DE102017128833B4 - Integrierte Schaltung, Verfahren zum Herstellen einer integrierten Schaltung und Vorrichtung zum Herstellen einer integrierten Schaltung - Google Patents

Integrierte Schaltung, Verfahren zum Herstellen einer integrierten Schaltung und Vorrichtung zum Herstellen einer integrierten Schaltung Download PDF

Info

Publication number
DE102017128833B4
DE102017128833B4 DE102017128833.3A DE102017128833A DE102017128833B4 DE 102017128833 B4 DE102017128833 B4 DE 102017128833B4 DE 102017128833 A DE102017128833 A DE 102017128833A DE 102017128833 B4 DE102017128833 B4 DE 102017128833B4
Authority
DE
Germany
Prior art keywords
axis
integrated circuit
inductor
center
induced voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
DE102017128833.3A
Other languages
English (en)
Other versions
DE102017128833A1 (de
Inventor
Aaron J. Caffee
Brian G. Drost
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Silicon Laboratories Inc
Original Assignee
Silicon Laboratories Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Silicon Laboratories Inc filed Critical Silicon Laboratories Inc
Publication of DE102017128833A1 publication Critical patent/DE102017128833A1/de
Application granted granted Critical
Publication of DE102017128833B4 publication Critical patent/DE102017128833B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/01Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate comprising only passive thin-film or thick-film elements formed on a common insulating substrate
    • H01L27/016Thin-film circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • H01F27/363Electric or magnetic shields or screens made of electrically conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/041Printed circuit coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/702Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof of thick-or thin-film circuits or parts thereof
    • H01L21/707Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof of thick-or thin-film circuits or parts thereof of thin-film circuits or parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/50Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor for integrated circuit devices, e.g. power bus, number of leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/585Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries comprising conductive layers or plates or strips or rods or rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/645Inductive arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/66High-frequency adaptations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/10Inductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F2017/0073Printed inductances with a special conductive pattern, e.g. flat spiral

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

Integrierte Schaltung, umfassend:einen Induktor (302) mit einer ersten Achse (310, 1002, 1004) durch eine Mitte (350) des Induktors und einer zweiten Achse (312) durch die Mitte des Induktors, wobei die erste Achse eine erste Knotenachse einer oder mehrerer Knotenachsen des Induktors ist, wobei die erste Achse einen ersten Ort eines ersten magnetischen Knotens mit einer ersten vernachlässigbaren induzierten Spannungsamplitude in einem Abstand von der Mitte des Induktors enthält und die zweite Achse eine erste Schwingungsbauchachse ist, wobei die zweite Achse einen zweiten Ort eines ersten vernachlässigbaren Magnetflussdichtefelds und einer ersten induzierte Spannungsamplitude in dem Abstand von der Mitte des Induktors größer als die erste vernachlässigbare induzierte Spannungsamplitude enthält; undein erstes Cluster von integrierten Schaltungsanschlüssen (1006, 1008, 1010, 1012, 1120, 1122, 1124, 1126), die um die erste Achse konzentriert und von der zweiten Achse entfernt sind,wobei alle integrierten Schaltungsanschlüsse der integrierten Schaltung um die eine oder mehreren Knotenachsen des Induktors konzentriert sind.

Description

  • ALLGEMEINER STAND DER TECHNIK
  • Erfindungsgebiet
  • Die vorliegende Anwendung betrifft integrierte Schaltungen und insbesondere integrierte Schaltungen, die Induktorstrukturen enthalten.
  • Beschreibung des verwandten Stands der Technik
  • Im Allgemeinen werden elektronische Oszillatorschaltungen verwendet, um sich wiederholende oszillierende Elektroniksignale für eine Vielzahl von integrierten Schaltungsanwendungen zu generieren (zum Beispiel lokale Oszillatorsignale für Hochfrequenz-Mischstufen, Sender zum Generieren von Trägerwellen für die Hochfrequenz-Signalübertragung usw.). Unter Bezugnahme auf 1 kann eine Taktgeneratorschaltung eine herkömmliche Tankschaltung 100 verwenden, die ein Resonanzkreis mit einem an einen Kondensator 102 gekoppelten Induktor 104 ist. Ladung fließt von dem Platten des Kondensators 102 durch den Induktor hin und zurück, so dass der Resonanzkreis mit seiner Resonanzfrequenz schwingende elektrische Energie speichern kann. Eine Verstärkerschaltung 108 kompensiert kleine Verluste bei der herkömmlichen Tankschaltung 100, um die Schwingung aufrecht zu erhalten. Durch Bereitstellen einer Transkonduktanz, die gleich den Tankverlusten und ihnen entgegengesetzt ist, kann die Verstärkerschaltung 108 die Schwingung bei der Resonanzfrequenz der herkömmlichen Tankschaltung 100 und bei einer durch die Verstärkerschaltung 108 bestimmten Amplitude unbestimmt aufrechterhalten.
  • Wenn der Induktor 104 periodisch angesteuert wird, generiert er ein zeitlich variierendes Magnetvektorpotenzial und Magnetflussdichtefelder (das heißt Magnetfelder, die sich über die Grenzen der leitfähigen Schleife hinaus erstrecken. Diese magnetische Energie kann in eine benachbarte Schaltungsanordnung gekoppelt werden. Einige Anwendungen nutzen dieses Verhalten in Schaltungen aus, wie etwa in Transformatoren. Bei anderen Anwendungen jedoch (zum Beispiel Oszillatoranwendungen) ist diese Kopplung unerwünscht, da sie innerhalb der benachbarten Schaltungsanordnung unerwünschte Spannungen und/oder Ströme induzieren kann. Durch eine benachbarte Schaltungsanordnung induzierte Magnetfelder können in eine den Induktor 104 enthaltende Schaltungsanordnung eingekoppelt werden und die Leistung verschlechtern. Diese unerwünschte Kopplung kann die Gesamtsystemleistung verschlechtern. Das Abschirmen einer chipinternen Schaltungsanordnung vor Magnetfeldern kann eine Herausforderung darstellen, wenn magnetische Materialien nicht zur Verfügung stehen. Deshalb werden Techniken erwünscht, die die magnetische Kopplung behandeln.
    [1003a] US 7 141 883 B2 offenbart eine Konfiguration für eine integrierte Schaltung mit abgeschirmter Schaltungselementstruktur. Ein elektromagnetisch abgeschirmter High-Q-Induktor kann innerhalb eines mehrschichtigen Gehäusesubstrats (MLS) hergestellt werden. Der Induktor ist vorzugsweise als eine Schleifenstruktur auf einer Schicht des MLS aufgebaut, und eine Abschirmstruktur ist um den Induktor herum ausgebildet, um den Induktor im Wesentlichen in einem Faraday-Käfig ähnlichen Gehäuse einzuschließen. Die Abschirmstruktur umfasst eine obere Platte, die über dem Induktor auf einer anderen Schicht der MLS gebildet ist, und eine untere Platte, die auf noch einer anderen Schicht der MLS oder auf einer Schicht eines Chips einer integrierten Schaltung gebildet ist, die sich unter der MLS befindet und daran befestigt ist, vorzugsweise unter Verwendung von Lötperlen. Die Seitenwände der Abschirmstruktur können durch einen Ring aus gestapelten Durchkontaktierungen oder Durchkontaktierungskanälen gebildet werden. Der Induktor ist vorzugsweise mit gestapelten Durchgangslöchern verbunden, die eine Verbindung mit dem darunter liegenden integrierten Schaltungschip über zusätzliche Löthöcker und Ausschnitte durch die Bodenplatte der Abschirmstruktur bereitstellen.
  • KURZE DARSTELLUNG VON AUSFÜHRUNGSFORMEN DER ERFINDUNG
  • Bei mindestens einer Ausführungsform enthält eine integrierte Schaltung einen Induktor mit einer ersten Achse durch eine Mitte des Induktors und einer zweiten Achse durch die Mitte des Induktors. Die erste Achse ist eine erste Knotenachse und enthält einen ersten Ort eines ersten magnetischen Knotens mit einer ersten vernachlässigbaren induzierten Spannungsamplitude in einem Abstand von der Mitte des Induktors. Die zweite Achse ist eine erste Schwingungsbauchachse und enthält einen zweiten Ort eines ersten vernachlässigbaren Magnetflussdichtefelds und einer ersten induzierten Spannungsamplitude größer als die erste vernachlässigbare induzierte Spannungsamplitude in dem Abstand von der Mitte des Induktors. Die integrierte Schaltung enthält ein erstes Cluster von integrierten Schaltungsanschlüssen, die um die erste Achse konzentriert und von der zweiten Achse entfernt sind. Die erste vernachlässigbare induzierte Spannungsamplitude kann eine kleinste induzierte Spannungsamplitude in dem Abstand von der Mitte des Induktors sein, und die erste induzierte Spannungsamplitude kann eine größte induzierte Spannungsamplitude in dem Abstand von der Mitte des Induktors sein. Die integrierte Schaltung kann eine elektrisch leitfähige Struktur mit einer Öffnung mindestens so groß wie der Induktor enthalten. Die Öffnung kann um eine projizierte Oberfläche des Induktors herum zentriert sein. Die elektrisch leitfähige Struktur kann als eine AC-Masseebene konfiguriert sein.
  • Die integrierte Schaltung kann ein zweites Cluster von integrierten Schaltungsanschlüssen enthalten, die um die erste Achse konzentriert und von der zweiten Achse entfernt sind. Die erste und zweite Mehrheit von integrierten Schaltungsanschlüssen kann an entgegengesetzten Enden des Induktors und äquidistant von der zweiten Achse angeordnet sein. Der Induktor kann mindestens vier leitfähige Schleifen enthalten, und der Induktor kann eine dritte Achse durch die Mitte des Induktors und eine vierte Achse durch die Mitte des Induktors besitzen. Die dritte Achse kann eine zweite Knotenachse sein und kann einen dritten Ort eines zweiten magnetischen Knotens mit einer zweiten vernachlässigbaren induzierten Spannungsamplitude in dem Abstand von der Mitte des Induktors enthalten. Die vierte Achse kann eine zweite Schwingungsbauchachse sein. Die vierte Achse kann einen vierten Ort eines zweiten vernachlässigbaren Magnetflussdichtefelds und einer zweiten induzierten Spannungsamplitude größer als die zweite vernachlässigbare induzierte Spannungsamplitude in dem Abstand von der Mitte des Induktors enthalten. Die integrierte Schaltung kann ein zweites Cluster von integrierten Schaltungsanschlüssen enthalten, die um die dritte Achse konzentriert und von der zweiten und vierten Achse entfernt sind. Das erste Cluster von integrierten Schaltungsanschlüssen kann in einer ersten Ecke eines integrierten Schaltungsabschnitts angeordnet sein, und das zweite Cluster von integrierten Schaltungsanschlüssen kann in einer zweiten Ecke des integrierten Schaltungsabschnitts gegenüber der ersten Ecke angeordnet sein. Das erste Cluster von integrierten Schaltungsanschlüssen kann einen oder mehrere Stromversorgungsanschlüsse enthalten, die zum Empfangen eines hohen Spannungspegels konfiguriert sind, und das zweite Cluster von integrierten Schaltungsanschlüssen kann einen oder mehrere Stromversorgungsanschlüsse enthalten, die zum Empfangen eines niedrigen Spannungspegels konfiguriert sind. Die integrierten Schaltungsanschlüsse können integrierte Schaltungsbondpads sein, und der Induktor kann auf einem integrierten Schaltungs-Die zentriert sein.
  • Bei mindestens einer Ausführungsform beinhaltet ein Verfahren zum Herstellen einer integrierten Schaltung das Ausbilden eines Induktors mit einer ersten Achse durch eine Mitte des Induktors und einer zweiten Achse durch die Mitte des Induktors. Die erste Achse ist eine erste Knotenachse und enthält einen ersten Ort eines ersten magnetischen Knotens mit einer ersten vernachlässigbaren induzierten Spannungsamplitude in einem Abstand von der Mitte des Induktors. Die zweite Achse ist eine erste Schwingungsbauchachse, wobei die zweite Achse einen zweiten Ort eines ersten vernachlässigbaren Magnetflussdichtefelds und einer ersten induzierten Spannungsamplitude in dem Abstand von der Mitte des Induktors größer als die erste vernachlässigbare induzierte Spannungsamplitude enthält. Das Verfahren beinhaltet das Ausbilden eines ersten Clusters von integrierten Schaltungsanschlüssen, die um die erste Achse konzentriert und von der zweiten Achse entfernt sind.
  • Das Verfahren kann das Ausbilden einer elektrisch leitfähigen Struktur mit einer Öffnung mindestens so groß wie der Induktor beinhalten. Die Öffnung kann um eine projizierte Oberfläche des Induktors herum zentriert sein. Die elektrisch leitfähige Struktur kann als eine AC-Masseebene konfiguriert sein. Das Verfahren kann das Ausbilden eines zweiten Clusters von integrierten Schaltungsanschlüssen beinhalten, die um die erste Achse konzentriert und von der zweiten Achse entfernt sind. Die erste und zweite Mehrheit von integrierten Schaltungsanschlüssen kann an entgegengesetzten Enden des Induktors und äquidistant von der zweiten Achse angeordnet sein. Der Induktor kann mindestens vier leitfähige Schleifen enthalten, und der Induktor kann eine dritte Achse durch die Mitte des Induktors und eine vierte Achse durch die Mitte des Induktors besitzen. Die dritte Achse kann eine zweite Knotenachse sein. Die dritte Achse kann einen dritten Ort eines zweiten magnetischen Knotens mit einer zweiten vernachlässigbaren induzierten Spannungsamplitude in dem Abstand von der Mitte des Induktors enthalten. Die vierte Achse kann eine zweite Schwingungsbauchachse sein. Die vierte Achse kann einen vierten Ort eines zweiten vernachlässigbaren Magnetflussdichtefelds und eine zweite induzierte Spannungsamplitude in dem Abstand von der Mitte des Induktors größer als die zweite vernachlässigbare induzierte Spannungsamplitude enthalten. Die integrierte Schaltung kann weiterhin ein zweites Cluster von integrierten Schaltungsanschlüssen enthalten, die um die dritte Achse herum konzentriert und von der zweiten und vierten Achse entfernt sind. Das erste Cluster von integrierten Schaltungsanschlüssen kann in einer ersten Ecke eines integrierten Schaltungsabschnitts ausgebildet sein, und das zweite Cluster von integrierten Schaltungsanschlüssen kann in einer zweiten Ecke des integrierten Schaltungsabschnitts gegenüber der ersten Ecke ausgebildet sein. Das erste Cluster von integrierten Schaltungsanschlüssen kann einen oder mehrere Stromversorgungsanschlüsse enthalten, die zum Empfangen eines hohen Spannungspegels konfiguriert sind, und das zweite Cluster von integrierten Schaltungsanschlüssen kann einen oder mehrere Stromversorgungsanschlüsse enthalten, die zum Empfangen eines niedrigen Spannungspegels konfiguriert sind. Das Verfahren kann das Ausbilden leitfähiger Bahnen parallel zur ersten Achse beinhalten.
  • KURZE BESCHREIBUNG DER ZEICHNUNGEN
  • Unter Bezugnahme auf die beiliegenden Zeichnungen kann die vorliegende Erfindung besser verstanden werden, und ihre zahlreichen Aufgaben, Merkmale und Vorteile können dem Fachmann offensichtlich gemacht werden.
    • 1 zeigt einen Schaltplan einer herkömmlichen LC-Oszillatorschaltung.
    • 2 zeigt Magnetflussdichte-Feldkonturen und Magnetvektorpotenzial-Feldlinien für einen Leiterabschnitt.
    • 3 zeigt eine mit Magnetvektorpotenzial-Feldlinien für einen Leiterabschnitt assoziierte induzierte Spannung.
    • 4 zeigt einen beispielhaften integrierten Schaltungsabschnitt mit einem Doppel-Schleifen-Induktor, einer elektromagnetischen Abschirmungsstruktur, Anschlüssen und Achsen, die mit einem Magnetvektorpotenzialfeld und einem Magnetflussdichtefeld des Doppel-Schleifen-Induktors assoziiert sind.
    • 5 zeigt einen detaillierten Abschnitt des beispielhaften integrierten Schaltungsabschnitts von 4.
    • 6 zeigt beispielhafte induzierte Ströme des integrierten Schaltungsabschnitts von 4.
    • 7 zeigt beispielhafte Anschlussplatzierungen für den integrierten Schaltungsabschnitt von 4.
    • 8 zeigt beispielhafte Anschlussplatzierungen für den integrierten Schaltungsabschnitt von 4 in Übereinstimmung mit mindestens einer Ausführungsform der Erfindung.
    • 9 zeigt beispielhafte Anschlussplatzierungen für den integrierten Schaltungsabschnitt mit einem Vier-Schleifen-Induktor und einer elektromagnetischen Abschirmungsstruktur in Übereinstimmung mit mindestens einer Ausführungsform der Erfindung.
    • 10 zeigt eine AC-Erdungsstruktur, eine elektromagnetische Abschirmungsstruktur und beispielhafte Anschlussplatzierungen für den integrierten Schaltungsabschnitt mit einem Vier-Schleifen-Induktor in Übereinstimmung mit mindestens einer Ausführungsform der Erfindung.
    • 11 zeigt beispielhafte Anschlussplatzierungen für Anschlüsse, mit einer elektromagnetischen Abschirmungsstruktur integriert, in Übereinstimmung mit mindestens einer Ausführungsform der Erfindung.
  • Die Verwendung der gleichen Bezugssymbole in verschiedenen Zeichnungen gibt ähnliche oder identische Elemente an.
  • AUSFÜHRLICHE BESCHREIBUNG
  • Eine Technik zum Ausbilden einer integrierten Schaltung mit einem Induktor reduziert die magnetische Kopplung zwischen dem Induktor und umgebenden Elementen. Die Technik beinhaltet die bewusste Platzierung von Schaltungselementen (zum Beispiel Anschlüssen, Pins, Wegführungsbahnen) an Orten auf der integrierten Schaltung relativ zu einem mit dem Induktor assoziierten Magnetvektorpotenzialfeld und relativ zu einem mit dem Induktor assoziierten Magnetflussdichtefeld, um induzierte Signale, die die Systemleistung verschlechtern, zu reduzieren oder zu eliminieren.
  • Unter Bezugnahme auf die 2 und 3 erzeugt das durch einen Leiter unterstützte Stromdichtefeld (J) ein Magnetvektorpotenzialfeld ( A )
    Figure DE102017128833B4_0001
    Im Allgemeinen ist die Rotation ( V ¯ × )
    Figure DE102017128833B4_0002
    des Magnetvektorpotenzialfelds das Magnetflussdichtefeld (B): V ¯ × A = B .
    Figure DE102017128833B4_0003
  • Das Magnetvektorpotenzialfeld kann durch Summieren von Beiträgen aller Stromdichtekomponenten in dem Stromdichtefeld berechnet werden: A = μ 4 π J r d x d y d z .
    Figure DE102017128833B4_0004
  • Das Magnetvektorpotenzialfeld besitzt die gleiche Richtung wie ein nahegelegener Stromfluss (das heißt, das Magnetvektorpotenzialfeld befindet sich in der gleichen Ebene wie der Stromfluss). Ein zeitlich variierendes Magnetvektorpotenzialfeld induziert eine Spannung auf einem Leiter in der gleichen Richtung wie das Magnetvektorpotenzialfeld: d ( V ¯ × A ) d t = d B d t = × E ;
    Figure DE102017128833B4_0005
    d A d t = E ;
    Figure DE102017128833B4_0006
    d A d t d l = E d l = Δ V ,
    Figure DE102017128833B4_0007
    wobei E das durch den Stromfluss induzierte elektrische Feld ist und l
    Figure DE102017128833B4_0008
    die Länge des Leiters ist. Zum Reduzieren der magnetischen Kopplung zwischen dem Induktor und nahegelegenen Leiterbahnen sollte im Allgemeinen die Platzierung von leitfähigen Bahnen nahe und parallel zu dem Induktorstrom zugunsten von leitfähigen Bahnen, die sich orthogonal zu einem nächstliegenden Induktorstrom erstrecken, reduziert oder vermieden werden, oder wobei A t o t ¯ = A ¯ l 0.
    Figure DE102017128833B4_0009
  • 4 zeigt einen herkömmlichen Doppel-Schleifen-Induktor, der auf einem integrierten Schaltungs-Die ausgebildet ist, und um den Induktor verteilte beispielhafte Anschlüsse (zum Beispiel CTL1, CTL2, GND1, GND2, VDD1, VDD2, CTL- und CTL+). Die Anschlüsse können Ports sein, die an andere Sektionen des integrierten Schaltungs-Die gekoppelt sind, oder Pads sein zum Koppeln einer den Induktor enthaltenden Schaltungsanordnung an Knoten außerhalb des integrierten Schaltungs-Die. Im Allgemeinen können herkömmliche integrierte Schaltungsdesigns Bondpads gleichmäßig um den Die herum verteilen, um die Erleichterung einer Verbindung mit außerhalb des Chips gelegenen Elementen zu ermöglichen und die Kopplung zwischen Bonddrähten zu reduzieren.
  • Der Induktor 302 kann von einer elektrisch leitfähigen Hülle 304 umgeben sein, die den Induktor vor Die-interner elektromagnetischer Interferenz abschirmt. Die elektrisch leitfähige Hülle 304 kann eine Platte einer größeren Faraday-Abschirmung sein, die eine Abschirmung vor externer elektromagnetischer Interferenz bereitstellt. Als Reaktion auf das durch den Induktor 302 generierte Magnetflussdichtefeld generiert die elektrisch leitfähige Hülle 304 einen Strom (zum Beispiel einen Wirbelstrom), der ein Magnetflussdichtefeld generieren kann, das dem Magnetflussdichtefeld des Induktors entgegenwirkt. Dieser Strom verbraucht Leistung, die ansonsten einer assoziierten integrierten Schaltung zur Verfügung stehen würde und das durch den Induktor 302 generierte Magnetflussdichtefeld reduziert. Diese beiden Effekte reduzieren zusammen genommen die Induktanz und den Q-Wert eines LC-Oszillators, der den Induktor enthält. Der in der elektrisch leitfähigen Hülle 304 als Reaktion auf den Induktor 302 generierte Strom kann weiter reduziert werden und eine entsprechende Verbesserung an dem Q-Wert eines den Induktor enthaltenden LC-Oszillators kann erzielt werden, indem eine oder mehrere Öffnungen (zum Beispiel Öffnung 306) in einer oder mehreren Platten des Faraday-Käfigs aufgenommen werden.
  • Bei mindestens einer Ausführungsform enthält der Induktor 302 zwei aus einer über dem Halbleitersubstrat angeordneten leitfähigen Schicht ausgebildete ebene Schleifen. Da im Allgemeinen die Induktanz eine Funktion der Fläche ist und ein äquivalenter Reihenwiderstand unter Bedingungen eines geringen Substratverlustes im Allgemeinen eine Funktion des Umfangs ist (zum Beispiel hoher spezifischer Substratwiderstand unter dem Induktor), wird ein schleifenförmiger Leiter zum Implementieren des Induktors verwendet, um das Verhältnis von Induktanz zu Widerstand zu maximieren. Wenngleich andere Induktorformen verwendet werden können, führt die Schleifenform des Leiters zum größten Flächen-Umfangs-Verhältnis für den Induktor 302 und maximiert somit den Q-Wert des Induktors.
  • Die ebenen leitfähigen Schleifen können in einer leitfähigen Schicht ausgebildet werden, die einen geringen spezifischen Widerstand besitzt, und können eine oberste Metallschicht in einem Herstellungsprozess für eine integrierte Schaltung sein. Bei mindestens einer Ausführungsform des Induktors 302 ist die leitfähige Schicht eine über ein Halbleitersubstrat ausgebildete ultradicke Schicht. Im Allgemeinen kann eine ultradicke Schicht dielektrische und leitfähige Schicht enthalten, die auf einem integrierten Schaltungssubstrat unter einer etwaigen Passivierungsschicht und unter etwaigen integrierten Schaltungsbondpads, falls sie vorliegt, ausgebildet sein kann. Eine ultradicke Schicht kann jedoch in Abwesenheit einer Passivierungsschicht oder von Bondpads auf einem integrierten Schaltungs-Die ausgebildet werden. Ultradicke Schichten besitzen typischerweise Dicken, die wesentlich größer sind als die Dicken von typischen dielektrischen und leitfähigen Schichten, die in unteren Schichten eines integrierten Schaltungsstapels ausgebildet sind. Beispielsweise ist eine typische leitfähige Schicht einer integrierten Schaltung weniger als 1 µm dick. Der Induktor kann jedoch in einer beispielhaften ultradicken leitfähigen Schicht ausgebildet werden, die mindestens 3 µm dick ist, und entsprechende dielektrische Schichten können mindestens 0,65 µm dick sein. Ultradicke dielektrische Schichten können Siliziumnitrid, Oxynitrid, Siliziumoxid oder andere geeignete Materialien enthalten. Ultradicke leitfähige Schichten können Aluminium, Kupfer, Polysilizium oder andere geeignete leitfähige Materialien enthalten.
  • Bei mindestens einer Ausführungsform einer integrierten Schaltung ist eine ultradicke leitfähige Schicht durch eine oder mehrere Übergangsschichten, die die Herstellbarkeit verbessern, von traditionellen integrierten Schaltungsschichten (zum Beispiel typischen Leiterschichten) getrennt. Eine leitfähige Übergangsschichte besitzt eine Dicke, die kleiner ist als eine Dicke der ultradicken leitfähigen Schicht, aber größer als eine Dicke einer traditionellen leitfähigen Schicht. Übergangsschichten können eine dicke leitfähige Schicht und eine dicke dielektrische Schicht enthalten und können aus einem beliebigen geeigneten Material (zum Beispiel Siliziumnitrid, Oxynitrid, Siliziumoxid, Aluminium, Kupfer, Polysilizium) ausgebildet werden. Eine typische Herstellungstechnologie verwendet wenige ultradicke leitfähige Schichten und begrenzt jene Schichten auf obere Metallisierungsschichten. Eine typische ultradicke leitfähige Schicht wird aus einem leitfähigen Material (zum Beispiel 3 µm dickem Kupfer) ausgebildet, das einen geringeren Schichtwiderstand als das leitfähige Material besitzt, das untere leitfähige Schichten bildet (zum Beispiel eine aus Aluminium ausgebildete 1 µm dicke Übergangsschicht). Man beachte, dass hierin beschriebene Ausführungsformen des Induktors 302 lediglich beispielhaft sind und mit hierin beschriebenen Techniken übereinstimmende Induktorstrukturen weiter in der am 30. September 2011 eingereichten USPatentanmeldung US 2013 / 0 082 793 A1 mit dem Titel „Mutual Inductance Circuits“ unter der Nennung von Adam B. Eldredge und Susumu Hara als Erfinder, nun US-Patent US 8 648 664 B2 , beschrieben sind,
  • Im Allgemeinen kann der in der elektrisch leitfähigen Hülle 304 als Reaktion auf den Induktor generierte Strom weiter reduziert werden und eine entsprechende Verbesserung des Q-Werts eines den Induktor enthaltenden LC-Oszillators kann durch Aufnahme einer oder mehrerer Öffnungen (zum Beispiel der Öffnung 306) in die elektrisch leitfähige Hülle 304 (zum Beispiel eine obere Platte eines Faraday-Käfigs) erzielt werden. Die Öffnung 306 verläuft im Wesentlichen parallel zu dem Stromfluss durch den Induktor 302. Im Allgemeinen ist die Öffnung 306 um ein Ausmaß größer als der Induktor, das auf der Anzahl der Schleifen des Induktors, dem Innenschleifenradius, dem Außenschleifenradius, dem effektiven Durchmesser zwischen zwei gegenüberliegenden geraden Oberflächen der Öffnung und/oder anderen geeigneten Parametern basieren kann, um annehmbar niedrige Wirbelstromverluste sicherzustellen, wenn der Induktor in die gleiche Ebene wie die Abschirmung projiziert wird.
  • Im Allgemeinen nimmt der Q-Wert des Induktors mit der Öffnungsgröße zu. Während die Öffnungsgröße von dem Außendurchmesser des Induktors aus zunimmt, nimmt der Q-Wert des Induktors zu. Eine Zunahme bei der Öffnungsgröße kann jedoch eine umgebende Die-interne Schaltungsanordnung exponieren, was eine erhebliche Kopplung zwischen der umgebenden Die-internen Schaltungsanordnung und dem Induktor bewirkt. Zum Reduzieren dieser Kopplung sollte die Die-interne Schaltungsanordnung unter der elektrisch leitfähigen Hülle 304 und außerhalb der Öffnung bleiben. Deshalb bewirkt eine etwaige Zunahme bei der Öffnungsgröße eine entsprechende Zunahme bei der Die-Fläche. Zunahmen bei der Öffnungsgröße über eine gewisse Größe hinaus erzeugen einen verringerten Nutzen bei Verbesserungen am Q-Wert, und somit existiert ein Kompromiss zwischen Verbesserungen beim Q-Wert und einer Zunahme bei der Die-Fläche und deshalb den Kosten. Öffnungen mit kleineren Durchmessern können in preiswerten Anwendungen mit reduzierten Leistungsanforderungen wünschenswert sein. Öffnungen mit größeren Durchmessern können bei Hochleistungsanwendungen wünschenswert sein, wo die Zunahme bei den Die-Kosten akzeptabel ist.
  • Obwohl 4 die Öffnung 306 mit acht geraden Seiten in einem beispielhaften Prozess zeigt (zum Beispiel ein Prozess, der das Ausbilden von Metall mit Abmessungen von 45, 90 und 135 Grad von einer geraden Ebene aus gestattet), kann eine Öffnung mit einer beliebigen geeigneten Anzahl an Seiten (zum Beispiel vier Seiten, wie in 5 dargestellt) oder einer kreisförmigen Öffnung (das heißt ohne Seiten) verwendet werden. Außerdem kann eine elektromagnetische Abschirmungsstruktur mehrere Öffnungen enthalten, wobei sich die individuellen Öffnungen in einer beliebigen geeigneten Platte einer elektromagnetischen Abschirmungsstruktur befinden.
  • Die Öffnung kann gemäß der Notwendigkeit zur Verbesserung des Q-Werts in einer oberen Platte, einer unteren Platte oder einer Seitenwand der elektrisch leitfähigen Hülle ausgebildet werden. Die elektrisch leitfähige Hülle 304 kann in einer beliebigen anderen traditionellen Metallschicht, einer ultradicken Metallschicht, einer Umverdrahtungsmetallschicht, anderen geeigneten Materialien oder einer beliebigen Kombination davon ausgebildet werden. Unter Bezugnahme auf 5 wird bei mindestens einer Ausführungsform die elektrisch leitfähige Hülle 304 aus zwei benachbarten obersten leitfähigen Schichten (zum Beispiel Metall-7 und Metall-8) ausgebildet, wie durch den vergrößerten Abschnitt 400 dargestellt. Jedoch kann die oberste leitfähige Schicht dicker sein und in der obersten leitfähigen Schicht ausgebildete Strukturen können breitere Linienbreiten besitzen als die vorletzte leitfähige Schicht beziehungsweise in der vorletzten leitfähigen Schicht ausgebildete Strukturen.
  • Bei mindestens einer Ausführungsform kann der Induktor 302 direkt oder kapazitiv (zum Beispiel eines an den Mittelabgriff 407 gekoppelten Inter-Level-Interconnects) an die ebene leitfähige Struktur 408 gekoppelt sein. Die ebene leitfähige Struktur 408 erstreckt sich von einem Punkt bei dem Mittelabgriff 407 des Induktors 302 entlang einer Knotenachse des Induktors 302 zu einem Punkt nahe den Anschlüssen des Induktors 302 (zum Beispiel zwischen oder anderweitig äquidistant dazu). Dementsprechend kann die ebene leitfähige Struktur 408 den Induktor 302 zumindest teilweise halbieren. Die Symmetrie der ebenen leitfähigen Struktur 408 bezüglich des Induktors 302 reduziert den Effekt externer Spannungsstörungen auf die Induktanz des Induktors 302, wodurch eine etwaige Gütefaktorverschlechterung des Induktors aufgrund einer Aufnahme der ebenen leitfähigen Struktur 408 reduziert wird, und kann die Auswirkung der Öffnung 306 in der elektrisch leitfähigen Hülle 304 reduzieren. Jene Techniken, die die Effekte von externen Spannungsstörungen auf einen Induktor reduzieren, werden in der am 16. Dezember 2015 eingereichten US-Patentanmeldung US 2017 / 0 179 881 A1 mit
    dem Titel „Common-mode Impedance Network for Reducing Sensitivity in Oscillators“ unter Nennung von Aaron J. Caffee als Erfinder beschrieben,
  • Unter Bezugnahme auf 4 ist der Induktor 302 bezüglich des linken und rechten Rands der elektrisch leitfähigen Hülle 304 zentriert, befindet sich aber näher am oberen Rand der elektrisch leitfähigen Hülle 304, der der Rand eines integrierten Schaltungs-Die sein kann. Mit der Achse 312, die einem Ort entspricht, wo das Magnetflussdichtefeld null beträgt, fallen keine Anschlüsse zusammen. Die herkömmliche Beabstandung der Anschlüsse um den Induktor herum führt dazu, dass keine Anschlüsse mit der Achse 310 zusammenfallen. Die Achse 310 entspricht einem Pfad, in dem das symmetrische, zeitlich variierende Stromdichtefeld, das innerhalb des Induktors 302 enthalten ist, wenn er periodisch angesteuert wird, ein symmetrisches, zeitlich variierendes Magnetvektorpotenzialfeld mit einer vernachlässigbaren oder keiner Komponente entlang der Achse generiert. Deshalb tritt entlang der Achse beim Messen relativ zur Mitte 350 des Induktors 302 eine vernachlässigbare oder keine induzierte Spannungsamplitude auf. Da die Anschlüsse in von der Achse 301 versetzten Gebieten beabstandet sind, existiert innerhalb dieses Raums ein restliches Magnetvektorpotenzialfeld, was eine induzierte Spannungsamplitude zwischen den Anschlüssen und der Achse 310 bewirkt. Jene induzierten Spannungsamplituden können gemäß Impedanzen der Anschlüsse einen Stromfluss durch die Anschlüsse bewirken (zum Beispiel I1, I2, I3, ..., Is). Unter Bezugnahme auf 6 beispielsweise werden, wenn der Induktor periodisch differenziell angesteuert wird, die Anschlüsse von Null verschiedene induzierte Spannungsamplituden besitzen, die den Fluss eines Wechselstroms durch die Anschlüsse verursachen. Durch die Anschlüsse durch umgebende Schaltungen angesteuerter Wechselstrom kann Ströme innerhalb der den Induktor enthaltenden Schaltung induzieren. Jene Kopplung zwischen dem den Induktor enthaltenden LC-Oszillator (oder einer anderen Schaltung) und den umgebenden Anschlüssen kann unerwünschte Effekte bewirken, zum Beispiel das Frequenzziehen eines LC-Oszillators aufgrund einer unerwünschten Belastung durch Anschlusskopplungen und assoziierte Anschlussimpedanzen oder Signalintegritätsprobleme an den Anschlüssen, die durch den LC-Oszillator verursacht wurden.
  • Unter Bezugnahme auf 7 reduziert oder eliminiert die Platzierung der um die Achse 312 entlang einer Breitseite des Zwei-Schleifen-Induktors zentrierten Anschlüsse das zeitlich variierende Magnetflussdichtefeld durch um die Achse 312 ausgebildete lokale Schleifen, erhöht oder maximiert aber die an den Anschlüssen gesehenen induzierten Spannungsamplituden, da sie eine Schwingungsbauchachse ist und deshalb ein Ort einer erheblichen oder maximalen induzierten Spannungsamplitude beim Messen relativ zum Spannungspegel in der Mitte 350 des Induktors 302 in einem gegebenen Abstand von der Mitte 350 des Induktors 302. Wie hierin bezeichnet, wird eine induzierte Spannungsamplitude bezüglich einer Achse in ihrer Ebene als nodal angesehen, falls die induzierte Spannungsamplitude entlang der Achse zeitlich nicht variiert. Wie hierin bezeichnet, wird eine induzierte Spannungsamplitude als antinodal angesehen, falls die induzierte Spannungsamplitude in einem bestimmten Abstand entlang der Achse eine erhebliche oder maximale Spannungsamplitude in dem bestimmten radialen Abstand von der Mitte 350 des Induktors 302 darstellt. Die Platzierung von Anschlüssen bei der Achse 312 oder der Achse 310 stellt einen Kompromiss zwischen einem Ort der Aufhebung des Magnetflussdichtefelds und einem Ort der Dämpfung oder Aufhebung der induzierten Spannungsamplitude dar.
  • Anstatt die Anschlüsse auf einer oder um eine Achse herum zentriert zu positionieren, die einem Ort entspricht, wo das Magnetflussdichtefeld null beträgt, können die Anschlüsse am mit dem Induktor assoziierten magnetischen Knoten positioniert werden, das heißt auf einer oder um eine Achse herum konzentriert, wo die durch den Induktor induzierte Spannungsamplitude null beträgt, wie in 8 dargestellt. Die Symmetrie hebt das Magnetflussdichtefeld durch Anschlussleiterschleifen oder Bonddrahtschleifen, die zwischen Anschlüssen auf entgegengesetzten Seiten des Induktors ausgebildet sind, auf, wodurch ein induzierter parasitärer Strom in jenen globalen Schleifen im Vergleich zu Induktorsystemen reduziert oder eliminiert wird, die die Anschlüsse an von dem magnetischen Knoten entfernten Orten enthalten. Die Anschlüsse sind so nahe wie praktikabel an den magnetischen Knoten positioniert, wodurch ein Cluster von Anschlüssen um den magnetischen Knoten herum ausgebildet wird, während die Magnetflussdichte reduziert oder minimiert wird, die in lokalen Schleifen erfahren wird, die zwischen benachbarten Anschlüssen auf der gleichen Seite des Induktors ausgebildet sind. In integrierten Schaltungen mit einer begrenzten Anzahl von Pads können sich Anschlüsse, die gegenüber induzierten Spannungsamplituden empfindlicher sind (zum Beispiel Hochfrequenzsignale oder Stromversorgungssignale), auf oder nahe dem magnetischen Knoten befinden, während andere, weniger empfindliche Anschlüsse weiter weg angeordnet sein können.
  • Zusätzliche Techniken können lokale Stromschleifen reduzieren, die durch Wechselwirkung des Induktors mit Elementen in der Umgebung verursacht werden können. Beispielsweise können Effekte von lokalen Stromschleifen durch Erhöhen der Induktorschleifenzahl reduziert werden. Eine erhöhte Anzahl von Schleifen ist mit einer erhöhten Anzahl von magnetischen Knoten assoziiert. Beispielsweise durch das Erhöhen der Anzahl von leitfähigen Schleifen von zwei leitfähigen Schleifen, wie in 8 dargestellt, auf vier leitfähige Schleifen, wie in 9 dargestellt, verdoppelt sich die Anzahl der Knotenachsen (zum Beispiel Knotenachsen 1002 und 1004), und auch die Anzahl der magnetischen Knoten am Umfang des integrierten Schaltungsabschnitts verdoppelt sich. Die Anschluss-Cluster 1006, 1008, 1010 und 1012 enthalten Anschlüsse, die auf der oder um die Knotenachsen 1002 und 1004 herum konzentriert sein können. Außerdem reduziert die erhöhte Anzahl von Schleifen die Wechselwirkung des Magnetflussdichtefelds des Induktors mit der leitfähigen Platte und dem Stromnetz der integrierten Schaltung. Wenngleich am Umfang des integrierten Schaltungsabschnitts an den mit dem Induktor assoziierten magnetischen Knoten möglicherweise nur zwei Anschlüsse platziert sind und am Umfang des integrierten Schaltungsabschnitts bei den mit dem Induktor von 8 assoziierten magnetischen Knoten möglicherweise nur vier Anschlüsse platziert sind, kann die Ausführungsform von 9 bis zu vier Anschlüsse besitzen, die an dem Umfang des integrierten Schaltungsabschnitts auf mit dem Induktor assoziierten magnetischen Knoten platziert sind, und bis zu acht Anschlüsse können bei mit dem Induktor assoziierten magnetischen Knoten platziert sein, wenngleich zusätzliche Anschlüsse um die magnetischen Knoten am Umfang des integrierten Schaltungsabschnitts herum zentriert sein können. Bei einigen Ausführungsformen müssen sich die Anschlüsse nicht am Umfang der integrierten Schaltung befinden, und zusätzliche Anschlüsse können sich auf oder bei einer Achse entsprechend einem mit dem Induktor assoziierten magnetischen Knoten befinden. Außerdem können in leitfähigen Bahnen in der Nähe des Induktors verlaufende Signale parallel zur ersten Achse geleitet werden, um Ströme in jenen leitfähigen Bahnen zu reduzieren oder zu eliminieren.
  • Unter Bezugnahme auf 10 führt das Leiten einer AC-Masse entlang des magnetischen Knotens zu einer Verbindung mit der Masseebene mit einer vernachlässigbaren induzierten Spannungsamplitude. Durch Leiten von Signalen entlang der AC-Masseebene können außerdem Rückstrompfade eine minimale Schleifenfläche und deshalb signifikant weniger unerwünschte induzierte elektromagnetische Signale besitzen. Eine Kombination aus jenen Techniken mit dem Lokalisieren von Anschlüssen an oder nahe den magnetischen Knoten, wie oben beschrieben, begrenzt weiterhin die Strommenge, die außerhalb des Chips durch Anschlussleiter induziert wird. Man beachte, dass bei der Ausführungsform von 10 die beiden Knotenachsen (zum Beispiel Knotenachse 1002 und Knotenachse 1004), wo das Leiten entlang dieser Achsen keine induzierte Spannungsamplitude generiert, und die Masseebene, die einen direkten Pfad zu jedem Anschluss besitzt, bewirken, dass sich jedes Pad an einem Punkt innerhalb des Magnetflussdichtefelds befindet, wo über zwei beliebige Pads hinweg nur eine vernachlässigbare Differenzspannung nicht existieren wird. Dementsprechend existiert eine reduzierte Kopplung zwischen dem Induktor und den Anschlüssen, und weniger oder kein induzierter Strom entweicht durch die Anschlüsse, wodurch die Empfindlichkeit des Induktors zu über die Bonddrähte, Platinenrouten usw. ausgebildeten externen Schleifen abnimmt. Somit sind Techniken offenbart worden, die die Generierung von Störungen und/oder des Frequenzziehens eines LC-VCO aus der Umgebung reduzieren. Die Techniken verbessern die magnetische Trennung eines Designs, was die Systemleistung, zum Beispiel die Störleistung, die Frequenzstabilität usw., verbessern kann.
  • Unter Bezugnahme auf 11 enthält bei mindestens einer Ausführungsform einer einen Induktor enthaltenden integrierten Schaltung die elektrisch leitfähige Hülle 304 zusätzliche Öffnungen 1110, die die elektrisch leitfähige Hülle 304 in einen inneren Abschnitt 1130 und einen äußeren Abschnitt 1132 partitionieren, die durch eine Metallisierung (die hierin als Anschlussorte der elektrisch leitfähigen AC-Masse des Induktors bezeichnet werden kann) auf oder um die Knotenachsen 1002 und 1004 herum verbunden sind. Bei einigen Ausführungsformen ist jede Öffnung in dem gleichen Abstand von der Mitte 350 des Induktors 302 angeordnet. Somit sind der innere Abschnitt 1130 und der äußere Abschnitt 1132 durch Anschlüsse 1120, 1122, 1124 und 1126 an Orten verbunden, die vernachlässigbare oder keine induzierten Spannungsamplituden besitzen, wodurch die Trennung zwischen dem Induktor 302 und dem umgebenden System vergrößert wird. Wenngleich die Öffnungen 1110 andere Formen besitzen können und in anderen Anzahlen enthalten sein können, um eine geeignete Anzahl an Anschlüssen an Orten auszubilden mit unterschiedlichen Induktorsystemen mit vernachlässigbaren oder keinen induzierten Spannungsamplituden.
  • Wenngleich beim Beschreiben von Ausführungsformen der Erfindung Schaltungen und physische Strukturen allgemein angenommen worden sind, ist durchaus bekannt, dass bei dem Design und der Fabrikation von Halbleitern physische Strukturen und Schaltungen in einer computerlesbaren beschreibenden Form verkörpert sein können, die sich zur Verwendung in nachfolgenden Design-, Simulations-, Test- oder Fabrikationsstufen eignen. Strukturen und Funktionalität, als diskrete Komponenten in den beispielhaften Konfigurationen vorgelegt, können als eine kombinierte Struktur oder Komponente implementiert werden. Es werden verschiedene Ausführungsformen der Erfindung in Betracht gezogen, die Schaltungen, Systeme von Schaltungen, verwandte Verfahren und ein greifbares computerlesbares Medium mit Kodierung darauf (zum Beispiel VHSIC Hardware Description Language (VHDL), Verilog, GDSII-Data, Electronic Design Interchange Format (EDIF) und/oder Gerber-Datei) von solchen Schaltungen, Systemen und Verfahren enthalten, alle wie hierin beschrieben. Außerdem können die computerlesbaren Medien Anweisungen sowie Daten speichern, die zum Implementieren der Erfindung verwendet werden können. Die Anweisungen/Daten können sich auf Hardware, Software, Firmware oder Kombinationen davon beziehen.
  • Wenngleich die Erfindung beispielsweise in Ausführungsformen beschrieben worden ist, bei denen ein Induktor bestimmte Anzahlen von parallel gekoppelten Schleifen enthält, erkennt der Fachmann, dass die Lehren hierin mit anderen Anzahlen von Schleifen und Multischleifeninduktoren einschließlich in Reihe gekoppelten Schleifen genutzt werden können. Obwohl die Induktoren unter Bezugnahme auf eine Tankschaltung eines Oszillators beschrieben sind, erkennt der Fachmann außerdem, dass die Lehren hierin mit Induktoren genutzt werden können, die in anderen Anwendungen verwendet werden (zum Beispiel Filter- oder Leistungsverstärkungsanwendungen).

