DE102017119369A1 - Strahlungsemittierender Halbleiterkörper und Verfahren zu dessen Herstellung - Google Patents

Strahlungsemittierender Halbleiterkörper und Verfahren zu dessen Herstellung Download PDF

Info

Publication number
DE102017119369A1
DE102017119369A1 DE102017119369.3A DE102017119369A DE102017119369A1 DE 102017119369 A1 DE102017119369 A1 DE 102017119369A1 DE 102017119369 A DE102017119369 A DE 102017119369A DE 102017119369 A1 DE102017119369 A1 DE 102017119369A1
Authority
DE
Germany
Prior art keywords
doping region
semiconductor layer
radiation
region
semiconductor body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102017119369.3A
Other languages
English (en)
Inventor
Alexander Tonkikh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ams Osram International GmbH
Original Assignee
Osram Opto Semiconductors GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors GmbH filed Critical Osram Opto Semiconductors GmbH
Priority to DE102017119369.3A priority Critical patent/DE102017119369A1/de
Priority to PCT/EP2018/072332 priority patent/WO2019038202A1/de
Publication of DE102017119369A1 publication Critical patent/DE102017119369A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02584Delta-doping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Devices (AREA)

Abstract

Es wird ein strahlungsemittierender Halbleiterkörper (1) beschrieben, mit einer Halbleiterschichtenfolge (2), die einen zur Erzeugung von Strahlung vorgesehenen aktiven Bereich (20), eine n-leitende Halbleiterschicht (21) und eine p-leitende Halbleiterschicht (22) aufweist, wobei der aktive Bereich (20) zwischen der n-leitenden Halbleiterschicht (21) und der p-leitenden Halbleiterschicht (22) angeordnet ist, wobei die n-leitende Halbleiterschicht (21) einen ersten Dotierbereich (211) und einen zweiten Dotierbereich (212) aufweist, der erste Dotierbereich (211) eine höhere Dotierstoffkonzentration als der der zweite Dotierbereich (212) aufweist, und der erste Dotierbereich (211) eine Dicke von höchstens 5 nm aufweist. Weiterhin wird ein Verfahren zur Herstellung des strahlungsemittierenden Halbleiterkörpers (1) angegeben.

