DE102017127866A1 - Planetengetriebe und Gleitlagerstift für ein Planetengetriebe - Google Patents

Planetengetriebe und Gleitlagerstift für ein Planetengetriebe Download PDF

Info

Publication number
DE102017127866A1
DE102017127866A1 DE102017127866.4A DE102017127866A DE102017127866A1 DE 102017127866 A1 DE102017127866 A1 DE 102017127866A1 DE 102017127866 A DE102017127866 A DE 102017127866A DE 102017127866 A1 DE102017127866 A1 DE 102017127866A1
Authority
DE
Germany
Prior art keywords
planetary
axial
planetary gear
bearing pin
inner diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102017127866.4A
Other languages
English (en)
Inventor
Christopher Campbell
Michael NIQUE
Mark Spruce
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce Deutschland Ltd and Co KG
Original Assignee
Rolls Royce Deutschland Ltd and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rolls Royce Deutschland Ltd and Co KG filed Critical Rolls Royce Deutschland Ltd and Co KG
Priority to DE102017127866.4A priority Critical patent/DE102017127866A1/de
Priority to EP18206995.5A priority patent/EP3489549B1/de
Priority to US16/198,253 priority patent/US10816087B2/en
Publication of DE102017127866A1 publication Critical patent/DE102017127866A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/08General details of gearing of gearings with members having orbital motion
    • F16H57/082Planet carriers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/08General details of gearing of gearings with members having orbital motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/08General details of gearing of gearings with members having orbital motion
    • F16H2057/085Bearings for orbital gears

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Details Of Gearings (AREA)
  • Retarders (AREA)

Abstract

Die Erfindung betrifft ein Planetengetriebe (100), das aufweist: ein Sonnenrad (3), das um eine Drehachse (11) des Planetengetriebes (100) rotiert und von einer Sonnenwelle (30) angetrieben wird, wobei die Drehachse (11) eine axiale Richtung des Planetengetriebes (100) definiert; eine Mehrzahl von Planetenrädern (4), die von dem Sonnenrad (3) angetrieben werden; ein Hohlrad (5), mit dem die Mehrzahl von Planetenrädern (4) in Eingriff steht; und eine Mehrzahl von Planeten-Gleitlagerstiften (6), wobei jeweils ein Planeten-Gleitlagerstift (6) in einem Planetenrad (4) angeordnet ist und der Planeten-Gleitlagerstift (6) und das Planetenrad (4) ein geschmiertes Gleitlager bilden. Dabei ist der Planeten-Gleitlagerstift (6) mit einer axialen Bohrung (690) versehen und weist dieser eine Innenfläche (69) auf, die ein axial vorderes Ende (691) und ein axial hinteres Ende (692) aufweist. Es ist vorgesehen, dass der Innendurchmesser (m) der axialen Bohrung (690) des Planeten-Gleitlagerstifts (6) zwischen dem axial vorderen Ende (691) und dem axial hinteren Ende (692) der Innenfläche (69) variiert und dabei an mindestens einem axialen Ende (691, 692) ein Maximum aufweist.

Description

  • Die Erfindung betrifft ein Planetengetriebe gemäß dem Oberbegriff des Patentanspruchs 1 und einen Gleitlagerstift für ein solches Planetengetriebe.
  • Planetengetriebe sind allgemein bekannt. Sie werden unter anderem in Getriebefan-Triebwerken eingesetzt, um eine Untersetzung zwischen einer mit einer Turbine gekoppelten Turbinenwelle und einer mit einem Fan gekoppelten Fanwelle bereitzustellen.
  • Die US 2015/0300255 A1 beschreibt ein Planetengetriebe eines Getriebefan-Triebwerks, bei dem in Planetenrädern, die von einem Sonnenrad angetrieben werden und in einem feststehenden Hohlrad umlaufen, jeweils zylindrische Planeten-Gleitlagerstifte angeordnet sind, die ein geschmiertes Gleitlager zum Planetenrad bilden. Die Planeten-Gleitlagerstifte sind mit einem Drehmomentträger verbunden, der mit einer Fanwelle gekoppelt ist.
  • In Getriebefan-Triebwerken sind Planetengetriebe sehr großen Zentrifugalkräften und Drehmomenten ausgesetzt, die den Planeten-Gleitlagerstift und das Planetenrad verformen und den Schmierfilm im Gleitlager zwischen diesen beiden Elementen beeinflussen können, wodurch die Funktionalität des Gleitlagers beeinträchtigt wird. Insbesondere verhält es sich so, dass der zylindrische und an seinen Enden in Trägerplatten fixierte Planeten-Gleitlagerstift durch die auftretenden Kräfte Biegungen ausgesetzt ist, durch die die Schmierfilmdicke in der Mitte des Planeten-Gleitlagerstifts zunimmt und an den Enden des Planeten-Gleitlagerstifts abnimmt, was an den Enden des Planeten-Gleitlagerstifts zu einem erhöhten Schmierfilmdruck und der Gefahr eines Metall-Metall-Kontaktes zwischen dem Planeten-Gleitlagerstift und dem Planetenrad führt. Eine starke Belastung und Abnutzung des Planeten-Gleitlagerstifts an seinen Enden sind die Folge.
  • Durch eine verbesserte Steifigkeit des Planeten-Gleitlagerstifts könnten dessen Belastungen und Abnutzungen reduziert werden. Die hierfür erforderliche Vergrößerung der Wanddicke des Planeten-Gleitlagerstifts führt jedoch zu einer Gewichtszunahme, die bei Luftfahrtanwendungen nachteilig ist.
  • Der vorliegenden Erfindung liegt die Aufgabe zu Grunde, ein Planetengetriebe mit einem verbesserten Planeten-Gleitlagerstift sowie einen Gleitlagerstift für ein solches Planetengetriebe bereitzustellen.
  • Diese Aufgabe wird durch ein Planetengetriebe mit den Merkmalen des Patentanspruchs 1 und einen Gleitlagerstift mit den Merkmalen des Patentanspruchs 19 gelöst. Ausgestaltungen der Erfindung sind in den abhängigen Ansprüchen angegeben.
  • Danach betrachtet die Erfindung ein Planetengetriebe, das ein Sonnenrad, eine Mehrzahl von Planetenrädern, ein Hohlrad und eine Mehrzahl von Planeten-Gleitlagerstiften umfasst. Das Sonnenrad rotiert um eine Drehachse des Planetengetriebes und wird von einer Sonnenwelle angetrieben. Die Drehachse des Planetengetriebes definiert eine axiale Richtung des Planetengetriebes. Die Planetenräder werden von dem Sonnenrad angetrieben und stehen mit dem Hohlrad in Eingriff. Es ist jeweils ein Planeten-Gleitlagerstift in einem Planetenrad angeordnet, wobei der Planeten-Gleitlagerstift und das Planetenrad ein geschmiertes Gleitlager bilden, bei dem die aneinander angrenzende Kontaktflächen des Gleitlagers durch einen Gleitlagerspalt voneinander getrennt sind. Der Planeten-Gleitlagerstift ist mit einer axialen Bohrung versehen und weist eine Innenfläche auf, die ein axial vorderes Ende und ein axial hinteres Ende aufweist.
  • Die vorliegende Erfindung sieht vor, dass der Innendurchmesser der axialen Bohrung des Planeten-Gleitlagerstifts zwischen dem axial vorderen Ende und dem axial hinteren Ende der Innenfläche variiert und dabei an mindestens einem axialen Ende ein Maximum aufweist.
  • Die erfindungsgemäße Lösung beruht auf der Idee, den Planeten-Gleitlagerstift im Bereich der axialen Bohrung nicht zylindrisch auszubilden, sondern mit einem sich in axialer Richtung verändernden Innendurchmesser zu versehen, wobei der Innendurchmesser an mindestens einem axialen Ende der Innenfläche ein Maximum aufweist. Dementsprechend weist der Planeten-Gleitlagerstift entlang seiner axialen Erstreckung eine Änderung seiner Wanddicke auf, die durch den sich ändernden Durchmesser der axialen Bohrung verursacht ist. Dabei ist die Wanddicke des Planeten-Gleitlagerstifts an mindestens einem axialen Ende der Innenfläche minimal (entsprechend einem maximalen Innendurchmesser der axialen Bohrung). In Ausgestaltungen der Erfindung ist die Wanddicke des Planeten-Gleitlagerstifts an beiden axialen Enden der Innenfläche minimal. Zwischen den axialen Enden weist der Planeten-Gleitlagerstift eine maximale Wanddicke auf (entsprechend einem minimalen Innendurchmesser der axialen Bohrung).
  • Es wird eine Struktur bereitgestellt, bei der der Planeten-Gleitlagerstift mittig eine größere Wandstärke aufweist als an seinen axialen Enden (oder als an zumindest einem seiner axialen Enden), wodurch die Steifigkeit des Planeten-Gleitlagerstifts erhöht und dementsprechend Belastungen und Abnutzungen reduziert werden. Durch die reduzierte Wanddicke zu den axialen Enden hin ist der Planeten-Gleitlagerstift an seinen axialen Enden darüber hinaus im Betrieb leichter verformbar, so dass sich unter Last der Planeten-Gleitlagerstift besser an das Planetenrad anschmiegen und ein gleichmäßiger Gleitlagerspalt über die axiale Länge des Gleitlagers entstehen kann.
  • Eine Ausgestaltung der Erfindung sieht vor, dass der Planeten-Gleitlagerstift innenseitig derart geformt ist, dass der maximale Innendurchmesser an beiden axialen Enden der Innenfläche und einen minimalen Innendurchmesser zwischen den axialen Enden aufweist, wobei die maximalen Innendurchmesser an den beiden axialen Enden identisch oder unterschiedlich sein können. Der Innendurchmesser ist gemäß dieser Ausführungsvariante somit an beiden axialen Enden maximal. In einer alternativen Ausgestaltung ist der Innendurchmesser an dem einen axialen Ende der Innenfläche minimal, wobei sich der Innendurchmesser zu dem anderen axialen Ende hin kontinuierlich bis zu einem Maximum vergrößert.
  • Weiter kann vorgesehen sein, dass der Innendurchmesser der axialen Bohrung des Planeten-Gleitlagerstifts zu mindestens einem axialen Ende der Innenfläche stetig zunimmt, wobei der maximale Innendurchmesser erst an der axialen Position des jeweiligen axialen Endes der Innenfläche erreicht ist.
  • Eine weitere Ausgestaltung der Erfindung sieht vor, dass die Innenfläche des Planeten-Gleitlagerstifts im Längsschnitt eine erste Kurve ausbildet, die sich zwischen dem Minimum und dem vorderen axialen Ende erstreckt, und eine zweite Kurve ausbildet, die sich zwischen dem Minimum und dem hinteren axialen Ende erstreckt. Dabei können die erste und die zweite Kurve grundsätzlich in beliebiger Weise geformt sein. Ausführungsbeispiele sehen vor, dass die erste Kurve und/oder die zweite Kurve als Kreisbogen ausgebildet ist, dass die erste Kurve und/oder die zweite Kurve parabelförmig ausgebildet ist, oder dass die erste Kurve und/oder die zweite Kurve geradlinig ausgebildet ist oder geradlinig ausgebildete Kurvenstücke aufweist. Auch kann vorgesehen sein, dass die erste Kurve und/oder die zweite Kurve aus mehreren unterschiedlich gekrümmten Kurvenstücken zusammengesetzt ist. Dabei kann weiter vorgesehen sein, dass eines oder mehrere dieser Kurvenstücke geradlinig/linear ausgebildet sind.
  • Sofern die erste Kurve und die zweite Kurve geradlinig ausgebildet sind, ist die axiale Bohrung gemäß einer Ausführungsvariante als doppelt konische Bohrung ausgebildet, die sich jeweils von den axialen Enden zur axialen Mitte der Bohrung hin konisch verjüngt. Sofern die erste Kurve und die zweite Kurve geradlinig ausgebildete Kurvenstücke aufweist, so umfasst die axiale Bohrung gemäß einer Ausführungsvariante eine doppelt konische Bohrung, die sich jeweils von den axialen Enden zur axialen Mitte der Bohrung hin konisch verjüngt, und die dann durch eine abgerundete Kurve beispielsweise in einen zylindrischen Bereich konstanten Innendurchmessers übergeht.