Claims (20)

  1. Integrierte Schaltung, umfassend: einen Induktor (302) mit einer ersten Achse (310, 1002, 1004) durch eine Mitte (350) des Induktors und einer zweiten Achse (312) durch die Mitte des Induktors, wobei die erste Achse eine erste Knotenachse einer oder mehrerer Knotenachsen des Induktors ist, wobei die erste Achse einen ersten Ort eines ersten magnetischen Knotens mit einer ersten vernachlässigbaren induzierten Spannungsamplitude in einem Abstand von der Mitte des Induktors enthält und die zweite Achse eine erste Schwingungsbauchachse ist, wobei die zweite Achse einen zweiten Ort eines ersten vernachlässigbaren Magnetflussdichtefelds und einer ersten induzierte Spannungsamplitude in dem Abstand von der Mitte des Induktors größer als die erste vernachlässigbare induzierte Spannungsamplitude enthält; und ein erstes Cluster von integrierten Schaltungsanschlüssen (1006, 1008, 1010, 1012, 1120, 1122, 1124, 1126), die um die erste Achse konzentriert und von der zweiten Achse entfernt sind, wobei alle integrierten Schaltungsanschlüsse der integrierten Schaltung um die eine oder mehreren Knotenachsen des Induktors konzentriert sind.
  2. Integrierte Schaltung nach Anspruch 1, wobei die erste vernachlässigbare induzierte Spannungsamplitude eine kleinste induzierte Spannungsamplitude in dem Abstand von der Mitte des Induktors ist und die erste induzierte Spannungsamplitude eine größte induzierte Spannungsamplitude in dem Abstand von der Mitte des Induktors ist.
  3. Integrierte Schaltung nach Anspruch 1 oder 2, weiterhin umfassend: eine elektrisch leitfähige Struktur mit einer Öffnung mindestens so groß wie der Induktor, wobei die Öffnung um eine projizierte Oberfläche des Induktors zentriert ist, wobei die elektrisch leitfähige Struktur als eine AC-Masseebene konfiguriert ist.
  4. Integrierte Schaltung nach Anspruch 1, weiterhin umfassend: ein zweites Cluster von integrierten Schaltungsanschlüssen, die um die erste Achse konzentriert und von der zweiten Achse entfernt sind, wobei das erste und zweite Cluster von integrierten Schaltungsanschlüssen an entgegengesetzten Enden des Induktors und äquidistant von der zweiten Achse angeordnet sind.
  5. Integrierte Schaltung nach Anspruch 1, 2, 3 oder 4, wobei die Öffnung im Wesentlichen parallel zu einer Ebene des Stromflusses in dem Induktor verläuft.
  6. Integrierte Schaltung nach Anspruch 1, 2, 3, 4 oder 5, wobei die elektrisch leitfähige Struktur Folgendes umfasst: abwechselnde leitfähige Leitungen, die an verschiedene Spannungspotenziale gekoppelt sind, wobei die abwechselnden leitfähigen Leitungen eine elektromagnetische Abschirmungsstruktur bilden.
  7. Integrierte Schaltung nach Anspruch 1, 2, 3, 4, 5 oder 6, wobei der Induktor mindestens vier leitfähige Schleifen umfasst und der Induktor eine dritte Achse durch die Mitte des Induktors und eine vierte Achse durch die Mitte des Induktors besitzt, wobei die dritte Achse eine zweite Knotenachse der einen oder mehreren Knotenachsen des Induktors ist, wobei die dritte Achse einen dritten Ort eines zweiten magnetischen Knotens mit einer zweiten vernachlässigbaren induzierten Spannungsamplitude in dem Abstand von der Mitte des Induktors enthält und die vierte Achse eine zweite Schwingungsbauchachse ist, wobei die vierte Achse einen vierten Ort eines zweiten vernachlässigbaren Magnetflussdichtefelds und einer zweiten induzierten Spannungsamplitude größer als die zweite vernachlässigbare induzierte Spannungsamplitude in dem Abstand von der Mitte des Induktors enthält und die integrierte Schaltung weiterhin ein zweites Cluster von integrierten Schaltungsanschlüssen umfasst, die um die dritte Achse konzentriert und von der zweiten und vierten Achse entfernt sind.
  8. Integrierte Schaltung nach Anspruch 7, wobei das erste Cluster von integrierten Schaltungsanschlüssen in einer ersten Ecke eines integrierten Schaltungsabschnitts angeordnet ist und das zweite Cluster von integrierten Schaltungsanschlüssen in einer zweiten Ecke des integrierten Schaltungsabschnitts gegenüber der ersten Ecke angeordnet ist und das erste Cluster von integrierten Schaltungsanschlüssen einen oder mehrere Stromversorgungsanschlüsse enthält, die zum Empfangen eines hohen Spannungspegels konfiguriert sind, und das zweite Cluster von integrierten Schaltungsanschlüssen einen oder mehrere Stromversorgungsanschlüsse enthält, die zum Empfangen eines niedrigen Spannungspegels konfiguriert sind.
  9. Integrierte Schaltung nach Anspruch 1, 2, 3, 4, 5, 6, 7 oder 8, wobei die integrierten Schaltungsanschlüsse integrierte Schaltungsbondpads sind und der Induktor auf einem integrierten Schaltungs-Die zentriert ist.
  10. Integrierte Schaltung nach Anspruch 1, 2, 3, 4, 5, 6, 7, 8 oder 9, weiterhin umfassend: leitfähige Bahnen, die parallel zu der ersten Achse verlegt sind.
  11. Integrierte Schaltung nach Anspruch 1, 2, 3, 4, 5, 6, 7, 8, 9 oder 10, wobei das erste Cluster von integrierten Schaltungsanschlüssen mindestens einen mit einem Hochfrequenzsignal assoziierten Anschluss enthält.
  12. Verfahren zum Herstellen einer integrierten Schaltung, umfassend: Ausbilden eines Induktors (302) mit einer ersten Achse (310, 1002, 1004) durch eine Mitte (350) des Induktors und einer zweiten Achse (312) durch die Mitte des Induktors, wobei die erste Achse eine erste Knotenachse einer oder mehrerer Knotenachsen des Induktors ist, wobei die erste Achse einen ersten Ort eines ersten magnetischen Knotens mit einer ersten vernachlässigbaren induzierten Spannungsamplitude in einem Abstand von der Mitte des Induktors enthält und die zweite Achse eine erste Schwingungsbauchachse ist, wobei die zweite Achse einen zweiten Ort eines ersten vernachlässigbaren Magnetflussdichtefelds und einer ersten induzierten Spannungsamplitude im Abstand von der Mitte des Induktors größer als die erste vernachlässigbare induzierte Spannungsamplitude enthält; und Ausbilden eines ersten Clusters von integrierten Schaltungsanschlüssen (1006, 1008, 1010, 1012, 1120, 1122, 1124, 1126), die um die erste Achse konzentriert und von der zweiten Achse entfernt sind, wobei alle integrierten Schaltungsanschlüsse der integrierten Schaltung um die eine oder mehreren Knotenachsen des Induktors konzentriert sind.
  13. Verfahren zum Herstellen einer integrierten Schaltung nach Anspruch 12, wobei die erste vernachlässigbare induzierte Spannungsamplitude eine kleinste induzierte Spannungsamplitude in dem Abstand von der Mitte des Induktors ist und die erste induzierte Spannungsamplitude eine größte induzierte Spannungsamplitude in dem Abstand von der Mitte des Induktors ist.
  14. Verfahren zum Herstellen einer integrierten Schaltung nach Anspruch 12 oder 13, weiterhin umfassend: Ausbilden einer elektrisch leitfähigen Struktur mit einer Öffnung mindestens so groß wie der Induktor, wobei die Öffnung um eine projizierte Oberfläche des Induktors zentriert ist, wobei die elektrisch leitfähige Struktur als eine AC-Masseebene konfiguriert ist.
  15. Verfahren zum Herstellen einer integrierten Schaltung nach Anspruch 12, 13 oder 14, weiterhin umfassend: Ausbilden eines zweiten Clusters von integrierten Schaltungsanschlüssen, die um die erste Achse konzentriert und von der zweiten Achse entfernt sind, wobei das erste und zweite Cluster von integrierten Schaltungsanschlüssen an entgegengesetzten Enden des Induktors und äquidistant von der zweiten Achse angeordnet sind.
  16. Verfahren zum Herstellen einer integrierten Schaltung nach Anspruch 12, 13 oder 14, wobei der Induktor mindestens vier leitfähige Schleifen umfasst und der Induktor eine dritte Achse durch die Mitte des Induktors und eine vierte Achse durch die Mitte des Induktors besitzt, wobei die dritte Achse eine zweite Knotenachse der einen oder mehreren Knotenachsen des Induktors ist, wobei die dritte Achse einen dritten Ort eines zweiten magnetischen Knotens mit einer zweiten vernachlässigbaren induzierten Spannungsamplitude in dem Abstand von der Mitte des Induktors enthält und die vierte Achse eine zweite Schwingungsbauchachse ist, wobei die vierte Achse einen vierten Ort eines zweiten vernachlässigbaren Magnetflussdichtefelds und einer zweiten induzierten Spannungsamplitude in dem Abstand von der Mitte des Induktors größer als die zweite vernachlässigbare induzierte Spannungsamplitude enthält und die integrierte Schaltung weiterhin ein zweites Cluster von integrierten Schaltungsanschlüssen umfasst, die um die dritte Achse konzentriert und von der zweiten und vierten Achse entfernt sind.
  17. Verfahren zum Herstellen einer integrierten Schaltung nach Anspruch 15, wobei das erste Cluster von integrierten Schaltungsanschlüssen in einer ersten Ecke eines integrierten Schaltungsabschnitts angeordnet ist und das zweite Cluster von integrierten Schaltungsanschlüssen in einer zweiten Ecke des integrierten Schaltungsabschnitts gegenüber der ersten Ecke angeordnet ist und das erste Cluster von integrierten Schaltungsanschlüssen einen oder mehrere Stromversorgungsanschlüsse enthält, die zum Empfangen eines hohen Spannungspegels konfiguriert sind, und das zweite Cluster von integrierten Schaltungsanschlüssen einen oder mehrere Stromversorgungsanschlüsse enthält, die zum Empfangen eines niedrigen Spannungspegels konfiguriert sind.
  18. Verfahren zum Herstellen einer integrierten Schaltung nach Anspruch 12, 13, 14, 15, 16 oder 17, weiterhin umfassend das Ausbilden leitfähiger Bahnen, die parallel zu der ersten Achse verlegt sind.
  19. Integrierte Schaltung, durch das Verfahren nach Anspruch 12, 13, 14, 15, 16, 17, oder 18 hergestellt.
  20. Vorrichtung, umfassend: Mittel zum Generieren einer Induktanz auf einer integrierten Schaltung (302), wobei das Mittel zum Generieren einer Induktanz eine erste Achse (310, 1002, 1004) durch eine Mitte (350) des Mittels zum Generieren und eine zweite Achse (312) durch die Mitte des Mittels zum Generieren besitzt, wobei die erste Achse eine erste Knotenachse einer oder mehrerer Knotenachsen des Mittels zum Generieren ist, wobei die erste Achse einen Ort eines magnetischen Knotens mit einer ersten vernachlässigbaren induzierten Spannungsamplitude enthält und die zweite Achse eine erste Schwingungsbauchachse ist, wobei die zweite Achse einen zweiten Ort eines ersten vernachlässigbaren Magnetflussdichtefelds und einer ersten induzierten Spannungsamplitude in einem Abstand von der Mitte des Mittels zum Generieren größer als die erste vernachlässigbare induzierte Spannungsamplitude enthält; und Mittel zum Koppeln von Signalen zu der integrierten Schaltung, wobei das Mittel zum Koppeln Schaltungsanschlüsse umfasst, die um die erste Achse konzentriert und von der zweiten Achse entfernt sind, wobei alle Schaltungsanschlüsse der Vorrichtung um die eine oder mehreren Knotenachsen des Mittels zum Generieren konzentriert sind.
DE102017128833.3A 2017-01-04 2017-12-05 Integrierte Schaltung, Verfahren zum Herstellen einer integrierten Schaltung und Vorrichtung zum Herstellen einer integrierten Schaltung Active DE102017128833B4 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/398,241 US10153084B2 (en) 2017-01-04 2017-01-04 Physical design in magnetic environment
US15/398,241 2017-01-04

Publications (2)

Publication Number Publication Date
DE102017128833A1 DE102017128833A1 (de) 2018-07-05
DE102017128833B4 true DE102017128833B4 (de) 2023-12-07

Family

ID=62568070

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102017128833.3A Active DE102017128833B4 (de) 2017-01-04 2017-12-05 Integrierte Schaltung, Verfahren zum Herstellen einer integrierten Schaltung und Vorrichtung zum Herstellen einer integrierten Schaltung

Country Status (3)

Country Link
US (1) US10153084B2 (de)
CN (1) CN108269799B (de)
DE (1) DE102017128833B4 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10468179B2 (en) * 2017-03-23 2019-11-05 Integrated Device Technology, Inc. Active twisted figure ‘8’ inductor
TWI674596B (zh) * 2018-12-21 2019-10-11 瑞昱半導體股份有限公司 電感裝置及其控制方法
US10965331B2 (en) * 2019-04-22 2021-03-30 Semiconductor Components Industries, Llc Broad range voltage-controlled oscillator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7141883B2 (en) 2002-10-15 2006-11-28 Silicon Laboratories Inc. Integrated circuit package configuration incorporating shielded circuit element structure
US20130082793A1 (en) 2011-09-30 2013-04-04 Adam B. Eldredge Mutual Inductance Circuits
US20170179881A1 (en) 2015-12-16 2017-06-22 Silicon Laboratories Inc. Common-Mode Impedance Network for Reducing Sensitivity in Oscillators

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7310039B1 (en) 2001-11-30 2007-12-18 Silicon Laboratories Inc. Surface inductor
US6664935B1 (en) * 2002-07-31 2003-12-16 Motorola, Inc. Broad band impedance matching device with coupled transmission lines
US20040222511A1 (en) 2002-10-15 2004-11-11 Silicon Laboratories, Inc. Method and apparatus for electromagnetic shielding of a circuit element
US6970030B1 (en) 2003-10-01 2005-11-29 Silicon Laboratories, Inc. Dual phased-locked loop structure having configurable intermediate frequency and reduced susceptibility to interference
US7375411B2 (en) 2004-06-03 2008-05-20 Silicon Laboratories Inc. Method and structure for forming relatively dense conductive layers
US7154349B2 (en) 2004-08-11 2006-12-26 Qualcomm, Incorporated Coupled-inductor multi-band VCO
US20060088971A1 (en) * 2004-10-27 2006-04-27 Crawford Ankur M Integrated inductor and method of fabrication
US7955886B2 (en) * 2005-03-30 2011-06-07 Silicon Laboratories Inc. Apparatus and method for reducing interference
US7501924B2 (en) 2005-09-30 2009-03-10 Silicon Laboratories Inc. Self-shielding inductor
US7847666B2 (en) * 2006-09-27 2010-12-07 Agere Systems Inc. Differential inductor for use in integrated circuits
GB2462885B (en) 2008-08-29 2013-03-27 Cambridge Silicon Radio Ltd Inductor structure
US8350639B2 (en) * 2009-08-26 2013-01-08 Qualcomm Incorporated Transformer signal coupling for flip-chip integration
GB0918221D0 (en) 2009-10-16 2009-12-02 Cambridge Silicon Radio Ltd Inductor structure
US9196409B2 (en) 2010-12-06 2015-11-24 Nxp, B. V. Integrated circuit inductors
US8558344B2 (en) * 2011-09-06 2013-10-15 Analog Devices, Inc. Small size and fully integrated power converter with magnetics on chip
US8576039B2 (en) * 2011-12-06 2013-11-05 Cambridge Silicon Radio Limited Inductor structure
KR101654442B1 (ko) * 2011-12-29 2016-09-05 인텔 코포레이션 금속 더미 특징들을 갖는 인덕터 설계를 포함하는 집적회로 및 그 제조방법
US9083332B2 (en) * 2012-12-05 2015-07-14 Volterra Semiconductor Corporation Integrated circuits including magnetic devices
US9473150B2 (en) 2013-11-22 2016-10-18 Silicon Laboratories Inc. Peak detectors for amplitude control of oscillators
US9276616B2 (en) * 2014-01-10 2016-03-01 Qualcomm Technologies International, Ltd. Integrated circuit chip inductor configuration
US9543068B2 (en) * 2014-06-17 2017-01-10 Qualcomm Technologies International, Ltd. Inductor structure and application thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7141883B2 (en) 2002-10-15 2006-11-28 Silicon Laboratories Inc. Integrated circuit package configuration incorporating shielded circuit element structure
US20130082793A1 (en) 2011-09-30 2013-04-04 Adam B. Eldredge Mutual Inductance Circuits
US8648664B2 (en) 2011-09-30 2014-02-11 Silicon Laboratories Inc. Mutual inductance circuits
US20170179881A1 (en) 2015-12-16 2017-06-22 Silicon Laboratories Inc. Common-Mode Impedance Network for Reducing Sensitivity in Oscillators

Also Published As

Publication number Publication date
US10153084B2 (en) 2018-12-11
CN108269799B (zh) 2023-05-02
CN108269799A (zh) 2018-07-10
DE102017128833A1 (de) 2018-07-05
US20180190424A1 (en) 2018-07-05

Similar Documents

Publication Publication Date Title
US9373592B2 (en) Arrangement for energy conditioning
US8587915B2 (en) Arrangement for energy conditioning
DE69623425T2 (de) Struktur einer Drosselspule
KR100294957B1 (ko) 프린트배선판
DE102017128833B4 (de) Integrierte Schaltung, Verfahren zum Herstellen einer integrierten Schaltung und Vorrichtung zum Herstellen einer integrierten Schaltung
KR100722243B1 (ko) 집적 회로에서 레지스턴스, 커패시턴스 및/또는인덕턴스를 구현하기 위한 방법
DE10019838A1 (de) Mehrschichtkondensator, Verdrahtungssubstrat, Entkopplungsschaltung und Hochfrequenzschaltung
US6600208B2 (en) Versatile system for integrated circuit containing shielded inductor
DE102020111227A1 (de) Mikroskaliger planarspulentransformator mit abschirmung
US7110235B2 (en) Arrangement for energy conditioning
US7427904B2 (en) Ultra-high-frequency notch filter having an inductance set by selecting a conductor width
DE112009005442B4 (de) Koppler und Verstärkeranordnung
JP2004095777A (ja) インダクタ素子
US8809995B2 (en) Through silicon via noise suppression using buried interface contacts
EP1336991A2 (de) Integrierte Schaltung mit überdimensionierten Bauelementen und Verfahren zu deren Herstellung
KR100940140B1 (ko) 에너지 조절 장치
DE102022111478A1 (de) Integrierte schaltung mit induktiver abnahmeschleife

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R018 Grant decision by examination section/examining division