Description

  • Die vorliegende Anmeldung betrifft einen strahlungsemittierenden Halbleiterkörper und ein Verfahren zu dessen Herstellung.
  • Bei strahlungsemittierenden Halbleiterbauelementen wie beispielsweise Leuchtdioden im sichtbaren Spektralbereich können Leckströme deren Effizienz beeinträchtigen. Eine der Ursachen hierfür ist, dass positive Ladungsträger (Löcher) am Übergang zwischen dem zur Erzeugung von Strahlung vorgesehenen aktiven Bereich und dem n-leitenden Bereich aufgrund einer zu geringen Potentialbarriere in den n-leitenden Bereich gelangen und dort nicht-strahlend rekombinieren. Dieser Effekt verstärkt sich mit zunehmender Betriebstemperatur.
  • Durch Verwendung von Halbleitermaterial, welches im Vergleich zum Material des aktiven Bereichs eine große Bandlücke aufweist, kann nur ein Teil der Löcher vom Eindringen in den n-leitenden Bereich abgehalten werden. Zudem ist es bei Materialsystemen wie beispielsweise AlInGaP oftmals nicht mehr möglich, durch eine Anpassung der Anteile der Gruppe-III-Elemente für den n-leitenden Bereich eine noch höhere Bandlücke und damit eine ausreichend hohe Potentialbarriere zu erzielen.
  • Eine Aufgabe ist es, einen Halbleiterkörper anzugeben, der sich durch eine hohe Effizienz auszeichnet. Weiterhin soll ein Verfahren angegeben werden, mit dem der Halbleiterkörper hergestellt werden kann.
  • Diese Aufgaben werden unter anderem durch einen Halbleiterkörper beziehungsweise ein Verfahren gemäß den unabhängigen Patentansprüchen gelöst. Weitere Ausgestaltungen und Zweckmäßigkeiten sind Gegenstand der abhängigen Patentansprüche.
  • Es wird ein strahlungsemittierender Halbleiterkörper mit einer Halbleiterschichtenfolge angegeben. Die Halbleiterschichtenfolge ist insbesondere epitaktisch abgeschieden, beispielsweise mittels MOCVD.
  • Gemäß zumindest einer Ausführungsform des strahlungsemittierenden Halbleiterkörpers weist die Halbleiterschichtenfolge einen zur Erzeugung von Strahlung vorgesehenen aktiven Bereich, eine n-leitende Halbleiterschicht und eine p-leitende Halbleiterschicht auf. Der aktive Bereich ist insbesondere zwischen der n-leitenden Halbleiterschicht und der p-leitenden Halbleiterschicht angeordnet. Der aktive Bereich, die n-leitende Halbleiterschicht und die p-leitende Halbleiterschicht können jeweils einschichtig oder mehrschichtig ausgebildet sein. Beispielsweise weist der aktive Bereich eine Quantenstruktur auf.
  • Die Bezeichnung Quantenstruktur umfasst im Rahmen der Anmeldung insbesondere jegliche Struktur, bei der Ladungsträger durch Einschluss („confinement“) eine Quantisierung ihrer Energiezustände erfahren können. Insbesondere beinhaltet die Bezeichnung Quantenstruktur keine Angabe über die Dimensionalität der Quantisierung. Sie umfasst somit unter anderem Quantentöpfe (quantum wells), Quantendrähte (quantum wires), Quantenstäbchen (quantum rods) und Quantenpunkte (quantum dots) und jede Kombination dieser Strukturen.
  • Gemäß zumindest einer Ausführungsform des strahlungsemittierenden Halbleiterkörpers weist die n-leitende Halbleiterschicht einen ersten Dotierbereich auf. Der erste Dotierbereich ist insbesondere mit einem n-Dotierstoff dotiert. Eine Dicke des ersten Dotierbereichs, also eine Ausdehnung des ersten Dotierbereichs in einer senkrecht zu einer Haupterstreckungsebene der Halbleiterschichten der Halbleiterschichtenfolge erstreckenden Richtung, ist insbesondere klein gegenüber der Gesamtdicke der n-leitenden Halbleiterschicht. Beispielsweise beträgt die Dicke des ersten Dotierbereichs höchstens 5 % der Dicke der n-leitenden Halbleiterschicht.
  • Gemäß zumindest einer Ausführungsform des strahlungsemittierenden Halbleiterkörpers weist die n-leitende Halbleiterschicht einen zweiten Dotierbereich auf. Der zweite Dotierbereich ist insbesondere mit einem n-Dotierstoff dotiert, wobei der zweite Dotierbereich den gleichen n-Dotierstoff wie der erste Dotierbereich oder einen anderen n-Dotierstoff aufweisen kann.
  • Der erste Dotierbereich weist eine höhere Dotierstoffkonzentration als der zweite Dotierbereich auf. Insbesondere bildet der erste Dotierbereich einen Bereich der n-leitenden Halbleiterschicht, in dem die Dotierung hoch, beispielsweise mindestens doppelt so hoch, ist, wie in einem zumindest an einer Seite des ersten Dotierbereichs angrenzenden Halbleitermaterial des zweiten Dotierbereichs.
  • Gemäß zumindest einer Ausführungsform des strahlungsemittierenden Halbleiterkörpers weist der erste Dotierbereich eine Dicke von höchstens 5 nm, vorzugsweise von höchstens 2 nm, auf. Beispielsweise weist der erste Dotierbereich eine Dicke zwischen einschließlich einer Monolage und fünf Atomlagen auf. Die Dicke des zweiten Dotierbereichs ist zum Beispiel groß gegenüber der Dicke des ersten Dotierbereichs. Beispielsweise ist der zweite Dotierbereich mindestens fünfmal so dick oder mindestens zehnmal so dick wie der erste Dotierbereich.
  • Der erste Dotierbereich mit der höheren Dotierstoffkonzentration als der zweite Dotierbereich und der geringen Dicke von weniger als 5 nm wirkt bei dem strahlungsemittierenden Halbleiterkörper vorteilhaft als Ladungsträgerbarriere für Löcher. Durch den vergleichsweise dünnen n-dotierten ersten Dotierbereich wird vorteilhaft eine Potentialbarriere für Löcher im Valenzband erzeugt, die Löcher daran hindert, den aktiven Bereich zu verlassen. Auf diese Weise wird die Wahrscheinlichkeit erhöht, dass die Ladungsträger im aktiven Bereich unter Emission von Strahlung rekombinieren und so die Effizienz des Halbleiterkörpers vorteilhaft erhöht.
  • Gemäß zumindest einer Ausführungsform des strahlungsemittierenden Halbleiterkörpers ist der erste Dotierbereich mit Tellur dotiert. In diesem Fall ist der Dotierstoff Tellur auf Gruppe-V-Gitterplätzen eingebaut und ersetzt an diesen Stellen beispielsweise Phosphor-Atome. Tellur fungiert hierbei als n-Dotierstoff.
  • Gemäß zumindest einer weiteren Ausführungsform des strahlungsemittierenden Halbleiterkörpers ist der erste Dotierbereich mit Silizium dotiert. In diesem Fall ist der Dotierstoff Silizium auf Gruppe-III-Gitterplätzen eingebaut und ersetzt an diesen Stellen beispielsweise Aluminium-Atome oder Indium-Atome. Silizium fungiert hierbei als n-Dotierstoff.
  • Gemäß zumindest einer Ausführungsform des strahlungsemittierenden Halbleiterkörpers basiert die Halbleiterschichtenfolge auf einem Phosphid-Verbindungshalbleitermaterial oder Arsenid-Phosphid-Verbindungshalbleitermaterial. Insbesondere basiert die Halbleiterschichtenfolge auf dem Verbindungshalbleitermaterialsystem AlxInyGa1-x-yPzAs1-z basiert. Hierbei gelten 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, x + y ≤ 1 und 0 ≤ z ≤ 1. Vorzugsweise ist z ≥ 0,9 oder z = 1. Dieses Materialsystem ist für die Erzeugung von Strahlung mit einer Wellenlänge vom roten über den gelben bis in den grünen Spektralbereich besonders geeignet. „Basierend“ bedeutet in diesem Zusammenhang, dass mindestens eine Schicht des Halbleiterkörpers, beispielsweise alle Schichten des Halbleiterkörpers, ein solches Material aufweisen oder aus einem solchen Material bestehen. Dabei muss dieses Material nicht zwingend eine mathematisch exakte Zusammensetzung nach obiger Formel aufweisen. Vielmehr kann es beispielsweise ein oder mehrere Dotierstoffe sowie zusätzliche Bestandteile aufweisen. Der Einfachheit halber beinhaltet obige Formel jedoch nur die wesentlichen Bestandteile des Kristallgitters (Al, Ga, In, As, P), auch wenn diese teilweise durch geringe Mengen weiterer Stoffe ersetzt und/oder ergänzt sein können. Die Dotierstoffkonzentration in dem ersten Dotierbereich beträgt vorzugsweise 5 x 1019 cm-3 oder mehr.
  • Gemäß zumindest einer Ausführungsform des strahlungsemittierenden Halbleiterkörpers ist der erste Dotierbereich zwischen dem aktiven Bereich und dem zweiten Dotierbereich angeordnet. Mittels des ersten Dotierbereichs kann im Betrieb des Halbleiterkörpers ein Eindringen von Löchern in den zweiten Dotierbereich unterdrückt oder zumindest verringert werden. Beispielsweise grenzt der erste Dotierbereich unmittelbar an den aktiven Bereich an. Bei einem aktiven Bereich mit einer oder mehreren Quantenschichten kann der erste Dotierbereich unmittelbar an die nächstgelegene Quantenschicht angrenzen oder von der nächstgelegenen Quantenschicht beabstandet sein.
  • Gemäß zumindest einer Ausführungsform des strahlungsemittierenden Halbleiterkörpers grenzen der erste Dotierbereich und der zweite Dotierbereich unmittelbar aneinander an. Insbesondere sind der erste Dotierbereich und der zweite Dotierbereich in vertikaler Richtung übereinander angeordnet.
  • Zum Beispiel weisen der erste Dotierbereich und der zweite Dotierbereich im Wesentlichen dieselbe Zusammensetzung bezüglich der Gruppe-III-Elemente und/oder der Gruppe-V-Elemente auf. Mit anderen Worten unterscheiden sich der erste Dotierbereich und der zweite Dotierbereich im Wesentlichen durch den in den jeweiligen Bereich eingebrachten Dotierstoff. Beispielsweise unterscheiden sich die prozentualen Anteile der Gruppe-III-Elemente, beispielsweise Al, Ga, In, im ersten Dotierbereich um jeweils höchstens 5 Prozentpunkte von den jeweiligen Anteilen im zweiten Dotierbereich. Für den Al-Gehalt bedeutet dies exemplarisch |x1-x2| ≤ 0,05, wobei x1 der Al-Gehalt im ersten Dotierbereich und x2 der Al-Gehalt im zweiten Dotierbereich ist. Dies gilt analog für die übrigen Gruppe-III-Elemente, insbesondere den In-Gehalt y.
  • Gemäß zumindest einer Ausführungsform des strahlungsemittierenden Halbleiterkörpers bildet der erste Dotierbereich eine Ladungsträgerbarriere für Löcher. Es hat sich gezeigt, dass durch die räumlich in vertikaler Richtung begrenzte und gleichzeitig hohe Dotierkonzentration im ersten Dotierbereich eine effiziente Ladungsträgerbarriere erzielt werden kann. Insbesondere wird diese Ladungsträgerbarriere im Unterschied zu konventionellen Ladungsträgerbarrieren nicht durch eine Variation der Gruppe-III-Elemente des Halbleitermaterials erzielt, sondern ausschließlich oder zumindest überwiegend aufgrund der vergleichsweise hohen Dotierkonzentration.
  • Gemäß zumindest einer Ausführungsform des strahlungsemittierenden Halbleiterkörpers weist die n-leitende Halbleiterschicht einen weiteren ersten Dotierbereich auf, der eine höhere Dotierstoffkonzentration als der zweite Dotierbereich aufweist und eine Dicke von höchstens 5 nm aufweist. Der weitere erste Dotierbereich kann insbesondere eines oder mehrere der im Zusammenhang mit dem ersten Dotierbereich genannten Merkmale aufweisen. Beispielsweise weist der weitere erste Dotierbereich eine Dicke von höchstens 2 nm auf. In vertikaler Richtung sind der erste Dotierbereich und der weitere erste Dotierbereich voneinander beabstandet. Ein Abstand zwischen dem ersten Dotierbereich und dem weiteren ersten Dotierbereich beträgt vorzugsweise höchstens 5 nm. Die n-leitende Halbleiterschicht kann auch mehrere erste Dotierbereiche aufweisen.
  • Weiterhin wird ein Verfahren zur Herstellung des Halbleiterkörpers angegeben. Gemäß einer Ausführungsform des Verfahrens wird ein Substrat bereitgestellt und eine Halbleiterschichtenfolge, die einen zur Erzeugung von Strahlung vorgesehenen aktiven Bereich, eine n-leitende Halbleiterschicht und eine p-leitende Halbleiterschicht aufweist, wird aufgewachsen. Der aktive Bereich ist zwischen der n-leitenden Halbleiterschicht und der p-leitenden Halbleiterschicht angeordnet. Die n-leitende Halbleiterschicht weist einen ersten Dotierbereich und einen zweiten Dotierbereich auf, wobei der erste Dotierbereich eine höhere Dotierstoffkonzentration als der der zweite Dotierbereich aufweist. Der erste Dotierbereich weist eine Dicke von höchstens 5 nm, vorzugsweise von höchstens 2 nm auf.
  • Gemäß zumindest einer Ausführungsform des Verfahrens wird der erste Dotierbereich bei eine geringeren Wachstumstemperatur abgeschieden als der zweite Dotierbereich. Durch die geringere Wachstumstemperatur wird der Einbau des Dotierstoffs in dem ersten Dotierbereich begünstigt.
  • Gemäß zumindest einer Ausführungsform des Verfahrens wird der erste Dotierbereich bei einer Wachstumstemperatur von höchstens 600 °C, insbesondere von höchstens 580 °C, abgeschieden.
  • Für die Abscheidung des zweiten Dotierbereichs kann die Wachstumstemperatur erhöht werden, beispielsweise auf mindestens 650 °C.
  • Weiterhin kann auch die Abscheidung des aktiven Bereichs bei einer höheren Wachstumstemperatur erfolgen als die Abscheidung des ersten Dotierbereichs, beispielsweise bei der Wachstumstemperatur des zweiten Bereichs. Zwischen der Abscheidung des zweiten Dotierbereichs und des aktiven Bereichs kann also zeitweise eine Absenkung der Wachstumstemperatur für die Ausbildung des ersten Dotierbereichs erfolgen.
  • Gemäß zumindest einer Ausführungsform des Verfahrens wird zur Herstellung des ersten Dotierbereichs ausschließlich Gas mit dem n-Dotierstoff, beispielsweise Tellur, ohne Zuführung eines weiteren Gases für die Gruppe-III-Atome und Gruppe-V-Atome zugeführt. Auf diese Weise können besonders hohe Konzentrationen des n-Dotierstoffs im ersten Dotierbereich erzielt werden.
  • Das beschriebene Verfahren eignet sich besonders zur Herstellung des zuvor beschriebenen Halbleiterkörpers. In Zusammenhang mit dem Halbleiterkörper angeführte Merkmale können daher auch für das Verfahren herangezogen werden und umgekehrt.
  • Weitere Ausgestaltungen und Zweckmäßigkeiten ergeben sich aus der folgenden Beschreibung der Ausführungsbeispiele in Verbindung mit den Figuren.
  • Es zeigen:
    • 1 ein Ausführungsbeispiel eines Halbleiterkörpers in schematischer Schnittansicht,
    • 2 einen schematischen Bandkantenverlauf des Leitungsbands EC und des Valenzbands EV entlang einer Abscheiderichtung z bei einem Ausführungsbeispiel des Halbleiterkörpers,
    • 3A Messergebnisse einer Sekundärionenmassenspektroskopie (SIMS)-Messung einer Tellurkonzentration und einer Aluminiumkonzentration jeweils als Funktion der Eindringtiefe d bei einem nicht erfindungsgemäßen Vergleichsbeispiel,
    • 3B Messergebnisse einer Sekundärionenmassenspektroskopie (SIMS)-Messung einer Tellurkonzentration und einer Aluminiumkonzentration jeweils als Funktion der Eindringtiefe d bei einem Ausführungsbeispiel,
    • 4 Messergebnisse der relativen externen Quanteneffizienz EQETest/EQERef in Abhängigkeit von der Stromdichte J,
    • 5 ein weiteres Ausführungsbeispiel eines Halbleiterkörpers in schematischer Schnittansicht, und
    • 6A und 6B ein Ausführungsbeispiel eines Verfahrens zur Herstellung eines Halbleiterkörpers anhand von jeweils in schematischer Schnittansicht dargestellten Zwischenschritten.
  • Gleiche, gleichartige oder gleich wirkende Elemente sind in den Figuren mit den gleichen Bezugszeichen versehen.
  • Die Figuren sind jeweils schematische Darstellungen und daher nicht unbedingt maßstabsgetreu. Vielmehr können vergleichsweise kleine Elemente und insbesondere Schichtdicken zur Verdeutlichung übertrieben groß dargestellt sein.
  • In 1 ist ein Ausführungsbeispiel eines Halbleiterkörpers 1 gezeigt. Der Halbleiterkörper 1 weist eine Halbleiterschichtenfolge 2 auf. Die Halbleiterschichtenfolge ist auf einem Substrat 5 angeordnet, beispielsweise einem Aufwachssubstrat für eine epitaktische Abscheidung der Halbleiterschichtenfolge 2.
  • Die Halbleiterschichtenfolge 2 weist einen zur Erzeugung von Strahlung vorgesehenen aktiven Bereich 20 auf, der zwischen einer n-leitenden Halbleiterschicht 21 und einer p-leitenden Halbleiterschicht 22 angeordnet ist. Ein mittels des Halbleiterkörpers 1 gebildetes strahlungsemittierendes Bauelement wie beispielsweise ein Leuchtdioden-Halbleiterchip weist zweckmäßigerweise zur elektrischen Kontaktierung der n-leitenden Halbleiterschicht 21 und der p-leitenden Halbleiterschicht 22 jeweils einen extern zugänglichen elektrischen Kontakt auf, sodass durch Anlegen einer externen elektrischen Spannung zwischen diesen Kontakten Ladungsträger von gegenüber liegenden Seiten in den aktiven Bereich 20 injiziert werden und dort unter Emission von Strahlung rekombinieren können. Diese Kontakte sind zur vereinfachten Darstellung nicht explizit gezeigt.
  • Der aktive Bereich 20 weist eine Quantenstruktur mit einer Mehrzahl von Quantenschichten 201 und dazwischen angeordneten Barriereschichten 202 auf. In der Figur sind lediglich exemplarisch drei Quantenschichten 201 gezeigt. Der aktive Bereich 20 kann jedoch auch nur eine oder zwei Quantenschichten 202 oder mehr als drei Quantenschichten aufweisen.
  • Die n-leitende Halbleiterschicht 21 weist einen ersten Dotierbereich 211 mit einem n-Dotierstoff auf. Beispielsweise ist der n-Dotierstoff Tellur oder Silizium. Tellur wirkt als Donator durch einen Einbau an Gruppe-V-Gitterplätzen und Silizium wirkt als Donator durch den Einbau an Gruppe-III-Gitterplätzen.
  • Die n-leitende Halbleiterschicht 21 weist weiterhin einen zweiten Dotierbereich 212 auf, wobei der zweite Dotierbereich eine geringere Dotierstoffkonzentration aufweist als der erste Dotierbereich. Der zweite Dotierbereich kann den gleichen oder einen anderen n-Dotierstoff aufweisen als der erste Dotierbereich.
  • Die nachfolgende Beschreibung erfolgt anhand einer Halbleiterschichtenfolge, die auf dem Verbindungshalbleitermaterialsystem AlxInyGa1-x-yPzAs1-z basiert. Hierbei gelten 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, x + y ≤ 1 und 0 ≤ z ≤ 1. Das Verfahren ist jedoch auch auf andere Verbindungshalbleitermaterialsysteme anwendbar.
  • Als Aufwachssubstrat für die Halbleiterschichtenfolge eignet sich beispielsweise Galliumarsenid. Für den aktiven Bereich gilt insbesondere z ≥ 0,9, beispielsweise z = 1. Alternativ kann jedoch auch ein anderes Halbleitermaterial, insbesondere ein anderes III-V-Verbindungshalbleitermaterial Anwendung finden.
  • Der erste Dotierbereich 211 weist im Vergleich zum zweiten Dotierbereich 212 eine vergleichsweise geringe Dicke auf.
  • Beispielsweise ist der zweite Dotierbereich 212 mindestens fünfmal so dick oder mindestens zehnmal so dick wie der erste Dotierbereich 211.
  • Der erste Dotierbereich 211 ist zwischen dem zweiten Dotierbereich 212 und dem aktiven Bereich 20 angeordnet. Insbesondere grenzt der erste Dotierbereich 211 unmittelbar an den aktiven Bereich 20 an. In vertikaler Richtung, also parallel zur Abscheiderichtung z und senkrecht zu einer Haupterstreckungsebene der Halbleiterschichten der Halbleiterschichtenfolge, ist der erste Dotierbereich 211 insbesondere die letzte n-leitende Halbleiterschicht des Halbleiterkörpers 1 vor dem aktiven Bereich 20.
  • Es hat sich gezeigt, dass durch geeignete Wahl der Abscheidebedingungen die Herstellung eines insbesondere mit Tellur oder Silizium dotierten ersten Dotierbereichs 211 erzielt werden kann, der sich durch eine hohe zweidimensionale Flächendotierdichte auszeichnet und in vertikaler Richtung eine geringe Dicke aufweisen kann. Beispielsweise beträgt die Dicke des ersten Dotierbereichs 211 zwischen einschließlich einer Monolage und einschließlich 2 nm. Eine solche Dotierung in einem sehr kleinen Dickenbereich kann als δ-Dotierung (engl. δ-doping) bezeichnet werden.
  • Die n-leitende Halbleiterschicht 21 weist also zwei Dotierbereiche 211, 212 auf, in denen jeweils eine n-Dotierung erfolgt, wobei der erste Dotierbereich 211 eine geringere Dicke und gleichzeitige eine höhere Dotierstoffkonzentration aufweist als der zweite Dotierbereich 212.
  • In dem gezeigten Ausführungsbeispiel ist eine Kontaktschicht 223 auf der p-leitenden Halbleiterschicht 22 angeordnet, die den Halbleiterkörper 1 in vertikaler Richtung begrenzt. Für diese Kontaktschicht 223 kann ein Halbleitermaterial mit einem niedrigen Phosphor-Gehalt, beispielsweise z ≤ 0,1 oder z = 0 Anwendung finden, etwa eine AlGaAs-Halbleiterschicht. Die Kontaktschicht 223 dient insbesondere einer verbesserten elektrischen Kontaktierung des Halbleiterkörpers 1 über einen auf dem Halbleiterkörper aufgebrachten Kontakt (nicht explizit dargestellt).
  • Wie der in 2 dargestellte Bandkantenverlauf für das Leitungsband EC und das Valenzband EV zeigt, wird mittels des ersten Dotierbereichs 211 im Valenzband eine Ladungsträgerbarriere gebildet, die Löcher von einem Übertritt vom aktiven Bereich 20 in die n-leitende Halbleiterschicht 21 hindert. Dadurch wird die Wahrscheinlichkeit erhöht, dass die Ladungsträger im aktiven Bereich 20 strahlend rekombinieren. Bezüglich der Gruppe-III-Anteile müssen sich der erste Dotierbereich 211 und das an den ersten Dotierbereich 211 angrenzende Material des zweiten Dotierbereichs 212 hierfür nicht unterscheiden.
  • In der 3A sind Messergebnisse von SIMS-Messungen für den Tellur-Gehalt cTe (Kurve 31) und den Aluminium-Gehalt cAl (Kurve 32) bei einem nicht erfindungsgemäßen Vergleichsbeispiel gezeigt. Anhand des Aluminium-Gehalts ist die räumliche Position des aktiven Bereichs 20 deutlich zu erkennen, da dieser einen vergleichsweise geringen Al-Gehalt aufweist. Weiterhin sind in der 3B Messergebnisse von SIMS-Messungen für den Tellur-Gehalt cTe (Kurve 33) und den Aluminium-Gehalt cAl (Kurve 34) bei einem Ausführungsbeispiel Halbleiterkörpers gezeigt. Die Kurve 33 zeigt, dass der n-Dotierstoff Tellur in dem ersten Dotierbereich 211 mit einer hohen Konzentration und einer geringen vertikalen Ausdehnung entlang der Eindringtiefe d vorliegt. Insbesondere erfolgt der Einbau in ein Halbleitermaterial mit einem hohen Phosphor-Anteil, etwa einem Phosphor-Anteil von z ≥ 0,9, etwa z = 1. Der erste Dotierbereich kann insbesondere AlInP aufweisen. Eine Dotierstoffkonzentration im ersten Dotierbereich beträgt beispielsweise zwischen einschließlich 5 × 1019 cm-3 und einschließlich 2 × 1021 cm-3.