  • Das Minimum des Innendurchmessers des Planeten-Gleitlagerstifts wird in einer Ausgestaltung der Erfindung durch eine Umfangslinie gebildet (die sich in Umfangsrichtung des Planeten-Gleitlagerstifts an der Innenfläche erstreckt). Im Längsschnitt des Planeten-Gleitlagerstifts bildet das Minimum somit einen Punkt. Dies bedeutet, dass die genannte erste Kurve und die genannte zweite Kurve unmittelbar ineinander übergehen, somit die Innenfläche durch eine einzige gekrümmte Kurve gebildet sein kann (die ins Ausführungsvarianten aus unterschiedlich gekrümmten Kurvenstücken zusammengesetzt sein kann). Dementsprechend kann in Ausgestaltungen der Erfindung vorgesehen sein, dass die Innenfläche des Planeten-Gleitlagerstifts vollständig kreisförmig oder parabelförmig mit einem Minimum des Innendurchmessers in der axialen Mitte des Planeten-Gleitlagerstifts oder alternativ außerhalb der axialen Mitte des Planeten-Gleitlagerstifts ausgebildet ist.
  • Eine alternative Ausgestaltung der Erfindung sieht vor, dass das Minimum des Innendurchmessers des Planeten-Gleitlagerstifts durch einen zylindrischen Bereich konstanten Innendurchmessers gebildet ist, der sich über eine definierte axiale Länge erstreckt. Diese axiale Länge ist gemäß einer Ausführungsvariante derart bemessen, dass das Verhältnis der axialen Länge des zylindrischen Bereichs zur axialen Gesamtlänge der Anlagefläche zwischen 0 und 0,75 liegt.
  • Ein solcher zylindrischer Plateaubereich kann dabei mittig oder außermittig ausgebildet sein. An ihn können sich beispielsweise im Längsschnitt kreisförmige, parabelförmige oder gradlinige Flächen anschließen.
  • Weitere Varianten der Erfindung sehen vor, dass der Planeten-Gleitlagerstift in seiner axialen Mitte (d.h. mittig zwischen dem axial vorderen Ende und dem axial hinteren Ende der Innenfläche) ein Minimum seines Innendurchmessers aufweist. Der Planeten-Gleitlagerstift ist spiegelsymmetrisch hinsichtlich seiner axialen Mitte ausgebildet. Dies ist jedoch nicht notwendigerweise der Fall. Alternative Varianten der Erfindung sehen vor, dass der Planeten-Gleitlagerstift außerhalb seiner axialen Mitte ein Minimum seines Innendurchmessers aufweist und dementsprechend asymmetrisch hinsichtlich seiner axialen Mitte ausgebildet ist.
  • Eine weitere Ausgestaltung der Erfindung sieht vor, dass das Verhältnis zwischen dem minimalen Innendurchmesser und dem oder den maximalen Innendurchmessern zwischen 0 und 0,99 liegt. Wenn das Verhältnis 0 ist, ist der minimale Innendurchmesser gleiche 0, d.h. die axiale Bohrung des Planeten-Gleitlagerstifts ist nicht durchgehend ausgebildet, sondern an mindestens einem axialen Punkt verschlossen.
  • Gemäß einer Ausgestaltung der Erfindung ist der Planeten-Gleitlagerstift als Rotationskörper ausgebildet, d. h. er ist rotationssymmetrisch bezüglich der Längsachse des Gleitlagerstifts ausgebildet.
  • Der Planeten-Gleitlagerstift weist gemäß einer Ausgestaltung der Erfindung ein axial vorderes Ende und ein axial hinteres Ende auf, die axial beabstandet zu dem axial vorderen Ende und dem axial hinteren Ende der Innenfläche sind, wobei der Planeten-Gleitlagerstift an seinem vorderen axialen Ende mit einer vorderen Trägerplatte und an seinem hinteren axialen Ende mit einer hinteren Trägerplatte verbunden ist. Der Planeten-Gleitlagerstift erstreckt sich somit an beiden Enden jenseits der Innenfläche und ist dort jeweils mit einer Trägerplatte verbunden. Es ist also zu unterscheiden zwischen den axialen Enden der Innenfläche und den axialen Enden des Planeten-Gleitlagerstifts.
  • Gemäß einer Ausgestaltung der Erfindung sind die Planeten-Gleitlagerstifte mit einem Drehmomentträger gekoppelt, wobei der Drehmomentträger bei drehendem Sonnenrad und fest angeordnetem Hohlrad mit untersetzter Drehzahl um die Drehachse des Planetengetriebes rotiert. Der Drehmomentträger ist dabei beispielsweise mit einer Fanwelle gekoppelt. Die Planetenräder rotieren sowohl um ihre eigene Achse als auch um die Drehachse des Planetengetriebes, dies jeweils mit unterschiedlichen Drehzahlen.
  • Eine Ausgestaltung der Erfindung sieht dabei vor, dass die Planeten-Gleitlagerstifte dazu ausgebildet sind, in ihrer axialen Bohrung einen Trägerstift des Drehmomentträgers aufzunehmen, wobei über den Trägerstift eine Drehmomentübertragung erfolgt.
  • Alternativ kann vorgesehen sein, dass die Planeten-Gleitlagerstifte fest mit einer vorderen Trägerplatte und mit einer hinteren Trägerplatte verbunden sind, wobei die vordere Trägerplatte zur Drehmomentübertragung mit dem Drehmomentträger gekoppelt ist. Die Planeten-Gleitlagerstifte können mit den Trägerplatten dabei beispielsweise verschweißt oder verschraubt sein.
  • Der Planeten-Gleitlagerstift der vorliegenden Erfindung weist eine axiale Bohrung mit einem variierenden Innendurchmesser auf. Dabei kann der Planeten-Gleitlagerstift an seiner außenseitigen Anlagefläche grundsätzlich beliebig ausgebildet sein. Beispielsweise kann der Planeten-Gleitlagerstift an seiner außenseitigen Anlagefläche zylindrisch ausgebildet sein. In anderen Auszugsvarianten kann vorgesehen sein, dass die außenseitige Anlagefläche eine Balligkeit in dem Sinne ausbildet, dass ihr Außendurchmesser von einem maximalen Außendurchmesser zu mindestens einem axialen Ende der Anlagefläche hin abnimmt und an dem axialen Ende ein Minimum aufweist.
  • Die Erfindung betrifft in einem weiteren Erfindungsaspekt einen Gleitlagerstift für ein Planetengetriebe, der mit einer axialen Bohrung versehen ist und eine Innenfläche aufweist, die ein axial vorderes Ende und ein axial hinteres Ende aufweist. Es ist vorgesehen, dass der Innendurchmesser der axialen Bohrung des Gleitlagerstifts zwischen dem axial vorderen Ende und dem axial hinteren Ende der Innenfläche variiert und dabei an mindestens einem axialen Ende ein Maximum aufweist. Die in Bezug auf das Planetengetriebe erläuterten vorteilhaften Ausgestaltungen gemäß den Patentansprüchen 2 bis 18 gelten auch für den Gleitlagerstift. Grundsätzlich kann der Gleitlagerstift in beliebigen Getrieben mit Gleitlager Einsatz finden.
  • In einem weiteren Erfindungsaspekt betrifft die Erfindung ein Getriebefan-Triebwerk, das eine Fanstufe, eine Fanwelle, über die die Fanstufe angetrieben wird, und eine Turbinenwelle umfasst. Bei der Turbinenwelle handelt es sich beispielsweise um eine Welle, die mit einer Niederdruckturbine oder einer Mitteldruckturbine des Triebwerks gekoppelt ist. Es ist vorgesehen, dass die Turbinenwelle und die Fanwelle über ein Planetengetriebe gemäß Anspruch 1 gekoppelt sind, wobei die Turbinenwelle die Sonnenwelle bildet, die Planeten-Gleitlagerstifte mit einem Drehmomentträger gekoppelt sind und der Drehmomentträger mit der Fanwelle gekoppelt ist.
  • Es wird darauf hingewiesen, dass die vorliegende Erfindung bezogen auf ein zylindrisches Koordinatensystem beschrieben ist, das die Koordinaten x, r und φ aufweist. Dabei gibt x die axiale Richtung, r die radiale Richtung und φ den Winkel in Umfangsrichtung an. Die axiale Richtung ist dabei durch die Drehachse des Planetengetriebes definiert, die identisch mit einer Maschinenachse eines Getriebefan-Triebwerks ist, in dem das Planetengetriebe angeordnet ist. Von der x-Achse ausgehend zeigt die radiale Richtung radial nach außen. Begriffe wie „vor“, „hinter“, „vordere“ und „hintere“ beziehen sich auf die axiale Richtung bzw. die Strömungsrichtung im Triebwerk, in dem das Planetengetriebe angeordnet ist. Begriffe wie „äußere“ oder „innere“ beziehen sich auf die radiale Richtung.
  • Die Erfindung wird nachfolgend unter Bezugnahme auf die Figuren der Zeichnung anhand mehrerer Ausführungsbeispiele näher erläutert. Es zeigen:
    • 1 eine vereinfachte schematische Schnittdarstellung eines Getriebefan-Triebwerks;
    • 2 eine Schnittdarstellung von Elementen eines Planetengetriebes, das zum Einsatz in einem Getriebefantriebwerk geeignet ist, wobei eine Sonnenwelle, ein Sonnenrad, ein Planetenrad, ein Planeten-Gleitlagerstift und ein Trägerstift eines Drehmomentträgers dargestellt sind, und wobei der Planeten-Gleitlagerstift an seiner Anlagefläche eine Balligkeit ausbildet;
    • 3 eine vergrößerte Darstellung des Planetenrads und des Planeten-Gleitlagerstifts der 2;
    • 4 eine Darstellung von Elementen eines alternativen Planetengetriebes, bei dem anders als bei dem Planetengetriebe der 2 und 3 kein Trägerstift vorgesehen ist und stattdessen eine Drehmomentübertragung auf einen Drehmomentträger über eine fest mit den Planeten-Gleitlagerstiften verbundene Trägerplatte erfolgt;
    • 5 Elemente des Planetengetriebes der 4 in einer teilweise geschnittenen Ansicht;
    • 6 eine teilweise geschnittene Darstellung eines Planeten-Gleitlagerstifts, der in einem Planetengetriebe gemäß den 4 und 5 angeordnet ist; und
    • 7 den Planeten-Gleitlagerstift der 6 in vergrößerter geschnittener Darstellung.
  • Die 1 zeigt ein Getriebefan-Triebwerk 10 mit einer Drehachse 11, das für eine Verwendung in Flugzeugen vorgesehen ist. In der Richtung der axialen Durchströmung weist das Getriebefan-Triebwerk 10 hintereinander einen Lufteinlauf 12, eine Fanstufe 13 (grundsätzlich sind auch mehr als eine Fanstufe 13 möglich), ein Getriebe 100, einen Mitteldruckverdichter 15, einen Hochdruckverdichter 16, eine Verbrennungsvorrichtung 17, eine Hochdruckturbine 18, eine Mitteldruckturbine 19 und eine Düse 20 auf. Ein Fangehäuse 21 umgibt die Fanstufe 13 und definiert den Lufteinlauf 12.
  • Das Getriebefan-Triebwerk 10 arbeitet grundsätzlich in konventioneller Weise, wobei in den Lufteinlauf 12 eintretende Luft von der Fanstufe 13 beschleunigt wird. Dabei werden zwei Luftstrome erzeugt: Ein erster Strom tritt in den Mitteldruckverdichter 15 ein, ein zweiter Luftstrom fließt durch einen Nebenstromkanal 22, wobei der zweite Luftstrom den größten Anteil am Schub des Getriebefan-Triebwerks 10 liefert. Der Mitteldruckverdichter 15 verdichtet den eintretenden Luftstrom, bevor er in den Hochdruckverdichter 16 gelangt, in dem eine weitere Verdichtung erfolgt. Die verdichtete Luft, die aus dem Hochdruckverdichter 16 austritt, wird in die Verbrennungsvorrichtung 17 geführt, wo sie mit Brennstoff vermischt wird und die Mischung dann zur Verbrennung gebracht wird. Die heißen Verbrennungsgase werden in der Hochdruckturbine 18 und in der Mitteldruckturbine 19 entspannt, bevor sie durch die Düse 20 austreten und somit zusätzlichen Schub liefern.
  • Hinter dem Fanstufe 13 bildet das Getriebefan-Triebwerk 10 somit einen Nebenstromkanal 22 und einen Primärstromkanal aus. Der Primärstromkanal führt durch das Kerntriebwerk (Gasturbine), das den Mitteldruckverdichter 15, den Hochdruckverdichter 16, die Verbrennungsvorrichtung 17, die Hochdruckturbine 18 und die Mitteldruckturbine 19 umfasst. Der Nebenstromkanal 22 leitet im Betrieb des Getriebefan-Triebwerks 10 von der Fanstufe 13 angesaugte Luft am Kerntriebwerk vorbei.
  • Die Hochdruckturbine 18 und die Mitteldruckturbine 19 treiben über Wellenvorrichtungen jeweils den Hochdruckverdichter 16 und den Mitteldruckverdichter 15 an. Eine Mitteldruckwelle treibt die Fanstufe 13 über das Getriebe 100 an. Das Getriebe 100 ist dabei als Untersetzungsgetriebe ausgebildet, das die Drehzahl der Fanstufe 13 im Vergleich zum Mitteldruckverdichter 15 und zur Mitteldruckturbine 19 reduziert. Das Getriebe 100 ist in der dargestellten Ausführungsform ein Planetengetriebe mit einem statischen Hohlrad 5 und umlaufenden Planetenrädern 4, die im Hohlrad 5 umlaufen. Der Antrieb des Getriebes 100 erfolgt über ein Sonnenrad 3, das mit der Mitteldruckwelle gekoppelt ist. Der Abtrieb erfolgt in der dargestellten Ausführungsform über einen Drehmomentträger 70, der mit den Planetenrädern 4 gekoppelt ist.
  • Grundsätzlich sind auch andere Ausführungsformen des Getriebes 100 möglich, wobei z.B. das Hohlrad 5 beweglich ausgebildet sein kann, so dass der Abtrieb über das Hohlrad 5 erfolgt.
  • Die Ausgestaltung des Getriebefan-Triebwerks 10 gemäß der 1 ist lediglich beispielhaft zu verstehen. Insbesondere die Anordnung der Wellen kann auch anders gewählt werden, wobei grundsätzlich Zwei- oder Dreiwellenanordnungen möglich sind. Beispielsweise kann alternativ eine Dreiwellenanordnung vorgesehen sein, die eine Niederdruckwelle, die die Niederdruckturbine mit dem Fan verbindet, eine Mitteldruckwelle, die die Mitteldruckturbine mit dem Mitteldruckverdichter verbindet, und eine Hochdruckwelle, die die Hochdruckturbine mit dem Hochdruckverdichter verbindet, umfasst. Dabei ist die Fanstufe 13 über ein Getriebe mit der Niederdruckwelle verbunden ist. Weiter können, wenn das Turbofantriebwerk keinen Mitteldruckverdichter und keine Mitteldruckturbine aufweist, nur eine Niederdruckwelle und eine Hochdruckwelle vorhanden sein, wobei wiederum die Fanstufe 13 über ein Getriebe mit der Niederdruckwelle verbunden ist.
  • Die beschriebenen Komponenten besitzen mit der Drehachse 11 eine gemeinsame Rotations- bzw. Maschinenachse. Die Drehachse 11 definiert eine axiale Richtung des Triebwerks 10. Eine radiale Richtung des Triebwerks 10 verläuft senkrecht zur axialen Richtung.
  • Im Kontext der vorliegenden Erfindung ist die Ausbildung des Planetengetriebes 100 von Bedeutung.
  • Die 2 zeigt ein Ausführungsbeispiel eines Planetengetriebes 100 in einer Schnittdarstellung. Das Planetengetriebe 100 umfasst ein Sonnenrad 3, das von einer Sonnenwelle 30 angetrieben wird. Bei der Sonnenwelle 30 handelt sich beispielsweise um die Mitteldruckwelle der 1. Das Sonnenrad 3 und die Sonnenwelle 30 drehen sich dabei um eine Drehachse 11, die eine axiale Richtung des Planetengetriebes 100 definiert.
  • Das Planetengetriebe 100 umfasst des Weiteren eine Mehrzahl von Planetenrädern 4, von denen in der Schnittdarstellung der 2 eines dargestellt ist. Das Sonnenrad 3 treibt die Mehrzahl der Planetenräder 4 an, wobei eine Verzahnung 35 des Sonnenrad 3 mit einer Verzahnung 45 des Planetenrads 4 in Eingriff steht. Bei der Verzahnung 35, 45 handelt es sich beispielsweise um eine Doppelschrägverzahnung.
  • Die folgende Beschreibung eines Planetenrads 4 gilt für sämtliche Planetenräder, die von dem Sonnenrad 3 angetrieben werden. Das Planetenrad 4 ist hohlzylindrisch ausgebildet und bildet eine äußere Mantelfläche und eine innere Mantelfläche 44. Das Planetenrad 4 rotiert - angetrieben durch das Sonnenrad 3 - um eine Drehachse 110, die parallel zur Drehachse 11 verläuft. Die äußere Mantelfläche des Planetenrads 4 bildet eine Verzahnung 45 aus, die mit der Verzahnung 55 eines Hohlrads 5 in Eingriff steht. Die Verzahnungen 45, 55 können ebenfalls als Doppelschrägverzahnung ausgebildet sein. Das Hohlrad 5 ist feststehend, d. h. nichtrotierend angeordnet. Die Planetenräder 4 rotieren aufgrund ihrer Kopplung mit dem Sonnenrad 3 und wandern dabei entlang des Umfangs des Hohlrads 5. Die Rotation der Planetenräder 4 entlang des Umfangs des Hohlrads 5 und dabei um die Drehachse 110 ist langsamer als die Rotation der Sonnenwelle 3, wodurch eine Untersetzung bereitgestellt wird.
  • Das Planetenrad 4 weißt angrenzend an seine innere Mantelfläche 44 eine zentrierte axiale Öffnung auf. In die Öffnung eingebracht ist ein Planeten-Gleitlagerstift 6, wobei der Planeten-Gleitlagerstift 6 und das Planetenrad 4 an ihren einander zugewandten Flächen ein geschmiertes Gleitlager bilden. Zur Schmierung des Gleitlagers können sich radial erstreckende Schmierfilmöffnungen 61 im Planeten-Gleitlagerstift 6 ausgebildet sein, durch die von innen eingesprühtes oder in anderer Weise zugeführtes Schmieröl in einen Gleitlagerspalt 9 zwischen dem Planeten-Gleitlagerstift 6 und dem Planetenrad 4 zugeführt werden kann. Dabei wird darauf hingewiesen, dass im Planeten-Gleitlagerstift 6 auch davon abweichende oder zusätzliche Mittel zum Zuführen von Schmieröl zum Gleitlager ausgebildet sein können.
  • Im Betrieb weisen das Planetenrad 4 und der Planeten-Gleitlagerstift 6 nicht exakt die gleiche Achse auf, da das in hydrodynamischer Bauweise ausgeführte Gleitlager eine Exzentrizität im Bereich von Zehntelmillimetern mit sich bringt.
