DE102016223329A1 - Ladekabel mit Flexibilität bei niedrigen Temperaturen und Ölresistenz - Google Patents

Ladekabel mit Flexibilität bei niedrigen Temperaturen und Ölresistenz Download PDF

Info

Publication number
DE102016223329A1
DE102016223329A1 DE102016223329.7A DE102016223329A DE102016223329A1 DE 102016223329 A1 DE102016223329 A1 DE 102016223329A1 DE 102016223329 A DE102016223329 A DE 102016223329A DE 102016223329 A1 DE102016223329 A1 DE 102016223329A1
Authority
DE
Germany
Prior art keywords
phr
amount
charging cable
antioxidant
lubricant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102016223329.7A
Other languages
English (en)
Inventor
Yun Jae Jung
Jung Woo Park
Seong Geun Park
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyungshin Cable Co Ltd
Hyundai Motor Co
Kia Corp
Original Assignee
Kyungshin Cable Co Ltd
Hyundai Motor Co
Kia Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyungshin Cable Co Ltd, Hyundai Motor Co, Kia Motors Corp filed Critical Kyungshin Cable Co Ltd
Publication of DE102016223329A1 publication Critical patent/DE102016223329A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D123/00Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers
    • C09D123/02Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D123/00Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers
    • C09D123/02Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D123/04Homopolymers or copolymers of ethene
    • C09D123/08Copolymers of ethene
    • C09D123/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C09D123/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D123/00Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers
    • C09D123/02Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D123/10Homopolymers or copolymers of propene
    • C09D123/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D123/00Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers
    • C09D123/02Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D123/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D153/00Coating compositions based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D153/00Coating compositions based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • C09D153/02Vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D153/00Coating compositions based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • C09D153/02Vinyl aromatic monomers and conjugated dienes
    • C09D153/025Vinyl aromatic monomers and conjugated dienes modified
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/18Fireproof paints including high temperature resistant paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K3/1006Materials in mouldable or extrudable form for sealing or packing joints or covers characterised by the chemical nature of one of its constituents
    • C09K3/1021Polyurethanes or derivatives thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/302Polyurethanes or polythiourethanes; Polyurea or polythiourea
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/307Other macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/308Wires with resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/46Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes silicones
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/04Flexible cables, conductors, or cords, e.g. trailing cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/292Protection against damage caused by extremes of temperature or by flame using material resistant to heat
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/295Protection against damage caused by extremes of temperature or by flame using material resistant to flame
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/202Applications use in electrical or conductive gadgets use in electrical wires or wirecoating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2003/1034Materials or components characterised by specific properties
    • C09K2003/1078Fire-resistant, heat-resistant materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2003/1087Materials or components characterised by specific uses
    • C09K2003/1093Cables
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)
  • Insulated Conductors (AREA)

Abstract

Ein Ladekabel ist gegeben. Das Ladekabel enthält Kabel zur Stromzufuhr, ein Kabel zur Signalübertragung und einen Mantel, und zeigt erheblich verbesserte mechanische Eigenschaften wie Flexibilität bei niedrigen Temperaturen, Abriebbeständigkeit, erheblich verbesserte chemische Eigenschaften, wie Ölresistenz und erheblich verbesserte elektrische Eigenschaften wie Isolierwiderstand. Darüber hinaus, hat das Ladekable verbesserte elektrische, mechanische und chemische Eigenschaften durch die Verbesserung des Isolierwiderstands, Hitzeresistenz und Flexibilität bei niedrigen Temperaturen der Drähte, im Vergleich zu konventionellen Drähten beschichtet mit Polyvinylchlorid (PVC).

Description

  • TECHNISCHES FELD
  • Die vorliegende Erfindung bezieht sich auf ein Ladekabel, welches Drähte enthalt, dazu konfiguriert Strom zuzuführen, einen Draht um ein Signal zu übertragen und einen Mantel. Das Ladekabel der Erfindung kann durch passende neue Beschichtungsmischungen und -harze erheblich verbesserte mechanische Eigenschaften wie Flexibilität bei niedrigen Temperaturen, und Abriebbeständigkeit, erheblich verbesserte chemische Eigenschaften, wie Ölresistenz und erheblich verbesserte elektrische Eigenschaften wie Isolierwiderstand zeigen, im Vergleich zu konventionellen Drähten beschichtet mit Polyvinylchlorid (PVC).
  • HINTERGRUND
  • Im Allgemeinen, in Übereinstimmung mit der globalen Stärkung von Umweltregulierungen und Stromsparmaßnahmen, wurde die Entwicklung und Verfügbarkeit von umweltfreundlichen Fahrzeugen auf der Welt graduell weiter verbreitet. In Übereinstimmung mit der Verfügbarkeit von Elektrofahrzeugen, gibt es eine Nachfrage für die Expansion von Ladestationen und die Verfügbarmachung von Ladekabeln.
  • Das Laden eines Elektrofahrzeuges kann beginnen, wenn ein Ladekabel angebracht an dem Elektrofahrzeug mit dem Ladegerät der Ladestation verbunden wird. Solch ein Elektrofahrzeugladesystem benötigt hohe Flexibilität und Sicherheit gegen verschiedene Fahrzeugöle, da ein Benutzer das Ladekabel tragen soll und das Ladekabel in einer Art und Weise verwenden soll um es am Elektrofahrzeug anzubringen. Des Weiteren kann das Laden eines Elektrofahrzeuges über längere Zeit unter Bedingungen unter null Grad zu Problemen bei der Kälteresistenz und der Flexibilität führen.
  • Dementsprechend gibt es eine Nachfrage für Ladekabel, welche angenehm für die Benutzer sind und eine exzellente Flexibilität, Ölresistenz, mechanische Eigenschaften und Flammhemmung zeigen. In Übereinstimmung mit umweltfreundlichen Trends, sollen die Materialen umweltfreundliche flammhemmende Systeme sein.
  • Zusätzlich, da Drahthersteller durch höchstmögliche Extrusionsgeschwindigkeit die Produktionseffizienz erhöht haben, sollten Beschichtungsmaterialien für Fahrzeugdrähte Extrusionsverarbeitbarkeit zusätzlich zu den vorher genannten Eigenschaften haben.
  • Da bromierte Flammschutzmittel (DBDPO), welche Polymeren die für Drähte verwendet werden überlegene Flammhemmung gewähren, dioxinerzeugende Substanzen freisetzen können, ist deren Verwendung in manchen europäischen Nationen verboten. Stattdessen können Metallhydroxide wie Aluminiumhydroxid (Al(OH)3) oder Magnesiumhydroxid (Mg(OH)2) oder phosphor-basierte Flammschutzmittel als halogenfreie Materialien verwendet werden.
  • In Anbetracht des globalen Trends zur Einschränkung von Substanzen welche die Umwelt beeinflussen, wie Halogene und Schwermetalle, wurde die Verwendung halogenfreier Flammschutzmittel bestärkt. Zusätzlich gibt es eine dringende Nachfrage nach Mischungen zur Entwicklung von umweltfreundlichen Mischungen für Drahtbeschichtungen mit exzellenter Flexibilität bei niedrigen Temperaturen, Ölresistenz und mechanischen Eigenschaften, und Ladekabeln welche diese verwenden.
  • Die oben genannten Informationen in diesem Hintergrund-Abschnitt sind nur zur Verbesserung des Verständnisses des Hintergrunds der Erfindung und können daher Informationen enthalten, die nicht den in diesem Land einer Fachperson bereits bekannten Stand der Technik bilden.
  • ZUSAMMENFASSUNG DER ERFINDUNG
  • In bevorzugten Ausgestaltungen, kann die vorliegende Erfindung Beschichtungsmischungen bereitstellen, welche respektive für die Produktion von Ladekabeln enthaltend eines Drahtes zur Stromzufuhr, eines Drahtes zur Signalübertragung und einem Mantel verwendet werden können. Als solches, können Ölresistenz, Isolierwiderstand, Hitzeresistenz, Flexibilität bei niedrigen Temperaturen, mechanische Eigenschaften und ähnliches der Ladekabel bedeutend verbessert werden, im Vergleich zu konventionellen PVC Produkten, durch die Bestimmung bestimmter Harze als Hauptharz und Kontrolle der Menge des verwendeten Harzes um Flexibilität bei niedrigen Temperaturen zu verbessern, dadurch ermöglichend Ladekabel mit verbesserten elektronischen und mechanischen Eigenschaften.
  • In einer Ausgestaltung ermöglicht die vorliegende Erfindung ein Ladekabel, mit Flexibilität bei niedrigeren Temperaturen und Ölresistenz, welches einen Draht zur Stromzufuhr, einen Draht zur Signalübertragung und einen Mantel enthält.
