DE102017120384A1 - Befüllvorrichtung zum Befüllen von Klimaanlagen mit CO2 - Google Patents

Befüllvorrichtung zum Befüllen von Klimaanlagen mit CO2 Download PDF

Info

Publication number
DE102017120384A1
DE102017120384A1 DE102017120384.2A DE102017120384A DE102017120384A1 DE 102017120384 A1 DE102017120384 A1 DE 102017120384A1 DE 102017120384 A DE102017120384 A DE 102017120384A DE 102017120384 A1 DE102017120384 A1 DE 102017120384A1
Authority
DE
Germany
Prior art keywords
filling
filling device
ring line
temperature
bottle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE102017120384.2A
Other languages
English (en)
Other versions
DE102017120384B4 (de
Inventor
Friedhelm Schäfer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FFT Produktionssysteme GmbH and Co KG
Original Assignee
FFT Produktionssysteme GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=63861955&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=DE102017120384(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by FFT Produktionssysteme GmbH and Co KG filed Critical FFT Produktionssysteme GmbH and Co KG
Priority to DE102017120384.2A priority Critical patent/DE102017120384B4/de
Priority to PCT/DE2018/200083 priority patent/WO2019048010A1/de
Publication of DE102017120384A1 publication Critical patent/DE102017120384A1/de
Application granted granted Critical
Publication of DE102017120384B4 publication Critical patent/DE102017120384B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2345/00Details for charging or discharging refrigerants; Service stations therefor
    • F25B2345/001Charging refrigerant to a cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2345/00Details for charging or discharging refrigerants; Service stations therefor
    • F25B2345/006Details for charging or discharging refrigerants; Service stations therefor characterised by charging or discharging valves

Abstract

Die Erfindung betrifft eine Befüllvorrichtung zum Befüllen von Klimaanlagen mit CO2 mit einer Versorgungseinrichtung, einer Abfülleinrichtung und einer die Versorgungseinrichtung mit der Abfülleinrichtung verbindenden Transporteinrichtung, sodass das CO2 über die Versorgungseinrichtung zur Abfülleinrichtung transportierbar ist, wobei die Transporteinrichtung eine Ringleitung aufweist und die Befüllvorrichtung derart eingerichtet ist, dass das CO2 in der Ringleitung insbesondere schaltbar zirkuliert.

Description

  • Die Erfindung betrifft eine Befüllvorrichtung zum Befüllen von Klimaanlagen mit CO2 mit einer Versorgungseinrichtung, einer Abfülleinrichtung und einer die Versorgungseinrichtung mit der Abfülleinrichtung verbindenden Transporteinrichtung, sodass das CO2 über die Versorgungseinrichtung zur Abfülleinrichtung transportierbar ist.
  • In der DE 10 2015 221 328 A1 ist ein Klimaanlagen-Wartungssystem mit einem Abgabebehälter, einer Vakuumpumpe, die fluidmäßig mit dem Abgabebehälter verbunden ist offenbart. Zudem ist in der DE 10 2015 006 189 A1 ein Verfahren zur Füllstands- und Füllmengenerhöhung einer Fahrzeugkälteanlage mit einem Kältemittelkreislauf offenbart.
  • Vorrichtungen zur Befüllung von Fahrzeugklimasystemen mit dem Kältemittel R744 sind in der DE 10 2014 011 836 A1 , in der DE 10 2014 011 051 A1 und in der DE 10 2015 001 767 A offenbart.
  • In der DE 10 2015 207 808 A1 wird eine Volumenausgleichsvorrichtung mit einem Gehäuse mit einem definierten Innenvolumen offenbart, wobei das Gehäuse eine Anschlussöffnung aufweist, mittels welcher das Gehäuse mit einem fluidführenden Element eines Kältemittelkreislaufs verbindbar ist.
  • Ein Kühlmittelsystem zum Füllen eines Kühlmittels mit Kühlmittel ist zudem in der DE 11 2005 001 670 T5 offenbart.
  • Eine Befüllvorrichtung für Kraftfahrzeugklimaanlagen, die mit ungefährlichen und natürlichen Kältemitteln, insbesondere CO2, betreibbar sind, sind in der DE 100 15 976 A1 offenbart. Eine Maschine zum Laden und Wiederherstellen eines Kühlmittels in einem Fahrzeugklimaanlagensystem ist in dem europäischen Patent EP 2 360 040 B1 offenbart.
  • Einen Füllapparat zum Befüllen einer Kältemaschine mit einem Kältemittel, insbesondere mit Kohlendioxid, ist in der 10 2007 006 876 A1 offenbart.
  • In der DE 10 2007 001 452 A1 ist ein Verfahren und ein Fahrzeug zur Ermittlung einer Kältemittelunterfüllung eines Kältemittelkreislaufs einer Klimaanlage für ein Fahrzeug offenbart.
  • Ein Ventil zum Befüllen von Kältemittelleitungen in Klimaanlagen ist in der DE 10 2006 017 431 B3 offenbart.
  • Der Gasdruck von CO2, der für eine ausreichend schnelle Befüllung von KFZ-Klimaanlagen in der Automobil-Endmontage notwendig ist (benötigte Taktzeiten < 3 Minuten) liegt im Normalfall höher als der Eingangsdruck an der Schnittstelle der Füllanlage. Folglich muss innerhalb der Befüllanlage der CO2-Druck erhöht werden. Vor allem bei mobilen Anlagen ist dies der Fall, da diese aus einer CO2-Steigrohrflasche versorgt werden, und diese (im unbeheizten) Zustand, Drücke < 60 bar bei 20 °C zur Verfügung stellen. Aber auch bei zentralen Füllanlagen, welche durch eine CO2-Zentralversorgungsanlage versorgt werden, ist ein Absinken des Druckes auf ein Niveau des Befülldruck möglich, und darf in solchen Fällen eben nicht zum Ausfall der Befüllanlage oder zu einer Verlängerung der Taktzeiten führen.
  • Der Befüllprozess ist im Wesentlichen durch die sehr schnelle Befüllung von bis 100 g/s gekennzeichnet. Eine Befüllung einer zum Beispiel 2-Liter-Kälteanlage dauert hierbei nur einige Sekunden. Aufgrund der schnellen Fließgeschwindigkeiten und der relativ geringen Viskosität von CO2 kommt es zum Druckabfall bei der Befüllung, der - falls er zu stark ist- zur Verdampfung des Mediums führen kann und somit zu einer Erhöhung des Messfehlers bei der Massenmessung mittels eines Coreolis-Sensors.
  • Der Druckabfall muss somit möglichst minimiert werden, was durch den Vorhalt von Masse direkt in der Befüllanlage auf höherem Druckniveau als Befüllung ermöglicht werden kann.
  • Bei hohen Umgebungstemperaturen von bis zu 40°C herrscht der überkritische Phasenzustand CO2 vor. Bei der Kompression der überkritischen Phase beziehungsweise des Phasengemisches (flüssig/überkritisch) erwärmt sich der Kompressor stärker verglichen zur Kompression einer rein flüssigen Phase bei < 20°C. Die Folgen eines sich erwärmenden Kompressors sind eine deutliche Reduzierung des Durchsatzes und somit der Speicherkapazität der Anlage, sowie die Reduzierung der Standzeit der Kompressordichtungen.
  • Aufgrund dessen, dass CO2 im flüssigen Zustand bei ca. 31°C einen Phasenübergang realisiert, ist bei Umwelttemperaturen von bis zu 40°C eine exakte Befüllung nicht immer gewährleistet, da je nach der Phase des CO2, das Abfüllen nicht definiert möglich ist. Insbesondere vor dem Hintergrund, dass CO2 Massen-genau befüllt werden muss, stellt dies ein Problem dar.
  • Aufgabe der Erfindung ist es, den Stand der Technik zu verbessern.
  • Gelöst wird die Aufgabe durch eine Befüllvorrichtung zum Befüllen von Klimaanlagen mit CO2 mit einer Versorgungseinrichtung, einer Abfülleinrichtung und einer die Versorgungseinrichtung mit der Abfülleinrichtung verbindenden Transproteinrichtung, sodass das CO2 über die Versorgungseinrichtung zur Abfülleinrichtung transportierbar ist, wobei die Transporteinrichtung eine Ringleitung aufweist und die Befülleinrichtung derart eingerichtet ist, dass das CO2 in der rechten Ringleitung schaltbar zirkuliert.
  • Somit ist es vorliegend nicht mehr notwendig, in einem einzigen Kühlvorgang die gesamte, bei der Kompression von Anfangsdruck auf Enddruck notwendige Wärme abzuführen, sondern durch das Aufrechterhalten einer Ringströmung durchläuft das Fluid (CO2) den Kühler und den Kompressor mehrmals. Dadurch kann kontinuierlich die Temperatur des gesamten sich in der Anlage befindlichen Fluids entweder gesenkt oder auf ein definiertes Niveau stabilisiert werden. Folglich kann deshalb ein Kälteaggregat in der Ringleitung mit entsprechender minimierter Kälteleistung ausgelegt und betrieben werden.
  • Ein weiterer Vorteil ist, dass das gesamte, sich in der Anlage befindliche Fluid, konditioniert wird, und dieses nicht auf die Speichervolumina beschränkt ist.
  • Im Ring werden somit insbesondere alle Rohrleitungsabschnitte, alle Komponenten und dergleichen auf ein Temperaturenniveau gehalten. Dadurch wird ein thermodynamisch ausgeglichener und eingeschwungener Zustand erreicht, wodurch sich beispielsweise eine Massenmessung vereinfacht und die Genauigkeit verbessert wird.
  • Folgendes Begriffliche sei erläutert:
  • Die „Befüllvorrichtung“ dient insbesondere zum Versorgen einer Klimaanlage mit dem entsprechenden Kältemittel. Dabei kann die Befüllanlage als Festanlage und als mobile Anlage ausgeführt sein. Eine mobile Befüllvorrichtung wird beispielsweise insbesondere bei Kfz-Werkstätten vor Ort eingesetzt, um Klimaanlagen von Fahrzeugen mit dem entsprechenden Kältemittel zu versehen.
  • Als Kältemittel werden insbesondere Kältemittel verwendet, welche flüssig sind. Besonders bevorzugt wird CO2 eingesetzt. CO2 als Kältemittel hat die Bezeichnung R-744. Aus thermodynamischer Sicht zeichnet sich Kohlendioxid durch geringe Viskosität und gute Wärmeübergangswerte aus. Insbesondere ist eine gute volumetrische Kälteleistung bei hoher Drucklage vorteilhaft. Der Vorteil von CO2 gegenüber anderen Kältemitteln ist insbesondere der, dass CO2 bereits natürlich in der Atmosphäre vorkommt.
  • Eine „Klimaanlage“ ist insbesondere eine Anlage zum Erzeugen und Aufrechterhalten einer angenehmen beziehungsweise benötigten Raumluftqualität. Bei dieser Raumluftqualität gehen insbesondere Temperatur, Feuchtigkeit und Reinheit ein. Der Vorteil bei einer Klimaanlage ist der, dass diese unabhängig von Wetter, Abwärme und menschlichen oder technischen Emissionen die benötigte Raumluftqualität bereitstellen kann. Eine Klimaanlage hat somit die Aufgabe, die Luft eines Raumes (insbesondere den Raum eines Fahrzeuges) in einen bestimmten Zustand zu bringen und zu halten. In diesem Zusammenhang wird auch von Konditionieren gesprochen. Eine der wichtigsten Funktionen einer Klimaanlage ist die Raumluftkühlung. Durch die geringe Raumausdehnung eines Innenraumes eines Fahrzeuges, der im Allgemeinen von einer metallischen Außenhülle und einer Verglasung umgeben ist, kann sich ein PKW bei Sonneneinstrahlung sehr stark aufheizen. Der Einsatz einer Klimaanlage kann unterstützend bei dem Herunterkühlen des Fahrgastinnenraumes wirken.
  • Zum Betrieb einer Klimaanlage wird ein Kältemittel benötigt, welches vorliegend insbesondere CO2 ist.
  • Eine „Versorgungseinrichtung“ ist insbesondere eine Einrichtung, welche das Kältemittel zur Verfügung stellt. Bei fest installierten Befüllvorrichtungen, kann dies beispielsweise eine zentrale Versorgung sein, wobei bei mobilen Befüllvorrichtungen häufig übliche (Steigrohr)Gasflaschen zum Einsatz kommen.
  • Eine „Transporteinrichtung“ verbindet im Allgemeinen die Versorgungseinrichtung mit der Abfülleinrichtung. Im einfachsten Fall handelt es sich bei der Transportvorrichtung um einen Schlauch oder ein Rohr, in dem das Kühlmittel (CO2) geführt wird. Zudem können unterschiedliche Bauteile wie Sensoren, Druckminderer und dergleichen vorgesehen sein.
  • Die „Abfülleinrichtung“ ist insbesondere der Teil, der Befüllvorrichtung, welcher mit der zu befüllenden Klimaanlage kontaktiert wird. Hier können sowohl feste Rohre, als auch bevorzugt, aufgrund ihrer Flexibilität, elastische Rohre eingesetzt werden. Am Ende dieser Abfülleinrichtung sind insbesondere Adapter vorgesehen, welche eine lösbar-feste Verbindung mit der Klimaanlage eingehen können, sodass das Kältemittel in die Klimaanlage gelangen kann. Dabei kann die Abfülleinrichtung ebenfalls Bauteile wie Druckminderer, Sensoren (Dichte- oder Massesensoren) und dergleichen aufweisen. Zudem weist die Abfülleinrichtung häufig auch Rückführungen auf, welche beispielsweise CO2 im Totraum (Füllstück der Klimaanlage) in einen Außenbereich abführen. Zudem kann über die Rückführungen überschüssiges CO2 in der Abfülleinrichtung nach dem Befüllen abgeführt werden.
  • Die „Ringleitung“ kann die Transporteinrichtung in Gänze bilden oder einen Teil der Transporteinrichtung sein. Wesentlich dabei ist, dass eine Rückführung gegeben ist, sodass ein Kältemittel in der Ringleitung zirkulieren kann.
  • Der Vorteil dabei ist, dass das Kältemittel dabei mehrfach mit einem oder demselben Bauteil wie beispielsweise die Temperiereinrichtung oder dem Kompressor in Kontakt geraten kann. Insbesondere während des Abfüllens des Kältemittels in die Klimaanlage kann die Ringleitung dabei von der Abfülleinrichtung abgetrennt sein. Dies kann beispielsweise durch einen schaltbares Ventil oder mehrere schaltbare Ventile realisiert werden. Insbesondere wird dann in den befüllfreien Zeiten das in der Ringleitung befindliche Kältemittel zirkulierend durch die Ringleitung geführt.
  • In einer weiteren Ausführungsform weist die Ringleitung einen Kompressor und/oder eine Ringtemperiereinrichtung auf, sodass zirkuliertes CO2 verdichtbar und/oder temperierbar ist.
  • Insbesondere vor dem Hintergrund, wenn die Versorgungseinrichtung mit CO2-Steigrohrflaschen versorgt wird, ist sowohl die Temperatur als auch der Druck für das Befüllen der Klimaanlagen nicht geeignet. In diesem Fall prägen der Kompressor und die Ringtemperiereinrichtung dem Kältemittel den entsprechenden Druck und die gewünschte Temperatur auf.
  • Bei der „Ringtemperiereinrichtung“ kann es sich um ein Kühlgerät wie beispielsweise einen Plattenwärmetauscher handeln. Wesentlich dabei ist, dass in den meisten Fällen Wärme aus dem Kältemittel entnommen und in die Umwelt abgeführt wird.
  • Ein „Kompressor“ wird auch Verdichter genannt und ist insbesondere eine Fluid-Energiemaschine, welche zum Komprimieren von Gasen verwendet wird. Vorliegend komprimiert der Kompressor das Kältemittel insbesondere auf einen Druck von 90 bar oder 120 bar.
  • In dieser Ausführungsform ist die Ringleitung insbesondere derart ausgestaltet, dass der Kompressor mittels einem Pumpen ein Zirkulieren des CO2s und somit des Kältemittels in der Ringleitung bewirkt. Insbesondere aufgrund dessen, dass vor dem Kompressor und nach dem Kompressor unterschiedliche Drücke vorherrschen, führt dies zu einem Zirkulieren des Kältemittels bei geschlossener Ringleitung. Somit realisiert der Kompressor eine Pumpwirkung
  • Um die Ringleitung zu schließen und im geschlossenen Zustand CO2 oder das Kältemittel in der Ringleitung zirkulieren zu lassen, kann zwischen der Ringleitung und der Abfülleinrichtung eine Schalteinheit, insbesondere ein Absperrkugelhahn angeordnet sein.
  • Wie bereits ausgeführt, dabei kann beispielsweise der Abfülleinrichtung soviel Kältemittel zugeführt werden, dass eine Klimaanlage ausreichend befüllbar ist. Nach dem Bereitstellen der benötigten Menge an Kältemittel kann wiederum die Schalteinheit angesteuert und somit die Ringleitung geschlossen werden, worauf das in der Ringleitung befindliche Kühlmittel zirkuliert und definiert auf Temperatur und/oder Druck eingestellt wird.
  • In einer weiteren Ausprägungsform weist die Abfülleinrichtung einen Befülladapter und die Ringleitung eine Adapteraufnahme auf, sodass im Falle einer Verbindung des Befülladapters mit der Adapteraufnahme ein Teil der Abfülleinrichtung die Ringleitung mit ausbildet.
  • Somit kann in der Abfülleinrichtung befindliches Kühlmittel zirkulierend in den Kreislauf der Ringleitung eingefügt werden. Weiterhin wird dem in der Abfülleinrichtung befindlichen Kühlmittel, beispielsweise durch die Ringleitungtemperiereinrichtung und den Kompressor, die gewünschte Temperatur und Druck aufgeprägt.
  • Dabei entspricht insbesondere die Adapteraufnahme an der Ringleitung baulich einer Adapteraufnahme einer Klimaanlage, an die üblicherweise zum Befüllen der Befülladapter der Abfülleinrichtung angesetzt wird. Dabei wirken insbesondere Befülladapter und Adapteraufnahme derart zusammen, dass eine geschlossene Verbindung gegeben ist.
  • Um ausreichend Kältemittel der Abfülleinrichtung zur Verfügung stellen zu können, kann der Ringleitung ein Speicherreservoir zugeordnet sein, oder die Ringleitung das Speicherreservoir aufweisen.
  • Speicherreservoir kann dabei insbesondere durch einen größeren Querschnitt realisiert werden.
  • In einer Ausführungsform, welche insbesondere auch unabhängig von der Ringleitung realisierbar ist, weist die Abfülleinrichtung eine Abfülltemperiereinrichtung auf, welche derart eingerichtet ist, dass abhängig von einer Außentemperatur dem CO2, und somit dem Kühlmittel, in der Abfülleinrichtung eine Zusatztemperatur aufgeprägt wird, sodass das CO2 eine CO2-Temperatur aufweist und dadurch eine eindeutige CO2-Phase ausbildet, und ein Temperaturbereich um den kritischen Punkt dadurch ausgeschlossen wird, dass die CO2-Temperatur einen Temperaturwert unterhalb oder oberhalb des kritischen Punktes aufweist. Somit ist das CO2 entweder in dem eindeutigen Zustand „flüssig“ oder in dem eindeutigen Zustand überkritisch.
  • Somit ist es nicht mehr notwendig bei hohen Umgebungstemperaturen die gesamte Rohrleitungsstrecke, welche durch die Abfüllleitungen gebildet wird, auf eine konstante Temperatur im flüssigen Bereich zu kühlen. Vielmehr erfolgt mittels Temperierung eine Anpassung an die Umgebungstemperatur.
  • Durch eine höhere Temperatur der Befüllstrecke (Abfüllleitung) ist ein Anwärmen während einer Blockpause (Stillstand) nicht möglich, wodurch eine Druckentlastung der Befüllstrecke notwendig wäre. Eine Druckentlastung bei Erwärmen ist jedoch störend für das Bestimmen der Masse, da die Masse im Befüllschlauch bereits durch den vorgeschalteten Massensensor abgemessen wurde. Ein Masseverlust durch ein Entlüften oder dergleichen kann somit ebenfalls vermieden werden, sodass eine Kontamination der Umgebungsluft minimiert wird.
  • Folgendes Begriffliche sei erläutert:
  • Eine „Außentemperatur“ ist insbesondere die Temperatur, welche sich in direkter Umgebung der Abfülleinrichtung ausbildet.
  • Eine „Zusatztemperatur“ ist insbesondere eine Temperatur, die garantiert, dass eine Temperatur des Kältemittels oberhalb der Außentemperatur durch Aufprägen von Wärme eingestellt wird. Mithin wird dadurch dem CO2 eine definierte Phase aufgeprägt.
  • In einer einfachen Ausgestaltung wird bei einer Außentemperatur bis zu 25°C eine Zusatztemperatur von 3°C dem CO2 aufgeprägt. Somit hat das flüssige CO2 eine Temperatur von 28°C. In diesem Zustand ist bei den gegebenen Drücken das CO2 im eineindeutigen Zustand „flüssig“.
  • Der „kritische Punkt“ von CO2 liegt bei ca. 31°C. Bei dieser Temperatur tritt das CO2 von einem flüssigen in einen überkritischen Zustand über. Dies hat jedoch zur Folge, dass ein massengenaues Abfüllen des CO2 nicht realisierbar ist.
  • Somit wird insbesondere eine Temperaturbandbreite um den kritischen Punkt ausgeblendet und vermieden, dass das CO2 eine Temperatur innerhalb dieser Temperaturbandbreite aufweist.
  • Dies wird insbesondere durch die vorliegende Erfindung vermieden. So wird beispielsweise bei Temperaturen oberhalb von 25°C das CO2 auf eine Temperatur deutlich oberhalb 31°C (beispielsweise 34°C) erwärmt. In diesem Fall ist das in der Abfülleinrichtung befindliche CO2 im überkritischen Zustand. Eine flüssige Phase ist ausgeschlossen. Weiterhin wird in diesem Beispiel bei Außentemperaturen von 31° C oder mehr wiederum eine Zusatztemperatur von 3°C aufgeprägt, sodass beispielsweise bei 40°C Außentemperatur das CO2 eine Temperatur von 43°C aufweist. Über die Auswahl der Zusatztemperatur kann insbesondere dabei die Temperaturbandbreite eingestellt werden.
  • Insbesondere in der Ausbildungsform, in der die Abfülleinrichtungen einen Massesensor aufweist, kann vorliegend ein definiertes Füllen der Klimaanlage durchgeführt werden. Dies ist insbesondere dann der Fall, wenn die Befüllvorrichtung derart eingerichtet ist, dass eine Auswertung des Massesensors anhand der eindeutigen CO2-Phase (flüssig oder überkritisch) erfolgt, sodass eine Abfüllmasse des CO2 in die Klimaanlage eindeutig bestimmbar ist.
  • Somit liegt ein Kern der Erfindung insbesondere darin, dass der Abfüllvorgang mit einer definierten Phase von CO2 erfolgt. Mischphasen sind somit ausgeschlossen. Weiterhin beruht ein Gedanke darauf, dass ein Massesensor aufgrund der Kenntnis, ob ein flüssiger oder überkritischer Zustand des CO2 vorliegt, entsprechend betrieben wird, sodass Massegenauigkeit gegeben ist.
  • Ein „Massesensor“ ist insbesondere ein Coreolis-Messsensor. Dabei ist nicht zwingend, dass die Masse direkt bestimmbar ist, sondern vorliegend gelten alle Sensoren als Massesensoren, sofern beispielsweise durch Kenntnis des Drucks, der Viskosität und der Temperatur auf die Masse geschlossen werden kann. Beispielsweise reicht es aus, wenn ein Parameter in der Abfülleinrichtung bestimmt wird. Somit können Massesensoren eingesetzt werden, welche beispielsweise auf mechanischen, optischen, akustischen und/oder thermischen Messprinzipien oder vergleichbarer Messtechnik beruhen, wie das insbesondere bei Ultraschallsensoren, IR-Sensoren, Flügelradsensoren oder dergleichen der Fall ist.
  • Insbesondere wird ein sogenannter Coreolis-Massendurchflussmesser (CMD) eingesetzt, welcher in einem Durchflussmessgerät eingesetzt wird, dass den Massenstrom von durchströmenden Flüssigkeiten oder Gasen misst. Das Messverhalten beruht dabei insbesondere auf dem Coreolis-Prinzip.
  • In einer weiteren Ausführungsform weist die Versorgungseinrichtung eine erste CO2-Steigrohrflasche, eine zweite CO2-Steigrohrflasche und eine Flaschenumschalteinheit auf, wobei die Versorgungseinrichtung derart eingerichtet ist, dass abhängig von einem Messwert, die Flaschenumschalteinheit eine Versorgung der Transproteinrichtung mit CO2 dadurch realisiert, dass eine Umschaltung von der ersten CO2-Steigrohrflasche zur zweiten CO2-Steigrohrflasche erfolgt.
  • Insbesondere in dem Zusammenspiel mit dem Speicherreservoir kann somit gewährleistet werden, dass auch bei mobilen Befüllvorrichtungen immer ausreichend Kühlmittel zur Verfügung steht, um eine Klimaanlage mit dem Kühlmittel zu befüllen.
  • Als Messwert kann hierbei insbesondere das Gewicht einer CO2-Steigrohrflasche dienen, welche, das Tara abgezogen, einen Hinweis auf die Befüllmenge in der Flasche gibt.
  • Sobald ein Grenzwert unterschritten wird, wird die zweite CO2-Steigrohrflasche aktiviert und die erste abgeschaltet. Somit versorgt die zweite CO2-Steigrohrflasche die Transporteinrichtung und mithin die Abfülleinrichtung.
  • Dadurch, dass vorliegend ein Flaschenwechsel stattfand, kann insbesondere in diesem Fall ein Alarmsignal signalisiert werden, sodass beispielsweise eine Arbeitskraft die entsprechend leere erste CO2-Steigrohrflasche durch eine volle erste CO2-Steigrohrflasche ersetzt. Dieses Prinzip ist auch auf mehrere Steigrohrflaschen anwendbar.
  • Auch können mit einer der vorliegenden Befüllvorrichtungen Kalibriermessungen durchgeführt werden. Beispielsweise ist dabei der Ringleitung ein zuschaltbarer Messraum zugeordnet, in den eine CO2-Befüllung mittels der Abfülleinrichtung eingebracht wird. Die Masse dieser CO2-Befüllung (Ist-Wert) wird bestimmt (beispielsweise durch wägen) und es werden Abweichungen von einem Sollwert ermittelt. Entsprechend einem Soll-Ist-Vergleich können die Befüllparameter der Abfülleinrichtung geändert werden, sodass eine Massegenauigkeit des CO2 gegeben ist. Beispielsweise kann durch ein Schalten eines Ventils das CO2 in dem Messraum der Ringleitung zugeführt werden. Somit können Kalibriermessungen erfolgen, welche die Umwelt kaum mit CO2 kontaminieren.
  • Im Weiteren wird die Erfindung anhand eines Ausführungsbeispiels näher erläutert. Dabei zeigt die einzige
    • 1 eine stark schematische Darstellung einer CO2-Befüllvorrichtung mit einer Versorgungseinrichtung, einer Transporteinrichtung und einer Abfülleinrichtung.
  • Eine CO2-Befülleinrichtung 101 weist eine Versorgungseinrichtung 103, eine Transporteinrichtung 105 und eine Abfülleinrichtung 107 auf.
  • Die Versorgungseinrichtung 103 wird durch eine erste CO2-Steigrohrflasche 131 und eine zweite CO2-Steigrohrflasche 133 gebildet, welche über schaltbare Ventile 138, welche mittels einer Steuerung 139 steuerbar schaltbar sind, die Zuleitung 141 versorgen. Zudem weist die Versorgungseinrichtung 103 eine erste Waage 135 der ersten CO2-Steigrohrflasche 131 und eine zweite Waage 137 der zweiten CO2-Steigrohrflasche auf. Die CO2-Steigrohrflaschen sind so auf den Waagen angeordnet, dass diese das Gewicht der Flaschen bestimmen.
  • Die Zuleitung 141 versorgt die Transporteinrichtung 105, welche eine Ringleitung 151 aufweist. In der Ringleitung 151 sind nacheinander ein Plattenwärmetauscher 153, ein Kompressor 155, ein Vorratsbehälter 157, ein schaltbares Kugelventil 159 und eine Adapteraufnahme 167 angeordnet. Vom schaltbaren Kugelventil 159 führt eine Leitung zur Abfülleinrichtung 107.
  • Diese weist eingangsseitig einen Druckminderer 173 auf. Nach dem Druckminderer 173 folgt eine Abfüllleitung 171, an der entlang eine Rohrbegleitheizung 179 angeordnet ist. Nach der Rohrbegleitheizung 179 ist ein Coreolis-Massendurchflusssensor 175 angeordnet und am Ende der Abfüllleitung ist ein Abfülladapter 177 angebracht.
  • Vorliegend soll die erste CO2-Steigrohrflasche 131 über die Zuleitung 141 die Transporteinrichtung 105 versorgen. Das CO2 wird durch den Plattenwärmetauscher 153 geführt und dabei auf die Betriebstemperatur abgekühlt. Der nachfolgende Kompressor 155 erhöht den Druck des abgekühlten CO2. Aufgrund dessen, dass vor dem Kompressor ein niedrigerer Druck als nach dem Kompressor vorliegt, wird das CO2 durch die geschlossene Ringleitung 151 gepumpt. Zudem füllt dabei das CO2 den Vorratsbehälter 157 auf. Im geschlossenen Zustand der Ringleitung 151 wird anschließend das CO2 zum Plattenwärmetauscher 153 zurückgeführt und die entsprechenden Prozeduren wiederholen sich, sodass das CO2 in der Ringleitung 151 zirkuliert. Durch Beschalten des schaltbaren Kugelhahnventils 159 wird die Abfülleinrichtung 107 mit CO2 versorgt.
  • Dabei wird die Umgebungstemperatur mittels eines Temperatursensors (nicht dargestellt) ermittelt. Sofern die Temperatur unter 25°C liegt, wird dem in der Abfüllleitung 171 befindlichen CO2 durch die Rohrbegleitheizung 179 eine Temperatur aufgeprägt, welche 3°C oberhalb der Umgebungstemperatur liegt.
  • Anschließend bestimmt der Coreolis-Durchflussmesssensor 175 mittels entsprechender Elektronik die Masse, welche einer an den Abfülladapter 177 angeschlossenen Klimaanlage eingeführt werden soll. Nach dem Abfüllen wird der Abfülladapter 177 an die Adapteraufnahme 167 angeschlossen, sodass die Ringleitung um die Abfüllleitung 171 vergrößert wird.
  • Entsprechend wird das in der Abfüllleitung 171 befindliche CO2 in den Kreislauf der Ringleitung 151 zurückgeführt, durch den Plattenwärmetauscher 153 abgekühlt, und mittels des Kompressors 155 verdichtet.
  • Sobald eine neue Klimaanlage befüllt werden soll, wird der Abfülladapter 177 von der Adapteraufnahme 167 gelöst und mit einem entsprechenden Adapteraufnahme der zu befüllenden Klimaanlage verbunden. Somit kann das Befüllen neu erfolgen.
  • Bezugszeichenliste
  • 101
    CO2-Befüllvorrichtung
    103
    Versorgungseinrichtung
    105
    Transporteinrichtung
    107
    Abfülleinrichtung
    131
    Erste CO2-Flasche
    133
    Zweite CO2-Flasche
    135
    Waage der ersten CO2-Flasche
    137
    Waage der zweiten CO2-Flasche
    138
    Schaltbare Ventile
    139
    Steuerung
    141
    Zuleitung
    151
    Ringleitung
    153
    Plattenwärmetauscher
    155
    Kompressor
    157
    Vorratsbehälter
    159
    Schaltbares Kugelventil
    167
    Adapteraufnahme
    171
    Abfüllleitung
    173
    Druckminderer
    175
    Coreolis- Sensor
    177
    Abfülladapter
    179
    Rohrbegleitheizung
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • DE 102015221328 A1 [0002]
    • DE 102015006189 A1 [0002]
    • DE 102014011836 A1 [0003]
    • DE 102014011051 A1 [0003]
    • DE 102015001767 A [0003]
    • DE 102015207808 A1 [0004]
    • DE 112005001670 T5 [0005]
    • DE 10015976 A1 [0006]
    • EP 2360040 B1 [0006]
    • DE 102007001452 A1 [0008]
    • DE 102006017431 B3 [0009]

Claims (11)

  1. Befüllvorrichtung (101) zum Befüllen von Klimaanlagen mit CO2 mit einer Versorgungseinrichtung (103), einer Abfülleinrichtung (107) und einer die Versorgungseinrichtung mit der Abfülleinrichtung verbindenden Transporteinrichtung (105), sodass das CO2 über die Versorgungseinrichtung zur Abfülleinrichtung transportierbar ist, dadurch gekennzeichnet, dass die Transporteinrichtung eine Ringleitung (151) aufweist und die Befüllvorrichtung derart eingerichtet ist, dass das CO2 in der Ringleitung insbesondere schaltbar zirkuliert.
  2. Befüllvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Ringleitung einen Kompressor (155) und/oder eine Ringtemperiereinrichtung (153) aufweist, sodass zirkuliertes CO2 verdichtbar und/oder temperierbar ist.
  3. Befüllvorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass die Ringleitung derart ausgestaltet ist, dass der Kompressor mittels Pumpen ein Zirkulieren des CO2 in der Ringleitung bewirkt.
  4. Befüllvorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass zwischen der Ringleitung und der Abfülleinrichtung eine Schalteinheit (159), insbesondere ein Absperrkugelhahn, angeordnet ist, sodass die Ringleitung schließbar ist und in einem geschlossenen Zustand CO2 in der Ringleitung zirkuliert.
  5. Befüllvorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Abfülleinrichtung einen Befülladapter (177) und die Ringleitung eine Adapteraufnahme (167) aufweisen, sodass im Falle einer Verbindung des Befülladapters mit der Adapteraufnahme ein Teil der Abfülleinrichtung die Ringleitung mit ausbildet.
  6. Befüllvorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Ringleitung ein Speicherreservoir (157) zugeordnet ist oder die Ringleitung das Speicherreservoir aufweist.
  7. Befüllvorrichtung insbesondere nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Abfülleinrichtung eine Abfülltemperiereinrichtung (179) aufweist, welche derart eingerichtet ist, dass abhängig von einer Außentemperatur dem CO2 in der Abfülleinrichtung eine Zusatztemperatur aufgeprägt wird, sodass das CO2 eine CO2-Temperatur aufweist und dadurch eine eindeutige CO2-Phase ausbildet, und ein Temperaturbereich um den kritischen Punkt dadurch ausgeschlossen wird, dass die CO2-Temperatur einen Temperaturwert unterhalb oder oberhalb des kritischen Punkts aufweist.
  8. Befüllvorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Abfülleinrichtung einen Massesensor (175) aufweist, sodass ein definiertes Befüllen einer Klimaanlage durchführbar ist.
  9. Befüllvorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass die Befüllvorrichtung derart eingerichtet ist, dass eine Auswertung des Massesensors anhand der eindeutigen CO2-Phase erfolgt, sodass eine Abfüllmasse des CO2 in die Klimaanlage eindeutig bestimmbar ist.
  10. Befüllvorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Versorgungseinrichtung eine erste CO2-Steigrohrflasche (131), eine zweite CO2-Steigrohrflasche (133) und eine Flaschenumschalteinheit aufweist, wobei die Versorgungseinrichtung derart eingerichtet ist, dass, abhängig von einem Messwert, die Flaschenumschalteinheit eine Versorgung der Transporteinrichtung mit CO2 dadurch realisiert, dass eine Umschaltung von der ersten CO2-Steigrohrflasche zur zweiten CO2-Steigrohrflasche erfolgt.
  11. Befüllvorrichtung nach Anspruch 10, gekennzeichnet durch eine Alarmanzeige, wobei die Befüllvorrichtung derart eingerichtet ist, dass abhängig von dem Messwert ein Alarm ausgegeben wird.
DE102017120384.2A 2017-09-05 2017-09-05 Befüllvorrichtung zum Befüllen von Klimaanlagen mit CO2 Active DE102017120384B4 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102017120384.2A DE102017120384B4 (de) 2017-09-05 2017-09-05 Befüllvorrichtung zum Befüllen von Klimaanlagen mit CO2
PCT/DE2018/200083 WO2019048010A1 (de) 2017-09-05 2018-09-05 Befüllvorrichtung zum befüllen von klimaanlagen mit co2

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017120384.2A DE102017120384B4 (de) 2017-09-05 2017-09-05 Befüllvorrichtung zum Befüllen von Klimaanlagen mit CO2

Publications (2)

Publication Number Publication Date
DE102017120384A1 true DE102017120384A1 (de) 2019-03-07
DE102017120384B4 DE102017120384B4 (de) 2023-03-16

Family

ID=63861955

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102017120384.2A Active DE102017120384B4 (de) 2017-09-05 2017-09-05 Befüllvorrichtung zum Befüllen von Klimaanlagen mit CO2

Country Status (2)

Country Link
DE (1) DE102017120384B4 (de)
WO (1) WO2019048010A1 (de)

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109080735B (zh) 2014-05-16 2022-05-03 迪根特技术公司 用于载具底盘的模块化成形节点及其使用方法
AU2015284265A1 (en) 2014-07-02 2017-02-16 Divergent Technologies, Inc. Systems and methods for fabricating joint members
US10173255B2 (en) 2016-06-09 2019-01-08 Divergent Technologies, Inc. Systems and methods for arc and node design and manufacture
US10759090B2 (en) 2017-02-10 2020-09-01 Divergent Technologies, Inc. Methods for producing panels using 3D-printed tooling shells
US11155005B2 (en) 2017-02-10 2021-10-26 Divergent Technologies, Inc. 3D-printed tooling and methods for producing same
US10898968B2 (en) 2017-04-28 2021-01-26 Divergent Technologies, Inc. Scatter reduction in additive manufacturing
US10703419B2 (en) 2017-05-19 2020-07-07 Divergent Technologies, Inc. Apparatus and methods for joining panels
US11358337B2 (en) 2017-05-24 2022-06-14 Divergent Technologies, Inc. Robotic assembly of transport structures using on-site additive manufacturing
US11123973B2 (en) 2017-06-07 2021-09-21 Divergent Technologies, Inc. Interconnected deflectable panel and node
US10919230B2 (en) 2017-06-09 2021-02-16 Divergent Technologies, Inc. Node with co-printed interconnect and methods for producing same
US10781846B2 (en) 2017-06-19 2020-09-22 Divergent Technologies, Inc. 3-D-printed components including fasteners and methods for producing same
US10994876B2 (en) 2017-06-30 2021-05-04 Divergent Technologies, Inc. Automated wrapping of components in transport structures
US11022375B2 (en) 2017-07-06 2021-06-01 Divergent Technologies, Inc. Apparatus and methods for additively manufacturing microtube heat exchangers
US10895315B2 (en) 2017-07-07 2021-01-19 Divergent Technologies, Inc. Systems and methods for implementing node to node connections in mechanized assemblies
US10751800B2 (en) 2017-07-25 2020-08-25 Divergent Technologies, Inc. Methods and apparatus for additively manufactured exoskeleton-based transport structures
US10940609B2 (en) 2017-07-25 2021-03-09 Divergent Technologies, Inc. Methods and apparatus for additively manufactured endoskeleton-based transport structures
US10605285B2 (en) 2017-08-08 2020-03-31 Divergent Technologies, Inc. Systems and methods for joining node and tube structures
US10357959B2 (en) 2017-08-15 2019-07-23 Divergent Technologies, Inc. Methods and apparatus for additively manufactured identification features
US11306751B2 (en) 2017-08-31 2022-04-19 Divergent Technologies, Inc. Apparatus and methods for connecting tubes in transport structures
US10960611B2 (en) 2017-09-06 2021-03-30 Divergent Technologies, Inc. Methods and apparatuses for universal interface between parts in transport structures
US11292058B2 (en) 2017-09-12 2022-04-05 Divergent Technologies, Inc. Apparatus and methods for optimization of powder removal features in additively manufactured components
US10814564B2 (en) 2017-10-11 2020-10-27 Divergent Technologies, Inc. Composite material inlay in additively manufactured structures
US10668816B2 (en) 2017-10-11 2020-06-02 Divergent Technologies, Inc. Solar extended range electric vehicle with panel deployment and emitter tracking
US11786971B2 (en) 2017-11-10 2023-10-17 Divergent Technologies, Inc. Structures and methods for high volume production of complex structures using interface nodes
US10926599B2 (en) 2017-12-01 2021-02-23 Divergent Technologies, Inc. Suspension systems using hydraulic dampers
US11110514B2 (en) 2017-12-14 2021-09-07 Divergent Technologies, Inc. Apparatus and methods for connecting nodes to tubes in transport structures
US11085473B2 (en) 2017-12-22 2021-08-10 Divergent Technologies, Inc. Methods and apparatus for forming node to panel joints
US11534828B2 (en) 2017-12-27 2022-12-27 Divergent Technologies, Inc. Assembling structures comprising 3D printed components and standardized components utilizing adhesive circuits
US11420262B2 (en) 2018-01-31 2022-08-23 Divergent Technologies, Inc. Systems and methods for co-casting of additively manufactured interface nodes
US10751934B2 (en) 2018-02-01 2020-08-25 Divergent Technologies, Inc. Apparatus and methods for additive manufacturing with variable extruder profiles
US11224943B2 (en) 2018-03-07 2022-01-18 Divergent Technologies, Inc. Variable beam geometry laser-based powder bed fusion
US11267236B2 (en) 2018-03-16 2022-03-08 Divergent Technologies, Inc. Single shear joint for node-to-node connections
US11254381B2 (en) 2018-03-19 2022-02-22 Divergent Technologies, Inc. Manufacturing cell based vehicle manufacturing system and method
US11872689B2 (en) 2018-03-19 2024-01-16 Divergent Technologies, Inc. End effector features for additively manufactured components
US11408216B2 (en) 2018-03-20 2022-08-09 Divergent Technologies, Inc. Systems and methods for co-printed or concurrently assembled hinge structures
US11613078B2 (en) 2018-04-20 2023-03-28 Divergent Technologies, Inc. Apparatus and methods for additively manufacturing adhesive inlet and outlet ports
US11214317B2 (en) 2018-04-24 2022-01-04 Divergent Technologies, Inc. Systems and methods for joining nodes and other structures
US11020800B2 (en) 2018-05-01 2021-06-01 Divergent Technologies, Inc. Apparatus and methods for sealing powder holes in additively manufactured parts
US10682821B2 (en) 2018-05-01 2020-06-16 Divergent Technologies, Inc. Flexible tooling system and method for manufacturing of composite structures
US11389816B2 (en) 2018-05-09 2022-07-19 Divergent Technologies, Inc. Multi-circuit single port design in additively manufactured node
US10691104B2 (en) 2018-05-16 2020-06-23 Divergent Technologies, Inc. Additively manufacturing structures for increased spray forming resolution or increased fatigue life
US11590727B2 (en) 2018-05-21 2023-02-28 Divergent Technologies, Inc. Custom additively manufactured core structures
US11441586B2 (en) 2018-05-25 2022-09-13 Divergent Technologies, Inc. Apparatus for injecting fluids in node based connections
US11292056B2 (en) 2018-07-06 2022-04-05 Divergent Technologies, Inc. Cold-spray nozzle
US11269311B2 (en) 2018-07-26 2022-03-08 Divergent Technologies, Inc. Spray forming structural joints
US10836120B2 (en) 2018-08-27 2020-11-17 Divergent Technologies, Inc . Hybrid composite structures with integrated 3-D printed elements
US11433557B2 (en) 2018-08-28 2022-09-06 Divergent Technologies, Inc. Buffer block apparatuses and supporting apparatuses
US11826953B2 (en) 2018-09-12 2023-11-28 Divergent Technologies, Inc. Surrogate supports in additive manufacturing
US11072371B2 (en) 2018-10-05 2021-07-27 Divergent Technologies, Inc. Apparatus and methods for additively manufactured structures with augmented energy absorption properties
US11260582B2 (en) 2018-10-16 2022-03-01 Divergent Technologies, Inc. Methods and apparatus for manufacturing optimized panels and other composite structures
US11504912B2 (en) 2018-11-20 2022-11-22 Divergent Technologies, Inc. Selective end effector modular attachment device
USD911222S1 (en) 2018-11-21 2021-02-23 Divergent Technologies, Inc. Vehicle and/or replica
US11529741B2 (en) 2018-12-17 2022-12-20 Divergent Technologies, Inc. System and method for positioning one or more robotic apparatuses
US10663110B1 (en) 2018-12-17 2020-05-26 Divergent Technologies, Inc. Metrology apparatus to facilitate capture of metrology data
US11449021B2 (en) 2018-12-17 2022-09-20 Divergent Technologies, Inc. Systems and methods for high accuracy fixtureless assembly
US11885000B2 (en) 2018-12-21 2024-01-30 Divergent Technologies, Inc. In situ thermal treatment for PBF systems
US11203240B2 (en) 2019-04-19 2021-12-21 Divergent Technologies, Inc. Wishbone style control arm assemblies and methods for producing same
US11912339B2 (en) 2020-01-10 2024-02-27 Divergent Technologies, Inc. 3-D printed chassis structure with self-supporting ribs
US11590703B2 (en) 2020-01-24 2023-02-28 Divergent Technologies, Inc. Infrared radiation sensing and beam control in electron beam additive manufacturing
US11479015B2 (en) 2020-02-14 2022-10-25 Divergent Technologies, Inc. Custom formed panels for transport structures and methods for assembling same
US11884025B2 (en) 2020-02-14 2024-01-30 Divergent Technologies, Inc. Three-dimensional printer and methods for assembling parts via integration of additive and conventional manufacturing operations
US11421577B2 (en) 2020-02-25 2022-08-23 Divergent Technologies, Inc. Exhaust headers with integrated heat shielding and thermal syphoning
US11535322B2 (en) 2020-02-25 2022-12-27 Divergent Technologies, Inc. Omni-positional adhesion device
US11413686B2 (en) 2020-03-06 2022-08-16 Divergent Technologies, Inc. Methods and apparatuses for sealing mechanisms for realizing adhesive connections with additively manufactured components
US11850804B2 (en) 2020-07-28 2023-12-26 Divergent Technologies, Inc. Radiation-enabled retention features for fixtureless assembly of node-based structures
US11806941B2 (en) 2020-08-21 2023-11-07 Divergent Technologies, Inc. Mechanical part retention features for additively manufactured structures
US11872626B2 (en) 2020-12-24 2024-01-16 Divergent Technologies, Inc. Systems and methods for floating pin joint design
US11947335B2 (en) 2020-12-30 2024-04-02 Divergent Technologies, Inc. Multi-component structure optimization for combining 3-D printed and commercially available parts
US11928966B2 (en) 2021-01-13 2024-03-12 Divergent Technologies, Inc. Virtual railroad
CN116917129A (zh) 2021-03-09 2023-10-20 戴弗根特技术有限公司 旋转式增材制造系统和方法
US11865617B2 (en) 2021-08-25 2024-01-09 Divergent Technologies, Inc. Methods and apparatuses for wide-spectrum consumption of output of atomization processes across multi-process and multi-scale additive manufacturing modalities

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1981000756A1 (en) * 1979-09-17 1981-03-19 S Laenggaerd A device for drawing off cooling agents from refrigeration and heating plant
DE3875891T2 (de) * 1987-09-14 1993-05-27 Kovosluzba N P Hl M Prahy Verfahren zum abfuellen tiefsiedender medien aus einem drucksystem und anlage zur durchfuehrung dieses verfahrens.
DE68904752T2 (de) * 1988-12-22 1993-06-03 Sanden Corp Kaeltemittelfuellsystem, wobei ein kaeltemittel gereinigt und gleichmaessig in einen lagerungsbehaelter eingefuellt wird.
DE10015976A1 (de) 2000-03-30 2001-10-04 Behr Gmbh & Co Befüllvorrichtung für Kraftfahrzeugklimaanlagen
DE102006017431B3 (de) 2006-04-06 2007-05-24 Visteon Global Technologies, Inc., Van Buren Township Ventil zum Befüllen von Kältemittelleitungen in Klimaanlagen
DE112005001670T5 (de) 2004-07-16 2007-05-31 Snap-On Inc., Kenosha Kühlmittelfüllsystem mit Tank mit konstantem Volumen
DE102007001452A1 (de) 2007-01-03 2008-07-10 Behr Gmbh & Co. Kg Verfahren und Vorrichtung zur Ermittlung einer Kältemittelunterfüllung eines Kältemittelkreislaufs einer Klimaanlage für ein Fahrzeug
US20080216492A1 (en) * 2004-12-14 2008-09-11 Agramkow Fluid Systems A/S Method and a System for Filling a Refrigeration System with Refrigerant
US20130047637A1 (en) * 2011-08-24 2013-02-28 Louis Cording Refrigeration system and method of operating a refrigeration system
EP2360040B1 (de) 2010-02-15 2013-05-22 Texa S.p.A. Maschine zum Laden/Wiederherstellen eines Kühlmittels in einem Fahrzeugklimaanlagensystem
DE102015207808A1 (de) 2014-04-29 2015-10-29 Mahle International Gmbh Volumenausgleichsvorrichtung
DE102014011051A1 (de) 2014-07-22 2016-01-28 Dürr Somac GmbH Vorrichtung zur Befüllung von Fahrzeugklimasystemen mit Kältemittel R744
DE102014011836A1 (de) 2014-08-08 2016-02-11 Dürr Somac GmbH Vorrichtung zur Befüllung von Fahrzeugklimasystemen mit Kältemittel R744
DE102015221328A1 (de) 2014-10-31 2016-05-04 Bosch Automotive Service Solutions Llc System und Verfahren zum Auslassen von Kühlmittel von einem Klimaanlagensystem
DE102015001767A1 (de) 2015-02-11 2016-08-11 Dürr Somac GmbH Verfahren zum Betrieb eines Befülladapters und Befülladapter zur Befüllung von Fahrzeugklimasystemen mit Kältemittel R744
DE102015006189A1 (de) 2015-05-15 2016-11-17 Audi Ag Verfahren zur zulässigen Füllstands- und Füllmengenerhöhung einer Fahrzeugkälteanlage sowie Fahrzeugkälteanlage zur Durchführung des Verfahrens

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007006876A1 (de) 2007-02-07 2008-08-14 Vulkan Lokring-Rohrverbindungen Gmbh & Co. Kg Kompressorwaage
DE102015009290A1 (de) * 2015-07-10 2016-01-21 Daimler Ag Verfahren zum Befüllen eines Kältemittelkreislaufs eines Kraftwagens

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1981000756A1 (en) * 1979-09-17 1981-03-19 S Laenggaerd A device for drawing off cooling agents from refrigeration and heating plant
DE3875891T2 (de) * 1987-09-14 1993-05-27 Kovosluzba N P Hl M Prahy Verfahren zum abfuellen tiefsiedender medien aus einem drucksystem und anlage zur durchfuehrung dieses verfahrens.
DE68904752T2 (de) * 1988-12-22 1993-06-03 Sanden Corp Kaeltemittelfuellsystem, wobei ein kaeltemittel gereinigt und gleichmaessig in einen lagerungsbehaelter eingefuellt wird.
DE10015976A1 (de) 2000-03-30 2001-10-04 Behr Gmbh & Co Befüllvorrichtung für Kraftfahrzeugklimaanlagen
DE112005001670T5 (de) 2004-07-16 2007-05-31 Snap-On Inc., Kenosha Kühlmittelfüllsystem mit Tank mit konstantem Volumen
US20080216492A1 (en) * 2004-12-14 2008-09-11 Agramkow Fluid Systems A/S Method and a System for Filling a Refrigeration System with Refrigerant
DE102006017431B3 (de) 2006-04-06 2007-05-24 Visteon Global Technologies, Inc., Van Buren Township Ventil zum Befüllen von Kältemittelleitungen in Klimaanlagen
DE102007001452A1 (de) 2007-01-03 2008-07-10 Behr Gmbh & Co. Kg Verfahren und Vorrichtung zur Ermittlung einer Kältemittelunterfüllung eines Kältemittelkreislaufs einer Klimaanlage für ein Fahrzeug
EP2360040B1 (de) 2010-02-15 2013-05-22 Texa S.p.A. Maschine zum Laden/Wiederherstellen eines Kühlmittels in einem Fahrzeugklimaanlagensystem
US20130047637A1 (en) * 2011-08-24 2013-02-28 Louis Cording Refrigeration system and method of operating a refrigeration system
DE102015207808A1 (de) 2014-04-29 2015-10-29 Mahle International Gmbh Volumenausgleichsvorrichtung
DE102014011051A1 (de) 2014-07-22 2016-01-28 Dürr Somac GmbH Vorrichtung zur Befüllung von Fahrzeugklimasystemen mit Kältemittel R744
DE102014011836A1 (de) 2014-08-08 2016-02-11 Dürr Somac GmbH Vorrichtung zur Befüllung von Fahrzeugklimasystemen mit Kältemittel R744
DE102015221328A1 (de) 2014-10-31 2016-05-04 Bosch Automotive Service Solutions Llc System und Verfahren zum Auslassen von Kühlmittel von einem Klimaanlagensystem
DE102015001767A1 (de) 2015-02-11 2016-08-11 Dürr Somac GmbH Verfahren zum Betrieb eines Befülladapters und Befülladapter zur Befüllung von Fahrzeugklimasystemen mit Kältemittel R744
DE102015006189A1 (de) 2015-05-15 2016-11-17 Audi Ag Verfahren zur zulässigen Füllstands- und Füllmengenerhöhung einer Fahrzeugkälteanlage sowie Fahrzeugkälteanlage zur Durchführung des Verfahrens

Also Published As

Publication number Publication date
DE102017120384B4 (de) 2023-03-16
WO2019048010A1 (de) 2019-03-14

Similar Documents

Publication Publication Date Title
DE102017120384A1 (de) Befüllvorrichtung zum Befüllen von Klimaanlagen mit CO2
DE112005001670B4 (de) Kühlmittelfüllsystem und Verfahren zum Füllen eines Kühlsystems mit Tank mit konstantem Volumen
DE112005002795T5 (de) Kältemittelbefüllsystem und ein in der Dampfphase vorliegendes Kältemittel verwendendes Verfahren
DE69834336T2 (de) Übertragungseinrichtung für kryogene flüssigkeiten
DE202008003123U1 (de) Servicegerät für Fahrzeugklimaanlagen
AT512724B1 (de) Vorrichtung und Verfahren zur kontinuierlichen Messung des dynamischen Kraftstoffverbrauchs einer Brennkraftmaschine
DE112005002836T5 (de) Optimal durchgeführtes Befüllen mit Kältemittel
EP1143213B1 (de) Befüllvorrichtung für Kraftfahrzeugklimaanlagen
DE112010003119T5 (de) Gasfüllsystem
DE112005001687T5 (de) Kühlmittelfüllsystem und Verfahren mit Patronen
DE202006001376U1 (de) Service-Gerät für Fahrzeugklimaanlagen mit einer Wägeeinrichtung für Kältemittel
DE102015221328A1 (de) System und Verfahren zum Auslassen von Kühlmittel von einem Klimaanlagensystem
EP2944486A1 (de) Vorrichtung und verfahren zum warten einer klimaanlage
DE102013002431A1 (de) Befüllung von Speicherbehältern mit einem gasförmigen, unter Druck stehenden Medium, insbesondere Wasserstoff
EP2593662B1 (de) Prüfstand zum prüfen von fluidpumpen und fluidinjektoren
DE102011109824A1 (de) Betanken eines Fahrzeuges mit einem unter Druck stehenden, gasförmigen Medium
DE10142758C1 (de) Vorrichtung und Verfahren zum Betanken von mit kryogenem Kraftstoff betriebenen Fahrzeugen
DE102015009290A1 (de) Verfahren zum Befüllen eines Kältemittelkreislaufs eines Kraftwagens
DE102007003827A1 (de) Flüssigwasserstoff-Speichertank mit reduzierten Tank-Verlusten
DE112015001921T5 (de) System und Verfahren zur Einspritzung von Öl in eine Klimaanlagenschaltung
WO2009132836A1 (de) Füllen von kühlkreisläufen mit flüssigem kältemittel
DE102016006132A1 (de) Befüllanlage zum Befüllen von Klimaanlagen von Fahrzeugen mit einem Kältemittel, insbesondere mit Kohlendioxid
DE202021101305U1 (de) Wärmeübergabestation
DE102014011051A1 (de) Vorrichtung zur Befüllung von Fahrzeugklimasystemen mit Kältemittel R744
EP3017980A2 (de) Vorrichtung und verfahren zum warten einer klimaanlage

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R026 Opposition filed against patent