packen („packagen“). Zum Beispiel kann das der Fall sein, wenn auf einem durchkontaktierten Substrat, zum Beispiel einem Siliziumsubstrat in Waferform, Bauelemente komplett vormontiert sind und dann mittels Aufbonden eines Kappen-Wafers alle Bauteile zugleich gehäust werden, beispielweise ein optisches Bauelement mit einem Spiegelelement. Einzelne Packages entstehen dann durch anschließendes Vereinzeln des Verbunds.
  • In Verbindung mit dem Package kann vorgesehen sein, dass in Bezug auf das Gehäuse, in welchem die Bauteilanordnung aufgenommen ist, mit Blick auf eine Gehäuseoberseite im Wesentlichen im Bereich der Austrittsöffnung / Eintrittsöffnung Licht mittig austritt oder eintritt. Hierdurch ist für das Package eine im Wesentlichen mittige Lichtemission / Lichtabsorption realisiert.
  • Das Decksubstrat, insbesondere im Bereich oder zum Ausbilden einer Austritts- und / oder Eintrittsöffnung, kann zum Beispiel aus Borosilikatglas wie Bofofloat33 oder Mempax der Schott AG, Quarzglas, Saphirglas oder auch anderen Gläsern wie AF32, D263T, BK7 oder B270 der Schott AG; Eagle XG oder Pyrex von Corning; SD2 von Hoya oder auchEN-A1 von Asahi bestehen. Das Decksubstrat kann aber auch aus Silizium oder Germanium gebildet sein, zum Beispiel bei Anwendungen im IR-Bereich. Das Decksubstrat kann zusätzlich eine Substratbeschichtung aufweisen, zum Beispiel eine Antireflexions-Beschichtung. Die Beschichtungen können für verschiedene Wellenlängenbereiche ausgelegt und einseitig oder beidseitig ausgeführt sein. Es können auch Filterbeschichtungen und / oder für verschiedene Wellenlängenbereiche blickdichte Aperturstrukturen vorgesehen sein.
  • Des Weiteren kann in einer Ausführungsform die Integration von optischen Elementen vorgesehen sein, zum Beispiel, Linsen auf dem Decksubstrat. Hier kommen beispielweise konvexe Linsen aus Polymer, glasartigen Materialien, Silizium oder Germanium in Frage. Auch ist der Einsatz von mikrostrukturierten Fresnel-Linsen möglich.
  • Im Trägersubstrat sind eine oder mehrere Durchkontaktierungen für den elektrischen Kontakt des optischen Bauelements vorgesehen. Die rückseitigen Kontakte ermöglichen die spätere Montage in der SMD-Bauweise, zum Beispiel durch Zinn / Silber Schwalllöten oder das Montieren mit elektrisch leitfähigen Klebern.
  • Das Trägersubstrat kann beispielsweise aus Silizium, Keramiken wie zum Beispiel Aluminiumnitrid, Siliziumcarbid, Aluminiumoxid, LTTC-Keramik (Low Temperature Cofired Ceramics) oder HTCC-Keramik (High Temperature Cofired Ceramics), Glas oder DBC (Direct Bonded Copper) Substraten bestehen. Des Weiteren kann der Einsatz von Metallsubstraten, zum Beispiel IMS (Insulated Metal Substrate) aus Kupfer, Aluminium oder anderen Metallen vorgesehen sein. Auch die Verwendung von Trägersubstraten aus Kunststoffen wie beispielsweise FR4 ist denkbar. Das Trägersubstrat kann eine 3D-strukturierte Keramik sein. In diesem Fall kann ein Abstandshalter also nicht in der Kappe, sondern im Trägersubstrat gebildet sein. Um das Gehäuse zu schließen, kann dann nach der Montage der Bauelemente in der Keramikkavität diese mittels eines Plättchens verschlossen werden, zum Beispiel mittels eines Glasplättchens. Hierbei ist es üblich, dass eine Keramikoberseite und das Plättchen eine entsprechend lötbare Metallisierung aufweisen. Für bestimmte Anwendungen kann aber auch hier der Einsatz eines Klebstoffes vorgesehen sein.
  • Eine Verbindung von Kappe oder Gehäuse (oder beim Einsetzen eines optischen Fensters in die 3D-Keramik) und Trägersubstrat beim Package kann zum Beispiel über einen Lotbond bevorzugt über einen eutektischen Bond erfolgen. Hierzu ist auf dem Trägersubstrat oder der Rückseite des Abstandshalters einer Gehäusekappe eine Metailkombination in bevorzugt eutektischer Zusammensetzung aufgebracht, zum Beispiel Gold und Zinn, Kupfer und Zinn, Gold und Germanium, Zinn und Silber, Gold und Indium, Kupfer und Silber oder Gold und Silizium, die in einem Lötprozess eine eutektische Verbindungsphase bildet und Abstandshalter mit Trägersubstrat verbindet. Abstandshalter und Trägersubstrat werden für den Lötprozess mit einer entsprechenden Grundmetallisierung versehen. Die Metallkombination für das eutektische Fügen kann beispielsweise als Pre-Form bereitgestellt werden. Alternativ kann die Metallkombination als Paste oder galvanisch auf einen der Fügepartner aufgebracht werden.
  • Es kann vorgesehen sein, zum Beispiel bei dünnen Metalllagen, unter der eigentlichen Verbindungsphase einen sogenannten Legierungsstopp anzuordnen. So eignen sich hierfür beispielsweise für das eutektische Fügen von Gold und Zinn Schichten aus Platin oder Nickel oder auch Legierungen aus Chrom und Nickel. Die hier beschriebenen Metallkombinationen der Fügeschicht eignen sich auch als Ausführung für die lötbare Montagefunktionsschicht.
  • Unter Ausnutzung sehr hoher Oberflächengüten von Ra < 1nm kann auch ein direktes Bondverfahren zum Einsatz kommen. Dies kann ein direkter Fusionbond sein, der bezogen auf den Oberflächencharakter der Bondpartner hydrophob oder hydrophil ausgeführt ist. Die beiden Bondpartner werden zunächst über einen Pre-Bond durch van-der-Waais-Bindungen miteinander verbunden. Durch einen anschließenden Temperschritt bilden sich dann im Bondinterface kovalente Bindungen aus. Der Fusionbond kann auch plasmaaktiviert ausgeführt sein. Damit ist es möglich, die Temperaturbelastung beim Tempern deutlich zu reduzieren. Als weiteres direktes Bondverfahren kann ein anodisches Bonden vorgesehen sein.
  • Alternativ zu den beschriebenen Verfahren ist auch ein reaktiver Bondprozess nutzbar. Bei einem reaktiven Bond wird ein Metallstapel aus wechselnden Schichten aufgebracht. Dieser Metallstapel kann durch zum Beispiel Abscheideverfahren wie Sputtern oder in Form von Folien bereitgestellt sein. Ein elektrischer oder ein laserinduzierter Puls führt kurzfristig zu Erzeugung einer hochthermischen Reaktion, die die beiden Bondpartner miteinander „verschweißt“, Bei den Metallschichten handelt es sich um Bilayer-Perioden, zum Beispiel aus Palladium und Aluminium oder aus Kupferoxid und Aluminium.
  • Des Weiteren kommt solid-liquid Interdiffusions-Bonden in Frage, zum Beispiel aus Metallkombinationen von Gold und Indium, Gold und Zinn oder auch Kupfer und Zinn. Bei diesem Verfahren ist der Bondprozess während eines Temperschritts durch die Diffusion des einen Bondpartners in den anderen bestimmt. Die eigentliche Verbindungsphase widersteht dann später höheren Temperaturen. Ferner können dauerhafte Verbindungen mittels Fügen von beispielsweise Gold mit Gold, Kupfer mit Kupfer oder auch Aluminium mit Aluminium mittels (beispielsweise) Thermo-Kompressionsbonden hergestellt werden. Es kann auch Glas-Frit-Bonden vorgesehen sein.
  • Im Falle von transparenten Substraten kann bei entsprechender Oberflächengüte der Fügeflächen ein Laser-Welding-Verfahren zur Verbindung von Trägersubstrat und Abstandshalter eingesetzt werden. Denkbar ist auch die Verwendung von Epoxidharzen, Silikonen oder anderen Klebstoffen.
  • Für die Verbindung von Abstandshalter und Decksubstrat (zum Beispiel Herstellung eines Kappenwafers) kann zum Beispiel ein direktes Bondverfahren zum Einsatz kommen. Solche Verfahren sind zum Beispiel der anodische Bond oder ein Fusionbond. Auch kann reaktives Bonden oder ein Klebebond zum Einsatz kommen. Des Weiteren kommt auch hier solid-liquid Interdiffusions-Bonden oder ein eutektischer Lötbond in Frage. Für das Fügen von Abstandshalter und Decksubstrat ist zudem das Laser-Welding geeignet. Hierbei werden zwei Substrate in einen „optischen Kontakt“ gebracht und dann mit einem Laser verschweißt. Es ist denkbar, alle zuvor genannten Fügeverfahren für Abstandshalter und Trägersubstrat ebenfalls für die Fügung von Abstandshalter und Decksubstrat zu nutzen.
  • Figurenliste
  • Im Folgenden werden weitere Ausführungsbeispiele unter Bezugnahme auf Figuren einer Zeichnung näher erläutert. Hierbei zeigen:
    • 1 eine schematische Darstellung eines Wafers im Schnitt;
    • 2 eine schematische Darstellung des Wafers aus 1 im Schnitt, bei dem nun auf Wafer-Level Öffnungen anisotrop geätzt sind;
    • 3 eine schematische Darstellung des Wafers aus 2 im Schnitt, wobei auf Wafer-Level im Bereich anisotrop geätzter Oberflächen eine Montagefunktionsschicht und im Bereich von Oberflächenabschnitten einer polierten Waferoberfläche optische Funktionsflächen hergestellt sind;
    • 4 ein vereinzeltes Bauteilelement, welches mittels Vereinzeln aus dem Wafer in 3 hergestellt wurde;
    • 5 eine schematische Schnittdarstellung eines Packages, bei dem das vereinzelte Bauelement aus 4 auf einem Trägersubstrat montiert ist;
    • 6 eine schematische Darstellung unterschiedlicher Ausführungsformen für ein vereinzeltes Bautelement;
    • 7 eine schematische Darstellung einer Anordnung mit einem optischen Bauteil, dessen abgegebenes Licht an einer ebenen Fläche reflektiert wird,
    • 8 eine schematische Darstellung einer Anordnung mit einem optischen Bauteil, dessen abgegebenes Licht in einem parallelen Strahl gewandelt wird;
    • 9 eine schematische Schnittdarstellung eines Packages, bei dem ein vereinzeltes Bauelement und ein optisches Bauteil in einer Vertiefung eines Submounts angeordnet sind; und
    • 10 eine schematische Schnittdarstellung eines Packages, bei dem ein vereinzeltes Bauelement sowie ein optisches Bauteil auf einem Submount angeordnet sind.
  • 1 zeigt eine schematische Darstellung eines Wafers 1 im Schnitt.
  • 2 zeigt eine schematische Darstellung des Wafers 1 aus 1 im Schnitt, wobei der Wafer 1 anisotrop geätzt ist, so dass Öffnungen 2, 3 gebildet sind, die in der gezeigten Ausführungsform als Durchbrüche ausgeführt sind.
  • Der Wafer 1 in 2 verfügt über anisotrop geätzte Oberflächen 4, auf die gemäß 3 in Bereichen jeweils eine Montagefunktionsschicht 5 aufgebracht wird, die bei der gezeigten Ausführungsform mit einer lötbaren Metallisierung gebildet ist. Gemäß 3 ist weiterhin vorgesehen, im Bereich einer polierten Waferoberfläche 6 optische Funktionsflächen 7 herzustellen, indem jeweils eine optische Funktionsschicht 8 aufgebracht wird, beispielsweise als Mehrschichtsystem. Mit der optischen Funktionssicht 8 kann beispielsweise ein dielektrischer Spiegel bereitgestellt sein. Mittels der optischen Funktionsfläche 7 werden die optischen Eigenschaften der polierten Waferoberfläche 6 gegenüber dem Zustand ohne die optische Funktionsschicht 8 geändert, beispielsweise hinsichtlich der Lichtreflexion, Lichtstreuung und / oder Lichtabsorption. Die optische Funktionsschicht 8 kann mikrostrukturiert sein, beispielsweise zum Bereitstellen von Fresnel-Linsen in der optischen Funktionsfläche 7. Eine solche Mikrostrukturierung ist ermöglicht, da die polierte Waferoberfläche 6 einen ausreichend glatten Untergrund bereitstellt.
  • Sodann wird gemäß 4 ein Bauelement oder Bauteil 9 mittels Vereinzeln des Wafers 1 hergestellt.
  • Das vereinzelte Bauelement 9 kann dann gemäß 5 in einem Package 10 auf einer Substratoberfläche 11 eines Trägersubstrats 12 mittels Löten montiert werden, wobei hierbei die lötbare Metallisierung der Montagefunktionsschicht 5 genutzt wird, um das vereinzelte Bauelement 9 auf dem Trägersubstrat 12 zu montieren.
  • Die optische Funktionsfläche 7 ist gemäß 5 als freiliegende Fläche angeordnet, die gegenüber der Substratoberfläche 11 einen Neigungswinkel aufweist, beispielsweise etwa 45 Grad. Mit einem Gehäusebauteil 13, welches ein- oder mehrstückig ausgeführt sein kann, ist ein Bauraum 14 bereitgestellt, in welchem das vereinzelte Bauelement 9 sowie ein optisches Bauteil 15, welches ebenfalls auf der Substratoberfläche 11 montiert ist, beispielsweise mittels Löten oder Bonden, angeordnet. Im Fall einer Mehrstückigkeit ist das Gehäusebauteil 13 zum Beispiel mit Abstandshaltern 13a, 13b sowie einem Deckelbauteil oder Decksubstrat 13c gebildet.
  • Auf die optische Funktionsfläche 7 einfallende Lichtstrahlen 16 werden wenigstens teilweise reflektiert. Auf diese Weise ist es ermöglicht, von dem optischen Bauelement 9 abgegebene Lichtstrahlen aus dem Package 10 durch ein optisches Fenster 17 auszukoppeln oder hierdurch Lichtstrahlen zu empfangen, um diese auf das optische Bauelement 9 zu geben, welches daher zum Beispiel eine lichtemittierende oder eine lichtempfindliche Diode sein kann. Insbesondere das Ausbilden der optischen Funktionsfläche 7 mit einem dielektrischen Spiegel ermöglicht eine solche Lichtumlenkung oder -leitung.
  • 6 zeigt eine schematische Darstellung des vereinzelten Bauteils oder -elements 9 in verschiedenen Ausführungsformen. Bei der Ausgestaltung auf der linken Seite in 6 wurde eine obere Kante 9a mittels mechanischer Bearbeitung hergestellt, zum Beispiel Sägen. Bei der mittleren Darstellung in 6 ist die obere Kante 9a mittels Ätzen hergestellt. Zum Beispiel ist ein Neigungswinkel von 64 Grad ausgebildet. Bei der Ausgestaltung auf der rechen Seite in 6 ist die obere Kante 9a mit einem Winkel von 45 Grad geätzt. Alternativ zu gezeigten Ausführungen in 6 können die optische Funktionsschicht 8 und / oder die Montagefunktionsschicht 5 entfallen. Die optische Funktionsfläche 7 ist dann frei von der optische Funktionsschicht 8. Die optischen Eigenschaften, zum Beispiel das Reflexionsvermögen, können der der polierten Waferoberfläche 6 entsprechen. Als alternative Montagefunktionsschicht 5 kann beim Montieren ein zu diesem Zeitpunkt aufgebrachter Klebstoff dienen.
  • 7 und 8 zeigen unterschiedliche Ausgestaltungen für eine Anordnung mit dem optischen Bauteil 15, welches Licht emittiert, sowie dem vereinzelten Bauelement 9. Das von dem optischen Bauteil 15 abgegebene Licht wird gemäß 7 an einer ebenen optischen Funktionsfläche reflektiert, so dass ein Lichtstrahl mit einem Öffnungswinkel abgegeben wird. Bei der Ausgestaltung in 8 ist die optische Funktionsfläche 7 mit einer Mulde (Linse) gebildet, so dass mittels Strahlformung ein Parallelstrahl abgegeben wird.
  • Die 9 und 10 zeigen schematische Schnittdarstellungen eines Packages, bei dem das vereinzelte Bautelement 9 sowie das optische Bauelement 15 auf einem als Submount ausgebildeten Trägersubstrat 12 angeordnet sind. Das optische Bauelement 16 ist über Durchkontaktierungen 30 angeschlossen. Bei der Ausgestaltung in Fig, 9 weist das Trägersubstrat 12 eine Vertiefung 20 auf. In der Ausführungsform in 10 ist das Decksubstrat 13c mittels der Abstandshalter 13a, 13b von dem Trägersubstrat 12 beabstandet, die auf dem Trägersubstrat 12 montiert sind. Derartige Abstandshalter sind bei der Ausgestaltung in 9 mittels seitlicher Abschnitte 12a, 12b des Trägersubstrats (Submount) selbst 12 gebildet, welche die Vertiefung 20 seitlich begrenzen.
  • Die in der vorstehenden Beschreibung, den Ansprüchen sowie der Zeichnung offenbarten Merkmale können sowohl einzeln als auch in beliebiger Kombination für die Verwirklichung der verschiedenen Ausführungen von Bedeutung sein.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • WO 2016/055520 A1 [0004]
    • WO 20171149573 A1 [0005]
    • US 7177331 B2 [0006, 0031]

Claims (13)

  1. Verfahren zum Herstellen einer Bauteilanordnung für ein Package, mit: - Bereitstellen eines Wafers aus einem Halbleitermaterial mit einer polierten Waferoberfläche; - Ausbilden einer Öffnung in dem Wafer mittels anisotropen Ätzen, wobei hierbei eine anisotrop geätzte Oberfläche im Bereich der Öffnung hergestellt wird; - Vereinzeln eines Bauteils von dem anisotrop geätzten Wafer, wobei das vereinzelte Bauteil die folgenden Flächen aufweisend hergestellt wird: - eine optische Fläche, die im Bereich eines Oberflächenabschnitts der polierten Waferoberfläche gebildet ist, und - eine Montagefläche, die im Bereich der anisotrop geätzten Oberfläche gebildet ist; und - Montieren des vereinzelten Bauteils auf einer Substratoberfläche eines Trägersubstrats unter Verwendung der Montagefläche, so dass die anisotrop geätzte Oberfläche mit der Substratoberfläche verbunden wird, wobei hierbei die optische Fläche als geneigte freiliegende Fläche angeordnet wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die optische Fläche mit einer optischen Funktionsfläche hergestellt wird, wobei hierbei in dem Oberflächenabschnitt der polierten Waferoberfläche eine optische Funktionsschicht aufgebracht wird, derart, dass die optischen Eigenschaften der polierten Waferoberfläche in dem Oberflächenabschnitt verändert werden.
  3. Verfahren nach Anspruch 2 dadurch gekennzeichnet, dass die optische Funktionsfläche auf Wafer-Level vor dem Vereinzeln aufgebracht wird.
  4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die optische Funktionsfläche mit einer mikrostrukturierten Schicht hergestellt wird.
  5. Verfahren nach mindestens einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass die optische Funktionsschicht als ein Mehrschichtsystem aufgebracht wird.
  6. Verfahren nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die anisotrop geätzte Oberfläche mit einem Neigungswinkel von etwa 45 Grad zur polierten Waferoberfläche hergestellt wird.
  7. Verfahren nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass ein Wafer aus Silizium bereitgestellt und anisotrop geätzt wird.
  8. Verfahren nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Montagefläche mit einer Montagefunktionsschicht ausgebildet wird, die im Bereich der Montagefläche hergestellt wird.
  9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Montagefunktionsschicht eine lötbare Metallisierung aufweisend hergestellt wird.
  10. Verfahren nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass die Montagefunktionsschicht auf Wafer-Level vor dem Vereinzeln aufgebracht wird.
  11. Verfahren zum Herstellen eines Packages mit einer Bauteilanordnung, die gemäß einem Verfahren nach mindestens einem der vorangehenden Ansprüche hergestellt ist, wobei mittels eines Gehäusebauteils ein Gehäuse hergestellt wird, in welchem zumindest das vereinzelte Bauteil aufgenommen ist.
  12. Bauteilanordnung, mit - einem Trägersubstrat und - einem hierauf angeordneten Bauteil, welches aus einem Wafer aus einem Halbleitermaterial vereinzelt wurde, wobei - das Bauteil auf einer anisotrop geätzten Oberfläche eine Montagefläche aufweist: - das Bauteil unter Verwendung der Montagefläche auf einer Substratoberfläche des Trägersubstrats montiert ist; - das Bauteil eine optische Fläche aufweist, die in einem Oberflächenabschnitt einer polierten Waferoberfläche des Wafers gebildet ist; und - die optische Fläche als geneigte freiliegende Fläche angeordnet ist.
  13. Package, mit einer Bauteilanordnung nach Anspruch 12, wobei mittels eines Gehäusebauteils ein Gehäuse gebildet ist, in welchem zumindest das Bauteil aufgenommen ist.
DE102019118797.4A 2019-06-24 2019-07-11 Verfahren zum Herstellen einer Bauteilanordnung für ein Package, Verfahren zum Herstellen eines Packages mit einer Bauteilanordnung, Bauteilanordnung und Package Active DE102019118797B4 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020227002001A KR20220024776A (ko) 2019-06-24 2020-06-22 패키지를 위한 구성요소 조립체를 제조하기 위한 방법, 구성요소 조립체를 가지는 패키지를 제조하기 위한 방법, 구성요소 조립체, 및 패키지
PCT/DE2020/100529 WO2020259755A1 (de) 2019-06-24 2020-06-22 Verfahren zum herstellen einer bauteilanordnung für ein package, verfahren zum herstellen eines packages mit einer bauteilanordnung, bauteilanordnung und package
US17/618,920 US20220415645A1 (en) 2019-06-24 2020-06-22 Method for manufacturing a component arrangement for a package, method for manufacturing a package having a component arrangement, a component arrangement and a package
JP2021575462A JP2022539450A (ja) 2019-06-24 2020-06-22 パッケージのためのコンポーネントアレンジメントを製造するための方法、コンポーネントアレンジメントを有するパッケージを製造するための方法、コンポーネントアレンジメント、およびパッケージ
CN202080045827.8A CN114008876A (zh) 2019-06-24 2020-06-22 用于制造封装体的构件装置的方法和用于制造具有构件装置的封装体的方法、构件装置和封装体
EP20737085.9A EP3987326A1 (de) 2019-06-24 2020-06-22 Verfahren zum herstellen einer bauteilanordnung für ein package, verfahren zum herstellen eines packages mit einer bauteilanordnung, bauteilanordnung und package
TW109121743A TW202101619A (zh) 2019-06-24 2020-06-24 封裝結構之組件裝配的製造方法、具一組件裝配之封裝結構的製造方法、以及組件裝配及封裝結構

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019116920.8 2019-06-24
DE102019116920 2019-06-24

Publications (2)

Publication Number Publication Date
DE102019118797A1 true DE102019118797A1 (de) 2020-12-24
DE102019118797B4 DE102019118797B4 (de) 2023-01-12

Family

ID=73654362

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102019118797.4A Active DE102019118797B4 (de) 2019-06-24 2019-07-11 Verfahren zum Herstellen einer Bauteilanordnung für ein Package, Verfahren zum Herstellen eines Packages mit einer Bauteilanordnung, Bauteilanordnung und Package

Country Status (8)

Country Link
US (1) US20220415645A1 (de)
EP (1) EP3987326A1 (de)
JP (1) JP2022539450A (de)
KR (1) KR20220024776A (de)
CN (1) CN114008876A (de)
DE (1) DE102019118797B4 (de)
TW (1) TW202101619A (de)
WO (1) WO2020259755A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022100008B4 (de) 2022-01-03 2024-01-18 Schott Ag Strukturierter Wafer und damit hergestelltes optoelektronisches Bauteil
TWI822634B (zh) * 2022-07-20 2023-11-11 強茂股份有限公司 晶圓級晶片尺寸封裝方法
DE102022121034A1 (de) * 2022-08-19 2024-02-22 Ams-Osram International Gmbh Strahlungsemittierendes bauteil und verfahren zur herstellung eines strahlungsemittierenden bauteils

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100226655A1 (en) * 2007-03-19 2010-09-09 Jeong Soo Kim Self-standing parallel plate beam splitter, method for manufacturing the same, and laser diode package structure using the same
US20170033528A1 (en) * 2015-07-29 2017-02-02 Nichia Corporation Method for manufacturing optical member, method for manufacturing semiconductor laser device, and semiconductor laser device
US20170063034A1 (en) * 2015-08-25 2017-03-02 Nichia Corporation Method for manufacturing an optical member, method for manufacturing a semiconductor laser device and semiconductor laser device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7177331B2 (en) 2004-11-30 2007-02-13 Arima Optoelectronics Corp. Laser diode module with a built-in high-frequency modulation IC
US7470622B2 (en) * 2005-06-17 2008-12-30 Hymite A/S Fabrication and use of polished silicon micro-mirrors
US7481545B2 (en) * 2005-10-13 2009-01-27 Avago Technologies Fiber Ip (Singapore) Pte. Ltd. Method of forming and mounting an angled reflector
US7538413B2 (en) * 2006-12-28 2009-05-26 Micron Technology, Inc. Semiconductor components having through interconnects
TW201108332A (en) * 2009-08-27 2011-03-01 Univ Nat Central Package base structure and related manufacturing method
DE102009042479A1 (de) 2009-09-24 2011-03-31 Msg Lithoglas Ag Verfahren zum Herstellen einer Anordnung mit einem Bauelement auf einem Trägersubstrat und Anordnung sowie Verfahren zum Herstellen eines Halbzeuges und Halbzeug
WO2015126475A1 (en) * 2013-11-07 2015-08-27 Binoptics Corporation Lasers with beam shape and beam direction modification
DE102014114618A1 (de) 2014-10-08 2016-04-14 Osram Opto Semiconductors Gmbh Laserbauelement und Verfahren zu seiner Herstellung
JP6743880B2 (ja) 2016-03-02 2020-08-19 ソニー株式会社 発光装置及び発光装置の製造方法
JP7007560B2 (ja) * 2017-09-28 2022-01-24 日亜化学工業株式会社 光源装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100226655A1 (en) * 2007-03-19 2010-09-09 Jeong Soo Kim Self-standing parallel plate beam splitter, method for manufacturing the same, and laser diode package structure using the same
US20170033528A1 (en) * 2015-07-29 2017-02-02 Nichia Corporation Method for manufacturing optical member, method for manufacturing semiconductor laser device, and semiconductor laser device
US20170063034A1 (en) * 2015-08-25 2017-03-02 Nichia Corporation Method for manufacturing an optical member, method for manufacturing a semiconductor laser device and semiconductor laser device

Also Published As

Publication number Publication date
JP2022539450A (ja) 2022-09-09
WO2020259755A1 (de) 2020-12-30
US20220415645A1 (en) 2022-12-29
CN114008876A (zh) 2022-02-01
DE102019118797B4 (de) 2023-01-12
TW202101619A (zh) 2021-01-01
EP3987326A1 (de) 2022-04-27
KR20220024776A (ko) 2022-03-03

Similar Documents

Publication Publication Date Title
DE102018102961A9 (de) Bauteilanordnung, Package und Package-Anordnung sowie Verfahren zum Herstellen
DE102019118797B4 (de) Verfahren zum Herstellen einer Bauteilanordnung für ein Package, Verfahren zum Herstellen eines Packages mit einer Bauteilanordnung, Bauteilanordnung und Package
EP2481091B1 (de) Herstellungsverfahren eines gehäuses mit einem bauelement in einem hohlraum und entsprechendes gehäuse sowie verfahren zum herstellen eines halbzeuges und halbzeug
DE19527026C2 (de) Optoelektronischer Wandler und Herstellverfahren
EP1419530B1 (de) Verfahren zur herstellung von elektronischen bauelementen
EP2269238B1 (de) Gehäuse für leds mit hoher leistung und verfahren zu dessen herstellung
EP0731509A1 (de) Optoelektronischer Wandler und Herstellverfahren
DE102004045950A1 (de) Gehäuse für ein optoelektronisches Bauelement, optoelektronisches Bauelement und Verfahren zur Herstellung eines optoelektronischen Bauelements
DE102008025491A1 (de) Optoelektronisches Halbleiterbauteil und Leiterplatte
WO2010081445A1 (de) Verfahren zur herstellung eines optoelektronischen bauteils und optoelektronisches bauteil
DE112015004631B4 (de) Laserbauelement und Verfahren zu seiner Herstellung
WO2019076890A1 (de) Licht emittierendes bauelement
WO2021063561A1 (de) Mikromechanisch-optisches bauteil und herstellungsverfahren
DE102013111977A1 (de) Optoelektronischer Halbleiterchip und Anordnung mit mindestens einem solchen optoelektronischen Halbleiterchip
EP1278086A1 (de) Kugellinse und opto-elektronisches Modul mit derselben
WO2022175439A1 (de) Verfahren zur herstellung eines deckelsubstrats, verfahren zur herstellung eines hermetisch gehäusten, optoelektronischen bauelements und hermetisch gehäustes, optoelektronisches bauelement
EP1622205A2 (de) Gehäuse für elektronische Bauteile, die kodierte optische Signale senden und/oder empfangen.
DE102019208373A1 (de) Herstellen eines MEMS-Bauelements mit Glasabdeckung und MEMS-Bauelement
EP1146570A1 (de) Lichtemittierendes Halbleiterbauelement und Verfahren zur Herstellung eines Trägerelements
DE202024101448U1 (de) Optoelektronische bzw. elektro-optische Anordnung mit transparenter Kappe
DE102021203650A1 (de) Verfahren zur Herstellung eines Deckelsubstrats mit optisch aktiven Fensterbereichen, Verfahren zur Herstellung eines hermetisch gehäusten, optoelektronischen Bauelements und hermetisch gehäustes, optoelektronisches Bauelement
WO2022223315A2 (de) Dampfzelleneinrichtung für eine sensorvorrichtung und verfahren zum herstellen einer dampfzelleneinrichtung für eine sensorvorrichtung
DE10222960A1 (de) Verfahren zur Herstellung von elektronischen Bauelementen
WO2021110440A1 (de) Mikromechanisch-optisches bauteil und verfahren zur herstellung eines mikrome-chanisch-optischen bauteils
DE10360212A1 (de) Gassensor

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final