DE102017205322A1 - Method for detecting damage to an SCR catalyst - Google Patents
Method for detecting damage to an SCR catalyst Download PDFInfo
- Publication number
- DE102017205322A1 DE102017205322A1 DE102017205322.4A DE102017205322A DE102017205322A1 DE 102017205322 A1 DE102017205322 A1 DE 102017205322A1 DE 102017205322 A DE102017205322 A DE 102017205322A DE 102017205322 A1 DE102017205322 A1 DE 102017205322A1
- Authority
- DE
- Germany
- Prior art keywords
- scr catalyst
- threshold
- damage
- scr
- ammonia
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 59
- 238000000034 method Methods 0.000 title claims abstract description 42
- 230000006378 damage Effects 0.000 title claims abstract description 24
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims abstract description 130
- 229910021529 ammonia Inorganic materials 0.000 claims abstract description 43
- 238000012544 monitoring process Methods 0.000 claims abstract description 23
- 229910000069 nitrogen hydride Inorganic materials 0.000 claims abstract description 22
- 230000003197 catalytic effect Effects 0.000 claims abstract description 16
- 230000007547 defect Effects 0.000 claims description 14
- 238000004590 computer program Methods 0.000 claims description 6
- 239000004215 Carbon black (E152) Substances 0.000 claims description 4
- 229930195733 hydrocarbon Natural products 0.000 claims description 4
- 150000002430 hydrocarbons Chemical class 0.000 claims description 4
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 51
- 238000011144 upstream manufacturing Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- BUHVIAUBTBOHAG-FOYDDCNASA-N (2r,3r,4s,5r)-2-[6-[[2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)ethyl]amino]purin-9-yl]-5-(hydroxymethyl)oxolane-3,4-diol Chemical compound COC1=CC(OC)=CC(C(CNC=2C=3N=CN(C=3N=CN=2)[C@H]2[C@@H]([C@H](O)[C@@H](CO)O2)O)C=2C(=CC=CC=2)C)=C1 BUHVIAUBTBOHAG-FOYDDCNASA-N 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 238000010531 catalytic reduction reaction Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 230000003685 thermal hair damage Effects 0.000 description 1
- WTHDKMILWLGDKL-UHFFFAOYSA-N urea;hydrate Chemical compound O.NC(N)=O WTHDKMILWLGDKL-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
- F01N3/2066—Selective catalytic reduction [SCR]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N11/00—Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M15/00—Testing of engines
- G01M15/04—Testing internal-combustion engines
- G01M15/10—Testing internal-combustion engines by monitoring exhaust gases or combustion flame
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N22/00—Investigating or analysing materials by the use of microwaves or radio waves, i.e. electromagnetic waves with a wavelength of one millimetre or more
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/0004—Gaseous mixtures, e.g. polluted air
- G01N33/0009—General constructional details of gas analysers, e.g. portable test equipment
- G01N33/0027—General constructional details of gas analysers, e.g. portable test equipment concerning the detector
- G01N33/0036—General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
- G01N33/0054—Ammonia
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2240/00—Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
- F01N2240/05—Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a magnetic, e.g. electromagnetic, device other than a valve
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2550/00—Monitoring or diagnosing the deterioration of exhaust systems
- F01N2550/02—Catalytic activity of catalytic converters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2560/00—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
- F01N2560/02—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
- F01N2560/021—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting ammonia NH3
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2560/00—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
- F01N2560/12—Other sensor principles, e.g. using electro conductivity of substrate or radio frequency
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/02—Adding substances to exhaust gases the substance being ammonia or urea
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2900/00—Details of electrical control or of the monitoring of the exhaust gas treating apparatus
- F01N2900/06—Parameters used for exhaust control or diagnosing
- F01N2900/16—Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
- F01N2900/1602—Temperature of exhaust gas apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2900/00—Details of electrical control or of the monitoring of the exhaust gas treating apparatus
- F01N2900/06—Parameters used for exhaust control or diagnosing
- F01N2900/16—Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
- F01N2900/1622—Catalyst reducing agent absorption capacity or consumption amount
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M15/00—Testing of engines
- G01M15/04—Testing internal-combustion engines
- G01M15/10—Testing internal-combustion engines by monitoring exhaust gases or combustion flame
- G01M15/102—Testing internal-combustion engines by monitoring exhaust gases or combustion flame by monitoring exhaust gases
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pathology (AREA)
- Immunology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Electromagnetism (AREA)
- Toxicology (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Exhaust Gas After Treatment (AREA)
Abstract
Die Erfindung betrifft ein Verfahren zum Erkennen einer Schädigung eines SCR-Katalysators. In Zeiträumen (t1, t2, t3), in denen ein Modellwert für eine Ammoniakbeladung (NH3mod) des SCR-Katalysators über einer vorgebbaren Freigabeschwelle (S) liegt, wird eine mittels eines Mikrowellensensors gemessene Ammoniakbeladung (NH3mik) des SCR-Katalysators oder ein von dieser abgeleiteter Überwachungsfaktor mit einem vorgebbaren Schwellenwert (D) verglichen. Aus dem Ergebnis des Vergleichs wird auf eine Schädigung des SCR-Katalysators geschlossen. The invention relates to a method for detecting damage to an SCR catalyst. In periods (t 1 , t 2 , t 3 ) in which a model value for an ammonia loading (NH3 mod ) of the SCR catalyst is above a predefinable release threshold (S), an ammonia charge (NH3 mik ) of the SCR measured by means of a microwave sensor is determined -Catalyst or derived therefrom monitoring factor with a predetermined threshold (D) compared. From the result of the comparison, it is concluded that the SCR catalytic converter has been damaged.
Description
Die vorliegende Erfindung betrifft ein Verfahren zum Erkennen einer Schädigung eines SCR-Katalysators. Des Weiteren betrifft die vorliegende Erfindung ein Computerprogramm, das jeden Schritt des Verfahrens ausführt, sowie ein maschinenlesbares Speichermedium, welches das Computerprogramm speichert. Schließlich betrifft die Erfindung ein elektronisches Steuergerät, welches eingerichtet ist, um das Verfahren auszuführen.The present invention relates to a method for detecting damage to an SCR catalyst. Furthermore, the present invention relates to a computer program executing each step of the method and to a machine-readable storage medium storing the computer program. Finally, the invention relates to an electronic control device which is set up to carry out the method.
Stand der TechnikState of the art
Zur Reduktion von Stickoxiden (NOx) im Abgas von Kraftfahrzeugen werden unter anderem SCR-Katalysatoren verwendet (Selective Catalytic Reduction). Stickoxidmoleküle werden auf der Katalysatoroberfläche bei Vorhandensein von Ammoniak als Reduktionsmittel zu elementarem Stickstoff reduziert. Das Reduktionsmittel wird in Form einer ammoniakabspaltenden Harnstoffwasserlösung (HWL) zur Verfügung gestellt, welche kommerziell unter dem Namen AdBlue® erhältlich ist. Diese wird durch ein Dosierventil stromaufwärts des SCR-Katalysators in den Abgasstrang eingespritzt.For the reduction of nitrogen oxides (NOx) in the exhaust of motor vehicles SCR catalysts are used (Selective Catalytic Reduction). Nitrogen oxide molecules are reduced to elemental nitrogen on the catalyst surface in the presence of ammonia as a reducing agent. The reducing agent is in the form of a ammoniakabspaltenden urea solution (HWL) provided, which is commercially available under the name AdBlue ®. This is injected into the exhaust line through a metering valve upstream of the SCR catalyst.
Die OBD-Gesetzgebung fordert in vielen Märkten eine sehr genaue Überwachung des SCR-Katalysators. Die Anforderungen werden häufig als vielfaches des Emissionsgrenzwerts angegeben. In Europa sind feste OBD Grenzen zu überwachen. Altert der SCR-Katalysator, muss vor der Überschreitung des OBD-Grenzwerts ein Hinweis an den Fahrer ergehen, dass dieser eine Werkstatt aufsuchen muss.OBD legislation requires very close monitoring of the SCR catalyst in many markets. The requirements are often quoted as multiples of the emission limit. In Europe, fixed OBD limits are to be monitored. If the SCR catalytic converter ages, a warning to the driver must be given to the driver before the OBD limit value is exceeded.
Derzeit werden gealterte oder beschädigte SCR-Katalysatoren durch Auswertung der Stickoxid-Massenströme stromaufwärts und stromabwärts des Katalysators überwacht. Die dafür notwendigen Stickoxidkonzentrationen werden mit Hilfe von Stickoxidsensoren gemessen. Diese sind allerdings toleranzbehaftet. Außerdem wird Ammoniakschlupf, der bei den für die Einhaltung der strengen Abgasgrenzwerte notwendigen hohen Konvertierungsraten häufig entsteht, von Stickoxidsensoren als Stickoxid gemessen.Currently, aged or damaged SCR catalysts are monitored by evaluating the nitrogen oxide mass flows upstream and downstream of the catalyst. The necessary nitrogen oxide concentrations are measured with the help of nitrogen oxide sensors. However, these are subject to tolerances. In addition, ammonia slip, which often occurs at the high conversion rates required to meet the stringent emissions standards, is measured by nitric oxide sensors as nitric oxide.
In Fällen, in denen das passive Verfahren zu ungenau ist, wird ein zeitaufwändiges Verfahren verwendet, das mit Hilfe von aktiven Eingriffen in die Dosiermenge die Ammoniakspeicherfähigkeit des SCR-Katalysators bestimmt. Diese korreliert sehr gut mit einer thermischen Schädigung oder chemischen Schädigung Vergiftung des SCR-Katalysators. Aufgrund der Modulation der Dosiermenge kommt es hierbei häufig zu Phasen mit reduziertem Stickoxidumsatz. Dies hat einen negativen Einfluss auf die Stickoxidemissionen.In cases where the passive process is too inaccurate, a time consuming process is used that determines the ammonia storage capacity of the SCR catalyst by actively intervening in the dosing amount. This correlates very well with thermal damage or chemical damage poisoning of the SCR catalyst. Due to the modulation of the dosing this often leads to phases with reduced nitrogen oxide conversion. This has a negative influence on the nitrogen oxide emissions.
Offenbarung der ErfindungDisclosure of the invention
Das Verfahren zum Erkennen einer Schädigung eines SCR-Katalysators läuft in Zeiträumen ab, in denen ein Modellwert für eine Ammoniakbeladung des SCR-Katalysators über einer vorgebbaren Freigabeschwelle liegt. In diesen Zeiträumen wird eine mittels eines Mikrowellensensors gemessene Ammoniakbeladung des SCR-Katalysators oder ein von dieser abgeleiteter Überwachungsfaktor mit einem vorgebbaren Schwellenwert verglichen. Aus dem Ergebnis des Vergleichs wird auf eine Schädigung des SCR-Katalysators geschlossen. Das Verfahren kann als passive Überwachung des SCR-Katalysators im laufenden Betrieb verwendet werden, ohne dabei Eingriffe in die Dosierstrategie des SCR-Katalysators vornehmen zu müssen. Es ermöglicht das Erkennen von Schädigungen, die insbesondere auch altersbedingt sein können, so dass es eine Möglichkeit zur Verfügung stellt, den Alterungszustand eines SCR-Katalysators robust und schnell zu ermitteln.The method for detecting damage to an SCR catalytic converter expires in periods in which a model value for ammonia loading of the SCR catalytic converter is above a predefinable release threshold. During these periods, an ammonia charge of the SCR catalytic converter measured by means of a microwave sensor or a monitoring factor derived therefrom is compared with a predefinable threshold value. From the result of the comparison, it is concluded that the SCR catalytic converter has been damaged. The method can be used as passive monitoring of the SCR catalyst during operation without having to intervene in the dosing of the SCR catalyst. It makes it possible to detect damage, which in particular can also be due to age, so that it makes it possible to robustly and quickly determine the aging state of an SCR catalytic converter.
Verfahren zur Ermittlung des Ammoniakfüllstands eines SCR-Katalysators mittels Mikrowellen sind beispielsweise aus der
Der Modellwert für die Ammoniakbeladung kann insbesondere auf Basis eines Stickoxidsignals stromaufwärts des SCR-Katalysators berechnet werden. Dieses Signal kann entweder aus einem Stickoxidrohemissionsmodell eines Verbrennungsmotors stammen, dessen Abgase in den SCR-Katalysator geleitet werden oder aus einem Stickoxidsensor, der stromaufwärts des SCR-Katalysators in einem Abgasstrang angeordnet ist. Wenn stromabwärts des SCR-Katalysators ein weiterer Stickoxidsensor im Abgasstrang angeordnet ist, so kann dessen Signal ebenfalls in dem Modell berücksichtigt werden. Ein derart berechneter Modellwert der Ammoniakbeladung wird in üblichen Betriebsstrategien von SCR-Katalysatoren sowieso berechnet und kann in einer Ausführungsform des Verfahrens mit der Freigabeschwelle verglichen werden. In einer anderen Ausführungsform des Verfahrens kann aber alternativ auch vorgesehen sein, dass ein weiterer Modellwert der Ammoniakbeladung nach einer Rechenmethode durchgeführt wird, welche für das Verfahren optimiert ist und beispielsweise OBD-spezifische Parameter berücksichtigt.The model value for the ammonia loading can in particular be calculated on the basis of a nitrogen oxide signal upstream of the SCR catalytic converter. This signal can either come from a nitrogen oxide emissions model of an internal combustion engine, the exhaust gases are passed into the SCR catalyst or from a nitrogen oxide sensor, which is arranged upstream of the SCR catalyst in an exhaust line. If another nitrogen oxide sensor is arranged in the exhaust gas line downstream of the SCR catalytic converter, its signal can likewise be taken into account in the model. Such a model value of the ammonia loading calculated in this way is calculated anyway in conventional operating strategies of SCR catalysts and can be compared with the release threshold in one embodiment of the method. In another embodiment of the method, however, it may alternatively be provided that a further model value of the ammonia loading is carried out according to a calculation method which is optimized for the method and takes into account, for example, OBD-specific parameters.
Durch den Vergleich des Modellwerts der Ammoniakbeladung mit der Freigabeschwelle wird sichergestellt, dass der SCR-Katalysator nur bei einer so hohen Ammoniakbeladung diagnostiziert wird, dass eine verlässliche Aussage über das Vorliegen einer Schädigung getroffen werden kann. Das liegt daran, dass in diesen Betriebspunkten die erwartete Ammoniakbeladung bei einem unbeschädigten SCR-Katalysator viel größer als bei einem geschädigten SCR-Katalysator ist Hierzu wird die Freigabeschwelle insbesondere in Abhängigkeit von einer Ammoniakmindestspeicherfähigkeit des SCR-Katalysators vorgegeben, die den erwarteten maximalen NH3-Füllstand eines geschädigten SCR-Katalysators repräsentiert. Da diese temperaturabhängig ist, ist es bevorzugt, dass die Freigabeschwelle in Abhängigkeit von einer Temperatur des SCR-Katalysators vorgegeben wird.By comparing the model value of the ammonia loading with the release threshold, it is ensured that the SCR catalytic converter is diagnosed only at such a high ammonia load that a reliable statement can be made about the occurrence of damage. This is because in these operating points the expected Ammonia loading is much greater for an undamaged SCR catalyst than for a damaged SCR catalyst. For this purpose, the release threshold is specified in particular as a function of an ammonia minestore storage capability of the SCR catalyst which represents the expected maximum NH3 level of a damaged SCR catalytic converter. Since this is temperature-dependent, it is preferred that the release threshold is predetermined as a function of a temperature of the SCR catalyst.
Neben dem Überschreiten der Freigabeschwelle können weitere Freigabebedingungen vorgegeben werden, die erfüllt sein müssen, bevor der Vergleich zwischen der gemessenen Ammoniakbeladung oder dem Überwachungsfaktor mit einem vorgebbaren Schwellenwert erfolgt. Eine solche Freigabebedingung kann insbesondere sein, dass kein für das Verfahren relevanter Fehler, wie insbesondere ein Fehler eines im Verfahren ausgewerteten Sensors vorliegt. Bei hohen Temperaturen des SCR-Katalysators besitzt dieser eine sehr geringe Ammoniakspeicherfähigkeit, so dass der Modellwert der Ammoniakbeladung die Freigabeschwelle nicht überschreiten kann. Es kommt bei solchen Temperaturen zu einer Art Zurücksetzen des Ammoniakfüllstands. Eine weitere bevorzugte Freigabebedingung besteht deshalb darin, dass nachdem die Temperatur des SCR-Katalysators einen vorgebbaren Temperaturschwellenwert zunächst überschritten hat und dann wieder unter den Schwellenwert gesunken ist, der Vergleich zwischen der gemessenen Ammoniakbeladung oder dem Überwachungsfaktor mit einem vorgebbaren Schwellenwert für einen vorgebbaren Zeitraum ausgesetzt wird, damit wieder ein hinreichender zuverlässiges Modell der Ammoniakbeladung berücksichtigt werden kann. Erst bei ausreichender Zuverlässigkeit des Modellwerts kann auch auf die Zuverlässigkeit der Prüfung vertraut werden, ob dieser über der Freigabeschwelle liegt.In addition to exceeding the release threshold, further release conditions can be specified, which must be fulfilled before the comparison between the measured ammonia load or the monitoring factor takes place with a predefinable threshold value. Such a release condition may in particular be that no error relevant to the method, such as in particular a fault of a sensor evaluated in the method, is present. At high temperatures of the SCR catalyst this has a very low ammonia storage capacity, so that the model value of the ammonia loading can not exceed the release threshold. It comes at such temperatures to a kind of reset the ammonia level. A further preferred release condition therefore consists in that, after the temperature of the SCR catalytic converter has first exceeded a predefinable temperature threshold and then fallen below the threshold value again, the comparison between the measured ammonia load or the monitoring factor is suspended with a predefinable threshold value for a predeterminable period of time so that a sufficiently reliable model of ammonia loading can be considered again. Only with sufficient reliability of the model value can also be trusted in the reliability of the test, whether this is above the release threshold.
In dem Verfahren kann eine Defektschwelle verwendet werden, die eine Ammoniakbeladung repräsentiert, welche von einem intakten SCR-Katalysator in den Zeiträumen, in denen der Modellwert über der Freigabeschwelle liegt, immer überschritten werden sollte. Die Defektschwelle wird vorzugsweise in Abhängigkeit von einer Temperatur und von einer Kohlenwasserstoffbeladung des SCR-Katalysators vorgegeben, da sowohl eine hohe Temperatur als auch eine hohe Kohlenwasserstoffbeladung die Ammoniakspeicherfähigkeit des SCR-Katalysators herabsetzen.In the method, a defect threshold may be used that represents an ammonia load that should always be exceeded by an intact SCR catalyst in the periods when the model value is above the release threshold. The defect threshold is preferably set depending on a temperature and hydrocarbon loading of the SCR catalyst since both high temperature and high hydrocarbon loading degrade the ammonia storage capability of the SCR catalyst.
In einer Ausführungsform des Verfahrens wird auf eine Schädigung des SCR-Katalysators geschlossen, wenn der Vergleich ergibt, dass die gemessene Ammoniakbeladung nicht über der Defektschwelle liegt. Die Defektschwelle fungiert also als Schwellenwert. In dieser Ausführungsform werden die Absolutwerte der gemessenen Ammoniakbeladung und des Schwellenwerts miteinander verglichen. Hierbei handelt es sich um eine besonders einfache zu implementierende Ausführungsform des Verfahrens.In one embodiment of the method, damage to the SCR catalyst is concluded when the comparison reveals that the measured ammonia loading is not above the defect threshold. The defect threshold thus acts as a threshold value. In this embodiment, the absolute values of the measured ammonia load and the threshold value are compared with each other. This is a particularly simple embodiment of the method to be implemented.
Damit kleine Störungen der gemessenen Ammoniakbeladung nicht unmittelbar zur Erkennung einer Schädigung führen, ist es in dieser Ausführungsform bevorzugt, dass zwischen der gemessenen Ammoniakbeladung und der Defektschwelle eine zeitliche Entprellung erfolgt.So that small disturbances of the measured ammonia loading do not directly lead to the detection of damage, it is preferred in this embodiment that a temporal debouncing occurs between the measured ammonia loading and the defect threshold.
In einer anderen Ausführungsform des Verfahrens wird ein Überwachungsfaktor mit einer Überwachungsschwelle verglichen. Der Überwachungsfaktor F wird gemäß Formel 1 berechnet:
Dabei bezeichnet F1 einen Faktorenzähler, der gemäß Formel 2 berechnet wird und F2 einen Faktorennenner, der gemäß Formel 3 berechnet wird:
Dabei bezeichnet NH3mik die mittels Mikrowellen gemessene Ammoniakbeladung, NH3mod den Modellwert für die Ammoniakbeladung und D die Defektschwelle. Die Integration zur Berechnung des Faktorenzählers und des Faktorennenners erfolgt in den Zeiträumen, in denen der Modellwert über der Freigabeschwelle liegt. Wenn der Überwachungsfaktor eine Überwachungsschwelle überschreitet, wird auf eine Schädigung des SCR-Katalysators geschlossen. Das Verfahren gemäß dieser Ausführungsform ermöglicht das besonders präzise Erkennen einer Schädigung. Es erfordert allerdings mehr Rechenschritte als die erste Ausführungsform. Um sicherzustellen, dass den beiden Integralen eine hinreichend große Datenbasis zugrunde liegt, um eine sehr zuverlässige Erkennung der Schädigung zu ermöglichen, ist es bevorzugt, dass nur dann auf eine Schädigung des SCR-Katalysators geschlossen wird, wenn der Faktorennenner eine Nennerschwelle überschreitet.Here, NH3 mik denotes the ammonia load measured by means of microwaves, NH3 mod the model value for the ammonia load and D the defect threshold. The integration for calculating the factor counter and the factor denominator takes place in the periods in which the model value is above the release threshold. If the monitoring factor exceeds a monitoring threshold, then damage to the SCR catalyst is inferred. The method according to this embodiment enables particularly precise detection of damage. However, it requires more computing steps than the first embodiment. In order to ensure that the two integrals are based on a sufficiently large database in order to enable a very reliable detection of the damage, it is preferred that damage to the SCR catalyst is only concluded if the factor denominator exceeds a denominator threshold.
Das Computerprogramm ist eingerichtet, jeden Schritt des Verfahrens durchzuführen, insbesondere wenn es auf einem Rechengerät oder elektronischen Steuergerät abläuft. Es ermöglicht die Implementierung des Verfahrens auf einem herkömmlichen elektronischen Steuergerät, ohne hieran bauliche Veränderungen vornehmen zu müssen. Hierzu ist es auf dem maschinenlesbaren Speichermedium gespeichert. Durch Aufspielen des Computerprogramms auf ein herkömmliches elektronisches Steuergerät, wird das elektronische Steuergerät erhalten, welches eingerichtet ist, um mittels des Verfahrens eine Schädigung eines SCR-Katalysators zu erkennen.The computer program is set up to perform each step of the process, especially when running on a computing device or electronic controller. It allows the implementation of the method on a conventional electronic control unit without this to make structural changes. For this purpose it is stored on the machine-readable storage medium. By applying the computer program to a conventional electronic control unit, the electronic control unit is obtained, which is set up to detect damage to an SCR catalytic converter by means of the method.
Figurenlistelist of figures
Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Beschreibung näher erläutert.
-
1 zeigt schematisch einen SCR-Katalysator, welcher mittels Ausführungsbeispielen des erfindungsgemäßen Verfahrens auf eine Schädigung untersucht werden kann. -
2 zeigt in zwei Diagrammen den zeitlichen Verlauf mehrerer Werte in Ausführungsbeispielen des erfindungsgemäßen Verfahrens für einen intakten SCR-Katalysator. -
3 zeigt in zwei Diagrammen den zeitlichen Verlauf mehrerer Werte in Ausführungsbeispielen des erfindungsgemäßen Verfahrens für einen geschädigten SCR-Katalysator. -
4 zeigt ein Ablaufdiagramm eines Ausführungsbeispiels des erfindungsgemäßen Verfahrens. -
5 zeigt ein Ablaufdiagramm eines anderen Ausführungsbeispiels des erfindungsgemäßen Verfahrens.
-
1 schematically shows an SCR catalyst, which can be examined by means of embodiments of the method according to the invention for damage. -
2 shows in two diagrams the time course of several values in embodiments of the inventive method for an intact SCR catalyst. -
3 shows in two diagrams the time course of several values in embodiments of the inventive method for a damaged SCR catalyst. -
4 shows a flowchart of an embodiment of the method according to the invention. -
5 shows a flowchart of another embodiment of the method according to the invention.
Ausführungsbeispiele der ErfindungEmbodiments of the invention
In
Der Mikrowellensensor
In
Der Ablauf eines ersten Ausführungsbeispiels des erfindungsgemäßen Verfahrens ist in
In einem anderen Ausführungsbeispiel des erfindungsgemäßen Verfahrens, das in
ZITATE ENTHALTEN IN DER BESCHREIBUNG QUOTES INCLUDE IN THE DESCRIPTION
Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.This list of the documents listed by the applicant has been generated automatically and is included solely for the better information of the reader. The list is not part of the German patent or utility model application. The DPMA assumes no liability for any errors or omissions.
Zitierte PatentliteraturCited patent literature
- DE 10358495 B4 [0007]DE 10358495 B4 [0007]
- DE 102010034983 A1 [0007]DE 102010034983 A1 [0007]
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102017205322.4A DE102017205322A1 (en) | 2017-03-29 | 2017-03-29 | Method for detecting damage to an SCR catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102017205322.4A DE102017205322A1 (en) | 2017-03-29 | 2017-03-29 | Method for detecting damage to an SCR catalyst |
Publications (1)
Publication Number | Publication Date |
---|---|
DE102017205322A1 true DE102017205322A1 (en) | 2018-10-04 |
Family
ID=63525490
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE102017205322.4A Withdrawn DE102017205322A1 (en) | 2017-03-29 | 2017-03-29 | Method for detecting damage to an SCR catalyst |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE102017205322A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018217047A1 (en) * | 2018-10-05 | 2020-04-09 | Continental Automotive Gmbh | Method and device for determining a state of an exhaust gas treatment element for a motor vehicle |
CN111911269A (en) * | 2019-05-09 | 2020-11-10 | 罗伯特·博世有限公司 | Method for monitoring an SCR catalytic converter |
CN111927607A (en) * | 2019-05-13 | 2020-11-13 | 罗伯特·博世有限公司 | Monitoring the state of a catalytic converter for reducing nitrogen oxides |
CN115977777A (en) * | 2023-03-22 | 2023-04-18 | 潍柴动力股份有限公司 | Correction method and related device for front-stage and rear-stage nitrogen-oxygen sensors |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10358495B4 (en) | 2003-12-13 | 2011-10-06 | Ralf Moos | Method for detecting the state of a catalyst by means of microwaves |
DE102010034983A1 (en) | 2010-08-20 | 2012-02-23 | Gerhard Fischerauer | Method for detecting current state of exhaust after-treatment system in e.g. motor car, involves determining measured variables in different frequency ranges to allow measuring device to provide conclusions about memory state |
-
2017
- 2017-03-29 DE DE102017205322.4A patent/DE102017205322A1/en not_active Withdrawn
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10358495B4 (en) | 2003-12-13 | 2011-10-06 | Ralf Moos | Method for detecting the state of a catalyst by means of microwaves |
DE102010034983A1 (en) | 2010-08-20 | 2012-02-23 | Gerhard Fischerauer | Method for detecting current state of exhaust after-treatment system in e.g. motor car, involves determining measured variables in different frequency ranges to allow measuring device to provide conclusions about memory state |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018217047A1 (en) * | 2018-10-05 | 2020-04-09 | Continental Automotive Gmbh | Method and device for determining a state of an exhaust gas treatment element for a motor vehicle |
DE102018217047B4 (en) | 2018-10-05 | 2022-01-27 | Vitesco Technologies GmbH | Method and device for determining a state of an exhaust gas treatment element for a motor vehicle |
CN111911269A (en) * | 2019-05-09 | 2020-11-10 | 罗伯特·博世有限公司 | Method for monitoring an SCR catalytic converter |
CN111927607A (en) * | 2019-05-13 | 2020-11-13 | 罗伯特·博世有限公司 | Monitoring the state of a catalytic converter for reducing nitrogen oxides |
CN115977777A (en) * | 2023-03-22 | 2023-04-18 | 潍柴动力股份有限公司 | Correction method and related device for front-stage and rear-stage nitrogen-oxygen sensors |
CN115977777B (en) * | 2023-03-22 | 2023-06-23 | 潍柴动力股份有限公司 | Correction method and related device for front-stage and rear-stage nitrogen-oxygen sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102010029740B4 (en) | Procedure for monitoring an SCR catalytic converter | |
DE102013203580A1 (en) | Method for monitoring an exhaust aftertreatment system | |
DE102015118349A1 (en) | Method of diagnosing a fault of an SCR system | |
DE102013223993A1 (en) | Diagnostic Operational Strategy for Determining an Aging Level of a Diesel Oxidation Catalyst Using NO2 Interference from NOx Sensors | |
DE102017205322A1 (en) | Method for detecting damage to an SCR catalyst | |
DE102018213379A1 (en) | Method for monitoring an SCR catalytic converter | |
DE102016211575A1 (en) | Error detection in an SCR system using an ammonia level | |
DE102012220151A1 (en) | Method for checking SCR catalysts in exhaust gas system of internal combustion engine of motor car, involves altering size of ammonia sensor to output signal to ammonium cross-sensitive sensor, which is attenuated below threshold level | |
DE102011003084A1 (en) | Method for monitoring exhaust gas purification system of internal combustion engine, involves comparing signal of nitrogen-oxide sensor with signal of another nitrogen-oxide sensor | |
DE102014209960A1 (en) | Method and device for evaluating the functionality of an SCR catalytic converter in an exhaust system of a diesel engine | |
DE102017201393A1 (en) | Method for fault detection in an SCR system by means of ammonia slip | |
DE102007063940B4 (en) | Method for diagnosing an exhaust gas area of an internal combustion engine containing an exhaust gas treatment device and device for carrying out the method | |
DE102012211705A1 (en) | Method for checking cross-sensitivity of ammonia of nitrogen oxide sensor in SCR catalyst system of diesel engine, involves determining nitrogen oxide concentration in exhaust gas between catalysts from nitrogen oxide model | |
DE102017201400A1 (en) | Method for fault detection in an SCR system by means of ammonia slip | |
DE102014209972B4 (en) | Method and device for evaluating the aging condition of a NOx storage catalytic converter | |
DE102013203578A1 (en) | Method for monitoring an exhaust aftertreatment system | |
DE102016209533A1 (en) | Detecting the aging state of an SCR catalyst | |
DE102014202035A1 (en) | Method and device for monitoring a nitrogen oxide storage catalyst | |
DE102018213380A1 (en) | Method for monitoring an SCR catalytic converter | |
DE102019219645A1 (en) | Diagnostic procedure for an SCR catalytic converter | |
DE102014209966B4 (en) | Method and device for evaluating the functionality of a SCR catalytic converter in an exhaust system of a diesel engine | |
DE102013203579A1 (en) | Method for monitoring an exhaust aftertreatment system | |
DE102012201597A1 (en) | Method for dynamic diagnosis of gas sensor to monitor exhaust gas purification system of vehicle combustion engine, involves determining time profile of sensor signal, and comparing signal level of gradient with applied limit value | |
DE102013200623A1 (en) | Method for monitoring particulate filter in exhaust gas purification system in internal combustion engine of motor car, involves closing emission control component in comparison to oxide concentration in flow direction of exhaust gas | |
DE102012220152A1 (en) | Method for examining ammonia sensor or ammonia cross-sensitive sensor, involves periodically changing operating parameter of internal combustion engine or catalyst system, which influences nitrogen oxide concentration of exhaust gas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R119 | Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee |