DE102016224284A1 - Abwärmerückgewinnungssystem - Google Patents

Abwärmerückgewinnungssystem Download PDF

Info

Publication number
DE102016224284A1
DE102016224284A1 DE102016224284.9A DE102016224284A DE102016224284A1 DE 102016224284 A1 DE102016224284 A1 DE 102016224284A1 DE 102016224284 A DE102016224284 A DE 102016224284A DE 102016224284 A1 DE102016224284 A1 DE 102016224284A1
Authority
DE
Germany
Prior art keywords
waste heat
heat recovery
recovery system
circuit
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102016224284.9A
Other languages
English (en)
Inventor
Bernhard Zickgraf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to DE102016224284.9A priority Critical patent/DE102016224284A1/de
Priority to PCT/EP2017/075163 priority patent/WO2018103909A1/de
Publication of DE102016224284A1 publication Critical patent/DE102016224284A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D11/00Feed-water supply not provided for in other main groups
    • F22D11/006Arrangements of feedwater cleaning with a boiler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0042Degasification of liquids modifying the liquid flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/065Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Abwärmerückgewinnungssystem (100) mit einem ein Arbeitsmedium führenden Kreislauf (100a). Der Kreislauf (100a) umfasst in Flussrichtung des Arbeitsmediums eine Speisefluidpumpe (102), einen Verdampfer (103), eine Expansionsmaschine (104) und einen Kondensator (105). In dem Kreislauf (100a) ist stromabwärts des Kondensators (105) ein Blasenabscheider (90) zur Abscheidung von Gasblasen aus dem Arbeitsmedium angeordnet. In dem Blasenabscheider (90) ist ein Sammlervolumen (91) ausgebildet. Der Blasenabscheider (90) weist ein Abscheidergehäuse (90a) auf, wobei in dem Abscheidergehäuse (90a) ein Eintrittsquerschnitt (3a) und ein Austrittsquerschnitt (3b) zur Anbindung an den Kreislauf (100a) ausgebildet sind. Der Einstrittsquerschnitt (3a) und der Austrittsquerschnitt (3b) sind bezüglich einer Gravitationskraft (G) unterhalb des Sammlervolumens (91) angeordnet.

Description

  • Die vorliegende Erfindung betrifft ein entlüftungsoptimiertes Abwärmerückgewinnungssystem für eine Brennkraftmaschine.
  • Stand der Technik
  • Abwärmerückgewinnungssysteme zur thermischen Energierückgewinnung aus den Abgasen einer Brennkraftmaschine sind aus dem Stand der Technik bekannt, beispielsweise aus der DE 2014 10 018 987 A1.
  • Das bekannte Abwärmerückgewinnungssystem weist einen ein Arbeitsmedium führenden Kreislauf auf. Der Kreislauf umfasst in Flussrichtung des Arbeitsmediums eine Speisefluidpumpe, einen Verdampfer, eine Expansionsmaschine und einen Kondensator. In dem Kreislauf ist weiterhin ein Membranausdehnungsgefäß bzw. ein Ausgleichsbehälter zur Volumenkompensation des Arbeitsmediums angeordnet. In dem Ausgleichsbehälter ist ein Fluidraum zur Aufnahme des Arbeitsmediums ausgebildet.
  • Dadurch kann das Gesamtvolumen des Arbeitsmediums innerhalb des Kreislaufs unterschiedlichen Temperaturniveaus angepasst werden. Die Volumenänderung ist durch die Verwendung einer Membran jedoch minimiert. Weiterhin unterliegt die Membran hohen mechanischen Beanspruchungen, insbesondere an den Belastungen der Kanten. Eine Ausscheidung der Gasblasen aus dem Kreislauf ist durch die Membran nicht möglich.
  • Offenbarung der Erfindung
  • Das erfindungsgemäße Abwärmerückgewinnungssystem verwendet demgegenüber einen Blasenabscheider, so dass große Volumenänderungen durch eingedrungenes Gas bzw. eingedrungene Luft ausgeglichen werden können und das Abwärmerückgewinnungssystem effizient betrieben werden kann.
  • Das Abwärmerückgewinnungssystem weist einen ein Arbeitsmedium führenden Kreislauf auf. Der Kreislauf umfasst in Flussrichtung des Arbeitsmediums eine Speisefluidpumpe, einen Verdampfer, eine Expansionsmaschine und einen Kondensator. In dem Kreislauf ist stromabwärts des Kondensators ein Blasenabscheider zur Abscheidung von Gasblasen aus dem Arbeitsmedium angeordnet. In dem Blasenabscheider ist ein Sammlervolumen ausgebildet. Der Blasenabscheider weist ein Abscheidergehäuse auf, wobei in dem Abscheidergehäuse ein Eintrittsquerschnitt und ein Austrittsquerschnitt zur Anbindung an den Kreislauf ausgebildet sind. Der Einstrittsquerschnitt und der Austrittsquerschnitt sind bezüglich einer Gravitationskraft unterhalb des Sammlervolumens angeordnet.
  • Die vorliegende Erfindung trennt dadurch die von der flüssigen Phase des Arbeitsmediums mitgeführten gasförmigen Bestandteile - also die Gasblasen - aus dem Flüssigkeitsstrom. Hierzu ist es vorteilhaft, wenn die Speisefluidpumpe das Arbeitsmedium mit einem ausreichend hohen Massenstrom fördert. Die Abscheidung bzw. Trennung der Gasblasen aus dem Arbeitsmedium erfolgt durch das Ausnutzen des Dichteunterschieds der Gasblasen zu dem flüssigen Arbeitsmedium innerhalb des Fluid-Gasgemischs. Die Gasblasen steigen somit in dem Blasenabscheider entgegen der Gravitationsrichtung nach oben zum Sammlervolumen.
  • Vorzugsweise wird das Hochsteigen der Blasen durch eine lokale Reduktion der Strömungsgeschwindigkeit durch Erhöhen des Strömungsquerschnitts des Abscheidergehäuses gegenüber dem Eintrittsquerschnitt unterstützt.
  • Vorteilhafterweise ist der Sammelbereich bzw. der Abscheidebereich der Gasblasen als Austrittslabyrinth ausgeführt, damit das erneute Mitreißen der Gasblasen durch den aus dem Austrittsquerschnitt des Blasenabscheiders austretenden Fluidstrom des Arbeitsmediums verhindert wird. Das Austrittslabyrinth kann dabei zusätzliche Einbauten wie Abscheidegitter oder Lochbleche aufweisen. Dadurch kann das Mitreißen der Gasblasen auch bei sehr hohen Strömungsgeschwindigkeiten wirkungsvoll unterdrückt werden.
  • Abgeschiedene Gasmengen verlassen den Blasenabscheider durch eine Gasaustrittsöffnung im Abscheidergehäuse. Das Abscheidergehäuse kann dazu auch mehrteilig ausgeführt sein. Vorzugsweise ist die Gasaustrittsöffnung dabei im oberen Bereich des Blasenabscheiders angebracht, insbesondere bezüglich der Gravitationskraft am obersten Punkt des Blasenabscheiders.
  • Das Sammlervolumen ist unterhalb der Gasaustrittsöffnung angeordnet. Vorzugsweise ist dabei das Sammlervolumen von dem Strömungsquerschnitt des Abscheidergehäuses getrennt. Die Existenz eines separaten Sammlervolumens ohne direkten Kontakt mit dem strömendem Arbeitsmedium unterdrückt eine Rücklösung bereits abgeschiedener Gasblasen in das zum Austrittsquerschnitt strömende Arbeitsmedium wirkungsvoll, weil es keinen direkten Kontakt des Arbeitsmediumstroms mit dem Gasvolumen und keine großen strömenden Fluidoberflächen am Gasvolumen gibt. Somit muss das abgeschiedene Gasvolumen nicht mehr unmittelbar aus dem Abwärmerückgewinnungssystem entfernt werden. Vielmehr kann auf günstige Systemzustände gewartet und dann das Gasvolumen schnell und gründlich entfernt werden.
  • Dazu ist in vorteilhaften Weiterbildungen in der Gasaustrittsöffnung oder in einer daran angeschlossenen Entlüftungsleitung des Abwärmerückgewinnungssystems ein Ventil angeordnet. Vorzugsweise ist das Ventil schaltbar, so dass das Abwärmerückgewinnungssystem aktiv entlüftet werden kann. Alternativ kann das Ventil jedoch auch als Rückschlagventil ausgeführt sein, dass bei einem voreingestellten Druck öffnet.
  • In vorteilhaften Ausführungen ist in dem Abscheidergehäuse zumindest ein Füllstandssensor zur Messung des Niveaus eines Fluidspiegels des Arbeitsmediums angeordnet. Vorzugsweise ist der zumindest eine Füllstandssensor im Sammlervolumen angeordnet. Der Füllstandssensor signalisiert Entlüftungsbedarf signalisieren und steuert vorzugsweise sogar die Entlüftungsvorgänge.
  • Bis zum Eintritt des Arbeitsmediums in die Speisefluidpumpe sollten die Gasblasen möglichst aus dem Arbeitsmedium abgeschieden sein, so dass der Blasenabscheider vorzugsweise zwischen dem Kondensator und der Speisefluidpumpe angeordnet ist. Dadurch ist der Wirkungsgrad der Speisefluidpumpe optimiert.
  • Zum wirkungsvollen Abscheiden von Gasblasen über den Dichteunterschied der Gasblasen zu dem flüssigen Arbeitsmedium muss ausreichend kondensiertes Arbeitsmedium vorliegen. Der beschriebene Blasenabscheider wird deshalb in Strömungsrichtung typischerweise vor der Speisefluidpumpe und nach dem Kondensator in den Kreislauf integriert. Zur Unterstützung des Hochsteigens des abgeschiedenen Gasvolumens ist der Fluidstrom des Arbeitsmediums vorzugsweise horizontal und die Austrittsrichtung des Gasvolumens aus dem Gasabscheider vertikal.
  • Die nachfolgenden Weiterbildungen der Erfindung betreffen die Positionierung des Blasenabscheiders innerhalb des Abwärmerückgewinnungssystems, insbesondere bezüglich der Gravitationskraft.
  • Die Weiterbildungen machen sich die Tatsache zunutze, dass sich das Arbeitsmedium in dem Kreislauf je nach Phasenzustand mit deutlich unterschiedlichen Strömungsgeschwindigkeiten bewegt. In der Dampfphase mit niedriger Dichte treten sehr hohe Strömungsgeschwindigkeiten auf, in der flüssigen Phase eher niedrige. Teilweise werden diese Effekte durch angepasste Leitungsquerschnitte des Kreislaufs beeinflusst, die Unterschiede sind aber immer beträchtlich. Eine Anordnung derjenigen Systemkomponenten, die überwiegend dampfförmiges Arbeitsmedium enthaltenden, im bezüglich der Gravitationskraft oberen Bereich des Abwärmerückgewinnungssystems führt durch die hohen Dampfgeschwindigkeiten zu einem effektiven Mitreißen vorhandener Luft bzw. vorhandenen Gases, welches sich im Stillstand des Abwärmerückgewinnungssystems oben angesammelt hat. Während des Betriebs des Abwärmerückgewinnungssystems können deshalb nahezu keine gasförmigen Bestandteile an bestimmten Positionen im Kreislauf verbleiben.
  • Weiterhin beruhen die Weiterbildungen der Erfindung auf dem Effekt, dass der Kondensator im Normalbetrieb des Abwärmerückgewinnungssystems immer zu einem gewissen Teil kondensiertes Arbeitsmedium enthält. Die Menge des flüssigen Arbeitsmediums ist betriebspunktabhängig und kann durch die Systemsteuerung beeinflusst werden. Zum Schutz der nach dem Kondensator angeordneten Speisefluidpumpe sind Kondensatoren konstruktiv üblicherweise darauf ausgelegt, einen Durchtritt von dampfförmigem Arbeitsmedium auch bei hohen thermischen Lasten im Abwärmerückgewinnungssystem möglichst zu verhindern.
  • Der Bereich des flüssigen Arbeitsmediums im Kondensator - nämlich das Fluidvolumen - befindet sich in Strömungsrichtung gesehen im hinteren Bereich des Kondensators nahe seines Ausgangs unterhalb des Dampfbereichs des Kondensators. Der vordere Kondensatorbereich ist dampfförmig oder mit einem Phasengemisch dampfförmig / flüssig gefüllt. Das Zurückhalten der Dampfphase im Kondensator durch ein gewisses flüssiges Arbeitsmediumvolumen im Kondensator trifft auch auf die sich im Abwärmerückgewinnungssystem befindliche Luft zu. Während des Betriebs treibt das dampfförmige Arbeitsmedium alle gasförmigen Fremdbestandteile vor sich her bis in den Kondensator. Dort treffen die Bestandteile auf das als Sperre wirkende Fluidvolumen. Je nach Menge des Gases und Menge des Fluidvolumens wird das Gas komplett zurückgehalten, oder gasförmige Bestandteile tauchen mit der Strömung des Arbeitsmediums gegen ihre Auftriebskraft nach unten durch die Fluidsperre und verlassen den Kondensator in Richtung der Speisefluidpumpe.
  • Durch eine gesteuerte Veränderung des Fluidvolumens kann dessen Sperrwirkung beeinflusst und der Durchtritt vorhandener Luft bzw. vorhandenen Gases kontrolliert bzw. sogar herbeigeführt werden. Der Durchtritt kann somit aktiv gesteuert und in günstige Betriebsphasen gelegt werden, beispielsweise in die Aufwärmphase. Der Durchtritt kann andererseits aber auch wirksam unterbunden werden.
  • Das Leerspülen der dampfenthaltenden Komponenten und Rohrleitungsteile des Kreislaufs im Betrieb wird dadurch unterstützt, dass der Kondensator im Abwärmerückgewinnungssystem eher hoch angeordnet ist und die gasförmigen Bestandteile nicht gegen ihre Auftriebskraft nach unten gefördert werden müssen. Das Mitreißen des Gases wird ebenfalls durch das Vermeiden von senkrecht nach unten orientierten Dampfleitungen bis zum Kondensator unterstützt.
  • Das Entfernen der gasförmigen Bestandteile aus dem Arbeitsmedium erfolgt bevorzugt direkt nach dem Kondensator durch den Einbau des Blasenabscheiders. Eine der Hauptaufgaben des Blasenabscheiders besteht darin, die abgeschiedenen Bestandteile der Gasblasen möglichst vom Fluidstrom des Arbeitsmediums zu trennen, um ein Rücklösen in den Fluidstrom wirkungsvoll zu unterdrücken, wie oben schon beschrieben wurde. Typischerweise ist hierfür direkt oberhalb des Blasenabscheiders das Sammlervolumen angeordnet, das die abgeschiedenen Gasblasen aufnimmt.
  • Die Füllstandssensoren im Sammlervolumen erkennen abgeschiedene Luft bzw. abgeschiedenes Gas und signalisieren der Systemsteuerung einen Entlüftungsbedarf. Je nach Größe des Sammlervolumens können abgeschiedene Gasmengen zwischengespeichert werden, ohne dass sofort entlüftet werden muss. Dadurch kann auf für die Systementlüftung günstige Betriebszustände des Abwärmerückgewinnungssystems gewartet werden. Bei Vorliegen günstiger Betriebszustände wird das Ventil geöffnet und das im Sammlervolumen enthaltene Gas entweicht.
  • Voraussetzung für ein Entweichen des Gases aus dem Sammlervolumen ist ein treibender Druckunterschied vom Sammlervolumen in die Umgebung oder in das nachgeschaltete Tankvolumen, sowie ein Nachfließen von Arbeitsmedium aus dem Kreislauf in das Sammlervolumen. Dieses nachfließende Arbeitsmedium kann sowohl aus dem mit flüssiger Phase gefüllten hinteren Kondensatorbereich oder auch aus einem Sammelbehälter stammen, der in der Nähe des Blasenabscheiders mit dem Abwärmerückgewinnungssystem verbunden ist, vorzugsweise stromaufwärts des Blasenabscheiders an den Kreislauf gekoppelt ist.
  • Eine tiefe Anordnung des Blasenabscheiders gegenüber dem Kondensator bzw. gegenüber dem Sammelbehälter ist vorteilhaft für das Abwärmerückgewinnungssystem und erleichtert die für die Entlüftung notwendige Fluidströmung durch den zusätzlichen hydrostatischen Druck im Arbeitsmedium. Dazu ist das Sammlervolumen bezüglich der Gravitationskraft unterhalb des in dem Kondensator ausgebildeten Fluidvolumens angeordnet. Vorzugsweise ist das Sammlervolumen bezüglich der Gravitationskraft auch unterhalb des Sammelbehälters bzw. unterhalb des Tankvolumens des Sammelbehälters angeordnet.
  • Ein im Abwärmerückgewinnungssystem angeordneter Sammelbehälter bietet die Möglichkeit, die abgeschiedenen gasförmigen Bestandteile in den Sammelbehälter zu leiten und so ein direktes Weglüften des Gases in die Umgebung zu vermeiden. Eine hohe Anordnung des Sammelbehälters im Systemaufbau ist deshalb sowohl hinsichtlich nachfließenden Arbeitsmediums aus dem Tankvolumen in den Kreislauf als auch hinsichtlich aufzunehmender Gase vorteilhaft.
  • Demzufolge verbindet in vorteilhaften Weiterbildungen eine Entlüftungsleitung den Blasenabscheider fluidisch mit dem Sammelbehälter.
  • Vorzugsweise verbindet weiterhin eine Verbindungsleitung den Sammelbehälter fluidisch mit dem Kreislauf. Vorzugsweise mündet die Verbindungsleitung dabei stromabwärts des Blasenabscheiders zurück in den Kreislauf.
  • Somit ist in vorteilhaften Ausführungen ein Fluidpfad parallel zu dem Kreislauf angeordnet: der Fluidpfad zweigt an dem Blasenabscheider von dem Kreislauf abzweigt und verläuft in Strömungsrichtung von dem Blasenabscheider über die Entlüftungsleitung zu dem Sammelbehälter und weiter über die Verbindungsleitung zurück zu dem Kreislauf.
  • Figurenliste
  • Im Nachfolgenden werden Ausführungsbeispiele der Erfindung unter Bezugnahme auf die beigefügten Zeichnungen näher beschrieben. Es zeigt:
    • 1 schematisch ein Abwärmerückgewinnungssystem einer Brennkraftmaschine, wobei nur die wesentlichen Bereiche dargestellt sind.
    • 2 schematisch einen entlüftungsoptimiertes Abwärmerückgewinnungssystem mit einem Blasenabscheider, wobei nur die wesentlichen Bereiche dargestellt sind.
    • 3 einen Schnitt durch einen Blasenabscheider eines Abwärmerückgewinnungssystems, wobei nur die wesentlichen Bereiche dargestellt sind.
  • Ausführungsformen der Erfindung
  • 1 zeigt ein Abwärmerückgewinnungssystem 100 einer Brennkraftmaschine 110. Der Brennkraftmaschine 110 wird Sauerstoff über eine Luftzufuhr 112 zugeführt; das nach dem Verbrennungsvorgang ausgestoßene Abgas wird durch eine Abgasleitung 111 aus der Brennkraftmaschine 110 abgeführt.
  • Das Abwärmerückgewinnungssystem 100 weist einen ein Arbeitsmedium führenden Kreislauf 100a auf, der in Flussrichtung des Arbeitsmediums eine Speisefluidpumpe 102, einen Verdampfer 103, eine Expansionsmaschine 104 und einen Kondensator 105 umfasst. Das Arbeitsmedium kann nach Bedarf über eine Stichleitung aus einem Sammelbehälter 101 und eine Ventileinheit 101a in den Kreislauf 100a eingespeist werden. Der Sammelbehälter 101 kann dabei alternativ auch in den Kreislauf 100a eingebunden sein, oder sogar entfallen, falls ein hermetisch dichtes Abwärmerückgewinnungssystem 100 vorliegt.
  • Der Verdampfer 103 ist an die Abgasleitung 111 der Brennkraftmaschine 110 angeschlossen, nutzt also die Wärmeenergie des Abgases der Brennkraftmaschine 110. Erfindungsgemäß ist ein Blasenabscheider 90 in dem Kreislauf 100a angeordnet bzw. an den Kreislauf 100a angeschlossen, im Ausführungsbeispiel der 1 zwischen der Speisefluidpumpe 102 und dem Verdampfer 103. Der Blasenabscheider 90 soll dabei bezüglich der Gravitationskraft unter dem Kondensator 105 angeordnet sein-
  • Die Funktionsweise des Abwärmerückgewinnungssystems 100 ist wie folgt: Flüssiges Arbeitsmedium wird durch die Speisefluidpumpe 102, gegebenenfalls aus dem Sammelbehälter 101, in den Verdampfer 103 gefördert und dort durch die Wärmeenergie des Abgases der Brennkraftmaschine 110 verdampft. Das verdampfte Arbeitsmedium wird anschließend in der Expansionsmaschine 104 unter Abgabe mechanischer Energie, beispielsweise an einen nicht dargestellten Generator oder an ein nicht dargestelltes Getriebe, entspannt. Anschließend wird das Arbeitsmedium im Kondensator 105 wieder verflüssigt und in den Sammelbehälter 101 zurückgeführt bzw. der Speisefluidpumpe 102 zugeführt.
  • Die Volumenverhältnisse der flüssigen und der gasförmigen Phase des Arbeitsmediums hängen unter anderem vom aktuellen Wärmeangebot in der Abgasleitung 111 und damit vom Arbeitspunkt der Brennkraftmaschine 110 ab, der sich je nach Fahrprofil sehr dynamisch ändern kann. Eine erhöhte Wärmezufuhr führt bei Abwärmerückgewinnungssystemen 100 mit konstantem Konstruktionsvolumen zu einer Druckerhöhung des Arbeitsmediums. Bei sogenannten druckausgeglichenen Systemen wird dabei die Volumenzunahme des Arbeitsmediums durch den Blasenabscheider 90 kompensiert. Der Blasenabscheider 90 nimmt Arbeitsmedium in seiner flüssigen bzw. flüssiggasförmigen Phase auf und verhindert dadurch einen Druckanstieg im System. Beim Absinken der Wärmezufuhr fließt dem System wieder Arbeitsmedium zu und ein Absinken des Systemdrucks unter Umgebungsdruck wird so verhindert.
  • Der Blasenabscheider 90 kann bei entsprechender Größe die Funktion des Sammelbehälters 101 mit übernehmen. In diesem Fall wird der Blasenabscheider 90 an der Anschlussstelle der Ventileinheit 101a montiert, in unterschiedlichen Ausführungen mit oder ohne Ventileinheit 101a. Unabhängig davon kann der Blasenabscheider 90 auch in weiteren alternativen Ausführungen auf der Niederdruckseite des Abwärmerückgewinnungssystems 100, also stromaufwärts der Speisefluidpumpe 102, angeordnet sein.
  • Für einen möglichst wartungsarmen Betrieb des Abwärmerückgewinnungssystems 100 über typische Service-Intervalle von mobilen Anwendungen - bei Nutzfahrzeugen beispielsweise 1 Jahr - darf dem Abwärmerückgewinnungssystem 100 über den Blasenabscheider 90 kein Arbeitsmedium oder nur eine unwesentliche Menge an Arbeitsmedium verloren gehen.
  • 2 zeigt schematisch die Anordnung der Komponenten des Abwärmerückgewinnungssystems 100 bezüglich der Gravitationskraft G. Die Speisefluidpumpe 102 für das Arbeitsmedium wird typischerweise tief angeordnet. Der nachfolgende Verdampfer 103 kann ebenfalls tief angeordnet werden. Die Hochdruckdampfleitung aus dem Verdampfer 103 als Bestandteil des Kreislaufs 100a führt zur hoch positionierten Expansionsmaschine 104. Der in Strömungsrichtung FLOW nachfolgend - also stromabwärts - angeordnete Kondensator 105 sollte ähnlich hoch wie die Expansionsmaschine 104 angeordnet sein, eine leicht tiefere Anordnung mit leichtem Rohrgefälle ist ebenfalls möglich.
  • Sehr vorteilhaft ist eine möglichst tiefe Anordnung des Blasenabscheiders 90 in der Fluidleitung des Kreislaufs 100a vom Kondensator 105 zur Speisefluidpumpe 102. Ein angebrachtes Sammlervolumen 91 des Blasenabscheiders 90 muss immer unterhalb eines Fluidvolumens 105a des Kondensators 105 angeordnet sein, so dass der Abstand a vom Fluidvolumen 105a zum Sammlervolumen 91 in Richtung der Gravitationskraft G verläuft.
  • Das Sammlervolumen 91 sollte vorzugsweise auch tiefer liegen als das Tankvolumen 101b eines optional vorhandenen Sammelbehälters 101, so dass der weitere Abstand b vom Tankvolumen 101b zum Sammlervolumen 91 in Richtung der Gravitationskraft G verläuft.
  • Die für das Nachfließen des Arbeitsmediums notwendige Verbindungsleitung 106 vom Sammelbehälter 101 zum Kreislauf 100a ist vorzugsweise zwischen dem Blasenabscheider 90 und der Speisefluidpumpe 102 angeordnet. Verbindungsleitung ist vorzugsweise mit einem möglichst kontinuierlichen Gefälle und mit möglichst kurzer Länge ausgeführt. Eine Entlüftungsleitung 92 von dem Sammlervolumen 91 zu dem Tankvolumen 101b ist vorzugsweise ebenfalls möglichst kurz und kontinuierlich aufsteigend ausgeführt.
  • 3 zeigt schematisch den Aufbau des Blasenabscheiders 90 in einer bevorzugten Ausführung.
  • In den typischerweise bezüglich der Gravitationskraft G horizontal angeordneten Blasenabscheider 90 tritt von rechts durch den Eintrittsquerschnitt 3a ein Fluidstrom mit Gasblasen 2 aus der Rohrleitung des Kreislaufs 100a ein. Durch die Querschnittsvergrößerung des Abscheidergehäuses 90a verglichen mit dem Eintrittsquerschnitt 3a verlangsamt sich der Fluidstrom des Arbeitsmediums im Blasenabscheider 90 und im Arbeitsmedium enthaltene Gasblasen könnend dadurch nach oben aufsteigen.
  • Vorzugsweise erschwert ein im Abscheidergehäuse 90a ausgebildetes Austrittslabyrinth 4 den abgeschiedenen Gasblasen den Wiedereintritt in den Austrittsquerschnitt 3b des Kreislaufs 100a mit hoher Strömungsgeschwindigkeit. Das Austrittslabyrinth 4 ist dabei so angeordnet, dass die Gasblasen entgegen der Gravitationskraft G im Abscheidergehäuse 90a nach oben aufsteigen und dadurch vom Austrittsquerschnitt 3b fern gehalten werden, während das flüssige Arbeitsmedium in Richtung des Austrittsquerschnitts 3b weiterströmt. Im oberen Bereich des Blasenabscheiders 90 befindliches Gas tritt durch einen Verbindungskanal 5 unmittelbar in ein separates Luftsammlergehäuse 6 mit dem darin ausgebildeten Sammlervolumen 91 ein. Das Gas sammelt sich daraufhin im oberen Bereich des Sammlervolumens 91 und ein Fluidspiegel 7 sinkt ab, da sich das darunter befindliche Gesamtvolumen aufgrund des Abscheidens des Gases verringert hat. In alternativen Ausführungen können das Abscheidergehäuse 90a und das Luftsammlergehäuse 6 auch einstückig ausgebildet sein.
  • Am Luftsammlergehäuse 6 bzw. im Sammlervolumen 91 angeordnete Füllstandssensoren 9 erkennen den Fluidfüllstand - also das Niveau des Fluidspiegels 7 - und melden einer übergeordneten Steuereinheit Entlüftungsbedarf. Das Entlüften des Abwärmerückgewinnungssystems 100 kann durch ein schaltbares Ventil 10 in einer Gasaustrittsöffnung 8 des Luftsammlergehäuses 6 gesteuert werden. Alternativ kann das Ventil 10 auch als Rückschlagventil ausgeführt sein, das ab einem bestimmten Druck des Gasvolumens stromaufwärts des Ventils 10 in der Gasaustrittsöffnung öffnet.
  • Vorteilhafterweise ist die Gasaustrittsöffnung 8 bezüglich der Gravitationskraft G am höchsten Punkt des Luftsammlergehäuses 6 ausgebildet. Vorzugsweise mündet die Gasaustrittsöffnung 8 in die Entlüftungsleitung 92 zum Sammelbehälter 101. Alternativ kann die Entlüftungsleitung 92 jedoch beispielsweise auch in die Umgebung bzw. in die Atmosphäre münden.

Claims (14)

  1. Abwärmerückgewinnungssystem (100) mit einem ein Arbeitsmedium führenden Kreislauf (100a), wobei der Kreislauf (100a) in Flussrichtung des Arbeitsmediums eine Speisefluidpumpe (102), einen Verdampfer (103), eine Expansionsmaschine (104) und einen Kondensator (105) umfasst, wobei in dem Kreislauf (100a) stromabwärts des Kondensators (105) ein Blasenabscheider (90) zur Abscheidung von Gasblasen aus dem Arbeitsmedium angeordnet ist, wobei in dem Blasenabscheider (90) ein Sammlervolumen (91) ausgebildet ist, dadurch gekennzeichnet, dass der Blasenabscheider (90) ein Abscheidergehäuse (90a) aufweist, wobei in dem Abscheidergehäuse (90a) ein Eintrittsquerschnitt (3a) und ein Austrittsquerschnitt (3b) zur Anbindung an den Kreislauf (100a) ausgebildet sind, wobei der Einstrittsquerschnitt (3a) und der Austrittsquerschnitt (3b) bezüglich einer Gravitationskraft (G) unterhalb des Sammlervolumens (91) angeordnet sind.
  2. Abwärmerückgewinnungssystem (100) nach Anspruch 1 dadurch gekennzeichnet, dass der Strömungsquerschnitt durch das Abscheidergehäuse (90a) größer ist als durch den Eintrittsquerschnitt (3a).
  3. Abwärmerückgewinnungssystem (100) nach Anspruch 1 oder 2 dadurch gekennzeichnet, dass in dem Blasenabscheider (90) ein Austrittslabyrinth (4) zur Abscheidung von Gasblasen (2) aus dem Kreislauf (100a) angeordnet ist.
  4. Abwärmerückgewinnungssystem (100) nach einem der Ansprüche 1 bis 3 dadurch gekennzeichnet, dass an dem Abscheidergehäuse (90a) eine Gasaustrittsöffnung (8) ausgebildet ist, wobei vorzugsweise die Gasaustrittsöffnung (8) bezüglich der Gravitationskraft (G) am obersten Punkt des Abscheidergehäuses (90a) angeordnet ist.
  5. Abwärmerückgewinnungssystem (100) nach Anspruch 4 dadurch gekennzeichnet, dass die Gasaustrittsöffnung (8) in eine Entlüftungsleitung (92) des Abwärmerückgewinnungssystems (100) mündet.
  6. Abwärmerückgewinnungssystem (100) nach Anspruch 4 oder 5 dadurch gekennzeichnet, dass in der Gasaustrittsöffnung (8) oder in der Entlüftungsleitung (92) ein Ventil (10) angeordnet ist, wobei das Ventil (10) vorzugsweise schaltbar ist.
  7. Abwärmerückgewinnungssystem (100) nach einem der Ansprüche 1 bis 6 dadurch gekennzeichnet, dass in dem Abscheidergehäuse (90a) zumindest ein Füllstandssensor (9) zur Messung des Niveaus eines Fluidspiegels (7) des Arbeitsmediums angeordnet ist.
  8. Abwärmerückgewinnungssystem (100) nach einem der Ansprüche 1 bis 7 dadurch gekennzeichnet, dass der Blasenabscheider (90) zwischen dem Kondensator (105) und der Speisefluidpumpe (102) angeordnet ist.
  9. Abwärmerückgewinnungssystem (100) nach einem der Ansprüche 1 bis 8 dadurch gekennzeichnet, dass das Sammlervolumen (91) bezüglich der Gravitationskraft (G) unterhalb eines in dem Kondensator (105) ausgebildeten Fluidvolumens (105a) angeordnet ist.
  10. Abwärmerückgewinnungssystem (100) nach einem der Ansprüche 1 bis 9 dadurch gekennzeichnet, dass das Abwärmerückgewinnungssystem (100) einen Sammelbehälter (101) zum Sammeln des Arbeitsmediums aufweist.
  11. Abwärmerückgewinnungssystem (100) nach Anspruch 10 dadurch gekennzeichnet, dass der Blasenabscheider (90) bezüglich der Gravitationskraft (G) unterhalb des Sammelbehälters (101) angeordnet ist.
  12. Abwärmerückgewinnungssystem (100) nach einem der Ansprüche 10 oder 11 dadurch gekennzeichnet, dass eine Entlüftungsleitung (92) den Blasenabscheider (90) fluidisch mit dem Sammelbehälter (101) verbindet.
  13. Abwärmerückgewinnungssystem (100) nach Anspruch 12 dadurch gekennzeichnet, dass eine Verbindungsleitung (106) den Sammelbehälter (101) fluidisch mit dem Kreislauf (100a) verbindet.
  14. Abwärmerückgewinnungssystem (100) nach Anspruch 13 dadurch gekennzeichnet, dass ein Fluidpfad parallel zu dem Kreislauf (100a) angeordnet ist, wobei der Fluidpfad an dem Blasenabscheider (90) von dem Kreislauf (100a) abzweigt, wobei der Fluidpfad in Strömungsrichtung von dem Blasenabscheider (90) über die Entlüftungsleitung (92) zu dem Sammelbehälter (101) und weiter über die Verbindungsleitung (106) zurück zu dem Kreislauf (100a) verläuft.
DE102016224284.9A 2016-12-06 2016-12-06 Abwärmerückgewinnungssystem Pending DE102016224284A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102016224284.9A DE102016224284A1 (de) 2016-12-06 2016-12-06 Abwärmerückgewinnungssystem
PCT/EP2017/075163 WO2018103909A1 (de) 2016-12-06 2017-10-04 Abwärmerückgewinnungssystem

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016224284.9A DE102016224284A1 (de) 2016-12-06 2016-12-06 Abwärmerückgewinnungssystem

Publications (1)

Publication Number Publication Date
DE102016224284A1 true DE102016224284A1 (de) 2018-06-07

Family

ID=60138346

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102016224284.9A Pending DE102016224284A1 (de) 2016-12-06 2016-12-06 Abwärmerückgewinnungssystem

Country Status (2)

Country Link
DE (1) DE102016224284A1 (de)
WO (1) WO2018103909A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109441579B (zh) * 2018-10-17 2024-01-09 郑州赛为机电设备有限公司 一种电站弃热回收装置及节能系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002115506A (ja) * 2000-10-11 2002-04-19 Honda Motor Co Ltd ランキンサイクル装置
WO2012076132A1 (de) * 2010-12-08 2012-06-14 Daimler Ag Verfahren und vorrichtung zur entlüftung eines abwärmenutzungskreislaufs in einem fahrzeug
DE102015209067A1 (de) * 2015-05-18 2016-11-24 Mahle International Gmbh Behältnis für eine Abwärmenutzungseinrichtung

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4683722A (en) * 1986-05-20 1987-08-04 Sundstrand Corporation Charging and ejection system for rankine apparatus
JP4735615B2 (ja) * 2007-07-28 2011-07-27 三浦工業株式会社 蒸気ボイラ装置
DE102009010020B4 (de) * 2009-02-21 2016-07-07 Flagsol Gmbh Speisewasserentgaser eines solarthermischen Kraftwerks
FR2985767B1 (fr) * 2012-01-18 2019-03-15 IFP Energies Nouvelles Dispositif de controle d'un fluide de travail dans un circuit ferme fonctionnant selon un cycle de rankine et procede utilisant un tel dispositif

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002115506A (ja) * 2000-10-11 2002-04-19 Honda Motor Co Ltd ランキンサイクル装置
WO2012076132A1 (de) * 2010-12-08 2012-06-14 Daimler Ag Verfahren und vorrichtung zur entlüftung eines abwärmenutzungskreislaufs in einem fahrzeug
DE102015209067A1 (de) * 2015-05-18 2016-11-24 Mahle International Gmbh Behältnis für eine Abwärmenutzungseinrichtung

Also Published As

Publication number Publication date
WO2018103909A1 (de) 2018-06-14

Similar Documents

Publication Publication Date Title
DE102013205525A1 (de) Ventingsystem für das Containment einer kerntechnischen Anlage
EP2979274A1 (de) Ventingsystem für das containment einer kerntechnischen anlage
EP2946961B1 (de) Verfahren zur absaugung von flüssigem kraftstoff aus einer zur abscheidung des flüssigen kraftstoffs dienenden flüssigkeitsfalle in einem kraftstofftank eines kraftfahrzeugs, sowie kraftstoffanlage für ein kraftfahrzeug
DE102014226508A1 (de) Klimaanlage
DE102016224284A1 (de) Abwärmerückgewinnungssystem
EP4011474A1 (de) Austreibung entzündlicher gase aus einem heiz/solekreislauf
EP3004770B1 (de) Kondensat und blitz-dampfrückgewinnungssystem
CH710814A2 (de) Vorrichtung zur Entgasung einer Flüssigkeit.
DE102014013628A1 (de) Wasserabscheider mit durch Schwimmerventil gesichertem Wasserüberlauf
DE102007016765A1 (de) Verfahren zum Entleeren eines flüssigen Kraftstoff zurückhaltenden Kraftstoffauffanggefäßes einer Tankentlüftungsanlage und Tankentlüftungsanlage
WO2022156913A1 (de) Abscheideeinrichtung, insbesondere für eine wärmepumpenanlage
DE102011118837A1 (de) Kühlmittelkreislauf einer Brennkraftmaschine sowie ein für diesen Kühlmittelkreislauf bestimmter Ausgleichsbehälter
DE102017100180A1 (de) Kondensatabscheider für Abgasmessanlagen
CN110732222A (zh) 液态调压装置
DE202021004121U1 (de) Abscheideeinrichtung, insbesondere für eine Wärmepumpenanlage
EP2845635B1 (de) Entlüfter
EP3538811B1 (de) Kondensatabführsystem für ein abgasmessgerät
DE102013106329B4 (de) Verfahren und Anordnung zum Evakuieren eines Rohrleitungssystems
DE102017204028A1 (de) Wärmetauscheinheit
CN208587548U (zh) 一种自动放散水封器
JPS5842778Y2 (ja) ドレン回収処理装置
CN109368978A (zh) 油泥油土处理系统用阻火调压装置
AT513751A4 (de) Vorrichtung zur Rohrwendelentlüftung
SU872907A2 (ru) Деаэрационно-питательна установка
DE102013201332A1 (de) Kühlsystem einer Fahrzeugbatterie

Legal Events

Date Code Title Description
R163 Identified publications notified
R012 Request for examination validly filed