  • Die 4 zeigt die relative externe Quanteneffizienz EQETest/EQERef für ein Ausführungsbeispiel des strahlungsemittierenden Halbleiterkörpers in Abhängigkeit von der Betriebsstromdichte J. Die externe Quanteneffizienz eines strahlungsemittierenden Halbleiterkörpers ohne den ersten Dotierbereich wurde als Referenzkurve (EQERef) herangezogen ist deshalb auf 100% normiert worden. Es zeigt sich, dass der strahlungsemittierende Halbleiterkörper gemäß dem Ausführungsbeispiel von sehr kleinen bis zu sehr großen Stromdichten eine höhere externe Quanteneffizienz als das Referenzbeispiel aufweist. Die Steigerung der externen Quanteneffizienz ist insbesondere dann signifikant, wenn die Betriebsstromdichte vergleichsweise niedrig ist. Bei dem Ausführungsbeispiel ergibt sich eine besonders hohe Quanteneffizienz, wenn die Betriebsstromdichte nicht mehr als etwa 0,2 A/cm2 oder bevorzugt nicht mehr als 0,1 A/cm2 beträgt.
  • Das in 5 gezeigte Ausführungsbeispiel für einen Halbleiterkörper entspricht im Wesentlichen dem im Zusammenhang mit der 1 beschriebenen Ausführungsbeispiel. Im Unterschied hierzu weist die n-leitende Halbleiterschicht 21 zusätzlich zum ersten Dotierbereich 211 und zweiten Dotierbereich 212 einen weiteren ersten Dotierbereich 213 auf. Der weitere erste Dotierbereich 213 kann insbesondere wie im Zusammenhang mit dem ersten Dotierbereich 211 beschrieben ausgebildet sein. Die n-leitende Halbleiterschicht 21 weist also zwei Dotierbereiche 211, 213 mit dem n-Dotierstoff auf, wobei zwischen diesen beiden Dotierbereichen ein Teilbereich des zweiten Dotierbereichs 212 angeordnet ist.
  • Ein Abstand zwischen dem ersten Dotierbereich 211 und dem weiteren ersten Dotierbereich 213 beträgt vorzugsweise höchstens 5 nm. Ein solcher weiterer erster Dotierbereich 213 kann zu einer Verstärkung des Effekts der Ladungsträgerbarriere führen.
  • Ein Ausführungsbeispiel für ein Verfahren zur Herstellung des Halbleiterkörpers ist in den 6A und 6B gezeigt. Ein Substrat 5, insbesondere in Form eines Auswachssubstrats wird bereitgestellt. Beispielsweise eignet sich GaAs.
  • Auf dem Substrat 5 wird eine Halbleiterschichtenfolge 2 aufgewachsen, die einen zur Erzeugung von Strahlung vorgesehenen aktiven Bereich 20 aufweist, welcher zwischen einer n-leitenden Halbleiterschicht 21 und einer p-leitenden Halbleiterschicht 22 angeordnet ist. Die n-leitende Halbleiterschicht 21 weist einen ersten Dotierbereich 211 und einen zweiten Dotierbereich 212 auf, wobei der erste Dotierbereich 211 eine höhere Dotierstoffkonzentration aufweist. Die Abscheideparameter bei der Herstellung des ersten Dotierbereichs 211 sind so gewählt, dass ein effizienter Einbau des n-Dotierstoffs erfolgt.
  • Es hat sich gezeigt, dass sich durch vergleichsweise geringe Wachstumstemperaturen von höchstens 600 °C ein effizienter Einbau von Tellur auf Gruppe-V-Gitterplätzen oder Silizium auf Gruppe-III-Gitterplätzen ergibt. Bei üblichen Wachstumstemperaturen von 650 °C oder mehr für das Halbleitermaterialsystem AlInGaAsP ist der Einbau der Dotierstoffe dagegen weniger effizient. Der zweite Halbleiterbereich 212 und der aktive Bereich 20 werden beispielsweise bei einer Wachstumstemperatur von mindestens 650 °C abgeschieden.
  • Zur Herstellung von Halbleiterbauelementen wie beispielsweise Lumineszenzdioden-Halbleiterchips kann die Halbleiterschichtenfolge nachfolgend zu einzelnen Halbleiterkörpern weiterverarbeitet werden.
  • Beispielsweise weisen die n-leitende Halbleiterschicht 21 und die p-leitende Halbleiterschicht 22 jeweils AlInP auf, wobei diese Schichten zweckmäßigerweise bezüglich des Aufwachssubstrats, etwa GaAs, gitterangepasst oder zumindest nahezu gitterangepasst sind, etwa mit einer maximalen relativen Abweichung der Gitterkonstante von 2 %. In diesem Fall beträgt der Phosphor-Gehalt z = 1. Es kann jedoch auch ein geringerer Phosphor-Gehalt Anwendung finden, beispielsweise z ≥ 0,9.
  • Die Effizienz verringernde Leckströme werden bei dem Halbleiterkörper mittels des ersten Dotierbereichs 211 effektiv unterdrückt, wodurch sich eine höhere Effizienz der Strahlungserzeugung ergibt.
  • Die beschriebene Ausgestaltung einer Ladungsträgerbarriere mittels eines Dotierbereichs mit einer besonders hohen Dotierkonzentration eignet sich insbesondere für Halbleiterschichten, deren Bandlücke durch Variation der Zusammensetzung der Gruppe-III-Atome nicht mehr ohne Weiteres gesteigert werden kann.
  • Die Erfindung ist nicht durch die Beschreibung anhand der Ausführungsbeispiele beschränkt. Vielmehr umfasst die Erfindung jedes neue Merkmal sowie jede Kombination von Merkmalen, was insbesondere jede Kombination von Merkmalen in den Patentansprüchen beinhaltet, auch wenn dieses Merkmal oder diese Kombination selbst nicht explizit in den Patentansprüchen oder den Ausführungsbeispielen angegeben ist.
  • Bezugszeichenliste
  • 1
    Halbleiterkörper
    2
    Halbleiterschichtenfolge
    20
    aktiver Bereich
    201
    Quantenschicht
    202
    Barriereschicht
    21
    n-leitende Halbleiterschicht
    211
    erster Dotierbereich
    212
    zweiter Dotierbereich
    213
    weiterer erster Dotierbereich
    22
    p-leitende Halbleiterschicht
    223
    Kontaktschicht
    31
    Kurve
    32
    Kurve
    33
    Kurve
    34
    Kurve
    5
    Substrat

Claims (16)

  1. Strahlungsemittierender Halbleiterkörper (1) mit einer Halbleiterschichtenfolge (2), die einen zur Erzeugung von Strahlung vorgesehenen aktiven Bereich (20), eine n-leitende Halbleiterschicht (21) und eine p-leitende Halbleiterschicht (22) aufweist, wobei der aktive Bereich (20) zwischen der n-leitenden Halbleiterschicht (21) und der p-leitenden Halbleiterschicht (22) angeordnet ist, wobei - die n-leitende Halbleiterschicht (21) einen ersten Dotierbereich (211) und einen zweiten Dotierbereich (212) aufweist, - der erste Dotierbereich (211) eine höhere Dotierstoffkonzentration als der der zweite Dotierbereich (212) aufweist, und - der erste Dotierbereich (211) eine Dicke von höchstens 5 nm aufweist.
  2. Strahlungsemittierender Halbleiterkörper nach Anspruch 1, wobei der erste Dotierbereich (211) eine Dicke von höchstens 2 nm aufweist.
  3. Strahlungsemittierender Halbleiterkörper nach einem der vorherigen Ansprüche, wobei der erste Dotierbereich (211) mit Tellur oder Silizium dotiert ist.
  4. Strahlungsemittierender Halbleiterkörper nach einem der vorherigen Ansprüche, wobei der erste Dotierbereich eine Dotierstoffkonzentration von mindestens 5 × 1019 cm-3 aufweist.
  5. Strahlungsemittierender Halbleiterkörper nach einem der vorherigen Ansprüche, wobei die Halbleiterschichtenfolge (2) auf einem Phosphid-Verbindungshalbleitermaterial oder Arsenid-Phosphid-Verbindungshalbleitermaterial basiert.
  6. Strahlungsemittierender Halbleiterkörper nach einem der vorherigen Ansprüche, wobei der erste Dotierbereich (211) zwischen dem aktiven Bereich (20) und dem zweiten Dotierbereich (212) angeordnet ist.
  7. Strahlungsemittierender Halbleiterkörper nach einem der vorherigen Ansprüche, wobei der erste Dotierbereich (211) und der zweite Dotierbereich (212) unmittelbar aneinander angrenzen.
  8. Strahlungsemittierender Halbleiterkörper nach einem der vorherigen Ansprüche, wobei der erste Dotierbereich (211) eine Ladungsträgerbarriere für Löcher bildet.
  9. Strahlungsemittierender Halbleiterkörper nach einem der vorherigen Ansprüche, wobei die n-leitende Halbleiterschicht (21) einen weiteren ersten Dotierbereich (213) aufweist, der eine höhere Dotierstoffkonzentration als der der zweite Dotierbereich (212) aufweist und eine Dicke von höchstens 5 nm aufweist.
  10. Strahlungsemittierender Halbleiterkörper nach einem der vorherigen Ansprüche, wobei der erste Dotierbereich (211) und der weitere erste Dotierbereich (213) um höchstens 5 nm voneinander beabstandet sind.
  11. Verfahren zur Herstellung eines strahlungsemittierenden Halbleiterkörpers (1) mit den Schritten: a) Bereitstellen eines Substrats (5); und b) Aufwachsen einer Halbleiterschichtenfolge (2), die eine n-leitende Halbleiterschicht (21), einen zur Erzeugung von Strahlung vorgesehenen aktiven Bereich (20) und eine p-leitende Halbleiterschicht (22) aufweist, wobei der aktive Bereich (20) zwischen der n-leitenden Halbleiterschicht (21) und der p-leitenden Halbleiterschicht (22) angeordnet ist und wobei - die n-leitende Halbleiterschicht (21) einen ersten Dotierbereich (211) und einen zweiten Dotierbereich (212) aufweist, - der erste Dotierbereich (211) eine höhere Dotierstoffkonzentration als der der zweite Dotierbereich (212) aufweist, und - der erste Dotierbereich (211) eine Dicke von höchstens 5 nm aufweist.
  12. Verfahren nach Anspruch 11, wobei der erste Dotierbereich (211) eine Dicke von höchstens 2 nm aufweist.
  13. Verfahren nach Anspruch 11 oder 12, wobei der erste Dotierbereich (211) bei einer geringeren Wachstumstemperatur als der zweite Dotierbereich (212) abgeschieden wird.
  14. Verfahren nach einem der Ansprüche 11 bis 13, wobei der erste Dotierbereich (211) bei einer Wachstumstemperatur von höchstens 600 °C abgeschieden wird.
  15. Verfahren nach einem der Ansprüche 11 bis 14, wobei der zweite Dotierbereich (212) bei einer Wachstumstemperatur von mindestens 650 °C abgeschieden wird.
  16. Verfahren nach einem der Ansprüche 11 bis 15, wobei der erste Dotierbereich (211) mit Tellur oder Silizium dotiert wird.
DE102017119369.3A 2017-08-24 2017-08-24 Strahlungsemittierender Halbleiterkörper und Verfahren zu dessen Herstellung Withdrawn DE102017119369A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102017119369.3A DE102017119369A1 (de) 2017-08-24 2017-08-24 Strahlungsemittierender Halbleiterkörper und Verfahren zu dessen Herstellung
PCT/EP2018/072332 WO2019038202A1 (de) 2017-08-24 2018-08-17 Strahlungsemittierender halbleiterkörper und verfahren zu dessen herstellung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017119369.3A DE102017119369A1 (de) 2017-08-24 2017-08-24 Strahlungsemittierender Halbleiterkörper und Verfahren zu dessen Herstellung

Publications (1)

Publication Number Publication Date
DE102017119369A1 true DE102017119369A1 (de) 2019-02-28

Family

ID=63350533

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102017119369.3A Withdrawn DE102017119369A1 (de) 2017-08-24 2017-08-24 Strahlungsemittierender Halbleiterkörper und Verfahren zu dessen Herstellung

Country Status (2)

Country Link
DE (1) DE102017119369A1 (de)
WO (1) WO2019038202A1 (de)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110140083A1 (en) * 2009-12-16 2011-06-16 Daniel Carleton Driscoll Semiconductor Device Structures with Modulated Doping and Related Methods
US20130044783A1 (en) * 2011-08-16 2013-02-21 Rajaram Bhat Hole blocking layers in non-polar and semi-polar green light emitting devices

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3230029B2 (ja) * 1994-05-30 2001-11-19 富士通株式会社 Iii−v族化合物半導体結晶成長方法
KR20060007123A (ko) * 2004-07-19 2006-01-24 에피밸리 주식회사 n형 질화물층의 전도도를 제어하는 방법
KR100661709B1 (ko) * 2004-12-23 2006-12-26 엘지이노텍 주식회사 질화물 반도체 발광소자 및 그 제조방법
RU172195U1 (ru) * 2016-11-23 2017-06-30 Общество с ограниченной ответственностью "Коннектор Оптикс" (ООО "Коннектор Оптикс") Гетероструктура полупроводникового лазера

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110140083A1 (en) * 2009-12-16 2011-06-16 Daniel Carleton Driscoll Semiconductor Device Structures with Modulated Doping and Related Methods
US20130044783A1 (en) * 2011-08-16 2013-02-21 Rajaram Bhat Hole blocking layers in non-polar and semi-polar green light emitting devices

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NEAVE, P. J. [et al.]: Silicon Doping of MBE-Grown GaAs Films. In: Applied Physics A, Vol. 32, 1983, S. 195-200. *

Also Published As

Publication number Publication date
WO2019038202A1 (de) 2019-02-28

Similar Documents

Publication Publication Date Title
EP2165374B1 (de) Strahlungsemittierender halbleiterkörper
EP2212931B1 (de) Led mit stromaufweitungsschicht
DE102016208717B4 (de) Bauelement mit erhöhter Effizienz und Verfahren zur Herstellung eines Bauelements
WO2009106070A1 (de) Optoelektronischer halbleiterkörper mit tunnelübergang und verfahren zur herstellung eines solchen
DE112012001920B4 (de) Strahlung emittierender Halbleiterchip mit integriertem ESD-Schutz
DE102011112706B4 (de) Optoelektronisches Bauelement
WO2018050466A1 (de) Halbleiterschichtenfolge
WO2016151112A1 (de) Optoelektronischer halbleiterkörper und verfahren zur herstellung eines optoelektronischen halbleiterkörpers
WO2014177367A1 (de) Halbleiterschichtenfolge für optoelektronisches bauelement
DE102018110187A1 (de) Optoelektronischer Halbleiterkörper, Anordnung von einer Vielzahl von optoelektronischen Halbleiterkörpern und Verfahren zur Herstellung eines optoelektronischen Halbleiterkörpers
DE19954242B4 (de) Lichtemittierende Vorrichtung aus einem Nitridhalbleiter der Gruppe III
DE102012107795B4 (de) Optoelektronischer Halbleiterkörper und optoelektronischer Halbleiterchip
WO2018234159A1 (de) Halbleiterkörper und verfahren zur herstellung eines halbleiterkörpers
DE102017119369A1 (de) Strahlungsemittierender Halbleiterkörper und Verfahren zu dessen Herstellung
DE10056475B4 (de) Strahlungsemittierendes Halbleiterbauelement auf GaN-Basis mit verbesserter p-Leitfähigkeit und Verfahren zu dessen Herstellung
DE102017113585A1 (de) Halbleiterschichtenfolge und Verfahren zur Herstellung einer Halbleiterschichtenfolge
WO2018099781A1 (de) Strahlungsemittierender halbleiterkörper und verfahren zur herstellung einer halbleiterschichtenfolge
WO2017021301A1 (de) Verfahren zur herstellung eines nitrid-halbleiterbauelements und nitrid-halbleiterbauelement
WO2014173950A1 (de) Optoelekronisches gan-basiertes bauelement mit erhöhter esd resistenz durch ein übergitter und verfahren zu seiner herstellung
DE112022003990T5 (de) Verfahren und optoelektronische vorrichtung
DE102021119596A1 (de) Strahlungsemittierender halbleiterkörper, laserdiode und lichtemittierende diode
DE112021006044T5 (de) Nitrid-halbleiterbauteil
DE102018120490A1 (de) Optoelektronisches halbleiterbauelement mit einer halbleiterkontaktschicht und verfahren zur herstellung des optoelektronischen halbleiterbauelements
DE102019106521A1 (de) Aufwachsstruktur für ein Strahlung emittierendes Halbleiterbauelement und Strahlung emittierendes Halbleiterbauelement
DE102017128881A1 (de) Strahlungsemittierendes Halbleiterbauelement

Legal Events

Date Code Title Description
R163 Identified publications notified
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee