DE102019000614A1 - Sensorchip für die Lichtdetektion - Google Patents

Sensorchip für die Lichtdetektion Download PDF

Info

Publication number
DE102019000614A1
DE102019000614A1 DE102019000614.3A DE102019000614A DE102019000614A1 DE 102019000614 A1 DE102019000614 A1 DE 102019000614A1 DE 102019000614 A DE102019000614 A DE 102019000614A DE 102019000614 A1 DE102019000614 A1 DE 102019000614A1
Authority
DE
Germany
Prior art keywords
sensor chip
coding
resistors
summing
outputs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102019000614.3A
Other languages
English (en)
Inventor
Christoph Lerche
Arne Berneking
Prof. Dr. Joni Shah Nadim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Juelich GmbH
Original Assignee
Forschungszentrum Juelich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Juelich GmbH filed Critical Forschungszentrum Juelich GmbH
Priority to DE102019000614.3A priority Critical patent/DE102019000614A1/de
Priority to US17/422,761 priority patent/US20220128721A1/en
Priority to EP19842862.5A priority patent/EP3918375A1/de
Priority to PCT/DE2019/000331 priority patent/WO2020156600A1/de
Publication of DE102019000614A1 publication Critical patent/DE102019000614A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • G01T1/2914Measurement of spatial distribution of radiation
    • G01T1/2985In depth localisation, e.g. using positron emitters; Tomographic imaging (longitudinal and transverse section imaging; apparatus for radiation diagnosis sequentially in different planes, steroscopic radiation diagnosis)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Applications in the field of nuclear medicine, e.g. in vivo counting
    • G01T1/164Scintigraphy
    • G01T1/1641Static instruments for imaging the distribution of radioactivity in one or two dimensions using one or several scintillating elements; Radio-isotope cameras
    • G01T1/1644Static instruments for imaging the distribution of radioactivity in one or two dimensions using one or several scintillating elements; Radio-isotope cameras using an array of optically separate scintillation elements permitting direct location of scintillations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/248Silicon photomultipliers [SiPM], e.g. an avalanche photodiode [APD] array on a common Si substrate
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/249Measuring radiation intensity with semiconductor detectors specially adapted for use in SPECT or PET
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/037Emission tomography

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Measurement Of Radiation (AREA)

Abstract

Die Erfindung betrifft einen Sensorchip für die Lichtdetektion.Erfindungsgemäß wird ein Sensorchip bereitgstellt, welcher eine Linearkodierung von Signalen aus Mikrozellen mit einer x- und y- Position im Sensorchip durch eine Reihenschaltung von Kodierwiderständen R, R, R, .....Rbzw R, R, R, .....Rin den Auslesekanälen Chund Chbzw. Auslesekanälen Chc und Chverwirklicht.

Description

  • Die Erfindung betrifft einen Sensorchip der für einen Positronen-Emissions-Tomographie-Detektorring geeignet ist.
    Nach dem Stand der Technik werden Positronen-Emissions-Tomographie-Detektorringe eingesetzt um die β+β- Annihilationsstrahlung zu detektieren. Die Ringe bestehen aus Szintillationskristallen an die Sensoren angrenzen, die dazu in der Lage sind die Szintillationsstrahlung zu detektieren. Typische Detektoren sind SiPM (Silizium Photomultiplier). Der Aufbau gestaltet sich derart, dass der Detektorring in der Regel kreisförmig ist, wobei das zu vermessende Objekt, beispielsweise ein Körperteil eines Patienten oder Tieres in das Zentrum des Detektorrings (PET-Ring) gelegt wird. Durch die Verwendung von Radiodiagnostika wird β+β- Annihilationsstrahlung erzeugt, die detektiert werden soll. Die β+β- Annihilationsstrahlung, im Folgenden Vernichtungsstrahlung genannt, trifft auf Szintillationskristalle, die ringförmig um das zu untersuchende Objekt angeordnet sind und erzeugt die Szintillationsstrahlung. Die Szintillationsstrahlung wird wiederum von den SiMP registriert, die sich bezogen auf die Strahlungsquelle, in der konzentrischen Anordnung hinter dem Szintillationskristall befindet. Die SiMP können jedoch auch an anderen Seiten des Szintillationskristalls angeordnet sein, beispielsweise vor dem Szintillationskristall oder seitlich davon. Der Szintillationskristall ist ein dreidimensionaler Körper. Bezogen auf eine Anordnung, bei der das zu untersuchende Objekt vom Zentrum des Detektorrings Vernichtungsstrahlung emittiert, spannt der Querschnitt auf den die Vernichtungsstrahlung auf den Szintillationskristall trifft, eine xy-Ebene auf. Die Tiefe des Szintillationskristalls wird in dieser Nomenklatur als z-Achse bezeichnet. In einer idealisierten Darstellung befindet sich im Zentrum des Detektorrings ein zu untersuchendes Objekt bzw. eine Emissionsquelle für Strahlung einer Energie von 511 keV, die idealerweise senkrecht auf die xy-Ebene des Szintillationskristalls trifft und eine Eindringtiefe entlang der z-Achse des Szintillationskristalls aufweist. Die 511keV Vernichtungsstrahlung löst dann an einem Punkt des Szintillationskristalls entlang der z-Achse eine Szintillation aus, die vom Sensor, beispielsweise einem SiPM, als Signal registriert wird. Ein SiPM ist fähig sogar einzelne Photonen zu detektieren. Wenn das minimal benötigte Licht auf die aktive Sensorfläche trifft, erfährt die SiPM-Mikrozelle einen Durchbruch der Diode Die Mikrozellen werden deshalb auch Single Avalanche Photo Diode, SPAD genannt. Dies generiert einen Strompuls, welcher am Ausgang des Bauteiles gemessen werden kann. Ein sogenannter Quench-Widerstand verhindert, dass die Zelle einen kritischen Strom generiert, der so hoch wird, dass das Bauteil zerstört wird. Der Ausgangsstrom einer SiPM-Mikrozelle ist unabhängig von der Menge Licht, welche den Sensor erreicht und den Durchbruchprozess gestartet hat. Eine SiPM-Mikrozelle ist ein binärer Sensor, welcher detektiert, ob Licht einfällt oder nicht. Um quantitative Informationen über das einfallende Licht zu erhalten, besteht ein SiPM aus einer Vielzahl von Mikrozellen. Eine Mikrozelle besteht dabei aus einer Photodiode und einem Quenchwiderstand. Die Anzahl der durchgebrochenen Zellen gibt dann Informationen über die eingefallene Lichtmenge an.
    Es besteht ein Zusammenhang zwischen der Sensitivität des Szintillationskristalls und dessen Länge entlang der z-Achse. Je dicker (längere Ausdehnung in z-Richtung) der Szintillationskristall dimensioniert ist, desto empfindlicher ist er, da es umso wahrscheinlicher zu einem Szintillationsereignis kommt.
    Bei der Detektion der Vernichtungsstrahlung werden von dem Punkt, an dem die Vernichtungsstrahlung emittiert wird, Strahlen in zwei entgegengesetzte Richtungen emittiert, so dass die Strahlen einen Winkel von 180° ausbilden. Die Linie, die durch diese Strahlen gebildet wird, wird als „line of response“ (LOR) bezeichnet. Entsprechend treffen bei einem ringförmigen Detektor entlang der LOR zwei Strahlen auf Szintillationskristalle, die - bezogen auf die ringförmige Anordnung in deren Zentrum sich die Emissionsquelle befindet - auf gegenüberliegenden Seiten liegen.
    Für Detektoren mit einer Lichtdetektion durch Photodioden in Form von SiPMs an nur einer Seite des Szintillatioskristalls existieren verschiedene etablierte Methoden, um die x- und y-Position eines Events zu bestimmen. Diese beinhalten jedoch nicht die z-Position und somit ist nicht die genaue Position im Szintillationskristall bestimmt, wo das Gammaphoton auf der z-Achse gestoppt und in Licht umgewandelt wurde (Photokonversion). Wird die z-Position nicht mit bestimmt, kommt es bei der Bestimmung der LOR zu Parallaxefehlern, die auf das beschriebene Interaktionstiefenproblem (DOI-Problem) zurückzuführen sind. Das DOI-Problem kommt immer dann zu Stande, wenn die LOR nicht parallel zur z-Achse des Szintillatorkristalls ist. Je weiter sich das Emissionszentrum für eine LOR außerhalb des Zentrums der transaxialen Ebene eines PET-Rings befindet, desto größer wird das Problem. Dadurch kommt es beim Design eines PET-Ringes zu einem Kompromiss zwischen Erhöhung der Sensitivität durch längere Szintillationskristalle und Verringerung der DOI-Fehler durch kürzere Szintillationskristalle. In einigen Bereichen der PET-Anwendung besteht der Bedarf, eng am Untersuchungsobjekt anliegende PET-Ringe (Detektorringe) zu verwenden. Das ist insbesondere in der Medizin der Fall, wenn Patienten gleichzeitig mit einem MRT-Verfahren und einem PET-Verfahren untersucht werden sollen. Dann muss der PET-Ring in die Öffnung der MRT-Scannerröhre passen. Das hat zur Folge, dass der verwendete PET-Ring im Durchmesser klein dimensioniert sein muss, damit er in die Öffnung des MRT-Rings passt. Bei einer kleinen Dimensionierung des PET-Rings besteht jedoch das Problem, dass das zu untersuchende Objekt, beispielsweise ein Körperteil eines Kleintiers oder auch eines Menschen, zwar zentriert angeordnet werden kann, jedoch gemessen an dem Durchmesser des PET-Rings so dimensioniert ist, dass er bis weit in die Randbereiche der Öffnung des PET-Rings reicht. Damit sind jedoch auch Punkte, von denen Vernichtungsstrahlung ausgeht so dicht am PET-Ring positioniert, dass das DOI-Problem erheblich wird.
  • In den vergangenen Jahren wurde insbesondere die Auflösung bei Kleintier-PET-Scannern mit der Verwendung von pixilierten Szintillationskristallblöcken mit immer kleineren Pixelgrößen deutlich verbessert. Dabei ist die Pixelung auf der xy-Ebene verwirklicht, so dass sich im Szintillationskristall Röhren von Pixeln, die in z-Richtung ausgerichtet sind, ausbilden. Eine Verkleinerung der Pixelgröße in der xy-Ebene wurde besonders durch den Bedarf an immer höherer Ortsauflösung in Kleintier-PET-Scannern gefördert, da das untersuchte Objekt sehr klein ist. Mittlerweile hat die Pixelgröße bereits den Submillimeterbereich erreicht. Deswegen kommt es verstärkt zu zwei Problemen, die gelöst werden müssen. Erstens bestehen die pixilierten Kristallblöcke aus Kleber und Reflektorfolie, welche sich zwischen den einzelnen Szintillationskristallen befindet, um so einen pixilierten Block mit optisch gegeneinander isolierten Pixeln aufzubauen. Die Schicht Kleber und Reflektorfolie hat eine ungefähre Dicke von 70µm. Demzufolge haben pixilierte Arrays mit besonders geringem Pixelabstand einen erhöhten Sensitivitätsverlust. Im Falle eines Arrays mit 0.8 cm x 0.8 cm großen Kristallpixeln, wie sie zum Beispiel in [1] verwendet wurden, verringert sich das Verhältnis von Kleber und Folie zu Szintillationskristall deutlich, so dass Kleber und Folie bereits einen Anteil von 29 % ausmachen. Der Szintillationskristallanteil ist folgerichtig auf 71 % reduziert. In den anderen 29 % Volumen können Gammaquanten nur sehr ineffizient gestoppt und in Licht umgewandelt werden. Verwendet man noch kleinere pixilierte Arrays von beispielsweise 0.5 cm x 0.5 cm, reduziert sich der Kristallanteil sogar auf 59 %. Deswegen ist die Erhöhung der Auflösung mit pixilierten Arrays immer an einen Verlust von Sensitivität gebunden. Das zweite Problem mit pixilierten Szintillationskristallarrays ist, dass das emittierte Licht auf einen kleineren Bereich der SiPM-Detektorfläche konzentriert wird. Ein SiPM besteht aus mehreren Mikrozellen, welche, wie oben Beschrieben, als binäre Elemente funktionieren. Je mehr Licht einen SiPM trifft, umso höher ist die Wahrscheinlichkeit, dass zwei oder mehr Lichtquanten auf die gleiche Mikrozelle des SiPM treffen. Diese zusätzlichen Lichtquanten können dann nicht detektiert werden. Konsequenter Weise ist die Wahrscheinlichkeit von Sättigung eines SIPM deutlich höher, wenn pixilierte Szintillationskristallarrays verwendet werden, da diese das Licht stärker auf einen kleinen Bereich des SiPM konzentrieren. Sättigungseffekte führen auch zu einer schlechteren Energieauflösung und Zeitauflösung der Detektoren.
  • Wie eingangs erwähnt, verwenden Detektoren vom Stand der Technik SiPM-basierte Sensortechnologien, um Magnetresonanztomographiekompatibilität (MRI-Kompatibilität) für den Gebrauch in MR/PET Hybridscannern zu ermöglichen. Ein weiteres Problem mit Hybridscannern ist, dass der Platz für PET-Detektoren und zugehörige Elektronik durch den Röhrendurchmesser des Magnetresonanztomographens (MRT) begrenzt ist. Dies trifft insbesondere für Ultra-Hochfeld-Tomographen zu. Als Konsequenz des schmaleren Röhrendurchmessers müssen die PET-Szintillationskristalle so kurz wie möglich sein. Kürzere Szintillationskristalle verringern ebenfalls die Sensitivität. Die bedeutet auch, dass sich durch die Bedingungen des Röhrendurchmessers der PET-Ring näher am Untersuchungsobjekt befindet. Abgesehen von Beschränkungen durch Hybridgeräte versucht man auch auf Grund einer höheren Sensitivität und geringerer Kosten PET-Ringe mit möglichst geringem Durchmesser zu verwenden.
  • Weiterhin ist bekannt, dass viele SiPM-Sensorkonzepte für PET Geräte eine Kodierung der Ausgangskanäle beinhalten, da durch die Erhöhung der Ausgangskanäle die Leistungsaufnahme des PET-Ringes erhört wird. Diese ist allerdings konstruktionsbedingt limitiert. Eine einfache Rechnung verdeutlicht dies. Ein PET-Ring mit einem Durchmesser von 8 cm und einer Länge von 10 cm resultiert in einer Detektoroberfläche von 251 cm2. Wird eine 1-zu-1-Kopplung von Szintillationskristallen und SiPMs mit einer Kristallpixelgröße von 0.8 mm verwendet, werden bereits 39270 Auslesekanäle benötigt, falls jeder Kanal individuell ausgelesen wird.
  • Um höhere Ortsauflösungen zu erzielen, bestehen aktuelle Sensordesigns aus Sensorchips mit kleineren Pixelgrößen (d.h. aus mehreren, unabhängigen und in einer Matrix angeordneten, SiPMs). Hierbei bezeichnet ein Pixel des Sensorchips mehrere individuelle, parallel geschaltete Mikrozellen. Dies führt zu einer deutlichen Erhöhung der Auslesekanäle, welche durch die Leistungsaufnahme, Platz und Datenraten begrenzt sind. Als Konsequenz daraus wurden positionssensitive (PS) Kodierungsmethoden entwickelt, um die Anzahl der Auslesekanäle eines Chips zu reduzieren [1-3, 15]. Das aktuellste entwickelte Konzept heißt PS-SSPM [1] und basiert auf ladungsteilenden PS-SiPMs. Ladungsteilenden PS-SiPM-Mikrozellen detektieren das Licht wie herkömmliche SiPM-Mikrozellen. Jedoch beinhaltet dieses Sensorkonzept ein Widerstandsnetzwerk, welches die generierte Ladung abhängig von der Position und der Kodierung verteilt. Der in [1] vorgestellte Detektoraufbau besteht aus einem pixilierten Kristallarray mit einem Abstand von 0.8 mm.
    Dieses aktuellste Detektorkonzept ermöglicht den Vorteil einer Ausgangskanalreduzierung durch die Kanalkodierung bei gleichzeitiger hoher Detektorarrayauflösung, welche durch den Gebrauch von pixilierten Szintillationskristallarrays mit einem Abstand von weniger als einem Millimeter erreicht wird. Allerdings beinhaltet es keine DOI-Informationsdetektion.
    Ein in [4] publiziertes Konzept beweist die Möglichkeit einen PET-Detektor bestehend aus monolithischen Kristallen und SiPMs aufzubauen. Wie bereits zuvor erwähnt, lösen monolithische Kristalle das Problem von Sensitivitätsverlusten durch den Platzbedarf von Reflektorfolien und zugehörigen Klebern. Außerdem fallen durch das entfallende Zuschneiden und Verkleben der Szintillatorpixel die Produktionskosten von monolithischen Kristallen geringer aus. Die verwendete Dicke der Kristalle beträgt 2mm. Dadurch werden mit dem in [4] verwendeten Aufbau Parallaxefehler vermieden, was jedoch durch die geringe Ausdehnung des Szintillationskristalls in z-Richtung erkauft wird. Gleichzeitig ist die Detektionseffizienz durch die geringe Kristallhöhe jedoch gering.
  • Es gibt verschiedene Möglichkeiten DOI-Informationen zu messen und damit Parallaxefehler zu korrigieren, welche zusätzlich an einer weiteren Kristallseite Licht detektieren. Besonders für SiPMs vom Stand der Technik erhöhen sich die Kosten dadurch immens. Ein Konzept für DOI-Detektion, welches nur an einer Kristallseite Licht detektiert und dabei monolithische Kristalle verwendet, ist in [5] publiziert und in [6] patentiert. Es verwendet das bekannte Prinzip, dass die Lichtverteilung des Kristalls abhängig von der DOI ist. Das verwendete Detektorkonzept ist mit monolithischen Kristallen an positionssensitive Photomultiplier (PMT) H8500 von Hamamatsu gekoppelt. Außerdem wird ein Widerstandsnetzwerk verwendet, welches Positionskodierung und damit auch Ausgangskanalreduzierung ermöglicht. Dabei wird die Standardabweichung der Lichtverteilung verwendet, um die DOI abzuschätzen. Zur Berechnung der Standardabweichung benötigt man das Moment der 1. und 2. Ordnung der Lichtverteilung. Das Moment 1. Ordnung ist bereits durch die Linearkodierung der Ausgangskanäle gegeben. Zur Bestimmung des Moments 2. Ordnung ist ein Summennetzwerk entwickelt worden und in das Widerstandsnetzwerk integriert
  • Einen Überblick von PET-Detektoren mit DOI-Detektion ist in [7] zusammengefasst. Beschreibungen und Ergebnisse von Kleintier-PET- und MR/PET-Hybridscannern, welche in den letzten Jahren entwickelt worden sind, befinden sich in [8-11].
  • Detektorkonzepte, welche auf aktueller SiPM-basierter Technologie bestehen und eine Positionskodierung zur Kanalreduktion enthalten, beinhalten keine DOI-Detektion. Deswegen beinhalten PET-Ringe, die mit diesen Detektoren aufgebaut sind, Parallaxefehler in den rekonstruierten Bildern. Darüber hinaus verwenden die meisten Szintillationsdetektoren pixilierten Szinitllatorkristallarrays. Dieses führt wie oben beschrieben zu einem Verlust an Sensitivität bedingt durch die Reflektorfolie und dem Kleber zwischen den Kristallen des Arrays. Aufgrund der fehlenden DOI-Information ist man bei der dicke der Kristalle begrenzt. Eine Erhöhung der Sensitivität durch dickere Kristalle geht einher mit einem Verlust an Ortsauflösung bedingt durch fehlende DOI-Information und die daraus resultierenden Parallaxefehler. Die in [7] genannten DOI-Konzepte für pixilierte Kristalle sind prinzipiell auch mit beliebig kleinen Szinitllatorkristallen realisierbar, die erwähnten Nachteile wie Sättigungseffekte und Sensitivtätsverlust gelten aber auch für diese Konzepte.
  • Aktuell sind SiPM-Sensoren eine der teuersten Komponenten eines PET-Rings.
  • Das Konzept, welches in [5, 6] realisiert ist, verwendet positionssensitive PMT, welche nicht in starken magnetischen Feldern verwendet werden können. Dadurch sind sie nicht MRTkompatibel. Das Konzept könnte mit MRT-kompatiblen Avalanche Photodioden (APD) realisiert werden, was bis heute noch nicht geschehen ist. APDs sind Photodioden, welche durch Anlegen einer geeigneten Bias Spannung im proportionalen Arbeitsbereich betrieben werden. Ein von einem optischen Photon generiertes Ladungsträgerpaar erzeugt hierbei durch wiederholte sekundäre Ionisierung weitere Ladungsträgerpaare (Ladungsträgerlawinen). Der resultierende Photostrom hängt von der Lichtintensität ab, wie es bei PMTs der Fall ist. Trotzdem ist eine Realisierung dieses Konzeptes auf SiPM-Mikrozellenebene eine andere Herausforderung, da SiPM-Mikrozellen binäre Sensoren sind und in einem anderen Modus, dem sogenannten Geiger-Modus betrieben werden.
  • Die Möglichkeit von DOI-Detektion mit positionssensitiven PMTs ist in [10, 11] bewiesen worden.
  • Forschungsergebnisse mit Detektoren bestehend aus SiPMs und monolithischen Kristallen sind in [12] publiziert. In diesem Ansatz werden SiPMs auf der gleichen Art und Weise benutzt, wie das ursprüngliche Konzept für PMTs und APDs in [5, 6] publiziert wurde.
  • Die Deutschen Patentanmeldungen 10 2016 006 056, 10 2016 014 113 und 10 2016 008 904 offenbaren Sensorchips, mit denen das DOI Problem gelöst oder vermindert werden kann.
  • Bei dem in der Deutschen Patentanmeldung 10 2016 006 056 offenbarten Sensorchip müssen die Kodierwiderstände und die Widerstände, welche für den Stromteiler verwendet werden, signifikant kleiner sein, also mindestens um den Faktor 100, besser 1000 kleiner sein, als die Summierwiderstände, welche wiederum signifikant kleiner sein müssen als die Quenchwiderstände also um den Faktor 100, besser 1000. Dadurch wird wegen des begrenzten verfügbaren Platzes auf dem Sensorchip die Anzahl der zu kodierenden Mikrozellenpositionen begrenzt. Der dort offenbarte Sensorchip basiert jedoch darauf möglichst viele, einzelne Mikrozellen zu kodieren. Dies sollte darüber hinaus für eine möglichst große photosensitive Sensorfläche (d.h. große Ausdehnung in x- und/oder y- Richtung) gewährleistet sein. Weiterhin werden pro x- und/oder y- Richtung jeweils zwei Kodierwiderstände benötigt. Darüber hinaus wird die Differenz bzw. der Unterschied in der Größe zu den Nachbarwiderständen immer geringer, je mehr Mikrozellenpositionen entlang der x- bzw. y- Richtung kodiert werden müssen. Dies führt zu Limitierungen des mit den Sensorchips durchgeführten Kodierverfahrens. Genauso kann dieses Verfahren durch technische Produktionslimitierung begrenzt werden, wo es nicht mehr möglich ist, Widerstandsgrößen präzise zu integrieren bzw. es komplizierter ist, Widerstände vieler verschiedener Werte zu realisieren. Die Quench- und Summierwiderstände haben jeweils die gleiche Werte, im Gegensatz zu den Kodierwiderständen, was mit gängigen Technologien zur IC (Integrated circuits = integrierte Schaltungen) Herstellung leichter zu realisieren ist.
    Ein weiterer Nachteil ist, dass produzierte ICs mit gleicher Kodierung von Kodierwiderständen nicht miteinander und deren Kanäle zusammengefasst werden können, ohne die Positionskodierung und die Wechselwirkungstiefenkodierung unwiederbringlich zu deaktivieren. Ein zusammenschalten mehrere Sensorchips mit kleiner Sensorfläche zu einer größeren Einheit mit großer Sensorflächer bei Beibehaltung der korrekten Positionskodierung und die Wechselwirkungstiefenkodierung ist sehr Vorteilhaft, da die Produktionsausbeute pro Flächeneinheit bei Sensorschips mit kleiner Fläche größer ist als bei Sensorschips mit großer Fläche. Dies wirkt sich sehr vorteilhaft auf die Produktionsstückkosten aus. Weiterhin nehmen die Widerstände auf dem IC relativ viel Platz ein, weswegen verfügbare der Platz für Photodioden verringert ist, was zu einer Reduzierung der Photosensitiven Fläche und somit der Effizienz der Photodetektion (Photodetection Efficiency (PDE) führt.
  • Es ist die Aufgabe der Erfindung einen Sensorchip zur Verfügung zu stellen, der die Nachteile des Standes der Technik überwindet mit dem der Parallaxenfehler bei der Bestimmung einer LOR verringert werden kann. Es soll ein Sensorchip zur Verfügung gestellt werden, der die Verwendung von Szintillations-Einkristallen für die Detektion von Signalen bei der Positronen-Emissions-Tomographie ermöglicht, wobei das DOI-Problem vermieden werden kann, indem der Parallaxenfehler bei der Bestimmung der LOR verringert wird.
    Die Empfindlichkeit und die Auflösung des Sensorchips sollen verbessert werden. Weiterhin soll der Sensorchip geeignet sein zusammen mit einem MRT insbesondere bei hohen Magnetfeldern und geringen Magnetinnendurchmessern betrieben zu werden. Die Genauigkeit von klein dimensionierten PET-Ringen bzw. bei PET-Ringen, die eng am Untersuchungsobjekt anliegen, soll verbessert werden. Der Platzbedarf durch die der Messanordnung zugehörige Elektronik soll verringert werden. Die Kosten für die Vorrichtung sollen verringert werden. Der Sensorchip soll in seiner Anwendung nicht auf die Verwendung in der PET beschränkt sein, sondern soll generell für Szintillations-Einkristalle verwendet werden können. Weiterhin soll die Anzahl der Mikrozellenpositionen, die kodiert werden sollen, erhöht werden. Eine Kodierung über eine größere Anzahl von Mikrozellen als nach dem Stand der Technik soll ermöglicht werden, wobei die Limitierung durch auf dem IC realisierbare Widerstandswerte vermindert oder aufgehoben werden soll. Die von den Widerständen benötigte Fläche soll verringert werden, so dass auf dem Chip mehr Platz für Mikrozellen bzw. SPADs vorhanden ist. Aufgabe der Erfindung ist es auch gleichzeitig sowohl eine lineare Kodierung der Mikrozellenströme als auch eine quadratische Kodierung der von den Mikrozellenströme erzeugten Spannungsabfällen entsprechend ihrer xy Position zu erreichen, wobei die Kodierung insbesondere über die Grenzen eines individuellen Sensorchips erreicht werden soll um eine erfolgreiche Bestimmung der Position und Tiefe der Detektionsposition im monolithischen Kristall des Szintillationsdetektors zu erreichen, wenn monolithische Kristalle verwendet werden, die größer als ein einzelner Sensorchip sind, und deshalb mehrere Sensorchips zum registrieren des Szintillationslichtes erforderlich sind. Der Sensorchip soll eine Lichtdetektion, insbesondre im IR-, im visuellen und im UV-Bereich ermöglichen.
  • Ausgehend von dem Oberbegriff des Anspruchs 1 und des nebengeordneten Anspruchs wird die Aufgabe erfindungsgemäß gelöst mit den im kennzeichnenden Teil des Anspruchs 1 und des nebengeordneten Anspruchs angegebenen Merkmalen.
  • Die eingangs genannten Aufgaben werden gelöst.
    Mit dem erfindungsgemäßen Sensorchip ist es nunmehr möglich, Parallaxenfehler bei der Bestimmung der LOR's, insbesondere bei Szintillations-Einkristallen, zu verringern. Die Empfindlichkeit und die Auflösung der Messmethode und der Vorrichtung werden verbessert. Der Einsatz von in z-Richtung längeren Szintillations-Einkristallen soll ermöglicht werden. Der Detektor kann zusammen mit einem MRT-Gerät betrieben werden. Insbesondere bei Geräten mit kleiner Dimensionierung oder wenn der PET-Ring eng am Untersuchungsobjekt anliegt wird der Parallaxenfehler verringert. Es wird Platz für die zugehörige Elektronik und Kosten eingespart. Der erfindungsgemäße Sensorchip erreicht eine sehr hohe Detailgenauigkeit. Denn die Anzahl der Abtastungen der Lichtverteilungsfunktion wird dadurch signifikant erhöht, da sogar eine Abtastung auf Mikrozellebene möglich ist. Dadurch erhöht sich die Granularität, welche für die Bestimmung des 2. Momentes verfügbar ist, um einen Faktor, der abhängig von den später beschriebenen Implementierungsmethoden bis zu 160 oder höher gegenüber herkömmlichen SiPM's, Photomultipliern bzw. Avalanche-Dioden betragen kann. Dies führt zu einer genaueren Bestimmung des Moments 2.Ordnung führt. Weiterhin wird die Anzahl der Mikrozellenpositionen, die kodiert werden sollen, erhöht. Eine Kodierung über eine größere Fläche von Mikrozellen als nach dem Stand der Technik wird ermöglicht, wobei keine Limitierung von Widerstandsgrößen vorliegt oder diese vermindert wird. Der Platz, den die Widerstände auf dem Chip einnehmen, wird verringert, weswegen verfügbare der Platz für Photodioden vergrößert wird. Es können Sensorchips mit größeren photosensitiven Flächen (größere Anzahl von Mikrozellen) kodiert werden. Eine Linearkodierung der Ströme und eine quadratische Kodierung der Spannungsabfälle sind über mehrere Sensorchips möglich. Es wird eine Lichtdetektion im IR-, im visuellen und im UV-Bereich ermöglicht.
  • Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.
  • Im Folgenden wird die Erfindung in ihrer allgemeinen Form beschrieben, ohne dass dies einschränkend auszulegen ist.
  • Erfindungsgemäß wird bei einem Sensorchip eine Linearkodierung von Strömen in einer Ausleserichtung x oder in zwei Ausleserichtungen x und y vorgenommen, wobei die Linearkodierung in x- und/oder y-Richtung durch eine Reihenschaltung von Kodierwiderständen erfolgt.
    Dabei kann das linear-kodierte Signal für die x-Richtung an den Ausgängen ChA, und ChB, und für die y-Richtung an den Ausgängen ChC, und ChD, abgegriffen werden. Hierbei ergibt sich annährend lineare, ansteigende oder absteigende Abhängigkeiten zwischen den Signalen am Ausgang und der x-y-Position an welcher eine Signalinjektion durch die Mikrozellen in das Kodiernetzwerk erfolgt.
  • Das Verfahren kann mit allen Photosensoren, die eine Ortskodierung beinhalten, wobei diese möglichst einer Linearkodierung entsprechen soll, durchgeführt werden.
    Hierbei muss sich das Ausgangssignal eines Kanals oder einer Kombination aus Kanälen möglichst linear aufsteigend mit der x- oder y Position ändern, während das Ausgangssignal eines anderen Kanals oder einer Kombination aus Kanälen sich möglichst linear absteigend mit der x- oder y- Position ändert. Unter einer Linearkodierung im Sinne der Erfindung ist jede Kodierung zu verstehen, die der Formel 1 entspricht. Hierbei ist Q1 die Ladung der über die e-Position aufsteigenden Ausgangskanäle und Q2 die Ladung der über die e-Position absteigenden Ausgangskanäle. Die Größe e bezeichnet die Kodierungsrichtung, also x oder y, c1-6 bezeichnen Konstanten. Q 1 ( e ) = c 1 e c 2 + c 3 Q 2 ( e ) = c 4 e c 5 + c 6 c 1 = c o n s t . ( 0, ) c 4 = c o n s t . ( ,0 ) c 3 , c 6 = c o n s t . ( , ) 0,5 < c 2 , c 5 < 1,5
    Figure DE102019000614A1_0001
  • Die Klammern für die Ausdrücke c1, c4, c3 und c6 in Formel 1 sind offene Intervalle im mathematischen Sinne.
    Formel 1 nimmt Rücksicht darauf, dass Ausführungsformen, die nicht den Anforderungen an eine exakte Linearität genügen, also nur annähernd lineare Kodierungen erzeugen, noch geeignet sein können, die erfindungsgemäße Lehre zu verwirklichen. Im Idealfall ist die Linearkodierung exakt linear. Für den Fall der exakten Linearität sind c2 =1 und c5 =1.
  • In Abhängigkeit von der Position der Mikrozelle wird der Photostrom auf die Ausgänge verteilt und mündet in Positionen innerhalb der Reihenschaltungen, welche eine der zu kodierenden Position entsprechende Anzahl von Kodierwiderständen Rh in Richtungen x bzw. Rv in y-Richtung haben. Abhängig von dieser Position werden die Photoströme auf die Ausgänge ChA, ChB, Chc und ChD verteilt, da abhängig von der Position mehr oder weniger Widerstände zwischen der Mikrozellenposition und den entsprechenden Ausgängen liegen und somit der Gesamtwiderstand zu den entsprechenden Ausgängen mit der Position variiert. Hierbei sind für N x-Positionen nur N+1 gleich große Widerstände nötig bzw. für M y-Positionen nur M+1 gleich große Widerstände nötig.
  • Im Folgenden werden Begriffe betreffend den Widerstand definiert.
  • Unter Widerstandswert im Sinne der Erfindung ist der nominale Wert des Widerstandes in Ohm zu verstehen. Bei Widerstandsmaterialen mit gleicher elektrischer Leitfähigkeit sind die Widerstandswerte bei gleicher Widerstandsgeometrie gleich groß. Bei Widerstandswerten mit unterschiedlicher elektrischer Leitfähigkeit sind die Widerstandswerte bei gleicher Widestansgeometrie unterschiedlich groß. Bei Widerstandsmaterialien gleicher Leitfähigkeit und unterschiedlicher Widerstandsgeometrie sind die Widerstandswerte auch unterschiedlich groß.
  • Der Begriff Widerstand bezeichnet den physischen Widerstand als körperlichen Gegenstand der funktionell bezeichnet ist, ohne dass der Widerstandswert damit nominal festgelegt werden soll.
  • Der Sensorchip weist erfindungsgemäß eine Vielzahl von Mikrozellen auf, die sich dadurch auszeichnen, dass jeder Mikrozelle eine eigene (x,y)-Position zugeordnet wird. Eine Mikrozelle im Sinne der Erfindung besteht aus mindestens einer Photodiode Dn.m, und einem Stromteiler Sq,nm, mit Ausgängen Sq,v,nm, für die y-Richtung und Ausgängen Sq,h,nm für die x-Richtung, mit Mitteln zum Quenchen, beispielsweise Quenchwiderständen Rq,h,nm und Rq,v,nm der den generierten Photostrom der Dioden in zwei gleich große Anteile teilt. Alternativ können auch mehre Photodioden Dn,m ... Dn+l,m+k, mit zugehörigen Stromteilern und Quenchwiderständen zu einer Mikrozelle zusammengefasst werden, wobei I und k beliebige und dem Bedarf entsprechende ganze Zahlen sind. (2)
  • In den genannten Abkürzungen für die Stromteiler S und die Quenchwiderstände Rq bedeutet die Indizierung h, dass die entsprechenden Signalbusse in den Ausgang ChA, ChB, für die Indentifizierung der x Position, führt und dass die Indizierung v, dass die entsprechenden Signalbusse in den Ausgang Chc, ChD für die Identifizierung der y Position führt.
  • Als Photodioden können insbesondere Single Avalanche Photodiods (SPAD's) verwendet werden, wobei sich die Quenchwiderstände gleichzeitig die Funktion des Stromteilers übernehmen.
  • Anstelle eines Quenchwiderstandes kann der Quenchprozess auch durch aktives Quenchen, mit den dem Fachmann bekannten Methoden bzw. Mitteln zum Quenchen, z. B. unter Verwendung eines Transistors und eines Komparators, eingeleitet werden. In der folgenden Beschreibung wird in den offenbarten Ausführungsformen ein Quenchwiderstand Rq beziehungsweise ein mit den Quenchwiderständen Rq„v,nm und Rq,h,nm realisierter Stromteiler S offenbart. Jedoch kann bei allen Ausführungsformen auch ein anderes äquivalentes Mittel zum Quenchen, beispielsweise ein Transistor oder Komparator eingesetzt werden, so dass die Offenbarung nicht auf die Verwendung eines Quenchwiderstandes beschränkt ist.
  • Die Mikrozellen sind in einem Raster angeordnet, bei dem die Mikrozellen in Reihen in x-Richtung und in y-Richtung angeordnet sind. Dabei sind die Mikrozellen in Reihen bzw. Spalten vorzugsweise parallel zur der x- Achse und der y-Achse angeordnet. Typischerweise sind 10, 50,100 oder 1000 Mikrozellen in jeweils der x-Richtung und der y-Richtung angeordnet. Die Anordnung enthält dann N Spalten in x-Richtung xn = x1, x2, x3, ....xN mit n = 1, 2, ... N und M Reihen in y-Richtung ym = y1, y2, y3.... yM mit m = 1, 2, ....M. Darüberhinaus sind N und M jeweils auch die Anzahl der Mikrozellen in x und y Richtung. Die Richtungen x und y sind vorzugsweise orthogonal zueinander angeordnet, sie können jedoch auch in einem Winkel angeordnet sein, der von 90° abweicht, so dass ein Rautenmuster entsteht.
    Diese Anordnung bildet einen Block. Ein Sensorchip kann eine Mehrzahl von Blöcken aufweisen, die in einem Raster angeordnet sind. Dabei kann ein Block auf dem gleichen Substrat (oder Waver, oder Chip) untergebracht werden, oder auf unterschiedlichen.
  • Die Ausgänge der mit den Quenchwiderständen realisierten Stromteiler Sq,nm, sind über die Verbindungen Ch,nm und Cv,nm mit Signalbussen Ns,h,n für die x- und Signalbussen Ns,v,m für die y-Richtung verbunden. Die Signalbusse Ns.h.n münden in die Knotenpunkten Kh,n (n = 1, 2, 3 .....N) und sind über Reihenschaltung von Kodierwiderständen Rh,0, Rh,1, ... Rh,N, mit den Ausgängen ChA, ChB verbunden. Die Signalbusse Ns,v,m münden an den Knotenpunkten Kv,m (m = 1, 2, 3 .....M) und sind über Reihenschaltung von Kodierwiderständen Rv,0, Rv,1, ... Rv,NM, mit den Ausgängen Chc, ChD verbunden.
    Darüber hinaus kann über Kontakte des Sensorchips eine elektrische Verbindung der Signalbusse Ns,v,0 ... Ns,v,m und Ns,h,0 ... Ns,h,N zwischen verschiedenen Sensorchips und mit externen elektronischen oder elektrischen Schaltungen ermöglicht werden.
  • Der 1. Ausgang aller Stromteiler in derselben Spalte n des Sensorchips sind mit dem gleichen Signalbus Ns,h,n des Sensorchips verbunden. Somit gelangen alle Signale aus einer Spalte des Sensorchips in denselben Signalbus der außerdem an dem Knotenpunkt Kh,n in die Reihenschaltung von Kodierwiderständen Rh,0, Rh,1, ... Rh,N, mündet.
  • Der 2. Ausgang aller Stromteiler in derselben Reihe h des Sensorchips sind mit dem gleichen Signalbus Ns,v,m des Sensorchips verbunden. Somit gelangen alle Signale aus einer Spalte des Sensorchips in denselben Signalbus der außerdem an dem Knotenpunkt Kv,m in die Reihenschaltung von Kodierwiderständen Rh,0, Rv,1, ... Rv,M, mündet.
  • Mit der Reihenschaltung aus den Kodierwiderständen Rh,0, Rh,1, ... Rh,N, wird die Linearkodierung der Ströme in horizontaler Ausleserichtung (d.h. x-Richtung) gewährleistet. Mit der Reihenschaltung aus den Kodierwiderständen Rv,0, Rv,1, ... Rv,M, wird die Linearkodierung der Ströme in vertikaler Ausleserichtung (d.h. y-Richtung) gewährleistet.
  • Um eine lineare Kodierung der Ströme in x-Richtung zu erwirken, müssen die Kodierwidersdtandswerte Rh,1, ... Rh,N-1 den gleichen Wert Rh haben. Um eine lineare Kodierung der Ströme in y-Richtung zu erwirken, müssen die Kodierwiderstandswerte Rv,1, ... Rv,M-1 den gleichen Wert Rv haben.
  • Ist die Anzahl der Pixel in x-Richtung und y-Richtung verschieden, so können sich die Kodierwiderstandswerte für die x-Richtung und die y-Richtung unterschieden.
    Die Anzahl der Kodierwiderstände N für Rh und M für Rv pro Sensorchip beträgt mindestens zwei, und kann Werte von 0,001 Ohm bis 100 MOhm annehmen. Die Anzahl ist dabei eher durch praktische Gegebenheiten begrenzt.
  • Die Kodierwiderstandswerte für Kodierung ChA und ChB der x-Richtung sowie Chc und ChD entsprechend der y-Richtung können verschieden groß sein. Dies kann beispielsweise vorteilhaft sein, wenn in x- und y- Richtung unterschiedliche viele Mikrozellen vorhanden sind, so dass der Sensorchip oder die Mikrozellen von der quadratischen Form abweichen. In diesem Fall können die Kodierwiderstandswerte, die die größere Anzahl von Pixel kodieren, kleiner sein als in die entlang der anderen Richtung, in der weniger viele Pixelpostionen zu kodieren sind. In einer Ausführungsform können die Summen der Kodierwiderstandswerte für die beiden Richtungen x und y gleich sein.
  • Um eine Verbindung mehrerer Sensorchips untereinander zu ermöglichen, müssen die Widerstandswerte Rh,0 und Rh,N den gleichen Wert Rh/2 haben. Um eine Verbindung mehrerer Sensorchips untereinander zu ermöglichen, müssen die Widerstandswerte Rv,o und Rv,M den gleichen Wert Rv/2 haben. Ist die Verbindung hergestellt, so summieren sich die beiden Widerstände Rh/2 bzw. Rv/2 zu einem Widerstand Rh bzw. Rv auf.
    Insgesamt sind für N bzw. M x- bzw. y- Positionen nur N+1 bzw. M+1 Kodierwiderstände erforderlich.
  • Der X und Y Mittelwert der mit der aktiven Sensorfläche des Sensorchip detektierten Lichtverteilung kann gemäß X = ( B A ) / ( A + B )
    Figure DE102019000614A1_0002
    Y = ( C D ) / ( C + D )  berechnet werden .
    Figure DE102019000614A1_0003
    Die Gesamtlichtmenge E bestimmt sich zu E = A + B + C + D .
    Figure DE102019000614A1_0004
    A, B, C, D sind die Signale, welche über die Ausgänge ChA, ChB, Chc und ChD abgegriffen werden können. Sie sind im allgemeinen Ströme, es können Ladungen sein, wenn die Ströme durch entsprechende elektronische Bauteile über Zeitintervalle integriert werden.
  • Bei der Verwendung des Sensorchips mit einem Szintillator ist <E> proportional zur Energie des detektierten Gammaphotons. <X> und <Y> liefern nach Kalibrierung die x und y - Positionen der Fotokonversion innerhalb der aktiven Sensorfläche des Sensorchips.
  • Um die aktive Sensorfläche des Sensorchips zu vergrößern, kann der Sensorchip vergrößert werden.
    Alternativ können identische und auf gleiche Weise produzierte Chips problemlos zusammengefasst werden. Dabei werden die die Ausgangskanäle ChA, ChB, Chc und ChD der verschiedenen Sensorchips so miteinander verbunden, dass jeweils nur zwei Kanäle an den beiden Enden des Chips je Kodierrichtung ausgelesen werden müssen. (4) Dadurch wird es möglich, über noch größere Flächen zu kodieren, da die zu kodierende Fläche nicht mehr durch die Kodierwiderstandsgrößen limitiert ist.
  • Für jede Pixelspalte x und/oder Pixelreihe y der beiden Ausführungsformen werden die Potentiale an den Signalbussen NS,h,1, NS,h,2... NS,h,N bzw. NS,v,1, NS,v,2... Ns,v,m über die Summierwiderstände RS,h,n bzw. RS.v.m, abgegriffen und in ein Summiernetzwerk NS,h bzw. NS,v mit nachgeschalteter Summierverstärker Oh bzw. Ov mit den Ausgangskanälen ChE und ChF geführt. Dabei ist eine Ausführungsform möglich, bei der die Signalbusse NS,h,1, NS,h,2, ... NS,h,N für die x-Richtung und/oder die Signalbusse NS,v,1, NS,v,2,... Ns,v,m für die y-Richtung an ein externe Summierschaltung bestehend aus Summiernetzwerken NS,h und NS,v, nachgeschalteter Summierverstärkern Oh und Ov mit den Ausgangskanälen ChE und ChF angeschlossen sind. Die Widerstandswerte für die Summierwiderstände RS,h,n bzw. RS,v,m sind jeweils in einem Summiernetzwerk NS,h bzw. NS,v gleich groß. Die Summierwiderstandswerte können zwischen 1 Ω bis 100 MΩ liegen. Die Summierwiderstände RS,h,n bzw. RS,v,m müssen dabei so groß sein, dass der generierte Photostrom von den Mikrozellen nicht wesentlich beeinflusst wird, jedoch klein genug, um nicht das Quenchverhalten der Mikrozellen zu beeinflussen. Die Summierwiderstände RS,h,n bzw. RS,v,m sind über die Signalbusse der Summiernetzwerke NS,h bzw. NS,v zusammengeführt. Somit werden die Signale aufsummiert. Die Summierverstärker Oh und/oder Ov können einen Operationsverstärker OPh bzw. OPv, beinhalten, der geerdet ist und eine negative Rückkopplung mit einem Widerstand RS,h bzw. RS,v besitzt. Über das Verhältnis von RS,h/RS,h,n bzw. RS,v/RS,v,m kann die Verstärkung des Signals der Ausgangskanäle ChE und ChF eingestellt werden. Die Summierschaltung bestehend aus Summiernetzwerken NS,h und NS,v, nachgeschalteter Summierverstärkern Oh und Ov können in den Sensorchip intergiert sein oder es können sich jeweils Teile davon weniger bevorzugt außerhalb des Sensorchips befinden. Insbesondere können die Widerstände RS,h,1, ..., RS,h,n und RS,v,1, ..., RS,v,m auf den Sensorchip integriert werden, so dass nur die Summiernetzwerke NS,h und NS,v als Signalbusse aus dem betreffenden Sensorchips herausgeführt werden müss en und mit externen Summierverstärkern Oh und/oder Ov verbunden werden können. Befindet sich die gesamte Summierschaltung bestehend aus Summiernetzwerken NS,h und NS,v, nachgeschalteter Summierverstärkern Oh und Ov außerhalb des Sensorchips, so hat dies zur Folge, dass alle Netze NS,h,n und/oder NS,v,m als Signalbusse aus dem Sensorchip herausgeführt werden, was zu einer sehr hohen Anzahl von Ausgangskanälen führt. Sind die Summierwiderstände RS,h,n und/oder RS,v,m in dem Sensorchip integriert, müssen nur die Summiernetzwerke NS,h und/oder NS,v aus dem Sensorchip herausgeführt werden, was mit jeweils einem Ausgangskanal pro Netzwerk realisiert werden kann. Es ist daher zum Ermöglichen der Vernetzung mehrerer Sensorchips bevorzugt, nicht die komplette Summierschaltung bestehend aus Summiernetzwerken NS,h und NS,v, nachgeschalteter Summierverstärkern Oh und Ov in den Sensorchip zu integrieren und die Signalbusse NS,h,1, NS,h,2 , ... , NS,h,N und NS,v,1 , NS,v,2 , ... NS,v,M aus dem Sensorchip herauszuführen, sondern nur die Widerstände RS,h,1, ..., RS,h,n und RS,v,1, ..., RS,v,m auf den Sensorchip zu integrieren und nur die Summiernetzwerke NS,h und NS,v aus dem betreffenden Sensorchips herauszuführen.
  • Die Potentiale Φ(NS,h,n) bzw. Φ (NS,v,m) an den Signalbussen NS,h,n und NS,v,m sollten jeweils möglichst genau eine quadratisch Abhängigkeit der Position der Photoströme der Mikrozellen in x- und y-Richtung aufweisen. Dies ist erforderlich um das Moment 2. Ordnung der Signalverteilung entlang der x-Richtung und entlang der y-Richtung zu erhalten. Dies ist annäherungsweise gewährleistet, wenn die Widerstandswerte der Summierwiderstände RS,h,1, ..., RS,h,n und RS,v,1, ..., RS,v,m deutlich größer (> Faktor 10) als die Widerstandswerte der Widerstände Rh,0, Rh,1, ... Rh,N, und Rv,0, Rv,1, ... Rv,M sind. In diesem Fall ist der Strom, welcher über die Widerstände RS,h,1, ..., RS,h,N und RS,v,1, ..., RS,v,m fließt vernachlässigbar zum Strom welcher über die Reihenschaltungen Rh,0, Rh,1, ... Rh,N, und Rv,0, Rv,1, ... Rv,M fließt. Die Ausgänge ChA, ChB, Chc und ChD werden vorzugsweise mit den Eingängen von externen (nicht auf dem Chip integrierten) Verstärker mit sehr geringer Eingangsimpednaz verbunden, weshalb das Potential der Ausgänge ChA, ChB, Chc und ChD bezogen auf die Knotenpunkte Kh,1, ..., Kh,N und Kv,1, ... , Kv,M 0 ist, d.h. auf Masse liegt. Dann ergibt sich für den Gesamtwiderstand, welcher der Strom auf dem Signalbuss NS,h,i an i-ter Position entlang der x-Richtung sieht: R K h , i = ( l = 0 l = 1 R h , l ) ( l = i + 1 l = N R h , l ) l = 0 l = N R h , l = ( i + 1 2 ) ( N i + 1 2 ) R h 2 N R h
    Figure DE102019000614A1_0005
  • Dieser hängt quadratisch von der Position i ab. Wegen des Ohm'schen Gesetzes U=R*I sind dann auch die Potentiale an den Knotenpunkten Kh,i, welche sich aus dem Produkt von Rk h,l und den von den mit dem Signalbuss NS,h,i verbundenen Mikrozellen kommenden Strom ergeben, quadratisch in der Position kodiert. Wie in [5] beschrieben, bildet die Reihenschaltung Rh,0, Rh,1, ... Rh,N einen Spannungsteiler für den in den Knotenpunkten Kh,l injizierten Strom, welcher zu zusätzliche aufsummierten Spannungsbeiträgen führt, welche letztendlich aber nur als von i unabhängiger Proportionalitätsfaktor N/2. Äquivalente Betrachtungen gelten für NS,v,l an i-ter Position entlang der y-Richtung. Bei Verwendung der Widerstandswerte Rh,0= Rh,N= Rh/2 und Rv,0= Rv,M= Rv/2 und Rh,i,..., Rh,N-1= Rh und Rv,i,..., Rv,M-1= Rv stellt sich ein quadratischer Gesamtwiderstandswert an den Knotenpunkten Kh,1, ... , Kh,N und Kv,1 , ... , Kv,M und damit die benötigte quadratisch verlaufende Potentialverteilung in den Signalbussen NS,v,m und/oder NS,h,n automatisch ein. Die daraus resultierenden Signale an den Ausgängen ChE, ChF der Summiernetzwerke Oh und Ov sind proportional zur Breite der Lichtverteilung, welche auf dem Sensorchip auftrifft. Die Breite der Lichtverteilung korreliert stark mit der wechselwirkungstiefe des Gammaphotons und erlaubt deshalb nach Kalibrierung der Schaltungen in die Bestimmung derselben. Gleichzeitig ist die lineare Kodierung für den Photostrom gegeben, welcher über die Ausgängen ChA, ChB, Chc und ChD eine Bestimmung der Wechselwirkungspostion in der x-y Ebene erlaubt. Die Potentiale Φ(NS,h,n) bzw. Φ (NS,v,m) an den Signalbussen NS,h,n und Ns,v,m können durch entsprechende zusätzliche Widerstände oder durch modifizierte Kodierwiderstände auch von einer exakten quadratischen Kodierung abweichen. Hierbei muss für die resultierende Potentialkodierung (Φ2n)k mit n= 1, 2, 3... und 0,5 < k < 1,5 gelten.
  • Die Implementierung der beschrieben linearen und quadratischen Kodierung mithilfe der Reihenschaltung Rh,0, Rh,1, ... Rh,N und Rv,0, Rv,1, ... Rv,M, der Herausführung der Signalbusse NS,h,1, NS,h,2... NS,h,N und NS,v,1, NS,v,2... Ns,v,m bzw., der Integration der Summierwiderstände RS,h,1, ..., RS,h,N und RS,v,1, ..., RS,v,m auf dem Sensorchip und Herausführung der Signalbusse NS,h und NS,v und die Verwendung externer Summiernetzwerke Oh und Ov bzw. externer Operationsverstärker mit Rückkopplungswiderständen RS,h und RS,v (6) erlaubt eine Zusammenschaltung von mehreren Sensorchips gemäß 3 und 7 unter Beibehaltung der Information über die Wechselwirkungstiefe und die Wechselwirkungsposition ind er x-y-Ebene.
  • Die Potentiale Φ(NS.h.n) bzw. Φ (NS,v,m) an den Netzen NS,h,n und NS,v,m können durch entsprechende zusätzliche Widerstände oder durch modifizierte Kodierwiderstände auch von einer exakten quadratischen Kodierung abweichen. Hierbei muss für die resultierende Potentialkodierung (Φ2n)k mit n= 1, 2, 3... und 0,5 < k < 1,5 gelten.
  • Die Figuren zeigen Darstellungen des erfindungsgemäßen Schaltkreises eines Sensorchips und Teilen davon.
  • Es zeigt:
    • 1:.Eine Darstellung in der einzelne Mikrozellen über Signalbusse mit den Ausgangskanä len mit der erfindungsgemäßen Linearkodierung verbunden sind.
    • 2: Eine Ausführungsform, bei der vier SPADs mit zugehörigen Quenchwiderständen zu einer Mikrozelle zusammengefasst sind
    • 3: Summierschaltung bestehend aus Summiernetzwerken und nachgeschalteten Summierverstärkern.
    • 4: Eine Ausführungsform, bei der 4 Sensorchips über eine gesamte Reihe und Spalte verbunden sind.
    • 5: Eine Darstellung wie in 1 mit Summiernetzwerken.
    • 6: Summierverstärker als externe Beschaltung für auf dem Sensorchip integrierte Summiernetzwerke.
    • 7: Eine Darstellung wie in 4 mit auf dem Sensorchip implementierten Summier netzwerken.
  • In 1 sind Mikrozellen mit Photodioden Dnm dargestellt, welche in einen Stromteiler Sq,nm münden, der mit den Quenchwiderständen Rq,h,nm, Rq,v,nm realisiert ist. Die Ausgänge der Stromteiler Rq,h,nm münden in Signalbusse NS,h,n„ welche in die Knotenpunkte Kh,n und über die Reihenschaltung Rh,0, Rh,1, ... Rh,N, in die Ausgangskanäle ChA und ChB münden. Die Ausgänge der Stromteiler Rq,v,nm münden in Signalbusse NS,v,m,, welche in die Knotenpunkte Kv,m und über die Reihenschaltung Rv,0, Rv,1, ... Rv,M in die Ausgangskanäle Chc und ChD münden. In den Ausgängen ChA und ChB bzw. Chc und ChD befindet sich eine Reihenschaltung mit den Widerständen Rh,0 - Rh,N Rv,0 - Rv,M.
  • In 2 sind vier SPADs mit zugehörigen Quenchwiderständen zu einer Mikrozelle zusammengesetzt. In ihr haben die gleichen Elemente der Mikrozelle dieselben Bezeichnungen, wie in 1. Innerhalb dieses Sensors münden alle Ausgänge der Stromteiler mit den Kodierwiderständen Rh,nm in einen Punkt Ch,11 der mit dem Eingang eines nicht dargestellten Signalbus NS,h,n verbunden wird. Innerhalb dieses Sensors münden alle Ausgänge der Stromteiler mit den Widerständen Rv,nm in einen Punkt Cv,11 der mit dem Eingang eines nicht dargestellten Signalbus NS,v,m verbunden wird.
  • 3 zeigt Summierschaltungen, in der die Summiernetzwerke NS,v und NS,h, die mit Operationsverstärkern OPv bzw. OPh verbunden sind, und an ihrem nicht invertierenden Eigang mit einer Erdung verbunden sind. Über den Ausgangskanal ChE, bzw. ChF wird eine negative Rückkopplung mittels der Widerstände Widerstand RS,h bzw. RS,v erreicht.
  • 4 zeigt vier Sensorchips M1, M2, M3, M4 die über Ch1A, Ch1B, Ch2A und Ch2B bzw. Ch3A, Ch3B, Ch4A und Ch4,B sowie die Ausgangskanäle Ch3D, Ch3C, Ch1D und Ch1C bzw. Ch4D, Ch4C, Ch2D und Ch2C verbunden sind.
    Analog sind die Summiernetzwerke NS1,v,1 - NS2,v,1, NS1,v,2- NS2,v,2, NS1,v,M - NS2,v,M sowie NS3,v,1 - NS4,v,1, NS3,v,2- NS4,v,2, NS3,v,M- NS4,v,M und NS3,h,1 - NS1,h,1, NS3,h,2- NS1,h,2, NS3,h,N - NS1,h,N sowie NS4,h,1 - NS2,h,1, NS4,h,2- NS2,h,2, NS4 h.N - NS2,h,N über die Sensorchips M1, M2, M3, M4 verbunden
  • In 5 sind Mikrozellen mit Photodioden Dnm dargestellt, welche in einen Stromteiler Sq,nm münden, der mit den Quenchwiderständen Rq,h,nm, Rq,v,nm realisiert ist. Die Ausgänge der Stromteiler Rq,h,nm münden in Signalbusse NS,h,n,, welche in die Knotenpunkte Kh,n und über die Reihenschaltung Rh,0, Rh,1, ... Rh,N, in die Ausgangskanäle ChA und ChB münden. Die Ausgänge der Stromteiler Rq,v,nm münden in Signalbusse NS,v,m,, welche in die Knotenpunkte Kv,m und über die Reihenschaltung Rv,0, Rv,1, ... Rv,M in die Ausgangskanäle Chc und ChD münden. Die Wiedrstände Rh,0 - Rh,N bzw. Rv,0 - Rv,m bilden eine Reihenschaltung deren Enden die Ausgänge ChA und ChB bzw. Chc und ChD sind. Die Widerstände RS,h,1, ..., RS,h,n und RS,v,1, ..., RS,v,m sind auf den Sensorchip integriert und nur die Summiernetzwerke NS,h und NS,v werden aus dem Sensorchips herausgeführt.
  • In 6 münden Summiernetzwerke NS,v und NS,h in die Operationsverstärker OPv und OPh. , welche geerdet sind und in die Ausgangskanäle ChF und ChE münden. Die Operationsverstärker werden über die Widerstände RS,v und RS,h negativ rückgekoppelt.
  • 7 zeigt vier Sensorchips M1, M2, M3, M4 über die sich die Ausgangskanäle Ch1A, Ch1B, Ch2A und Ch2B bzw. Ch3A, Ch3B, Ch4A und Ch4,B sowie die Ausgangskanäle Ch3D, Ch3C, Ch1D und Ch1C bzw. Ch4D, Ch4C, Ch2D und Ch2C verbunden sind.
    Analog sind die Summiernetzwerke NS1,v- NS4,v und NS1,h- NS4,h über die Sensorchips M1, M2, M3, M4 verbunden.
  • Zitierter Stand der Technik:
    • [1]: Gola, A., et al., „A Novel Approach to Position-Sensitive Silicon Photomultipliers: First Results“.
    • [2]: Schulz, V., et al., „Sensitivity encoded silicon photomultiplier-a new sensor for high-resolution PET-MRI.“ Physics in medicine and biology 58.14 (2013): 4733.
    • [3]: Fischer, P., Piemonte, C., „Interpolating silicon photomultipliers“, NIMPRA, Nov. 2012.
    • [4]: Espana, S., et al., „DigiPET: sub-millimeter spatial resolution small-animal PET imaging using thin monolithic scintillators“.
    • [5]: Lerche, Ch. W., et al., „Depth of interaction detection for y-ray imaging“.
    • [6]: US7476864 (B2).
    • [7]: Ito, M., et al., „Positron Emission Tomography (PET) Detectorts with Depth-of-Intercation (DOI) Capability“.
    • [8]: Judenhofer, M. S., et al., „Simultaneous PET-MRI: a new approach for functional and morphological imaging“.
    • [9]: Ziegler, S. I., et al., „A prototype high-resolution animal positron tomograph with avalanche photodiode arrays and LSO crystals“.
    • [10]: Balcerzyk, M., et al., „Preliminary performance evaluation of a high resolution small animal PET scanner with monolithic crystals and depth-of-interaction encoding“.
    • [11]: Balcerzyk, M., et al., „Initial performance evaluation of a high resolution Albira small animal positron emission tomography scanner with monolithic crystals and depth-of-interaction encoding from a user's perspective“.
    • [12]: Gonzalez Martinez, A. J., et al., „Innovative PET detector concept based on SiPMs and continuous crystals“.
    • [13]: Siegel, S., et al., „Simple Charge Division Readouts for Imaging Scintillator Arrays using a Multi-Channel PMT“.
    • [14]: McElroy, D. P., et al., „First Results From MADPET-II: A Novel Detector and Readout System for High Resolution Small Animal PET“.
    • [15]: Berneking, A., „Characterization of Sensitivity encoded Silicon Photomultiplier for high resolution simultaneous PET/MR Imaging", Diploma thesis, RWTH Aachen University, 3.12.2012.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • DE 102016006056 [0013, 0014]
    • DE 102016014113 [0013]
    • DE 102016008904 [0013]
    • US 7476864 [0056]
  • Zitierte Nicht-Patentliteratur
    • Berneking, A., „Characterization of Sensitivity encoded Silicon Photomultiplier for high resolution simultaneous PET/MR Imaging“, Diploma thesis, RWTH Aachen University, 3.12.2012 [0056]

Claims (15)

  1. Sensorchip mit einer Vielzahl von Mikrozellen, denen eine xy-Position zugeordnet ist, bestehend aus einer Photodiode Dn,m,einem Stromteiler Sq,nm, mit Ausgängen Sq,v,nm, für die y-Richtung und Ausgängen Sq,h,nm für die x-Richtung, wobei die die Ausgänge Sq,h,nm mit einem Mittel Rq,h,nm zum Quenschen des Stroms und die Ausgänge Sq,v,nm mit Mitteln Rq,v,nm zum Quenchen des Stroms ausgestattet sind, welche den generierten Photostrom der Dioden Dn,m in zwei gleich große Anteile teilt, wobei die Mikrozellen in einer Folge von N Spalten in x-Richtung xn,= x1, x2, x3,...xn mit n= 1, 2, 3, ...N und M Reihen in y-Richtung ym,= y1, y2, y3,...ym mit m= 1, 2, 3, ...M angeordnet sind und die Ausgänge Sq,h,nm der Stromteiler Sq,nm für die x-Richtung mit den Ausgangskanälen ChA und ChB für die x-Richtung verbunden sind, wobei Stromleiter der selben x-Position des Sensorchips mit dem gleichen Signalbus NS,h,i verbunden sind, der in den Auslesekanal ChA und ChB in x-Richtung mündet, dadurch gekennzeichnet, dass sich in den Auslesekanälen ChA und ChB eine Reihenschaltung von Kodierwiderständen Rh,0, Rh,1, Rh,2, .....Rh,N befindet, wobei die Signalbusse NS,h,i in Knotenpunkte Kh,n mit n = 1, 2, 3,.....N münden, welche sich zwischen den Kodierwiderständen Rh,0, Rh,1, Rh,2, .....Rh,N befinden wodurch eine Linearkodierung bewirkt wird und eine Linearkodierung dann gegeben ist, wenn die Bedingung nach Formel 1 Q 1 ( e ) = c 1 e c 2 + c 3 Q 2 ( e ) = c 4 e c 5 + c 6 c 1 = c o n s t . ( 0, ) c 4 = c o n s t . ( ,0 ) c 3 , c 6 = c o n s t . ( , ) 0,5 < c 2 , c 5 < 1,5
    Figure DE102019000614A1_0006
    erfüllt ist.
  2. Sensorchip nach Anspruch 1, dadurch gekennzeichnet, dass bei dem die Ausgänge der Stromteiler Sq,v,nm für die y-Richtung mit den Ausgangskanälen Chc und ChD für die y-Richtung verbunden sind, der in den Auslesekanal Chc und ChD in y-Richtung mündet, wobei Stromleiter der selben y-Position des Sensorchips mit dem gleichen Signalbus NS,v,l verbunden sind, der in den Auslesekanal Chc und ChD in y-Richtung mündet, unddass sich in den Ausleekanälen Chc und ChD eine Reihenschaltung von Kodierwiderständen Rv,0, Rv,1, Rv,2, Rv,m befindet, wobei die Signalbusse NS,v,l in Knotenpunkte Kv,m mit m = 1, 2, 3,.....M münden, welche sich zwischen den Kodierwiderständen Rv,0, Rv,1, Rv,2, Rv,M befinden wodurch eine Linearkodierung bewirkt wird und eine Linearkodierung dann gegeben ist, wenn die Bedingung nach Formel 1 Q 1 ( e ) = c 1 e c 2 + c 3 Q 2 ( e ) = c 4 e c 5 + c 6 c 1 = c o n s t . ( 0, ) c 4 = c o n s t . ( ,0 ) c 3 , c 6 = c o n s t . ( , ) 0,5 < c 2 , c 5 < 1,5
    Figure DE102019000614A1_0007
    erfüllt ist.
  3. Sensorchip nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass mehrere Photodioden Dn,m mit Stromteilern Sq,nm und Mitteln zum Quenschen Rq.h.nm zu einer Mikrozelle zusammengefasst sind und für die x-Position in einen Signalbus NShn münden.
  4. Sensorchip nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass mehrere Photodioden Dn,m mit Stromteilern Sq,nm und Mitteln zum Quenschen Rq,v,nm zu einer Mikrozelle zusammengefasst sind und für die y-Position in einen Signalbus NSvm münden.
  5. Sensorchip nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Kodierwiderstandswerte der Kodierwiderstände für die Kodierung der x-Position Rh,1,....Rh,N-1 den gleichen Wert haben.
  6. Sensorchip nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Kodierwiderstandswerte für die Kodierwiderstände für die Kodierung der y-Position Rv,1,....RvM-1 den gleichen Wert haben.
  7. Sensorchip nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die die Kodierwiderstände für Rh,n und für Rv,m einen Kodierwiderstandswert zwischen 0,001 Ohm und 100 MOhm haben.
  8. Sensorchip nach einem der Ansrpüche 1 bis 7, dadurch gekennzeichnet, dass die Anzahl N der Mikrozellen in x-Richtung und die Anzahl M der Mikrozellen in y-Richtung verschieden sind.
  9. Sensorchip nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Kodierwiderstansdwerte für die Kodierung ChA-ChB und ChC-Cho verschieden sind.)
  10. Sensorchip nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Signalbusse NS,h,1, NS,h,2... NS,h,N und/oder NS,v,1, NS,v,2... NS,v,M über Summierwiderstände RS,h,n und/oder RS,v,m in Summiernetzwerke NS,h und/oder NS,v geführt werden, denen ein Operationsverstärker Oh, Ov mit den Ausgangsgangskanälen ChE und/oder ChF nachgeschaltet ist.
  11. Sensorchip nach Anspruch 10, dadurch gekennzeichnet, dass die die Operationsverstärker Oh, Ov mit den Ausgangsgangskanälen ChE und/oder ChF außerhalb des Sensorchips angeordnet sind.
  12. Sensorchip nach einem der Ansprüche 10 oder 11, dadurch gekennzeichnet, dass die Summiernetzwerke NS,h, NS,v außerhalb des Sensorchips angeordnet sind.
  13. Sensorchip nach einem den Ansprüche 10, bis 12, dadurch gekennzeichnet, dass die Summierwiderstände RS,h,1, RS,v,m, außerhalb des Sensorchips angeordnet sind.
  14. Sensorchip nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass mindestens 2 Sensorchips in x-Richtung und/oder in y-Richtung über gemeinsame Signalbusse NS,h,1, NS,h,2... NS,h,N und/oder NS,v,1, NS,v,2... Ns,v,m verbunden sind die in Summierwiderstände RS,h,n, RS,v,m, die in Summiernetzwerke NS,h, NS,v münden.
  15. Sensorchip nach Anspruch 14, dadurch gekennzeichnet, dass die Widerstandswerte Rs,h,o und Rs,h,N den Wert Rs,h,n/2 sowie die Widerstandswerte Rs,v,0 und Rs v M den Widerstandswert Rs,v,m/2 haben.
DE102019000614.3A 2019-01-28 2019-01-28 Sensorchip für die Lichtdetektion Pending DE102019000614A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE102019000614.3A DE102019000614A1 (de) 2019-01-28 2019-01-28 Sensorchip für die Lichtdetektion
US17/422,761 US20220128721A1 (en) 2019-01-28 2019-12-18 Sensor chip for detecting light
EP19842862.5A EP3918375A1 (de) 2019-01-28 2019-12-18 Sensorchip für die lichtdetektion
PCT/DE2019/000331 WO2020156600A1 (de) 2019-01-28 2019-12-18 Sensorchip für die lichtdetektion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102019000614.3A DE102019000614A1 (de) 2019-01-28 2019-01-28 Sensorchip für die Lichtdetektion

Publications (1)

Publication Number Publication Date
DE102019000614A1 true DE102019000614A1 (de) 2020-08-13

Family

ID=69326313

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102019000614.3A Pending DE102019000614A1 (de) 2019-01-28 2019-01-28 Sensorchip für die Lichtdetektion

Country Status (4)

Country Link
US (1) US20220128721A1 (de)
EP (1) EP3918375A1 (de)
DE (1) DE102019000614A1 (de)
WO (1) WO2020156600A1 (de)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7476864B2 (en) * 2003-04-10 2009-01-13 Jose Maria Benlloch Bavciera Gamma ray detector with interaction depth coding
US20150285921A1 (en) * 2009-06-08 2015-10-08 Radiation Monitoring Devices, Inc. Position sensitive solid-state photomultipliers, systems and methods
DE102016006056A1 (de) * 2015-12-21 2017-06-22 Forschungszentrum Jülich GmbH Fachbereich Patente Sensorchip
DE102016008904A1 (de) * 2016-07-22 2018-01-25 Forschungszentrum Jülich GmbH Sensorchip

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5719400A (en) * 1995-08-07 1998-02-17 The Regents Of The University Of California High resolution detector array for gamma-ray imaging
JP6487619B2 (ja) * 2013-10-25 2019-03-20 浜松ホトニクス株式会社 検出器
DE102017009365B3 (de) * 2016-11-25 2018-03-22 Forschungszentrum Jülich GmbH Verfahren zur Signalverarbeitung eines Photosensors
DE102019007136B3 (de) * 2019-10-15 2020-10-08 Forschungszentrum Jülich GmbH Verfahren zur Positions- und Energiebestimmung in Szintillationsdetektoren

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7476864B2 (en) * 2003-04-10 2009-01-13 Jose Maria Benlloch Bavciera Gamma ray detector with interaction depth coding
US20150285921A1 (en) * 2009-06-08 2015-10-08 Radiation Monitoring Devices, Inc. Position sensitive solid-state photomultipliers, systems and methods
DE102016006056A1 (de) * 2015-12-21 2017-06-22 Forschungszentrum Jülich GmbH Fachbereich Patente Sensorchip
DE102016008904A1 (de) * 2016-07-22 2018-01-25 Forschungszentrum Jülich GmbH Sensorchip

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
BALCERZYK, Marcin [u.a.]: Initial performance evaluation of a high resolution Albira small animal positron emission tomography scanner with monolithic crystals and depth-of-interaction encoding from a user's perspective. In: Measurement Science and Technology, Vol. 20, 2009, No. 10, S. 1-6. - ISSN 0957-0233(P); 1361-6501 (E). DOI: 10.1088/0957-0233/20/10/104011. URL: http://iopscience.iop.org/article/10.1088/0957-0233/20/10/104011/pdf [abgerufen am 01.09.2016] *
BALCERZYK, Marcin [u.a.]: Preliminary performance evaluation of a high resolution small animal PET scanner with monolithic crystals and depth-of-interaction encoding. In: 2008 8th IEEE International Conference on BioInformatics and BioEngineering, 8-10 Oct. 2008, Athens, Greece, S. 1-4. - ISBN 978-1-4244-2844-1. DOI: 10.1109/BIBE.2008.4696809 *
BERNEKING, Arne: Characterization of sensitivity encoded silicon photomultiplier for high resolution simultaneous PET/MR imaging. Aachen, 2012. Deckblatt und Inhaltsverzeichnis. - Aachen, Univ., Dipl.-Arb., 2012 *
ESPAÑA, Samuel [u.a.]: DigiPET: sub-millimeter spatial resolution small-animal PET imaging using thin monolithic scintillators. In: Physics in Medicine and Biology, Vol. 59, 2014, No. 13, S. 3405-3420. - ISSN 0031-9155 (P); 1361-6560 (E). URL: iopscience.iop.org/article/10.1088/0031-9155/59/13/3405/pdf [abgerufen am 31.08.2016] *
FISCHER, Peter ; PIEMONTE, Claudio: Interpolating silicon photomultipliers. In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 718, 2013, S. 320-322. - ISSN 0168-9002 (P); 1872-9576 (E). DOI: 10.1016/j.nima.2012.10.120. URL: http://www.sciencedirect.com/science/article/pii/S0168900212012934/pdfft?md5=15a9bc4d8ae91c013ba59d3f9c0bb860&pid=1-s2.0-S0168900212012934-main.pdf [abgerufen am 31.08.2016] *
GOLA, A. [u.a.]: A novel approach to Position-Sensitive Silicon Photomultipliers: First results. In: 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC), 27 Oct.-2 Nov. 2013, Seoul, South Korea, S. 1-4. - ISBN 978-1-4799-0534-8. DOI: 10.1109/NSSMIC.2013.6829320. URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6829320 [abgerufen am 31.08.2016] *
GONZÁLEZ MARTÍNEZ, A.J. [u.a.]: Innovative PET detector concept based on SiPMs and continuous crystals. In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 695, 2012, S. 213-217. - ISSN 0168-9002 (P); 1872-9576 (E). DOI: 10.1016/j.nima.2011.11.029. URL: http://www.sciencedirect.com/science/article/pii/S0168900211020717/pdfft?md5=bde8cc66382c931b26d1f27d3e6c8099&pid=1-s2.0-S0168900211020717-main.pdf [abgerufen am 01.09.2016] *
ITO, Mikiko ; HONG, Seong Jong ; LEE, Jae Sung: Positron emission tomography (PET) detectors with depth-of-interaction (DOI) capability. In: Biomedical Engineering Letters, Vol. 1, 2011, No. 2, S. 70-81. - ISSN 2093-9868 (P); 2093-985X (E). DOI: 10.1007/s13534-011-0019-6. URL: http://link.springer.com/content/pdf/10.1007%2Fs13534-011-0019-6.pdf [abgerufen am 01.09.2016] *
JUDENHOFER, Martin S. [u.a.]: Simultaneous PET-MRI: a new approach for functional and morphological imaging. In: Nature Medicine, Vol. 14, 2008, No. 4, S. 459-465. - ISSN 1078-8956 (P); 1546-170X (E). DOI: 10.1038/nm1700. URL: http://www.nature.com/nm/journal/v14/n4/pdf/nm1700.pdf [abgerufen am 07.01.2014] *
LERCHE, Ch. W. [u.a.]: Depth of interaction detection for γ-ray imaging. In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 600, 2009, No. 3, S. 624-634. - ISSN 0168-9002 (P); 1872-9576 (E). DOI: 10.1016/j.nima.2008.11.151. URL: http://www.sciencedirect.com/science/article/pii/S0168900208018020/pdfft?md5=f400d7e68a00b463e2d3eaa62ce3c288&pid=1-s2.0-S0168900208018020-main.pdf [abgerufen am 01.09.2016] *
MCELROY, David P. [u.a.]: First results from MADPET-II: A novel detector and readout system for high resolution small animal PET. In: 2003 IEEE Nuclear Science Symposium. Conference Record, 19-25 Oct. 2003, Portland, OR, USA, S. 2043-2047. - ISBN 0-7803-8257-9. DOI: 10.1109/NSSMIC.2003.1352282. URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1352282 [abgerufen am 01.09.2016] *
SCHULZ, Volkmar [u.a.]: Sensitivity encoded silicon photomultiplier - a new sensor for high-resolution PET-MRI. In: Physics in Medicine and Biology, Vol. 58, 2013, No. 14, S. 4733-4748. - ISSN 1361-6560 (E); 0031-9155 (P). DOI: 10.1088/0031-9155/58/14/4733. URL: http://iopscience.iop.org/article/10.1088/0031-9155/58/14/4733/pdf [abgerufen am 31.08.2016] *
SIEGEL, Stefan [u.a.]: Simple charge division readouts for imaging scintillator arrays using a multi-channel PMT. In: IEEE Transactions on Nuclear Science, Vol. 43, 1996, No. 3, S. 1634-1641. - ISSN 0018-9499 (P); 1558-1578 (E). DOI: 10.1109/23.507162. URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=507162 [abgerufen am 01.09.2016] *
ZIEGLER, Sibylle I. [u.a.]: A prototype high-resolution animal positron tomograph with avalanche photodiode arrays and LSO crystals. In: European Journal of Nuclear Medicine and Molecular Imaging, Vol. 28, 2001, No. 2, S. 136-143. - ISSN 1619-7070 (P); 1619-7089 (E). DOI: 10.1007/s002590000438. URL: http://rd.springer.com/content/pdf/10.1007%2Fs002590000438.pdf [abgerufen am 01.09.2016] *

Also Published As

Publication number Publication date
EP3918375A1 (de) 2021-12-08
WO2020156600A1 (de) 2020-08-06
US20220128721A1 (en) 2022-04-28

Similar Documents

Publication Publication Date Title
DE102016008904B4 (de) Sensorchip
DE602004002691T2 (de) Detektormodul zur erfassung von ionisierender strahlung
DE69815793T2 (de) Flachszintillationskamera mit sehr hoher räumlicher auflösung in modularer struktur
DE2149279C3 (de) Szintillations-Kamera mit einem scheibenförmigen Szintillations-Kristall und einer Vielzahl von Photovervielfachern, deren Ausgänge über nichtlineare Verstärker mit einer Ortungsschaltung verbunden sind
DE102008033960A1 (de) Strahlungsdetektormodulmodul, Strahlungsdetektor und bildgebende Tomografieeinrichtung
DE102013105696A1 (de) Verfahren und Systeme zur Verstärkungskalibrierung von Gammastrahlendetektoren
DE10352012B4 (de) Detektormodul für die CT- und/oder PET- und/oder SPECT-Tomographie
DE102006050283A1 (de) TOF-fähiger, hochauflösender PET-Detektor
DE112005002398T5 (de) Hochauflösender Halbleiterkristall-Bildgeber
US8110806B2 (en) Solid-state photomultiplier having improved timing resolution
DE10357187A1 (de) Verfahren zum Betrieb eines zählenden Strahlungsdetektors mit verbesserter Linearität
DE112015004713T5 (de) Photonenzählender Detektor
DE102010004890A1 (de) Photodiodenarray, Strahlendetektor und Verfahren zur Herstellung eines solchen Photodiodenarrays und eines solchen Strahlendetektors
Huber et al. Characterization of a 64 channel PET detector using photodiodes for crystal identification
EP3839576A1 (de) Photonenzählender röntgendetektor und verfahren zum betreiben eines photonenzählenden röntgendetektors
DE3106428A1 (de) Lageempfindlicher strahlungsdetektor
DE102015114374B4 (de) Gammastrahlendetektor und verfahren zur detektion von gammastrahlen
DE69816598T2 (de) Gammastrahlendetektor
JP6508343B2 (ja) 放射線検出器および検出器モジュール
DE4310622A1 (de) Einrichtung zur Mikrobilderzeugung mittels ionisierender Strahlung
DE102017009365B3 (de) Verfahren zur Signalverarbeitung eines Photosensors
EP3394640B1 (de) Sipm-sensorchip
DE102019007136B3 (de) Verfahren zur Positions- und Energiebestimmung in Szintillationsdetektoren
DE102015218585B4 (de) Röntgendetektor mit analoger Summationsschaltung
DE102019000614A1 (de) Sensorchip für die Lichtdetektion

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R082 Change of representative

Representative=s name: GILLE HRABAL PARTNERSCHAFTSGESELLSCHAFT MBB PA, DE