  • Der Planeten-Gleitlagerstift 6 weist eine außenseitige Anlagefläche 60 auf, die ballig ausgebildet ist. Dementsprechend nimmt der Außendurchmesser des Planeten-Gleitlagerstifts zu den axialen Enden der Anlagefläche 60 hin ab und weist dort ein Minimum auf.
  • Der Planeten-Gleitlagerstift 6 weist angrenzend an seine Innenfläche 69 ebenfalls eine axiale Öffnung bzw. Bohrung auf und ist dazu vorgesehen, in dieser einen Trägerstift 7 eines Drehmomentträgers aufzunehmen. Der Trägerstift 7 ist dabei in einem verjüngten Bereich 71 des Trägerstifts 7 in einem Gelenklager 73 innerhalb der Bohrung des Planeten-Gleitlagerstifts 6 gelagert. Das Gelenklager 73 erlaubt eine gewisse Schiefstellung des Trägerstiftes 7 gegenüber der Drehachse 110. Ein Trägerstift 7 ist in jedem der Planeten-Gleitlagerstifte 6 des Planetengetriebes 100 angeordnet. Die Trägerstifte 7 sind an ihren aus der Öffnung des Planeten-Gleitlagerstifts 6 herausragenden Enden fest miteinander verbunden und bilden dabei einen Drehmomentträger entsprechend dem Drehmomentträger 70 der 1. Der Drehmomentträger bildet ein Abtriebselement des Planetengetriebes und ist mit der Fanwelle bzw. allgemein mit einer Abtriebswelle gekoppelt.
  • Die genaue Form des Trägerstiftes 7 und dessen dargestellte Lagerung an der Innenfläche des Planeten-Gleitlagerstifts 6 sind dabei nur beispielhaft zu verstehen. Auch wird darauf hingewiesen, dass eine Kopplung des Planeten-Gleitlagerstifts 6 mit einem Drehmomentträger auch in anderer Weise erfolgen kann, wie anhand der 4 und 5 beispielhaft aufgezeigt wird.
  • Die 2 zeigt des Weiteren eine vordere Trägerplatte 81 und eine hintere Trägerplatte 82. Der Planeten-Gleitlagerstift 6 ist mit der vorderen Trägerplatte 81 und mit der hinteren Trägerplatte 82 befestigt, beispielsweise mit diesen verschraubt oder verschweißt. Dazu ist vorgesehen, dass der Planeten-Gleitlagerstift 6 ein axial vorderes Ende 67 und ein axial hinteres Ende 68 aufweist, die jeweils axial gegenüber den Enden der Anlagefläche 60 hervorstehen, wobei der Planeten-Gleitlagerstift 6 an den Enden 67, 68 mit den Trägerplatten 81, 82 befestigt ist.
  • Der Aufbau des Planetenrads 4 und des Planeten-Gleitlagerstifts 6 wird nachfolgend weitergehend in Bezug auf die 3 erläutert, die einen Ausschnitt aus der 2 darstellt.
  • Gemäß der 3 ist zu erkennen, dass das Planetenrad 4 an seinen beiden Stirnseiten 41, 42 jeweils eine Aussparung 401 ausbildet, die sich von der Stirnseite 41, 42 im Wesentlichen in axialer Richtung (bzw. ausgehend von der Stirnseite 41 entgegen der axialen Richtung) in das Innere des Planetenrads 4 erstreckt. Hierdurch werden die Masse des Planetenrads 4 und die Steifigkeit des Planetenrads 4 zu seinen Stirnseiten 41, 42 hin reduziert.
  • Das Gleitlager zwischen dem Planeten-Gleitlagerstift 6 und dem Planetenrad 4 wird durch die zylindrische innere Mantelfläche 44 des Planetenrads 4 und die mit einer Balligkeit versehene Anlagefläche 60 des Planeten-Gleitlagerstifts 6 gebildet. Der im Bereich des Gleitlagers ausgebildete Gleitlagerspalt 9 nimmt dabei aufgrund der Krümmung der Anlagefläche 60 zum axial vorderen Ende und zum axial hinteren Ende des Gleitlagers in seiner radialen Dicke zu. Bei hohen Drehmomenten und Zentrifugalkräften können sich die aneinander angrenzenden Flächen 44, 60 des Gleitlagers jedoch an dessen Enden im Wesentlichen parallel ausrichten. Hierzu tragen auch die in dem Planetenrad 4 ausgebildeten Aussparungen 401 bei, die diesem an seinen Enden eine erhöhte Flexibilität geben.
  • Die Anlagefläche 60 weist ein axial vorderes Ende 65 und ein axial hinteres Ende 66 auf.
  • Die 4 und 5 zeigen Elemente eines weiteren Planetengetriebes. Das Planetengetriebe der 4 und 5 ist grundsätzlich wie das Planetengetriebe der 2 und 3 aufgebaut. Es unterscheidet sich lediglich in der Art, in der das Drehmoment abgenommen und auf einen Drehmomentträger (entsprechend dem Drehmomentträger 70 der 1) übertragen wird. Die 4 zeigt nur solche Elemente des Planetengetriebes, die diese unterschiedliche Art der Drehmomentübertragung betreffen. Die übrigen, nicht dargestellten Elemente entsprechen der Ausgestaltung der 2 und 3. Insbesondere umfasst das Getriebe wie in Bezug auf die 2 und 3 erläutert ein Sonnenrad, eine Sonnenwelle, eine Mehrzahl von Planetenrädern, die von dem Sonnenrad angetrieben werden, und ein Hohlrad.
  • In den 4 und 5 ist zu erkennen, dass die Planeten-Gleitlagerstifte 6 fest mit einer vorderen Trägerplatte 810 und einer hinteren Trägerplatte 820 verbunden sind. Sie sind mit den Trägerplatten 810, 820 beispielsweise fest verschraubt oder verschweißt. Der Planeten-Gleitlagerstift 6 weist ebenso wie im Ausführungsbeispiel der 2 und 3 jeweils eine ballige außenseitige Anlagefläche 60 auf. An seiner Innenfläche 69 bildet der Planeten-Gleitlagerstift 6 eine Bohrung 690 aus, deren Innendurchmesser zur axialen Mitte des Planeten-Gleitlagerstifts hin abnimmt. Im dargestellten Ausführungsbeispiel ist die Bohrung 690 doppelt konisch ausgebildet. Hierauf wird in Bezug auf die 17 und 18 näher eingegangen werden.
  • Anders als beim Ausführungsbeispiel der 2 und 3 nimmt die axiale Bohrung 690 des Planeten-Gleitlagerstifts 6 keinen Trägerstift eines Drehmomentträgers auf, sondern ist leer. Ein Trägerstift ist nicht vorhanden. Die Übertragung eines Drehmoments auf einen Drehmomentträger 70 erfolgt über Verbindungsstege 76, die den Drehmomentträger 70 fest mit der vorderen Trägerplatte 810 verbinden. Der Drehmomentträger 70 ist im dargestellten Ausführungsbeispiel als Ring ausgebildet. Dies ist jedoch nur beispielhaft zu verstehen. Der Drehmomentträger 70 ist in nicht dargestellter Weise mit der Fanwelle gekoppelt.
  • Beim Ausführungsbeispiel der 4 und 5 sind der Drehmomentträger 70, die vordere Trägerplatte 810 und die hintere Trägerplatte 820 einteilig ausgebildet, während sie beim Ausführungsbeispiel der 2 und 3 dreiteilig ausgebildet sind. Durch die Zusammenführung des Drehmomentträgers und der Trägerplatten zu einem Teil kann der Trägerstift 7 der 2 und 3 wegfallen. Die Abnahme des Drehmoments erfolgt nicht mehr mittig in der Bohrung des Planeten-Gleitlagerstifts 6, sondern von der vorderen Trägerplatte 810. Dementsprechend wird beim Ausführungsbeispiel der 4 und 5 auch kein Gelenklager (entsprechend dem Gelenklager 73 der 2 und 3) benötigt.
  • Zum einteiligen Aufbau von vorderer Trägerplatte 810, hinterer Trägerplatte 820 und Drehmomentträger 70 wird weiter angemerkt, dass die vordere Trägerplatte 810 und die hintere Trägerplatte 820 durch am Umfang ausgebildete Wandflächen 830 miteinander verbunden sind, zwischen denen sich jeweils im wesentlichen rechteckförmige Aussparungen 840 befinden, die der Aufnahme jeweils eines Planetenrads dienen. Weiter weist die durch die beiden Trägerplatten 810, 820 und den Drehmomentträger 70 gebildete strukturelle Einheit axiale Bohrungen 77 auf, die der Ankopplung weiterer Teile (nicht dargestellt) für eine Drehmomentübertragung dienen können.
  • Die dargestellte Anzahl von fünf Planeten-Gleitlagerstiften 6, fünf Verbindungsstegen 76 und fünf axialen Bohrungen 77 ist nur beispielhaft zu verstehen.
  • Die 6 zeigt ein Ausführungsbeispiel eines Planeten-Gleitlagerstifts 6, der ein Gleitlager mit einem Planetenrad 4 mit einer Außenverzahnung 45 ausbildet. Der Planeten-Gleitlagerstift 6 ist fest mit einer Struktur verbunden, die entsprechend dem Ausführungsbeispiel der 4 und 5 aus einer vorderen Trägerplatte 810, einer hinteren Trägerplatte 820 und einem Drehmomentträger 70 besteht. Dazu umfasst der Planeten-Gleitlagerstift 6 eine erste axiale Verlängerung 67, die in der vorderen Trägerplatte 810 befestigt ist und eine zweite axiale Verlängerung 68, die in der hinteren Trägerplatte 820 befestigt ist.
  • Der Drehmomentträger 70 ist über Verbindungsstege 76 fest mit der vorderen Trägerplatte 810 verbunden. Insofern wird auf die Beschreibung der 4 und 5 verwiesen.
  • Der Planeten-Gleitlagerstift 6 besitzt eine ballig ausgebildete Anlagefläche 60. Alternativ ist die äußere Anlagefläche 60 zylindrisch ausgebildet. Der Planeten-Gleitlagerstift 6 weist des Weiteren eine Innenfläche 69 auf, die eine axiale Bohrung 690 begrenzt, die eine von einer zylindrischen Form abweichende Form aufweist. So ist die Bohrung 690 doppelt konisch ausgebildet, wobei der Innendurchmesser der Bohrung 690 in der axialen Mitte 95 des Planeten-Gleitlagerstifts 6 ein Minimum und zu den beiden axialen Enden hin ein Maximum aufweist.
  • Die 7 zeigt den Planeten-Gleitlagerstift 6 der 6 in vergrößerte Darstellung, wobei die für die Ausbildung des Planeten-Gleitlagerstifts 6 relevanten Parameter dargestellt sind. In der Schnittdarstellung der 7 ist dabei eine Längsachse 130 des Planeten-Gleitlagerstifts 6 erkennbar. Diese ist im Wesentlichen identisch mit der Drehachse 110 des Planetenrads 110, vgl. 2, wobei jedoch die hydrodynamische Bauweise des Gleitlagers eine kleine Exzentrizität z.B. im Bereich von Zehntelmillimetern mit sich bringt.
  • Der Planeten-Gleitlagerstift 6 bildet eine außenseitige Anlagefläche 60 aus, die ein axial vorderes Ende 65 und ein axial hinteres Ende 66 aufweist. Zwischen diesen beiden Enden 65, 66 bildet die Anlagefläche 60 eine Balligkeit in dem Sinne aus, dass ihr Außendurchmesser zu den axialen Enden 65, 66 hin abnimmt und an den axialen Enden 65, 66 ein Minimum erreicht. Wie bereits erwähnt, kann die Anlagefläche 60 alternativ auch zylindrisch ausgebildet sein. Die Anlagefläche 60 weist einen maximalen Außendurchmesser D auf.
  • Innenseitig bildet der Planeten-Gleitlagerstift 6 die Innenfläche 69 aus, die die axiale Bohrung bzw. Öffnung 690 radial außen begrenzt und eine innere Mantelfläche des Planeten-Gleitlagerstifts 6 darstellt. Die axiale Bohrung 690 weist dabei einen ersten maximalen Innendurchmesser B1 an dem axialen Ende 691 der Innenfläche 69 und einen zweiten maximalen Innendurchmesser B2 an dem axialen Ende 692 der Innenfläche 69 auf. Der axiale Abstand zwischen diesen beiden axialen Enden wird mit L bezeichnet (und ist gleich dem Abstand zwischen den axialen Enden 65, 66 der äußeren Anlagefläche 60). Zwischen den beiden axialen Enden 691, 692 weist die axiale Bohrung 690 einen minimalen Innendurchmesser A auf. Dabei kann vorgesehen sein, dass B1 gleich B2 oder alternativ dass B1 ungleich B2 ist: B1 = B2 oder B1 ≠ B2.
  • Die Differenz zwischen dem minimalen Innendurchmesser A und dem Innendurchmesser m an einer betrachteten axialen Position des Planeten-Gleitlagerstifts nimmt zu den axialen Enden 691, 692 stetig zu.
  • Der minimale Innendurchmesser A ist im Ausführungsbeispiel der 7 an der axialen Mitte 95 des Planeten-Gleitlagerstifts 6 und in einem zylindrischen Bereich 695 der axialen Länge k um diese axiale Mitte 95 herum realisiert. Das Minimum des Innendurchmessers A ist somit in einem zylindrischen Bereich 695 konstanten Innendurchmessers realisiert, der sich symmetrisch zur axialen Mitte 95 über eine definierte axiale Länge k erstreckt. Dies ist allerdings nicht notwendigerweise der Fall.
  • Alternativ wird das Minimum des Innendurchmessers A lediglich entlang einer Umfangslinie bzw. im in der 7 dargestellten Längsschnitt an einem Punkt erreicht.
  • Der axiale Abstand zwischen dem axial vorderen Ende 691 der Innenfläche 69 zum Minimum des Innendurchmessers A oder, wenn das Minimum in einem zylindrischen Bereich ausgebildet ist, zur Mitte dieses zylindrischen Bereichs, wird in der 7 als P bezeichnet. Sofern, wie in der 7 dargestellt, das Minimum des Innendurchmessers A sich in der axialen Mitte 95 befindet, gibt P auch den Abstand zwischen den axialen Enden 691, 692 der Innenfläche 69 und der axialen Mitte 95 sowie den Abstand zwischen den axialen Enden 65, 66 der Außenfläche und der axialen Mitte 95 an.
  • Die Innenfläche 69 des Planeten-Gleitlagerstifts 6 bildet im Längsschnitt eine erste Kurve 693 aus, die sich zwischen dem zylindrischen Bereich 695 und dem vorderen axialen Ende 691 erstreckt, sowie eine zweite Kurve 694 aus, die sich zwischen dem zylindrischen Bereich 695 und dem hinteren axialen Ende 692 erstreckt. Die Form der Kurven 693, 694 kann grundsätzlich beliebig sein. Die hier dargestellte gradlinige Ausbildung ist lediglich beispielhaft zu verstehen. Alternativ können die Kurven beispielsweise kreisförmig oder parabelförmig sein.
  • Bei der dargestellten geradlinigen Ausbildung der Kurven 693, 694 ergibt sich eine doppelt konische Ausgestaltung der Bohrung 690 dahingehend, dass sich die Bohrung 690 von den axialen Enden (an den axialen Positionen 691, 692) zur axialen Mitte 95 des Planeten-Gleitlagerstifts 6 hin konisch verjüngt. Hierdurch wird eine symmetrisch zur axialen Mitte 95 und gleichzeitig rotationssymmetrische Ausbildung der axialen Bohrung 690 bereitgestellt, die dazu führt, dass der Planeten-Gleitlagerstift 6 in seinem mittigen Bereich eine größere Wanddicke aufweist als an den axialen Enden der Innenfläche 69.
  • Der Planeten-Gleitlagerstift 6 weist axiale Verlängerungen bzw. Enden 67, 68 auf, die jeweils eine vordere axialen Stirnseite 670 des Planeten-Gleitlagerstifts 6 und eine hintere axiale Stirnseite 680 des Planeten-Gleitlagerstifts bilden. Wie in Bezug auf die 2 bis 5 erläutert, ist der Planeten-Gleitlagerstift 6 an diesen Enden 67, 68 jeweils an einer Trägerplatte befestigt.
  • Es wird darauf hingewiesen, dass die Außenfläche 60 und die Innenfläche 69 die gleiche axiale Länge L besitzen, wobei die Punkte 65 und 691 sowie die Punkte 66 und 692 die gleiche axiale Position aufweisen. Die Außenfläche 60 und die Innenfläche 69 erstrecken sich in dem axialen Bereich, der der Bereitstellung eines Gleitlagers mit einem Planetenrad dient. Die sich axial daran anschließenden Verlängerungen 67, 68 dienen lediglich der Befestigung des Planeten-Gleitlagerstifts 6 in Trägerplatten und spielen für die hier betrachteten Formgebungen und Abmessungen keine Rolle.
  • Der Planeten-Gleitlagerstift 6 realisiert in Ausgestaltungen der Erfindung bestimmte Verhältnisse der wie oben definierten Parameter A, B1, B2, k, P und L.
  • So gilt für das Verhältnis der Länge P zur axialen Gesamtlänge L: 0 ≤ P/L ≤ 1. Dies bedeutet, dass das Minimum des Innendurchmessers A grundsätzlich an beliebiger axialer Position des Planeten-Gleitlagerstifts 6 ausgebildet sein kann. Insbesondere sind auch asymmetrische Anordnungen möglich. Auch umfasst die Erfindung Ausführungsvarianten, bei denen das Minimum des Innendurchmessers A an dem einen axialen Ende 691 der Anlagefläche (P=0) oder an dem anderen axialen Ende 692 der Anlagefläche (P=L) ausgebildet ist. In anderen Ausführungsvarianten befindet sich das Minimum des Innendurchmessers A stets zwischen den beiden axialen Enden 691, 692 der Anlagefläche.
  • Es gilt für das Verhältnis der axialen Länge des zylindrischen Bereichs k zur axialen Gesamtlänge L: 0 ≤ k/L ≤ 0,75. Je größer dieses Verhältnis, desto größer die axiale Erstreckung des zylindrischen Bereichs 695. Wenn das Verhältnis k/L gleich Null ist, ist f gleich Null, d. h. ein zylindrischer Bereich konstanten Außendurchmessers ist dann nicht vorhanden.
  • Es gilt für das Verhältnis zwischen dem minimalen Innendurchmesser A und dem maximalen Innendurchmessern B1, B2: 0 ≤ A/B1 ≤ 0,99 und 0 ≤ A/B2 ≤ 0,99. Je näher dieses Verhältnis an 1 liegt, desto geringer die Verjüngung der axialen Bohrung 690.
  • Der in der 7 dargestellte Planeten-Gleitlagerstift 6 ist rotationssymmetrisch ausgebildet.
  • Die vorliegende Erfindung beschränkt sich in ihrer Ausgestaltung nicht auf die vorstehend beschriebenen Ausführungsbeispiele. Insbesondere sind die beschriebenen konkreten Formgebungen des Planeten-Gleitlagerstifts nur beispielhaft zu verstehen.
  • Des Weiteren wird darauf hingewiesen, dass die Merkmale der einzelnen beschriebenen Ausführungsbeispiele der Erfindung in verschiedenen Kombinationen miteinander kombiniert werden können. Sofern Bereiche definiert sind, so umfassen diese sämtliche Werte innerhalb dieser Bereiche sowie sämtliche Teilbereiche, die in einen Bereich fallen.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • US 2015/0300255 A1 [0003]

Claims (20)

  1. Planetengetriebe (100), das aufweist: - ein Sonnenrad (3), das um eine Drehachse (11) des Planetengetriebes (100) rotiert und von einer Sonnenwelle (30) angetrieben wird, wobei die Drehachse (11) eine axiale Richtung des Planetengetriebes (100) definiert, - eine Mehrzahl von Planetenrädern (4), die von dem Sonnenrad (3) angetrieben werden, - ein Hohlrad (5), mit dem die Mehrzahl von Planetenrädern (4) in Eingriff steht, und - eine Mehrzahl von Planeten-Gleitlagerstiften (6), wobei jeweils ein Planeten-Gleitlagerstift (6) in einem Planetenrad (4) angeordnet ist und der Planeten-Gleitlagerstift (6) und das Planetenrad (4) ein geschmiertes Gleitlager bilden, und wobei - der Planeten-Gleitlagerstift (6) mit einer axialen Bohrung (690) versehen ist und eine Innenfläche (69) aufweist, die ein axial vorderes Ende (691) und ein axial hinteres Ende (692) aufweist, dadurch gekennzeichnet, dass der Innendurchmesser (m) der axialen Bohrung (690) des Planeten-Gleitlagerstifts (6) zwischen dem axial vorderen Ende (691) und dem axial hinteren Ende (692) der Innenfläche (69) variiert und dabei an mindestens einem axialen Ende (691, 692) ein Maximum aufweist.
  2. Planetengetriebe nach Anspruch 1, dadurch gekennzeichnet, dass der Planeten-Gleitlagerstift (6) maximale Innendurchmesser (B1, B2) an den beiden axialen Enden (691, 692) der Innenfläche (69) und einen minimalen Innendurchmesser (A) zwischen den axialen Enden (691, 692) aufweist, wobei die maximalen Innendurchmesser (B1, B2) an den beiden axialen Enden (65, 66) identisch sind.
  3. Planetengetriebe nach Anspruch 1, dadurch gekennzeichnet, dass der Planeten-Gleitlagerstift (6) maximale Innendurchmesser (B1, B2) an den beiden axialen Enden (691, 692) der Innenfläche (69) und einen minimalen Innendurchmesser (A) zwischen den axialen Enden (691, 692) aufweist, wobei die maximalen Innendurchmesser (B1, B2) an den beiden axialen Enden (65, 66) unterschiedlich sind.
  4. Planetengetriebe nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Innendurchmesser (m) der axialen Bohrung (690) des Planeten-Gleitlagerstifts (6) zu mindestens einem axialen Ende (691, 692) der Innenfläche (69) kontinuierlich zunimmt.
  5. Planetengetriebe nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Innenfläche (69) des Planeten-Gleitlagerstifts (6) im Längsschnitt eine erste Kurve (693) ausbildet, die sich zwischen dem Minimum und dem vorderen axialen Ende (691) erstreckt, und eine zweite Kurve (694) ausbildet, die sich zwischen dem Minimum und dem hinteren axialen Ende (692) erstreckt.
  6. Planetengetriebe nach Anspruch 5, dadurch gekennzeichnet, dass die erste Kurve (693) und/oder die zweite Kurve (694) geradlinig ausgebildet ist.
  7. Planetengetriebe nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die axiale Bohrung (690) als doppelt konische Bohrung ausgebildet ist, die sich jeweils von den axialen Enden (691, 692) zur axialen Mitte der Bohrung (690) hin konisch verjüngt.
  8. Planetengetriebe nach einem der vorangehenden Ansprüche, gekennzeichnet, dass das Minimum des Innendurchmessers (A) des Planeten-Gleitlagerstifts (6) durch eine Umfangslinie gebildet ist.
  9. Planetengetriebe nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Minimum des Innendurchmessers (A) des Planeten-Gleitlagerstifts (6) durch einen zylindrischen Bereich (695) konstanten Innendurchmessers gebildet ist, der sich über eine definierte axiale Länge (k) erstreckt.
  10. Planetengetriebe nach Anspruch 9, dadurch gekennzeichnet, dass das Verhältnis der axialen Länge des zylindrischen Bereichs (k) zur axialen Gesamtlänge (L) der Innenfläche (69) zwischen 0 und 0,75 liegt.
  11. Planetengetriebe nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Planeten-Gleitlagerstift (6) in seiner axialen Mitte (95) ein Minimum seines Innendurchmessers (A) aufweist.
  12. Planetengetriebe nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass der Planeten-Gleitlagerstift (6) außerhalb seiner axialen Mitte (95) ein Minimum seines Innendurchmessers (A) aufweist.
  13. Planetengetriebe nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Verhältnis zwischen dem minimalen Innendurchmesser (A) und dem maximalen Innendurchmesser (B1, B2) jeweils zwischen 0 und 0,99 liegt.
  14. Planetengetriebe nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Planeten-Gleitlagerstift (6) als Rotationskörper ausgebildet ist.
  15. Planetengetriebe nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Planeten-Gleitlagerstift (6) ein axial vorderes Ende (67) und ein axial hinteres Ende (68) aufweist, die axial beabstandet zu dem axial vorderen Ende (691) und dem axial hinteren Ende (692) der Innenfläche (60) sind, wobei der Planeten-Gleitlagerstift (6) an seinem vorderen axialen Ende (67) an einer vorderen Trägerplatte (81, 810) und an seinem hinteren axialen Ende (68) an einer hinteren Trägerplatte (82, 820) befestigt oder einstückig mit diesen ausgebildet ist.
  16. Planetengetriebe nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Planeten-Gleitlagerstifte (6) mit einem Drehmomentträger (70) gekoppelt sind und der Drehmomentträger (70) bei drehendem Sonnenrad (3) und fest angeordnetem Hohlrad (5) um die Drehachse (11) des Planetengetriebes (100) rotiert.
  17. Planetengetriebe nach Anspruch 16, dadurch gekennzeichnet, dass die Planeten-Gleitlagerstifte (6) dazu ausgebildet sind, in ihrer axialen Bohrung (690) einen Trägerstift (7) des Drehmomentträgers (70) aufzunehmen.
  18. Planetengetriebe nach Anspruch 16, dadurch gekennzeichnet, dass die Planeten-Gleitlagerstifte (6) fest mit einer vorderen Trägerplatte (810) und mit einer hinteren Trägerplatte (820) verbunden sind, wobei die vordere Trägerplatte (810) zur Drehmomentübertragung mit dem Drehmomentträger (70) gekoppelt ist.
  19. Gleitlagerstift (6) für ein Planetengetriebe (100), der mit einer axialen Bohrung (690) versehen ist und eine Innenfläche (69) aufweist, die ein axial vorderes Ende (691) und ein axial hinteres Ende (692) aufweist, dadurch gekennzeichnet, dass der Innendurchmesser (m) der axialen Bohrung (690) des Gleitlagerstifts (6) zwischen dem axial vorderen Ende (691) und dem axial hinteren Ende (692) der Innenfläche (69) variiert und dabei an mindestens einem axialen Ende (691, 692) ein Maximum aufweist.
  20. Getriebefan-Triebwerk, das aufweist: - eine Fanstufe (13), - eine Fanwelle, über die die Fanstufe (13) angetrieben wird, - eine Turbinenwelle, dadurch gekennzeichnet, dass die Turbinenwelle und die Fanwelle über ein Planetengetriebe (100) gemäß Anspruch 1 gekoppelt sind, wobei die Turbinenwelle die Sonnenwelle (30) bildet, die Planeten-Gleitlagerstifte (6) mit einem Drehmomentträger (70) gekoppelt sind und der Drehmomentträger (70) mit der Fanwelle gekoppelt ist.
DE102017127866.4A 2017-11-24 2017-11-24 Planetengetriebe und Gleitlagerstift für ein Planetengetriebe Withdrawn DE102017127866A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE102017127866.4A DE102017127866A1 (de) 2017-11-24 2017-11-24 Planetengetriebe und Gleitlagerstift für ein Planetengetriebe
EP18206995.5A EP3489549B1 (de) 2017-11-24 2018-11-19 Planetengetriebe und gleitlagerstift für ein planetengetriebe
US16/198,253 US10816087B2 (en) 2017-11-24 2018-11-21 Planetary gearing and planet pin for a planetary gearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017127866.4A DE102017127866A1 (de) 2017-11-24 2017-11-24 Planetengetriebe und Gleitlagerstift für ein Planetengetriebe

Publications (1)

Publication Number Publication Date
DE102017127866A1 true DE102017127866A1 (de) 2019-05-29

Family

ID=66442491

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102017127866.4A Withdrawn DE102017127866A1 (de) 2017-11-24 2017-11-24 Planetengetriebe und Gleitlagerstift für ein Planetengetriebe

Country Status (1)

Country Link
DE (1) DE102017127866A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114930012A (zh) * 2019-12-11 2022-08-19 赛峰飞机发动机公司 具有低泄漏流量和提高的推进效率的航空推进系统
WO2023160903A1 (de) * 2022-02-22 2023-08-31 Renk Gmbh Planetenträger für ein getriebe

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2648154B2 (de) * 1975-11-10 1980-12-18 Stal-Laval Turbin Ab, Finspaang (Schweden) Planetengetriebe
EP1028275A2 (de) * 1999-02-12 2000-08-16 FIATAVIO S.p.A. Zapfen für die Lagerung von Zahnrädern an einem Träger und Getriebe mit diesem Lagerzapfen
DE102007031726A1 (de) * 2007-07-06 2009-01-08 Zf Friedrichshafen Ag Ausgestaltung eines Planeten- bzw. Lagerbolzens in einem Getriebe eines Kraftfahrzeugs
US20150300255A1 (en) 2012-02-23 2015-10-22 Snecma Device for recovering lubricating oil from an epicyclic reduction gear
US20150323056A1 (en) * 2011-04-27 2015-11-12 United Technologies Corporation Fan drive gear system integrated carrier and torque frame
DE102016124738A1 (de) * 2016-12-19 2018-06-21 Schaeffler Technologies AG & Co. KG Planetenbolzen für ein Planetengetriebe

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2648154B2 (de) * 1975-11-10 1980-12-18 Stal-Laval Turbin Ab, Finspaang (Schweden) Planetengetriebe
EP1028275A2 (de) * 1999-02-12 2000-08-16 FIATAVIO S.p.A. Zapfen für die Lagerung von Zahnrädern an einem Träger und Getriebe mit diesem Lagerzapfen
DE102007031726A1 (de) * 2007-07-06 2009-01-08 Zf Friedrichshafen Ag Ausgestaltung eines Planeten- bzw. Lagerbolzens in einem Getriebe eines Kraftfahrzeugs
US20150323056A1 (en) * 2011-04-27 2015-11-12 United Technologies Corporation Fan drive gear system integrated carrier and torque frame
US20150300255A1 (en) 2012-02-23 2015-10-22 Snecma Device for recovering lubricating oil from an epicyclic reduction gear
DE102016124738A1 (de) * 2016-12-19 2018-06-21 Schaeffler Technologies AG & Co. KG Planetenbolzen für ein Planetengetriebe

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114930012A (zh) * 2019-12-11 2022-08-19 赛峰飞机发动机公司 具有低泄漏流量和提高的推进效率的航空推进系统
CN114930012B (zh) * 2019-12-11 2024-08-30 赛峰飞机发动机公司 具有低泄漏流量和提高的推进效率的航空推进系统
WO2023160903A1 (de) * 2022-02-22 2023-08-31 Renk Gmbh Planetenträger für ein getriebe

Similar Documents

Publication Publication Date Title
DE102017127876A1 (de) Planetengetriebe und Gleitlagerstift für ein Planetengetriebe
EP3489549B1 (de) Planetengetriebe und gleitlagerstift für ein planetengetriebe
EP3489548B1 (de) Planetengetriebe
EP1032779B1 (de) Planetengetriebe
DE102017127874A1 (de) Planetengetriebe und Planetenrad für ein Planetengetriebe
EP3406941B1 (de) Stirnradanordnung, getriebe und windenergieanlage
DE60127067T2 (de) Lager für Turbolader
DE102016121931A1 (de) Schaltgetriebe-Ölzuführung
DE102012207250A1 (de) Spielarmes Planetengetriebe
AT517484A4 (de) Zahnradanordnung
WO2012116787A1 (de) Turbo-compound-system, insbesondere eines kraftfahrzeugs
DE102010005821A1 (de) Schmierung einer drehbaren Welle
DE2849994A1 (de) Rotationskolbenmaschine
AT512935B1 (de) Antriebseinheit für ein Kraftfahrzeug
DE102017127866A1 (de) Planetengetriebe und Gleitlagerstift für ein Planetengetriebe
DE102018106484A1 (de) Getriebefan-Triebwerk und Keilwellenanordnung
DE10205199A1 (de) Getriebe mit Schmiernuten
WO2014044363A1 (de) Lagervorrichtung und abgasturbolader
DE602004005985T2 (de) Vorrichtung zur schmierung eines getriebes
DE102008046821B4 (de) Kurbelwelle für eine Brennkraftmaschine mit varibaler Verdichtung und Brennkraftmaschine mit variabler Verdichtung
DE102012020884A1 (de) Geschwindigkeits-Wechselgetriebe für Kraftfahrzeuge
DE102006056845A1 (de) Förderaggregat
DE10302192A1 (de) Drehstarre Ausgleichskupplung und Planetengetriebe mit einer Ausgleichskupplung
DE2543481C2 (de) Schmiervorrichtung
DE102010036252A1 (de) Getriebevorrichtung mit mindestens einer Wellenanordnung sowie Antriebseinheit mit der Getriebevorrichtung

Legal Events

Date Code Title Description
R163 Identified publications notified
R082 Change of representative
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee