DE102016224619A1 - Verfahren zum Betreiben einer Bremsanlage und Bremsanlage - Google Patents

Verfahren zum Betreiben einer Bremsanlage und Bremsanlage Download PDF

Info

Publication number
DE102016224619A1
DE102016224619A1 DE102016224619.4A DE102016224619A DE102016224619A1 DE 102016224619 A1 DE102016224619 A1 DE 102016224619A1 DE 102016224619 A DE102016224619 A DE 102016224619A DE 102016224619 A1 DE102016224619 A1 DE 102016224619A1
Authority
DE
Germany
Prior art keywords
pump
torque
angle
ffw
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102016224619.4A
Other languages
English (en)
Inventor
Jürgen Böhm
Paul Linhoff
Timo Sauerwald
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive Technologies GmbH
Original Assignee
Continental Teves AG and Co OHG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Teves AG and Co OHG filed Critical Continental Teves AG and Co OHG
Priority to DE102016224619.4A priority Critical patent/DE102016224619A1/de
Priority to PCT/EP2017/079983 priority patent/WO2018104049A1/de
Publication of DE102016224619A1 publication Critical patent/DE102016224619A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/40Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
    • B60T8/404Control of the pump unit
    • B60T8/4054Control of the pump unit involving the delivery pressure control

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Regulating Braking Force (AREA)

Abstract

Verfahren zum Betreiben einer Bremsanlage (2), umfassendwenigstens einen Bremskreis (I) mit hydraulisch betätigbaren Radbremsen (4, 6);einen Hauptbremszylinder (14);eine mit einem Pumpenmotor (102) angetriebene Mehrkolbenpumpe (100) zum bedarfsweisen, den Fahrer unterstützenden Druckaufbau in den Radbremsen (4, 6),wobei zum Druckaufbau Druckmittel von der Pumpe (100) in den Bremskreis (I) gefördert wird,wobei der Pumpenmotor (102) durch einen Drehzahlregler (148) drehzahlgeregelt betrieben wird und dass dem Stellmoment des Drehzahlreglers (148) ein vom Drehwinkel des Pumpenmotors (φ) abhängiges Vorsteuermoment (M) überlagert wird.

Description

  • Die Erfindung betrifft ein Verfahren zum Betreiben einer Bremsanlage, umfassend wenigstens einen Bremskreis mit hydraulisch betätigbaren Radbremsen, einen Hauptbremszylinder, eine Mehrkolbenpumpe mit einem Pumpenmotor zum bedarfsweisen, den Fahrer unterstützenden Druckaufbau in den Radbremsen, wobei zum Druckaufbau Druckmittel von der Pumpe in den Bremskreis gefördert wird. Sie betrifft weiterhin eine Bremsanlage.
  • Für elektronische Bremsregelanlagen von hydraulischen Bremsen werden typischerweise Kolbenpumpen verwendet. Diese sind besonders effizient und können kostengünstig hergestellt werden. Für gehobene Leistungs- und Komfortansprüche werden üblicherweise 6-Kolben-Pumpen verwendet, wobei jeweils drei Kolben pro Kreis zum Einsatz kommen. Kolbenpumpen haben einen nicht konstanten Fördervolumenausstoß. Dieser führt letztendlich zu erheblichen Druckpulsationen in der Druckleitung.
  • Bei Verwendung einer Dreikolbenpumpe kommt es zwar zu einer permanenten Volumenförderung über den vollen Drehwinkel der Pumpe, allerdings ergeben sich auch hier je nach mechanischer Ausführung erhebliche Schwankungen, die ebenfalls zu Druckpulsationen führen.
  • Bei Verwendung einer Dreikolbenpumpe zur Realisierung einer Bremskraftverstärkungsfunktion durch die Pumpenfunktion, ergibt sich im Hinblick auf eine für den Fahrer möglichst komfortable Umsetzung der Verstärkungsfunktion die Anforderung nach einem möglichst pulsationsarmen bzw. pulsationsfreien Betrieb der Pumpe über einen möglichst großen Bereich des von der Pumpe geförderten Volumenstromes. Dies gilt insbesondere für den Betriebsbereich der Normalbremsung, bei der die Bremskraftverstärkung komfortabel und frei von Druckpulsationen erfolgen muss, so dass sich keine Irritationen für den Fahrer bei der Pedalbetätigung ergeben.
  • Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren für einen Betrieb der Kolbenpumpe mit einer weitestgehend konstanten Volumenstromförderung und damit mit möglichst geringer Pulsation bereitzustellen. Weiterhin soll eine entsprechende Bremsanlage angegeben werden.
  • In Bezug auf das Verfahren wird diese Aufgabe erfindungsgemäß dadurch gelöst, dass der Pumpenmotor drehzahlgeregelt betrieben wird und dass dem Stellmoment des Drehzahlreglers ein vom Drehwinkel des Motors abhängiges Vorsteuermoment überlagert wird.
  • Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche.
  • Die Erfindung geht von der Überlegung aus, dass der Fahrer bei Normalbremsungen gewisse Gewohnheiten und Erwartungen hat, die bei Nichterfüllung zu Irritationen des Fahrers führen können. Insbesondere wird bei Normalbremsungen ein hoher Komfort erwartet. Treten in einer solchen Situation Druckpulsationen auf, kann der Fahrer irritiert werden und gegebenenfalls auf eine Fehlfunktion des Bremssystems schließen.
  • Wie nunmehr erkannt wurde, lassen sich die Druckpulsationen einer Mehrkolbenpumpe stark reduzieren, indem diese mit einer gezielten Drehzahlsteuerung des Motors kompensiert werden. Dies kann durch Berechnung eines geeigneten, winkelabhängigen Vorsteuermomentes erfolgen, welches der Stellgröße des Drehzahlreglers des Pumpenmotors additiv überlagert wird. Auf diese Weise können durch die daraus resultierende Anpassung der Motordrehzahl die Schwankungen des Volumenstroms deutlich reduziert werden.
  • Vorzugsweise nimmt das von der Pumpe geförderte Volumen über den gesamten Drehwinkel einer Umdrehung des Pumpenmotors wenigstens zwei Maxima und wenigstens zwei Minima an, wobei das Vorsteuermoment am Maximum am geringsten ist und maximal am Minimum ist. Zwischen Maxima und Minima nimmt das Vorsteuermoment Zwischenwerte an. Die funktionale Abhängigkeit des Vorsteuermomentes ist somit mit dem funktionalen Zusammenhang des geförderten Volumens mit dem Drehwinkel des Pumpenmotors korreliert.
  • Das Vorsteuermoment ergibt sich bevorzugt aus einer Lineartransformation des auf einen Maximalwert 1 normierten, geförderten Volumens.
  • In einer bevorzugten Ausführungsform wird zur Berechnung des Vorsteuermomentes in Abhängigkeit von einem Drehwinkel der Pumpe ein Pumpenoffsetwinkel zu dem Drehwinkel addiert, woraus ein effektiver Winkel bestimmt wird, und wobei bei einer N-Kolbenpumpe N Summanden einer Sinusfunktion gebildet werden, deren Argument jeweils gegeben ist durch das n-fache (n= 0 ... N-1) des Winkels 360°/N addiert zu dem effektiven Winkel, und wobei die Ergebnisse der N Sinusfunktionen, die positiv sind, zu einem Vormoment addiert werden, und das Vormoment skaliert wird auf einen Wertebereich zwischen einem minimalen Moment und einem maximalen Moment, und wobei das auf diese Weise skalierte Vormoment das Vorsteuermoment ergibt.
  • In einer bevorzugten Ausführungsform weist die Bremsanlage eine Dreikolbenpumpe auf, wobei zur Berechnung des Vorsteuermomentes in Abhängigkeit von einem Drehwinkel der Pumpe bzw. des Pumpenmotors ein Pumpenoffsetwinkel zu dem Drehwinkel addiert wird, woraus ein effektiver Winkel bestimmt wird, und wobei drei Summanden einer Sinusfunktion gebildet werden, deren Argument jeweils gegeben ist durch das n-fache (n = 0, 1, 2) des Winkels 120° addiert zu dem effektiven Winkel, und wobei die Ergebnisse der drei Sinusfunktionen, die positive Ergebnisse liefern bzw. die positiv sind, zu einem Vormoment addiert werden, und das Vormoment skaliert wird auf einen Wertebereich zwischen einem minimalen Moment und einem maximalen Moment, und wobei das auf diese Weise skalierte Vormoment das Vorsteuermoment ergibt.
  • In einer weiteren bevorzugten Ausführungsform bei einer Dreikolbenpumpe wird zur Berechnung des Vorsteuermomentes in Abhängigkeit von einem Drehwinkel des Pumpenmotors ein Pumpenoffsetwinkel zu dem Drehwinkel addiert wird, woraus ein effektiver Winkel bestimmt wird, der zunächst durch eine Mod-60-Funktion auf einen Wertebereich zwischen 0° und 60° abgebildet wird und zu dem dann ein Winkel von 60° addiert wird, woraus ein Zwischenwinkel resultiert, von dem der Sinuswert genommen wird, der skaliert wird auf einen Wertebereich zwischen einem minimalen Moment und einem maximalen Moment, und wobei das auf diese Weise skalierte Vormoment das Vorsteuermoment ergibt. Diese Variante ist gegenüber der oben geschilderten Vorschrift rechenzeitoptimiert, da nur einmal eine trigonometrische Funktion berechnet werden muss.
  • Bevorzugt werden der Pumpenoffsetwinkel und/oder der Maximalwert in Versuchen ermittelt.
  • Bei der Einstellung einer gewünschten Pumpendrehzahl wird bevorzugt ein zusätzliches, vom ausgangsseitigen Pumpendruck abhängiges, Zusatzvorsteuermoment direkt vorgegeben.
  • Das Zusatzvorsteuermoment wird bevorzugt berechnet wird durch eine Multiplikation des Pumpendruckes mit einem Skalierungsfaktor.
  • In einer weiteren bevorzugten Ausführungsform wird bei der Einstellung einer gewünschten Pumpendrehzahl ein zusätzliches, vom angeforderten Pumpendruck-Sollwert abhängiges, Zusatzvorsteuermoment direkt vorgegeben.
  • Die Mehrkolbenpumpe ist bevorzugt als Dreikolbenpumpe ausgebildet.
  • In Bezug auf die Bremsanlage wird die oben genannte Aufgabe erfindungsgemäß gelöst mit Mitteln zur Durchführung eines oben beschriebenen Verfahrens. Insbesondere ist das Verfahren in einer Steuer- und Regeleinheit implementiert, welche insbesondere hardware- und/oder softwaremäßig implementiert. Insbesondere wiest sie einen Drehzahlregler bzw. ein Drehzahlregelmodul auf sowie ein Modul zur Berechnung des Vorsteuermomentes.
  • In einer ersten bevorzugten Ausführung der Bremsanlage sind neben den beiden hydraulischen Radbremsen zwei elektromechanische Radbremsen vorgesehen.
  • In einer zweiten bevorzugten Ausführungsform ist der Hauptbremszylinder als Tandemhauptbremszylinder ausgebildet, wobei jeweils eine Kammer des Tandemhauptbremszylinders mit zwei hydraulisch betätigbaren Radbremsen eines hydraulischen Bremskreises verbunden ist.
  • Die Vorteile der Erfindung liegen insbesondere darin, dass der Komfort des Fahrers bei Normalbremsungen bei einer Bremsanlage mit einer Kolbenpumpe erhöht wird. Hierbei sind keine zusätzlichen mechanischen Maßnahmen oder andere Aufwände wie zum Beispiel Geräuschdämpfungen erforderlich.
  • Ein Ausführungsbeispiel der Erfindung wird anhand einer Zeichnung näher erläutert. Darin zeigen in stark schematisierter Darstellung:
    • 1 eine Bremsanlage in einer bevorzugten Ausführungsform;
    • 2 ein Diagramm zur Darstellung der Volumenförderung einer Dreikolbenpumpe;
    • 3 Module zur Bereitstellung des Sollmomentes des Pumpenmotors mit einem Vorsteuermomentmodul in einer ersten bevorzugten Ausführungsform;
    • 4 Module des Vorsteuermomentmoduls gemäß 3 in einer bevorzugten Ausführung;
    • 5 Module zur Bereitstellung des Sollmomentes des Pumpenmotors mit einem Vorsteuermomentmodul in einer zweiten bevorzugten Ausführungsform; und
    • 6 Module des Vorsteuermomentmoduls gemäß 3 in einer weiteren bevorzugten Ausführung.
  • Gleiche Teile sind in allen Figuren mit denselben Bezugszeichen versehen.
  • Ein in 1 dargestellte Bremsanlage 2 umfasst zwei einem ersten Bremskreis I hydraulisch zugeordnete Radbremsen 4, 6. Im vorliegenden bevorzugten Ausführungsbeispiel ist die Radbremse 4 eine Radbremse vorne links und die Radbremse 6 ist eine Radbremse vorne rechts. Die Bremsanlage 2 bzw. das Bremssystem weist weiterhin zwei weitere Radbremsen 8, 10 auf, die einem zweiten Bremskreis II zugeordnet sind. Die Radbremsen 8, 10 sind als elektromechanische Radbremsen ausgebildet und werden von einer Steuer- und Regeleinheit 12 angesteuert, welche auch die Radbremsdrücke in den Radbremsen 4, 6 einstellt.
  • Ein Hauptbremszylinder 14 umfasst einen einzigen Druckraum 16, in den ein Druckkolben 18 bei Betätigung eines Bremspedals 20 verschoben wird, welches mittels einer Kolbenstange 22 mit dem Druckkolben 18 gekoppelt ist. In eine Hauptbremsleitung 28, die den Druckraum 16 mit den Bremsen 4, 6 des Bremskreises I hydraulisch verbindet, ist ein erstes Trennventil 32 geschaltet. Das Trennventil 32 ist analog ansteuerbar und fungiert als Überströmventil.
  • Dem ersten Trennventil 32 ist ein Rückschlagventil 36 hydraulisch parallelgeschaltet, welches einen Druckmittelfluss aus Richtung der Radbremsen 4, 6 in Richtung des Hauptbremszylinders 14 sperrt und in entgegengesetzter Richtung erlaubt. Ein bevorzugt redundant ausgeführter Drucksensor 30 misst den Druck in der Hauptbremsleitung 28.
  • Die Hauptbremszylinderleitung 28 mündet in eine erste Radbremszufuhrleitung 44, die in der Radbremse 4 mündet. In die Radbremszufuhrleitung 44 ist ein stromlos offenes Einlassventil 48 geschaltet, dem ein Rückschaltventil 50 parallel geschaltet ist, welches einen Rückfluss von Bremsmittel aus der Radbremse 4 in Richtung des Hauptbremszylinders 14 erlaubt und in entgegengesetzter Richtung sperrt. Zwischen Rückschlagventil 50 und einer Auslassleitung 54 ist ein stromlos geschlossenes Auslassventil 56 geschaltet. Die Auslassleitung 54 ist mit einem Druckmittelvorratsbehälter hydraulisch verbunden. Mit der Auslassleitung 54 ist ein Niederdruckspeicher 66 verbunden, in dem bei Druckabbauten über das Auslassventil z. B. im ABS das Volumen zwischengespeichert wird.
  • In die Auslassleitung 54 ist ein Rückschlagventil 70 geschaltet, welches einen Fluss von Druckmittel von der Radbremse 4 in Richtung des Druckmittelvorratsbehälters 62 erlaubt und in entgegengesetzter Richtung sperrt. In die Auslassleitung 54 ist weiterhin ein stromlos geschlossenes Schaltventil 74 geschaltet.
  • Die Hauptbremsleitung 28 mündet weiterhin in einer Radbremszufuhrleitung 80. In die Radbremszufuhrleitung 80 ist ein stromlos offenes Einlassventil 88 geschaltet, dem ein Rückschaltventil 90 parallelgeschaltet ist, welches einen Rückfluss von Bremsmittel aus der Radbremse 6 in Richtung des Hauptbremszylinders 14 erlaubt und in entgegengesetzter Richtung sperrt. Zwischen Rückschlagventil 50 und der Auslassleitung 54 ist ein stromlos geschlossenes Auslassventil 92 geschaltet. Ein bevorzugt redundant ausgeführter Drucksensor 84 misst den Druck in der Radbremszufuhrleitung 80.
  • Eine Pumpe 100, die von einem Pumpenmotor 102 angetrieben wird, ist als Dreikolbenpumpe ausgebildet. In einer anderen bevorzugten Ausführungsform kann die Pumpe auch eine andere Zahl an Kolben aufweisen, insbesondere zwei, vier oder mehr Kolben. An jedem Kolben sind pumpenseitig und saugseitig jeweils Rückschlagventile angeordnet. Zwischen Hauptbremszylinder 14 und Saugseite der Pumpe 100 ist ein zweites Trennventil 108 angeordnet. Die beiden Trennventile 36, 108 sind als Überströmventile ausgebildet.
  • Das Bremssystem bzw. die Bremsanlage 2 erlaubt die Bereitstellung einer Bremskraftverstärkung durch die gezielte Ansteuerung der Pumpe 100. Ein elektrohydraulischer Simulator wird erzielt durch die Analogventilsteuerung der Fahrervorgabe. Beide Ventile werden mittels elektrischen Stroms, der durch ihre Spulen fließt angesteuert. Der Strom wird aus der Öffnungsstromkennlinie ermittelt, also dem Zusammenhang zwischen gewünschtem Differenzdruck und Spulenstrom. Der Eingangswert in die Öffnungsstromkennlinie ergibt sich aus der Summe von gegebener Solldruckdifferenz am Ventil und einem Offsetwert aus einem gegebenen Überströmkennfeld als Funktion von Solldruckdifferenz, Volumenstrom und Temperatur.
  • Bei der dargestellten Bremsanlage 2 wird die Verstärkung der Bremskraft des Fahrers durch die Pumpenfunktion vorgenommen. Wesentliche Kennzeichen bzw. Funktionen der gezeigten Bremsanlage sind die Bremskraftverstärkung durch Pumpenfunktion, die Darstellung elektrohydraulischer Simulator durch die Analogventilsteuerung der Fahrervorgabe (Pedalweg/HZ-Druck) und die Möglichkeit zur Anpassung der Pedalkennlinie (Pedalweg/Verzögerung und Pedalkraft/Pedalweg).
  • Zur Realisierung der hier angegebenen Pumpenfunktion ist es erforderlich, dass für die Pumpe ein Betrieb mit einer weitestgehend konstanten Volumenstromförderung und damit mit möglichst geringer Pulsation umgesetzt werden muss.
  • In 2 sind beispielhaft in einem Diagramm auf der x-Achse 120 der Drehwinkel des Pumpenmotors 102 und auf der y-Achse 122 der prinzipielle Verlauf für die geförderten Teilvolumina 126 (gepunktete Linie), 128 (gestrichelte Linie) und 130 (gestrichpunktete Linie) von drei Kolben einer Dreikolbenpumpe dargestellt. Diese ergeben in der Addition zusammen ein resultierendes Gesamtfördervolumen 140 (durchgezogene Linie).
  • Das Gesamtfördervolumen 140, das gewissermaßen eine Einhüllende der einzelnen Teilvolumina 126, 128, 130 darstellt, weist gegenüber dem jeweils einzelnen Teilfördervolumen geringere Schwankungen auf. Diese sind trotzdem noch spürbar und werden durch ein hier beschriebenes Verfahren deutlich reduziert. Die in 2 dargestellten Volumina repräsentieren auf einen Maximalwert normierte Volumenverläufe der betrachteten Pumpe. Das spezifische Fördervolumen der Pumpe wird definiert durch die konstruktive Gestaltung der Pumpe. Konstruktive Parameter sind hier der maximale Kolbenhub und Kolbendurchmesser.
  • Ein Verfahren zum Betreiben der Bremsanlage 2, welches im Folgenden beschrieben wird, wird in der Steuer- und Regeleinheit 12 durchgeführt. Das erfindungsgemäße Verfahren umfasst eine Optimierung der Ansteuerung des Pumpenmotors 102, die darin besteht, dass der Pumpenmotor 102 drehzahlgeregelt betrieben wird und dass dem Stellmoment eines Drehzahlreglers ein vom Drehwinkel des Pumpenmotors 102 abhängiges Vorsteuermoment überlagert wird, das prinzipiell den Verlauf der in 2 dargestellten Kurve des Gesamtfördervolumens 140 hat. Da der Druck und damit auch die von der Pumpe 100 erzeugten Pulsationen zu einem Gegenmoment für den Pumpenmotor führen, kann dieses Vorsteuermoment in gewisser Weise als eine gesteuerte Störgrößenaufschaltung betrachtet werden. Durch diese Maßnahme wird nun eine angeforderte Motordrehzahl und damit die Volumenförderung der Pumpe 100 derart modifiziert, dass der Volumenstrom gleichmäßiger erfolgt, wodurch auch die Druckpulsationen erheblich reduziert werden. Das vorgeschlagene Verfahren wird im Weiteren exemplarisch für eine 3-Kolbenpumpe angegeben, ist aber ebenso auf andere Konfigurationen von Mehrkolbenpumpen anwendbar. Vorteilhaft bei dem vorgeschlagenen Verfahren ist dabei, dass hierbei keine zusätzlichen mechanischen Maßnahmen oder andere Aufwände wie zum Beispiel Geräuschdämpfungen erforderlich sind.
  • Eine erfindungsgemäße Anordnung zur optimierten Ansteuerung des Pumpenmotors 102 ist in 3 in einer Übersicht dargestellt. Die dort gezeigten Module 140, 146, 148, 150, 154 sind bevorzugt software- und/oder hardwaremäßig in der Steuer- und Regeleinheit 12 implementiert.
  • Ein in 3 dargestellter Drehzahlregler 148 hat bevorzugt in bekannter Ausführung ein Proportional-Integral-(PI-) wirkendes Verhalten und erzeugt als Stellgröße ein Sollmoment MAkt,Soll,Ctrl, welche sich aufgrund der Regelabweichung zwischen der, von einem (nicht in 3 dargestellten) übergeordneten Druckregelsystem angeforderten, Motor-Solldrehzahl ωAkt,Soll und der momentanen Istdrehzahl ωAkt des Pumpenmotors 102 ergibt. Die angeforderte Motor-Solldrehzahl ωAkt,Soll entspricht dem zur Realisierung der gewünschten Funktion notwendigen Sollvolumenstrom für die Pumpe. In einem Subtraktionsmodul 146 wird die Istdrehzahl ωAkt von der Motor-Solldrehzahl ωAkt,Soll subtrahiert. Diese Differenz ist Eingangsgröße des Drehzahlreglers 148.
  • Die Berechnung des Vorsteuermoment MFFW,1 in dem Vorsteuermomentberechnungsmodul 142 erfolgt auf der Basis des gegenwärtigen Motorwinkels φAkt und bewirkt ein Zusatzmoment für den Pumpenmotor 102 zum Zweck der bereits oben erwähnten positionsabhängigen Modifikation der angeforderten Drehzahl ωAkt,Soll. In dem Subtraktionsmodul 150 wird das Vorsteuermoment MFFW,1 von der Stellgröße MAkt,Soll,Ctrl subtrahiert. Diese Differenz wird in einem Begrenzungsmodul 154 auf einen vorgegebenen Wertebereich begrenzt. Die Ausgangsgröße des Begrenzungsmoduls 154 ist das Sollmotormoment MAkt,Soll.
  • Eine bevorzugte Vorgehensweise zur Ermittlung des Vorsteuermoments in dem Modul 142 ist in 4 exemplarisch für den Fall einer 3-Kolbenpumpe dargestellt. Eingangsgröße eines Mod-Moduls 160 ist der gegenwärtige Motorwinkel φAkt. Das Mod-Modul 160 liefert als Ergebnis den Rest der Division des Motorwinkels φAkt durch 360° und erzeugt daher zur Vermeidung von Zahlenbereichsüberläufen aus dem Motorwinkel φAkt ein Winkelsignal, das im Bereich 0...360° liegt. Ein angegebener Winkeloffset φPump,Offset nimmt eine Nullpunktverschiebung des ermittelten Winkelwertes vor und ergibt sich aus der Zuordnung von Motorwinkel φAkt und Position der Kolben der Pumpe 100 relativ zum Drehwinkel des Motors 102.
  • Ein in 4 angegebenes Signal S repräsentiert nun den auf den Maximalwert 1 normierten Verlauf der permanenten Volumenförderung über dem vollen Drehwinkel der Pumpe 100 und entspricht dem in 2 dargestellten Verlauf des Gesamtfördervolumens 140, wobei sich im Falle einer 3-Kolbenpumpe eine Frequenz von sechs Schwingungen pro Motorumdrehung ergibt. Als Maximalwert für S folgt hierbei S=1, als Minimalwert ergibt sich SMin=S1=sin(60°). Das zu bestimmende, vom Motorwinkel φAkt abhängige, Vorsteuermoment MFFW,1 ergibt sich dann aus einer Lineartransformation MFFW=f(S). Der Parameter MMax für den Maximalwert des Vorsteuermoment MFFW,1 ist ebenso wie der Winkeloffset φPump,Offset eine pumpenspezifische Größe, deren Wert in Vorversuchen ermittelt werden muss.
  • In einem Addiermodul 164 werden der Pumpenoffsetwinkel und der Drehwinkel addiert. Aus dem daraus resultierenden effektiven Winkel δAkt,1 werden in drei Modulen 170, 172, 174 jeweils Sinuswerte gebildet von dem effektiven Winkel δAkt,1 sowie dem um 120° und 240° verschobenen effektiven Winkel δAkt,1. Die resultierenden Werte werden in Begrenzungsmodulen 180, 182, 184 jeweils auf den Bereich positiver Werte beschränkt und dann in einem Addiermodul 190 addiert, woraus sich das oben genannte Signal S ergibt. Das Signal S wird einem Modul 196 zugeführt, in dem jedem Wert von S ein entsprechender Vorsteuermomentenwert MFFW in Form einer Lineartransformation zugeordnet wird. So wird dem Signalwert S=S1 der Momentenwert MFFW=MMin zugeordnet und für den Signalwert S=1 wird der Momentenwert MFFW=MMax gesetzt. Für Signalwerte S, die zwischen S1 und dem Wert 1 liegen, ergibt sich das Vorsteuermoment MFFW als Linearinterpolation zwischen MMin und MMax. Ausgangsgröße des Moduls 196 ist dann das Vorsteuermoment MFFW,1.
  • In einer weiteren, in 5 dargestellten, bevorzugten Ausführungsform kann zur Unterstützung des Drehzahlreglers 148 bei der Einstellung einer gewünschten Pumpendrehzahl ein zusätzliches, vom ausgangsseitigen Pumpendruck P abhängiges, Vorsteuermoment MFFW,2 direkt vorgegeben werden. Dies führt zu einer Unterstützung insbesondere des I-Anteils des Drehzahlreglers 148 und in diesem Zusammenhang auch zu einer Verbesserung des dynamischen Verhaltens beim Einstellen einer angeforderten, zeitlich veränderlichen Motordrehzahl für die Pumpe. In einem Skalierungsmodul 200 wird der Pumpendruck P mit einem Verstärkungsfaktor KPrs multipliziert, woraus sich das Vorsteuermoment MFFW,2 ergibt, welches in einem Modul 214 zu der Stellgröße MAkt,Soll,Ctrl addiert wird. Der Verstärkungsfaktor KPrs gibt dabei einen, von der jeweiligen konstruktiven Ausführung der Pumpe abhängigen, Skalierungsfaktor zur Berechnung eines zum Pumpendruck korrespondierenden Motormoments.
  • In einer weiteren Ausführungsform kann für die Bestimmung des Vorsteuermomentes MFFW,2 anstelle des ausgangsseitigen Pumpendruckes P der angeforderte Sollwert für den Pumpendruck P verwendet werden. Dies führt neben der bereits erwähnten Unterstützung des Drehzahlreglers zu einer weiteren Verbesserung des Verhaltens bei der Einstellung des angeforderten Pumpendruckes.
  • In 6 ist eine weitere bevorzugte Ausführung von Modulen zur Berechnung des Vorsteuermomentes für eine Dreikolbenpumpe bzw. 3-Kolbenpumpe dargestellt, welche hinsichtlich der benötigten Rechenzeit optimiert ist. Die Optimierung liegt in der Reduzierung der Anzahl der Rechenoperationen und insbesondere darin, dass hier nur einmal eine trigonometrische Funktion berechnet werden muss (anstelle von drei Funktionen wie bei der Ausführung gemäß 4). Dies ist insbesondere dann sinnvoll bzw. notwendig, wenn die Loopzeit in der diese Operation durchgeführt wird im Bereich < 0,5 ms liegt.
  • Ein Addiermodul 290 addiert den gegenwärtigen Motorwinkel φAkt und einen Winkeloffset φPump,Offset, der eine Nullpunktverschiebung des ermittelten Winkelwertes vor und ergibt sich aus der Zuordnung von Motorwinkel φAkt und Position der Kolben der Pumpe 100 relativ zum Drehwinkel des Motors 102, woraus sich ein Eingangswinkel φAkt,2 ergibt. Ein Mod-Modul 294 erzeugt nun eine Abbildung des Eingangswinkels φAkt,2 auf einen Wertebereich zwischen 0 und 60° (= Rest der Division des Eingangswinkels durch 60), der dann durch die Addition mit dem Wert 60° in einem Addiermodul 298 auf einen Wertebereich von 60° bis 120° verschoben wird. Die in einem Modul 300 durchgeführte anschließende Sinusberechnung führt dann zum gleichen Signal S, die dies auch in 4 der Fall ist, so dass in Bezug auf die weitere Verarbeitung durch das Modul 304 auf 4 verwiesen wird, wobei das Modul 304 dem dort gezeigten Modul 196 entspricht. Dabei wird die Tatsache genutzt, dass bei additiven Überlagerung der positiven Halbwellen von drei um jeweils 120° verschobenen Sinusschwingungen (siehe Volumina 126, 128, 130 in 2) das resultierende Signal (siehe Volumen 140 in 2) sechs Schwingungen pro 360° aufweist, also periodisch mit 60° ist, wobei pro Schwingung die Werte zwischen sin (60°) und sin (120°) liegen.

Claims (13)

  1. Verfahren zum Betreiben einer Bremsanlage (2), umfassend • wenigstens einen Bremskreis (I) mit hydraulisch betätigbaren Radbremsen (4, 6); • einen Hauptbremszylinder (14); • eine mit einem Pumpenmotor (102) angetriebene Mehrkolbenpumpe (100) zum bedarfsweisen, den Fahrer unterstützenden Druckaufbau in den Radbremsen (4, 6), wobei zum Druckaufbau Druckmittel von der Pumpe (100) in den Bremskreis (I) gefördert wird, dadurch gekennzeichnet, dass der Pumpenmotor (102) durch einen Drehzahlregler (148) drehzahlgeregelt betrieben wird und dass dem Stellmoment des Drehzahlreglers (148) ein vom Drehwinkel des Pumpenmotors (φAkt) abhängiges Vorsteuermoment (MFFW,1) überlagert wird.
  2. Verfahren nach Anspruch 1, wobei das von der Pumpe (100) geförderte Volumen über den gesamten Drehwinkel einer Umdrehung des Motors (φAkt) wenigstens zwei Maxima und wenigstens zwei Minimum annimmt, und wobei das Vorsteuermoment (MFFW,1) am Maximum am geringsten ist und maximal am Minimum ist.
  3. Verfahren nach Anspruch 1 oder 2, wobei sich das Vorsteuermoment (MFFW,1) aus einer Lineartransformation des auf einen Maximalwert 1 normierten, geförderten Volumens ergibt.
  4. Verfahren nach einem der Ansprüche 1 bis 3, wobei zur Berechnung des Vorsteuermomentes (MFFW,1) in Abhängigkeit von einem Drehwinkel des Pumpenmotors (φAkt) ein Pumpenoffsetwinkel (φPump,Offset) zu dem Drehwinkel addiert wird, woraus ein effektiver Winkel bestimmt wird, und wobei bei einer N-Kolbenpumpe N Summanden einer Sinusfunktion gebildet werden, deren Argument jeweils gegeben ist durch das n-fache (n = 0 ... N-1) des Winkels 360°/N addiert zu dem effektiven Winkel, und wobei die Ergebnisse der N Sinusfunktionen, die positiv sind, zu einem Vormoment addiert werden, und das Vormoment skaliert wird auf einen Wertebereich zwischen einem minimalen Moment und einem maximalen Moment, und wobei das auf diese Weise skalierte Vormoment das Vorsteuermoment (MFFW,1) ergibt.
  5. Verfahren nach einem der Ansprüche 1 bis 4, wobei die Mehrkolbenpumpe (100) als Dreikolbenpumpe ausgebildet ist.
  6. Verfahren nach Anspruch 5, wobei zur Berechnung des Vorsteuermomentes (MFFW,1) in Abhängigkeit von einem Drehwinkel des Pumpenmotors (φAkt) ein Pumpenoffsetwinkel (φPump,Offset) zu dem Drehwinkel addiert wird, woraus ein effektiver Winkel bestimmt wird, und wobei drei Summanden einer Sinusfunktion gebildet werden, deren Argument jeweils gegeben ist durch das n-fache (n = 0, 1, 2) des Winkels 120° addiert zu dem effektiven Winkel, und wobei die Ergebnisse der drei Sinusfunktionen, die positiv sind, zu einem Vormoment addiert werden, und das Vormoment skaliert wird auf einen Wertebereich zwischen einem minimalen Moment und einem maximalen Moment, und wobei das auf diese Weise skalierte Vormoment das Vorsteuermoment (MFFW,1) ergibt.
  7. Verfahren nach Anspruch 5, wobei zur Berechnung des Vorsteuermomentes (MFFW,1) in Abhängigkeit von einem Drehwinkel des Pumpenmotors (φAkt) ein Pumpenoffsetwinkel (φPump,Offset) zu dem Drehwinkel addiert wird, woraus ein effektiver Winkel bestimmt wird, der zunächst durch eine Mod-60-Funktion auf einen Wertebereich zwischen 0° und 60° abgebildet wird und zu dem dann ein Winkel von 60° addiert wird, woraus ein Zwischenwinkel resultiert, von dem der Sinuswert genommen wird, der skaliert wird auf einen Wertebereich zwischen einem minimalen Moment und einem maximalen Moment, und wobei das auf diese Weise skalierte Vormoment das Vorsteuermoment (MFFW,1) ergibt.
  8. Verfahren nach einem der Ansprüche 1 bis 7, wobei bei der Einstellung einer gewünschten Pumpendrehzahl ein zusätzliches, vom ausgangsseitigen Pumpendruck (P) abhängiges, Zusatzvorsteuermoment (MFFW,2) direkt vorgegeben wird.
  9. Verfahren nach Anspruch 8, wobei das Zusatzvorsteuermoment (MFFW,2) berechnet wird durch eine Multiplikation des Pumpendruckes (P) mit einem Skalierungsfaktor (KPrs).
  10. Verfahren nach einem der Ansprüche 1 bis 9, wobei bei der Einstellung einer gewünschten Pumpendrehzahl ein zusätzliches, vom angeforderten Pumpendruck-Sollwert abhängiges, Zusatzvorsteuermoment direkt vorgegeben wird.
  11. Bremsanlage (2) mit Mitteln (12) zum Durchführen eines Verfahrens nach einem der vorherigen Ansprüche.
  12. Bremsanlage (2) nach Anspruch 11, wobei zwei elektromechanische Radbremsen (8, 10) vorgesehen sind.
  13. Bremsanlage (2) nach Anspruch 12, wobei der Hauptbremszylinder (14) als Tandemhauptbremszylinder ausgebildet ist, und wobei eine Kammer des Tandemhauptbremszylinders mit zwei hydraulisch betätigbaren Radbremsen eines hydraulischen Bremskreises verbunden ist.
DE102016224619.4A 2016-12-09 2016-12-09 Verfahren zum Betreiben einer Bremsanlage und Bremsanlage Pending DE102016224619A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102016224619.4A DE102016224619A1 (de) 2016-12-09 2016-12-09 Verfahren zum Betreiben einer Bremsanlage und Bremsanlage
PCT/EP2017/079983 WO2018104049A1 (de) 2016-12-09 2017-11-22 Verfahren zum betreiben einer bremsanlage und bremsanlage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016224619.4A DE102016224619A1 (de) 2016-12-09 2016-12-09 Verfahren zum Betreiben einer Bremsanlage und Bremsanlage

Publications (1)

Publication Number Publication Date
DE102016224619A1 true DE102016224619A1 (de) 2018-06-14

Family

ID=60788538

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102016224619.4A Pending DE102016224619A1 (de) 2016-12-09 2016-12-09 Verfahren zum Betreiben einer Bremsanlage und Bremsanlage

Country Status (2)

Country Link
DE (1) DE102016224619A1 (de)
WO (1) WO2018104049A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7177716B2 (ja) * 2019-01-29 2022-11-24 日立Astemo株式会社 ブレーキ制御装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012205859A1 (de) * 2011-04-19 2012-10-25 Continental Teves Ag & Co. Ohg Bremsanlage für Kraftfahrzeuge sowie Verfahren zum Betrieb einer Bremsanlage

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008018818A1 (de) * 2008-04-15 2009-10-22 Continental Teves Ag & Co. Ohg Elektrisches Motoransteuerungsverfahren mit Lastmomentanpassung
DE102011076952A1 (de) * 2010-06-10 2011-12-29 Continental Teves Ag & Co. Ohg Verfahren und Regelschaltung zur Regelung eines Bremssystems für Kraftfahrzeuge

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012205859A1 (de) * 2011-04-19 2012-10-25 Continental Teves Ag & Co. Ohg Bremsanlage für Kraftfahrzeuge sowie Verfahren zum Betrieb einer Bremsanlage

Also Published As

Publication number Publication date
WO2018104049A1 (de) 2018-06-14

Similar Documents

Publication Publication Date Title
EP3271220B1 (de) Bremsanlage mit druckaufbau-regelung mit spezieller verschaltung der einlassventile mit bremskreis/radbremsen und verfahren zur druckregelung
DE60317399T2 (de) Regelbare Verdrängerpump sowie Steursystem dafür
EP2931576B1 (de) Verfahren zum betreiben eines bremssystems eines fahrzeugs und steuervorrichtung für ein bremssystem eines fahrzeugs
WO2011154275A1 (de) Verfahren und vorrichtung zur regelung eines elektrohydraulischen bremssystems für kraftfahrzeuge
DE112009002068T5 (de) Bremssteuerungsvorrichtung
DE4312404A1 (de) Fremdkraftbremssystem für Kraftfahrzeuge
EP1204547B1 (de) Hydraulische bremsanlage
WO2015036156A1 (de) Verfahren zum betreiben eines bremskraftverstärkers, steuergerät zur durchführung des verfahrens und ein den bremskraftverstärker und das steuergerät umfassendes bremssystem
DE102013216329A1 (de) Verfahren und Vorrichtung zur Regelung eines Bremssystems
EP1251059A1 (de) Verfahren zum Steuern eines Servolenksystems
DE4020449A1 (de) Schaltungsanordnung fuer eine blockiergeschuetzte bremsanlage mit einem pedalwegschalter oder -wegsensor
EP2268516B1 (de) Druckerzeuger einer hydraulischen fahrzeug-bremsanlage und betriebsverfahren hierfür
WO2018099763A1 (de) Bremssystem und verfahren zum betreiben eines bremssystems
DE102016224619A1 (de) Verfahren zum Betreiben einer Bremsanlage und Bremsanlage
WO2014090436A1 (de) Steuervorrichtung für ein bremssystem eines fahrzeugs und verfahren zum betreiben eines bremssystems eines fahrzeugs
DE102016219735A1 (de) Verfahren zur Anpassung einer hinterlegten Druck-Volumen-Kennlinie in einem Bremssystem und Bremssystem
DE102015215926A1 (de) Verfahren zur Regelung einer Bremsanlage für Kraftfahrzeuge, Regelvorrichtung und Bremsanlage
DE102008040534B4 (de) Verfahren und Vorrichtung zur Ermittlung und Abgleich des Arbeitspunktes von Ventilen in einem hydraulischen System
DE102014225957A1 (de) Bremsensteuervorrichtung sowie Bremsanlage für Fahrzeuge
WO2000034097A1 (de) Als druckverstärker arbeitender hydraulikverstärker
DE102018219776A1 (de) Verfahren zur Steuerung eines autonomen Druckaufbaus in einem hydraulischen Bremssystem eines Fahrzeugs sowie Steuergerät
DE102020213262A1 (de) Verfahren zum Betreiben eines hydraulischen Antriebs
DE102014215297A1 (de) Regelschaltung zur Regelung sowie Schaltungsanordnung zur Steuerung einer Bremsanlage für Kraftfahrzeuge
DE102013225746A1 (de) Fahrzeugbremssystem
DE102016203735A1 (de) Verfahren zum Betreiben einer Bremsanlage, Druckregler für eine Bremsanlage und Bremsanlage

Legal Events

Date Code Title Description
R079 Amendment of ipc main class

Free format text: PREVIOUS MAIN CLASS: B60T0008400000

Ipc: B60T0013660000

R163 Identified publications notified
R081 Change of applicant/patentee

Owner name: CONTINENTAL AUTOMOTIVE TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: CONTINENTAL TEVES AG & CO. OHG, 60488 FRANKFURT, DE

R012 Request for examination validly filed
R081 Change of applicant/patentee

Owner name: CONTINENTAL AUTOMOTIVE TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: CONTINENTAL AUTOMOTIVE TECHNOLOGIES GMBH, 30165 HANNOVER, DE