DE102018110214A1 - Method for detecting the condition of a high-frequency antenna for an SCR catalytic converter - Google Patents

Method for detecting the condition of a high-frequency antenna for an SCR catalytic converter Download PDF

Info

Publication number
DE102018110214A1
DE102018110214A1 DE102018110214.3A DE102018110214A DE102018110214A1 DE 102018110214 A1 DE102018110214 A1 DE 102018110214A1 DE 102018110214 A DE102018110214 A DE 102018110214A DE 102018110214 A1 DE102018110214 A1 DE 102018110214A1
Authority
DE
Germany
Prior art keywords
frequency antenna
sensor
catalytic converter
changes
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE102018110214.3A
Other languages
German (de)
Inventor
Marco Moser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IAV GmbH Ingenieurgesellschaft Auto und Verkehr
Original Assignee
IAV GmbH Ingenieurgesellschaft Auto und Verkehr
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IAV GmbH Ingenieurgesellschaft Auto und Verkehr filed Critical IAV GmbH Ingenieurgesellschaft Auto und Verkehr
Priority to DE102018110214.3A priority Critical patent/DE102018110214A1/en
Publication of DE102018110214A1 publication Critical patent/DE102018110214A1/en
Ceased legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/10Radiation diagrams of antennas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/025Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting O2, e.g. lambda sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/028Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting humidity or water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/06Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/12Other sensor principles, e.g. using electro conductivity of substrate or radio frequency
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/282Testing of electronic circuits specially adapted for particular applications not provided for elsewhere
    • G01R31/2822Testing of electronic circuits specially adapted for particular applications not provided for elsewhere of microwave or radiofrequency circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Funktionszustandserkennung einer Hochfrequenz-Antenne für einen SCR-Katalysator.Erfindungsgemäß wird während eines normalen/laufenden Betriebs eines Verbrennungsmotors ein zeitlicher Verlauf eines Signalbildes der Hochfrequenz-Antenne und ein zeitlicher Verlauf eines Lambda-Sensors und/oder eines Temperatur-Sensors und/oder Feuchte-Sensors des SCR-Katalysators erfasst.Die Änderungen des Lambda-Sensors und/oder Temperatur-Sensors und/oder Feuchte-Sensors werden mit den Änderungen des Signalbildes verglichen.Aufgrund des Vergleichs wird der Funktionszustand der Hochfrequenz-Antenne erkannt.The invention relates to a method for detecting the functional state of a high-frequency antenna for an SCR catalytic converter. According to the invention, during a normal / ongoing operation of an internal combustion engine, a time profile of a signal image of the high-frequency antenna and a time profile of a lambda sensor and / or a temperature sensor The changes of the lambda sensor and / or temperature sensor and / or humidity sensor are compared with the changes of the signal image. Due to the comparison, the functional state of the high-frequency antenna is detected ,

Description

Technisches GebietTechnical area

Die Erfindung betrifft ein Verfahren zur Funktionszustandserkennung einer Hochfrequenz (HF)-Antenne gemäß dem Oberbegriff des Anspruchs 1.The invention relates to a method for detecting the functional state of a radio frequency (RF) antenna according to the preamble of claim 1.

Mittels einer Hochfrequenz-Antenne kann der Zustand eines SCR (selctive catalytic reduction) -Katalysators gemessen werden.
Hiermit lassen sich u.a. Defekte an der Oberfläche, einer Beladung mit Wasser, Ammoniak (NH3) und anderen eingelagerten Stoffen, Beschichtungen (beispielsweise fehlende Schlupf-Katalysator-Beschichtung), Fehlen des Monolithen, Defekte an der Hülle, Alterung und alles andere erkennen, was die elektromagnetischen Eigenschaften des Resonators (Gesamtheit aller Geometrien und Materialien/Stoffe, die Einfluss auf die Ausbreitung der elektromagnetischen Wellen haben) verändert.
Die HF-Antenne ermittelt die Veränderung der Resonanzfrequenzen und wertet dabei Verschiebungen in der jeweiligen Frequenz und die zugehörige Amplituden-Dämpfung aus.
By means of a high-frequency antenna, the state of a SCR (selective catalytic reduction) catalyst can be measured.
These include surface defects, water, ammonia (NH3) and other embedded materials, coatings (for example, lack of slip-catalyst coating), absence of monolith, defects in the shell, aging, and anything else changes the electromagnetic properties of the resonator (totality of all geometries and materials / substances that influence the propagation of electromagnetic waves).
The RF antenna detects the change in the resonance frequencies and evaluates shifts in the respective frequency and the associated amplitude attenuation.

Stand der TechnikState of the art

Aus der DE 103 58 495 B4 ist ein Verfahren zur Erkennung des Zustands eines Katalysators, beispielsweise ein SCR-Katalysator mittels Mikrowellen bekannt.
Bei einer im Innenraum des als Hohlraumresonator ausgebildeten Gehäuses des Katalysators erzeugten Mikrowelle wird die Verschiebung der Resonanzfrequenz und/oder Resonanzgüte als Maß für die Gasbeladung des Speichermaterials bestimmt und ausgewertet.
From the DE 103 58 495 B4 For example, a method for detecting the state of a catalyst, for example, an SCR catalyst by means of microwaves, is known.
In a microwave generated in the interior of the housing designed as a cavity resonator microwave, the shift of the resonant frequency and / or resonance quality is determined and evaluated as a measure of the gas loading of the storage material.

Die DE 10 2012 220 152 A1 beschreibt ein Verfahren zur Überprüfung eines Ammoniaksensors oder eines NH3-querempfindlichen Sensors (beispielsweise Stickoxidsensor oder Kohlenwasserstoffsensor), der in einem Katalysatorsystem zwischen zwei Katalysatoren angeordnet ist, welchem ein von einer Verbrennungskraftmaschine emittiertes Abgas zugeführt wird.
Eine Betriebsgröße der Verbrennungskraftmaschine und/oder des Katalysatorsystems, welche die Stickoxidkonzentration des Abgases beeinflusst, wird periodisch geändert.
Eine ungenügende Dynamikempfindlichkeit des Ammoniaksensors oder des NH3-querempfindlichen Sensors wird erkannt, wenn die periodische Änderung der Betriebsgröße nicht zu einer periodischen Änderung des Signals des Ammoniaksensors oder des NH3-querempfindlkichen Sensors führt.
The DE 10 2012 220 152 A1 describes a method for testing an ammonia sensor or a NH 3 cross-sensitive sensor (for example nitrogen oxide sensor or hydrocarbon sensor), which is arranged in a catalyst system between two catalytic converters, to which an exhaust gas emitted by an internal combustion engine is supplied.
An operation amount of the internal combustion engine and / or the catalyst system, which influences the nitrogen oxide concentration of the exhaust gas, is periodically changed.
Insufficient dynamic sensitivity of the ammonia sensor or the NH3 cross-sensitive sensor is recognized if the periodic change in operating magnitude does not result in a periodic change in the signal of the ammonia sensor or the NH3 cross-sensing sensor.

In der DE 10 2010 034 983 A1 wird ein Verfahren zur Erfassung des aktuellen Zustands eines auf der SCR-Technologie basierenden Abgasnachbehandlungssystems in Kraftfahrzeugen, das die Ausbreitung elektromagnetischer Wellen in einem metallischen Gehäuse ausbreitet und durch den Zustand der eingebauten Katalysatorsysteme gestört wird, beschrieben.
Es werden Messungen in mehreren Frequenzbereichen eingesetzt und in diesen Bereichen Messgrößen bestimmt, um mit einer Messeinrichtung Rückschlüsse auf den Speicherzustand unter der Berücksichtigung von Quereinflüssen zu ermöglichen.
In the DE 10 2010 034 983 A1 A method for detecting the current state of an SCR technology based exhaust aftertreatment system in automobiles which propagates the propagation of electromagnetic waves in a metallic housing and is disturbed by the state of the installed catalyst systems is described.
Measurements are used in several frequency ranges and measured quantities are determined in these ranges in order to allow conclusions to be drawn with regard to the storage state taking into account lateral influences.

Aufgabe der ErfindungObject of the invention

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren anzugeben, welches eine Funktionszustandserkennung der Hochfrequenz-Antenne während eines laufenden/normalen Betriebs des Motors und damit verbundenen dynamischen Anteilen auch im Bereich der Abgasnachbehandlung ermöglicht.The invention has for its object to provide a method which allows a functional state detection of the high-frequency antenna during a current / normal operation of the engine and associated dynamic shares in the field of exhaust aftertreatment.

Lösung der AufgabeSolution of the task

Die Erfindung wird durch ein Verfahren gemäß Anspruch 1 gelöst.The invention is solved by a method according to claim 1.

Vorteile der ErfindungAdvantages of the invention

Mittels des erfindungsgemäßen Verfahrens werden während eines laufenden/normalen Betriebs des Verbrennungsmotors ein zeitlicher Verlauf eines Signalbilds (Frequenz und/oder Amplitude) der Hochfrequenz-Antenne sowie ein zeitlicher Verlauf mindestens eines Lambda-Sensors, beispielsweise Breitbandlambdasonde, und/oder mindestens eines Temperatur-Sensors und/oder Feuchte-Sensors des SCR-Katalysators erfasst.
Die Änderungen bzw. charakteristischen Signalabschnitte des Lambda-Sensors und/oder Temperatur-Sensors und/oder Feuchte-Sensors werden mit den Änderungen des Signalbildes bzw. den Signalabschnitten verglichen.
Aufgrund des Vergleichs wird der Funktionszustand der Hochfrequenz-Antenne erkannt.
By means of the method according to the invention during a running / normal operation of the internal combustion engine a time course of a signal image (frequency and / or amplitude) of the high-frequency antenna and a time course of at least one lambda sensor, for example broadband lambda probe, and / or at least one temperature sensor and / or humidity sensor of the SCR catalytic converter detected.
The changes or characteristic signal sections of the lambda sensor and / or temperature sensor and / or humidity sensor are compared with the changes of the signal image or the signal sections.
Due to the comparison, the functional state of the high-frequency antenna is detected.

In einer vorteilhaften Ausführungsform der Erfindung wird für den Vergleich mindestens ein modellierter Signalverlauf der Hochfrequenz-Antenne hinzugezogen.In an advantageous embodiment of the invention, at least one modeled signal profile of the high-frequency antenna is used for the comparison.

In einer weiteren vorteilhaften Ausführungsform der Erfindung wird für den Vergleich der erfasste Signalverlauf durch einen Hochpass gefiltert.In a further advantageous embodiment of the invention, the detected signal profile is filtered by a high-pass filter for the comparison.

Die erfindungsgemäße Funktionszustandserkennung, welche insbesondere notwendig für eine On-Board-Diagnose der Abgasnachbehandlung ist, der Hochfrequenz-Antenne verwendet Störsignale/Nutzsignale, die sich auf den Signalverlauf der Hochfrequenz-Antenne auswirken können.
Die Stör-/Nutzsignale treten bei einem laufenden/normalen Betrieb des Verbrennungsmotors auf und werden somit nicht „künstlich“ erzeugt.
The functional state detection according to the invention, which is particularly necessary for an on-board diagnosis of the exhaust gas aftertreatment, the high-frequency antenna uses interference / useful signals that can affect the waveform of the high-frequency antenna.
The interference / useful signals occur during a running / normal operation of the internal combustion engine and are thus not generated "artificially".

Der Signalverlauf der Hochfrequenz-Antenne reagiert empfindlich und dynamisch auf Feuchtigkeitsänderungen im Abgas.
Die Feuchtigkeitsänderungen entstehen im laufenden Betrieb beim Dieselmotor durch Änderungen des Lastpunkts und damit einer Änderung von Lambda.
Der Grund ist die Verbrennung von Kraftstoff mit Wasser als Verbrennungsprodukt.
Die Feuchtigkeit lagert sich bei Lambda-Änderungen im SCR-Katalysator ein bzw. aus.
Da diese Änderungen vorhersehbar sind, lassen sie sich für die OBD des Sensors (HF-Antenne) nutzen.
Es wird beispielsweise bei einem Wechsel in den Schub (vom Gas gehen) ein definierter Sprung im HF-Signal erwartet, den man zur Überprüfung der Funktionsweise der HF-Antenne heranziehen kann.
Für die OBD wird der modellierte Signalverlauf (basierend auf einem Lambda-, Temperatur, und/oder Feuchtesignal) mit dem Signalbild der Hochfrequenz-Antenne durch ein geeignetes Mittel, beispielsweise ein Hochpass-Filter, verglichen.
The signal path of the high-frequency antenna is sensitive and dynamic to changes in humidity in the exhaust gas.
The changes in humidity occur during operation in the diesel engine by changes in the load point and thus a change in lambda.
The reason is the combustion of fuel with water as a combustion product.
The moisture settles on lambda changes in the SCR catalyst on or off.
Because these changes are predictable, they can be used for the OBD of the sensor (RF antenna).
For example, a change in the thrust (going from the gas) is expected to result in a defined jump in the RF signal, which can be used to check the operation of the RF antenna.
For the OBD, the modeled waveform (based on a lambda, temperature, and / or humidity signal) is compared to the signal image of the radio frequency antenna by a suitable means, such as a high pass filter.

Ein weiteres Störsignal ist die große Feuchtigkeitseinlagerung durch kondensiertes Wasser in der Aufwärmphase des Motors und der Abgasanlage beim Kaltstart.
Der Wasserdampf im Abgas kondensiert dabei an den Katalysatoren in der Abgasanlage in größeren Menden und wird eingelagert.
Erst wenn das Abgas und die Katalysatoren soweit aufgewärmt sind, dass das Wasser verdunsten kann, wird dieses wieder ausgelagert.
Dieser Prozess ist abgeschlossen, wenn das kondensierte Wasser vollständig verdampft ist. Diese Ein- und Auslagerung des Wassers haben einen massiven Einfluss auf das Signalbild der HF-Antenne.
Es existieren Modelle im Steuergerät, die den Vorgang der Ein- und Auslagerung des Wassers abbilden.
Nutzbare Modelle sind beispielsweise Freigabe-Modelle der NOx-Sensoren (sofern stromabwärts des SCR-Katalysators noch ein NOx-Sensor verbaut wurde), in denen auch die restlose Verdampfung des Wassers im stromaufwärtigen Abschnitt der Abgasleitung zu berücksichtigen ist, oder aber Temperatur-Modelle des SCR-Katalysators, in denen ebenfalls die Kondensations- und Verdampfungsenthalpien zu berücksichtigen sind.
Another disturbance signal is the large moisture storage by condensed water in the warm-up phase of the engine and the exhaust system during cold start.
The water vapor in the exhaust gas condenses on the catalysts in the exhaust system in larger mills and is stored.
Only when the exhaust gas and the catalysts are warmed up so far that the water can evaporate, this is outsourced again.
This process is complete when the condensed water is completely evaporated. This storage and retrieval of the water have a massive influence on the signal pattern of the RF antenna.
There are models in the control unit, which depict the process of storage and retrieval of the water.
Usable models are, for example, release models of the NOx sensors (if downstream of the SCR catalyst, a NOx sensor has been installed), in which the complete evaporation of water in the upstream section of the exhaust pipe is taken into account, or temperature models of the SCR catalysts, which also take into account the enthalpies of condensation and evaporation.

Sofern stromabwärts des SCR-Katalysators ein Temperatur-Sensor verbaut ist, so kann dieser alternativ die abgeschlossene Verdampfung des Wassers detektieren.
Diese kann genutzt werden, um das Signalbild der HF-Antenne mit einer Erwartung aus dem Modell zu vergleichen.
Für die OBD ist die Normalisierung des HF-Signals nach der Erwärmung zu überwachen.
If downstream of the SCR catalyst, a temperature sensor is installed, it can alternatively detect the completed evaporation of the water.
This can be used to compare the signal image of the RF antenna with an expectation from the model.
For the OBD, the normalization of the RF signal after heating should be monitored.

Die Temperatur des SCR-Katalysators ist eine weitere Größe mit Einfluss auf das Signalbild der HF-Antenne.
Temperaturänderungen bei ansonsten gleichbleibenden Bedingungen erzeugen vorhersehbare Änderungen des Antennensignals.
Dabei kann das Signal der HF-Antenne für eine bestimmte Temperatur nur in einem bestimmten Signalband liegen.
Liegt das Signal außerhalb, gibt es einen Defekt in der Hochfrequenz-Antenne bzw. deren elektronischer Auswerteeinheit.
Die Temperaturabhängigkeit des Antennensignals kann für die OBD herangezogen werden. Für die OBD kann hier ausgenutzt werden, dass sich das Signal der HF-Antenne für eine bestimmte Temperatur des SCR-Katalysators innerhalb eines limitierten Bereichs befinden muss.
The temperature of the SCR catalyst is another factor influencing the signal pattern of the RF antenna.
Temperature changes with otherwise constant conditions produce predictable changes in the antenna signal.
In this case, the signal of the RF antenna for a certain temperature can only be in a certain signal band.
If the signal is outside, there is a defect in the high-frequency antenna or its electronic evaluation unit.
The temperature dependence of the antenna signal can be used for the OBD. For the OBD, it can be used here that the signal of the HF antenna must be within a limited range for a specific temperature of the SCR catalytic converter.

ZITATE ENTHALTEN IN DER BESCHREIBUNG QUOTES INCLUDE IN THE DESCRIPTION

Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.This list of the documents listed by the applicant has been generated automatically and is included solely for the better information of the reader. The list is not part of the German patent or utility model application. The DPMA assumes no liability for any errors or omissions.

Zitierte PatentliteraturCited patent literature

  • DE 10358495 B4 [0003]DE 10358495 B4 [0003]
  • DE 102012220152 A1 [0004]DE 102012220152 A1 [0004]
  • DE 102010034983 A1 [0005]DE 102010034983 A1 [0005]

Claims (3)

Verfahren zur Funktionszustandserkennung einer Hochfrequenz-Antenne für einen SCR-Katalysator, dadurch gekennzeichnet, dass während eines laufenden/normalen Betriebs eines Verbrennungsmotors ein zeitlicher Verlauf eines Signalbildes der Hochfrequenz-Antenne und ein zeitlicher Verlauf mindestens eines Lambda-Sensors und/oder mindestens eines Temperatur-Sensors und/oder mindestens eines Feuchte-Sensors des SCR-Katalysators erfasst werden, und Änderungen des Lambda-Sensors und/oder Temperatur-Sensors und/oder des Feuchte-Sensors mit Änderungen des Signalbildes verglichen werden, und aufgrund des Vergleichs der Funktionszustand der Hochfrequenz-Antenne erkannt wird.Method for detecting the functional state of a high-frequency antenna for an SCR catalytic converter, characterized in that during a running / normal operation of an internal combustion engine, a time profile of a signal image of the high-frequency antenna and a time profile of at least one lambda sensor and / or at least one temperature sensor Sensor and / or at least one humidity sensor of the SCR catalytic converter are detected, and changes in the lambda sensor and / or temperature sensor and / or the humidity sensor are compared with changes in the signal image, and due to the comparison of the functional state of the radio frequency Antenna is detected. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass für den Vergleich mindestens ein modellierter Signalverlauf der Hochfrequenz-Antenne hinzugezogen wird.Method according to Claim 1 , characterized in that for the comparison at least one modeled waveform of the high-frequency antenna is consulted. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass für den Vergleich der erfasste Signalverlauf durch einen Hochpass gefiltert wird.Method according to Claim 1 or 2 , characterized in that for the comparison of the detected waveform is filtered by a high pass.
DE102018110214.3A 2018-04-27 2018-04-27 Method for detecting the condition of a high-frequency antenna for an SCR catalytic converter Ceased DE102018110214A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102018110214.3A DE102018110214A1 (en) 2018-04-27 2018-04-27 Method for detecting the condition of a high-frequency antenna for an SCR catalytic converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102018110214.3A DE102018110214A1 (en) 2018-04-27 2018-04-27 Method for detecting the condition of a high-frequency antenna for an SCR catalytic converter

Publications (1)

Publication Number Publication Date
DE102018110214A1 true DE102018110214A1 (en) 2019-04-04

Family

ID=65728163

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102018110214.3A Ceased DE102018110214A1 (en) 2018-04-27 2018-04-27 Method for detecting the condition of a high-frequency antenna for an SCR catalytic converter

Country Status (1)

Country Link
DE (1) DE102018110214A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115095411A (en) * 2022-07-06 2022-09-23 潍柴动力股份有限公司 Detection method and device for removal of selective catalytic reduction carrier

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10358495B4 (en) 2003-12-13 2011-10-06 Ralf Moos Method for detecting the state of a catalyst by means of microwaves
DE102010034983A1 (en) 2010-08-20 2012-02-23 Gerhard Fischerauer Method for detecting current state of exhaust after-treatment system in e.g. motor car, involves determining measured variables in different frequency ranges to allow measuring device to provide conclusions about memory state
DE102012220152A1 (en) 2012-11-06 2014-05-22 Robert Bosch Gmbh Method for examining ammonia sensor or ammonia cross-sensitive sensor, involves periodically changing operating parameter of internal combustion engine or catalyst system, which influences nitrogen oxide concentration of exhaust gas
US20170182447A1 (en) * 2015-06-08 2017-06-29 Cts Corporation Radio Frequency Process Sensing, Control, and Diagnostics Network and System
DE102016217899A1 (en) * 2016-09-19 2018-03-22 Continental Automotive Gmbh Method for operating a catalytic converter device in the motor vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10358495B4 (en) 2003-12-13 2011-10-06 Ralf Moos Method for detecting the state of a catalyst by means of microwaves
DE102010034983A1 (en) 2010-08-20 2012-02-23 Gerhard Fischerauer Method for detecting current state of exhaust after-treatment system in e.g. motor car, involves determining measured variables in different frequency ranges to allow measuring device to provide conclusions about memory state
DE102012220152A1 (en) 2012-11-06 2014-05-22 Robert Bosch Gmbh Method for examining ammonia sensor or ammonia cross-sensitive sensor, involves periodically changing operating parameter of internal combustion engine or catalyst system, which influences nitrogen oxide concentration of exhaust gas
US20170182447A1 (en) * 2015-06-08 2017-06-29 Cts Corporation Radio Frequency Process Sensing, Control, and Diagnostics Network and System
DE102016217899A1 (en) * 2016-09-19 2018-03-22 Continental Automotive Gmbh Method for operating a catalytic converter device in the motor vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115095411A (en) * 2022-07-06 2022-09-23 潍柴动力股份有限公司 Detection method and device for removal of selective catalytic reduction carrier
CN115095411B (en) * 2022-07-06 2024-04-16 潍柴动力股份有限公司 Detection method and device for removing selective catalytic reduction carrier

Similar Documents

Publication Publication Date Title
DE102016219555B4 (en) On-board diagnostics for a catalytic converter and aging detection
DE10358495B4 (en) Method for detecting the state of a catalyst by means of microwaves
DE102010034983A1 (en) Method for detecting current state of exhaust after-treatment system in e.g. motor car, involves determining measured variables in different frequency ranges to allow measuring device to provide conclusions about memory state
EP3516184B1 (en) Method for operating a catalyst device in a motor vehicle
DE102014209305B4 (en) Method for detecting the degree of aging of catalytic converters
DE102007014761A1 (en) Method for operating collecting particle sensors, involves providing with measuring phases, during which particle contained in exhaust gas flow is absorbed at measuring section
DE102010019309B4 (en) Method for detecting the condition of a combined exhaust aftertreatment system with multiple components
DE102014209794A1 (en) Method and device for the diagnosis of a removal of a component of an emission control system
DE102015001231A1 (en) A method for simultaneously monitoring the various functions of a multi-component exhaust aftertreatment system with a single microwave based measurement system
WO2018068994A1 (en) Self-diagnosis of a catalytic converter by s-parameter measurement
WO2016070972A1 (en) Method for determining a soot load on a particulate filter provided with a selectively catalytic coating
DE102018110214A1 (en) Method for detecting the condition of a high-frequency antenna for an SCR catalytic converter
DE102017201400A1 (en) Method for fault detection in an SCR system by means of ammonia slip
DE102007031767A1 (en) Exhaust gas sensor for detecting concentration of exhaust gas component of internal combustion engine, has ceramic sensor element as part of structure, with which concentration of exhaust component is detected
DE102019104537A1 (en) Method for monitoring an ammonia slip catalyst
DE102017209521B3 (en) Method for determining a condition of an exhaust gas treatment element for a motor vehicle and device
DE102015200751A1 (en) Method for monitoring an exhaust aftertreatment system of an internal combustion engine and control device for an exhaust aftertreatment system
DE102017200539A1 (en) Method and device for loading diagnosis of a particle filter
DE102013207999A1 (en) Method and device for operating an internal combustion engine
DE102017113009B4 (en) Method and device for correcting a sensor signal in an exhaust duct of an internal combustion engine
DE102013200623A1 (en) Method for monitoring particulate filter in exhaust gas purification system in internal combustion engine of motor car, involves closing emission control component in comparison to oxide concentration in flow direction of exhaust gas
DE102017214750B4 (en) Method and device for determining a condition of an exhaust gas treatment element for a motor vehicle
DE102017205322A1 (en) Method for detecting damage to an SCR catalyst
WO2019219358A1 (en) Method and device for determining a state of an exhaust gas treatment element for a motor vehicle
DE102019206873A1 (en) Monitoring the condition of a catalytic converter to reduce nitrogen oxide by comparing the nitrogen oxide sensor signal with a modeled value

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R230 Request for early publication
R016 Response to examination communication
R002 Refusal decision in examination/registration proceedings
R003 Refusal decision now final