  • In einer bevorzugten Ausgestaltung kann das Ladekabel mit überlegener Flexibilität bei niedriger Temperatur und Ölresistenz einen Draht, konfiguriert um Strom zuzuführen umfassen, beschichtet mit einer Beschichtungsmischung (A), enthaltend in (a1) eine Menge von ca. 20 bis 80 parts per hundred rubber (phr) Ethylen-Propylen Gummi (EPG) mit einer Mooney Viskosität von ca. 20 bis 60; (a2) eine Menge von ca. 10 bis 80 phr eines Polyolefin Harzes (PO); (a3) eine Menge von ca. 10 bis 50 phr eines Füllstoffes; (a4) eine Menge von ca. 1 bis 10 phr einer Vernetzungshilfe; (a5) eine Menge von ca. 0,1 bis 5 phr eines Antioxidans; und (a6) eine Menge von ca. 0,1 bis 5 phr eines Schmiermittels; ein Kabel konfiguriert zur Signalübertragung beschichtet mit einer Beschichtungsmischung (B), umfassend (b1) eine Menge von ca. 20 bis 80 phr Polypropylen (PP), (b2) eine Menge von ca. 20 bis 80 phr von thermoplastischem Styrol Elastomer; (b3) eine Menge von ca. 10 bis 50 phr eines Füllstoffes, (b4) eine Menge von ca. 0,1 bis 5 phr eines Antioxidans, und (b5) eine Menge von ca. 0,1 bis 5 phr eines Schmiermittels; und einen Mantel, beschichtet mit einer Mantelmischung für Drähte (C), enthaltend (c1) eine Menge von ca. 50 bis 90 phr eines thermoplastischen Polyurethans (TPU) mit einem Schmelzindex (SI) von ca. 30 bis 50 g/10 min, (c2) eine Menge von ca. 10 bis 50 phr von thermoplastischem Styrol Elastomer mit einem Schmelzindex (SI) von ca. 1 bis 5 g/10 min, (c3) eine Menge von ca. 10 bis 70 phr eines Phosphor-basiertem Flammschutzmittels, (c4) eine Menge von ca. 1 bis 10 phr eines Flammschutzhilfsmittel, (c5) eine Menge von 0,1 bis 5 phr eines Antioxidans, (c6) eine Menge von 0,1 bis 5 phr eines UV Absorbers und eines Stabilisators, und (c7) eine Menge von 0,1 bis 5 phr eines Schmiermittels.
  • Der Füllstoff (a3) oder der Füllstoff (b3) können passenderweise eines oder mehr ausgewählt aus der Gruppe bestehend aus SiO2, CaCO3, Mg(OH)2 und Hydrotalkit umfassen.
  • Der Füllstoff (a3) oder der Füllstoff (b3) können Silan beschichtet auf einer Oberfläche davon sein.
  • Der Füllstoff (a3) oder der Füllstoff (b3) können passenderweise eine mittlere Teilchengröße von ca. 0,1 bis 1 μ haben.
  • Die Vernetzungshilfe (a4) kann passenderweise eines oder mehr ausgewählt aus der Gruppe bestehend aus Triallylisocyanurat (TAIC), Triallylcyanurat (TAC) und Trimethylolpropantrimethylacrylat (TMPTMA) umfassen.
  • Das Antioxidans (a5) oder das Antioxidans (b4) können passenderweise ein Phenol-basiertes Antioxidans, einen Metalldeaktivator, oder eine Mischung davon umfassen.
  • Das Schmiermittel (a6) oder das Schmiermittel (b5) kann passenderweise eines oder mehr ausgewählt aus der Gruppe bestehend aus Fluor-basierten, Silikon-basierten, Amid-basierten, Zink-basierten oder Fettsäure-basierten Schmiermitteln umfassen.
  • Das thermoplastische Styrol Elastomer (b2) kann passenderweise eines oder mehr ausgewählt aus der Gruppe bestehend aus Styrol-Ethylen-Butylen-Styrol (SEBS), Styrol-Butadien-Styrol Blockcopolymer (SBS), und Styrol-Isopren-Styrol Blockcopolymer (SIS) umfassen.
  • Das thermoplastische Styrol Elastomer (c2) kann bevorzugt Styrol-Ethylen-Butylen-Styrol (SEBS) sein.
  • Das Antioxidans (c5) kann passenderweise eines oder mehr ausgewählt aus der Gruppe bestehend einem Phenol-basiertem Antioxidans, einem Phosphor-basiertem Antioxidans und einem Hydrolysestabilisator umfassen.
  • Das Schmiermittel (c7) kann passenderweise ein Montanwachs-basiertes Schmiermittel, ein Silikon-basiertes Schmiermittel, oder eine Mischung davon umfassen.
  • Des Weiteren bereitgestellt ist ein Fahrzeugteil, welcher ein Ladekabel wie hierin beschrieben umfassen kann.
  • Noch darüber hinaus ist ein Fahrzeug bereitgestellt, welches ein Ladekabel wie hierin beschrieben umfassen kann.
  • In einer weiteren Ausgestaltung liefert die vorliegende Erfindung einen Draht zur Stromzufuhr umfassend einer Beschichtungsmischung (A). Bevorzugt kann die Beschichtungsmischung (A) umfassen: eine Menge von ca. 20 bis 80 parts per hundred rubber (phr) von Ethylen-Propylen Gummi (EPG) mit einer Mooney Viskosität von ca. 20 bis 60; eine Menge von ca. 10 bis 80 phr eines Polyolefin Harzes (PO); eine Menge von ca. 10 bis 50 phr eines Füllstoffes; eine Menge von ca. 1 bis 10 phr einer Vernetzungshilfe; eine Menge von ca. 0,1 bis 5 phr eines Antioxidans; und eine Menge von ca. 0,1 bis 5 phr eines Schmiermittels.
  • In einer weiteren Ausgestaltung, stellt die vorliegende Erfindung einen Draht zur Signalübertragung bereit, umfassend einer Beschichtungsmischung (B). Bevorzugt kann die Beschichtungsmischung (B) umfassen: eine Menge von ca. 20 bis 80 phr Polypropylen (PP); eine Menge von ca. 20 bis 80 phr von thermoplastischem Styrol Elastomer; eine Menge von ca. 10 bis 50 phr eines Füllstoffes; eine Menge von ca. 0,1 bis 5 phr eines Antioxidans; und eine Menge von ca. 0,1 bis 5 phr eines Schmiermittels.
  • In einer weiteren Ausgestaltung, stellt die vorliegende Erfindung einen für ein Ladekabel bereit, umfassend einer Beschichtungsmischung (C). Bevorzugt kann die Beschichtungsmischung (C) umfassen: eine Menge von ca. 50 bis 90 phr eines thermoplastischen Polyurethans (TPU) mit einem Schmelzindex (SI) von ca. 30 bis 50 g/10 min; eine Menge von ca. 10 bis 50 phr von thermoplastischem Styrol Elastomer mit einem Schmelzindex (SI) von ca. 1 bis 5 g/10 min; eine Menge von ca. 10 bis 70 phr eines Phosphor-basiertem Flammschutzmittels; eine Menge von ca. 1 bis 10 phr eines Flammschutzhilfsmittel; eine Menge von 0,1 bis 5 phr eines Antioxidans; eine Menge von 0,1 bis 5 phr eines UV Absorbers und eines Stabilisators; und eine Menge von 0,1 bis 5 phr eines Schmiermittels.
  • In anderen Ausgestaltungen können die verschiedenen Mischungen inklusive der Beschichtungsmischung (A), der Beschichtungsmischung (B), und der Beschichtungsmischung (C) bestehen im Essentiellen aus, essentiell bestehen aus oder bestehen aus den Komponenten wie oben beschrieben.
  • Weitere Ausgestaltungen und bevorzugte Ausprägungsformen der Erfindung sind unterhalb diskutiert.
  • KURZE BESCHREIBUNG DER ZEICHNUNGEN
  • Die obigen und andere Merkmale der vorliegenden Erfindung werden nun im Detail beschrieben in Bezug auf bestimmte beispielhafte Ausführungen davon, illustriert in den beigefügten Zeichnungen, welche hierin weiter unten gegeben sind, ausschließlich als Illustration und sind daher nicht limitierend für die vorliegende Erfindung, wobei:
  • 1A zeigt einen Querschnitt eines Ladekabels von Vergleichsbeispiel 4 und 1B zeigt einen Querschnitt eines beispielhaften Ladekabels von Beispiel 4(b) nach einem Ausführungsbeispiel der vorliegenden Erfindung.
  • Es soll verstanden werden, dass die angehängten Zeichnungen nicht notwendigerweise im Maßstab sind, und eine etwas vereinfachte Repräsentation von verschiedenen bevorzugten Eigenschaften der Grundprinzipien der vorliegenden Erfindung darstellen. Die spezifischen Designmerkmale der vorliegenden Erfindung wie hierin aufgeführt, inklusive, zum Beispiel, spezifische Dimensionen, Orientierungen, Orte, und Formen werden zum Teil von der bestimmten angedachten Verwendung und Anwendungsumgebung bestimmt.
  • In den Figuren, beziehen sich Bezugszeichen auf die gleichen oder äquivalenten Teile der vorliegenden Erfindung durchgehend durch verschiedene Figuren der Zeichnung.
  • DETAILLIERTE BESCHREIBUNG
  • Die hierin verwendete Terminologie ist ausschließlich zum Zweck der Beschreibung der bestimmten Ausführungsbeispiele und ist nicht als limitierend für die Erfindung gedacht. Wie hierin verwendet, sollen die Singularformen „ein”, „eine”, „einer” und „der”, „die”, „das” auch Pluralform enthalten, außer der Kontext besagt klar anderes. Es ist weiter zu verstehen, dass die Terme „umfassen” und/oder „umfassend”, wenn in dieser Spezifikation verwendet, die Anwesenheit der genannten Merkmale, Zahlen, Schritte, Operationen, Elemente, und/oder Komponenten angeben, aber die Anwesenheit von einem oder mehreren anderen Merkmalen, Zahlen, Schritten, Operationen, Elementen, Komponenten und/oder Gruppen davon nicht ausschließen. Wie hierin verwendet, inkludiert der Term „und/oder” jede und alle Kombinationen von einem oder mehreren Listenelementen.
  • Außer wenn explizit angegeben oder offensichtlich aus dem Kontext, ist der hierin verwendete Begriff „ca.” so zu verstehen, dass es sich um einen Schwankungsbereich innerhalb der normalen Toleranz der Technik handelt, zum Beispiel innerhalb von 2 Standardabweichungen vom Mittel. „Ca.” kann verstanden werden als innerhalb von 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.1%, 0.05%, oder 0.01% des angegebenen Wertes. Außer es ist klar anders ersichtlich aus dem Kontext, alle numerischen Werte hierin verstehen sich um den Begriff „ca.” erweitert.
  • Die Terme „Fahrzeug” oder „Fahrzeugs...” oder ähnliche Begriffe wie sie hierin verwendet werden sind zu verstehen, dass sie alle motorisierten Fahrzeuge im Allgemeinen enthalten, einschließlich Geländelimousinen (SUV), Busse, Lastkraftfahrzeuge, diverse kommerzielle Fahrzeuge, Wasserfahrzeuge einschließlich einer Vielfalt an Booten und Schiffen, Flugzeuge, und ähnliches, auch einschließlich Hybridfahrzeuge, elektrisch betriebene Fahrzeuge, einsteckbare hybrid-elektronische Fahrzeuge, Wasserstoff betriebene Fahrzeuge und von anderen alternativen Kraftstoffen betriebene Fahrzeuge (zum Beispiel Kraftstoffe die aus anderen Ressourcen als Erdöl gewonnen werden). Wie hierin bezeichnet, ein Hybridfahrzeug ist ein Fahrzeug, das zwei oder mehr Energiequellen hat, zum Beispiel sowohl Benzin-betriebene wie auch elektrisch-betriebene Fahrzeuge.
  • Im Folgenden wird sich jetzt im Detail auf verschiedene Ausführungen der vorliegenden Erfindung bezogen, Beispiele davon sind in den beiliegenden Zeichnungen dargestellt und unterhalb beschrieben. Obwohl die Erfindung in Verbindung mit den beispielhaften Ausführungen beschrieben wird, ist zu verstehen, dass die vorliegende Beschreibung nicht durch diese Ausführungsbeispiele limitiert werden soll. Im Gegenteil, die Erfindung soll nicht nur die Ausführungsbeispiele betreffen, sondern auch verschiedene Alternativen, Modifikationen, Äquivalente und andere Ausführungen umfassen, welche im Geist und Umfang der Erfindung, wie in den angehängten Ansprüchen definiert, enthalten sein können.
  • Im Weiteren, sind die Ausführungen der vorliegenden Erfindung im Detail beschrieben in Bezug auf die beigelegten Zeichnungen um es einer Fachperson zu ermöglichen, die vorliegende Erfindung einfach nacharbeiten zu können.
  • Die vorliegende Erfindung betrifft eine beschichtetes Ladekabel, enthaltend einen Draht zur Stromzufuhr, einen Draht zur Signalübertragung und einen Mantel. Bevorzugt, kann der Draht zur Stromzufuhr mit einer Beschichtungsmischung (A) beschichtet sein, der Draht zur Signalübertragung mit einer Beschichtungsmischung (B) beschichtet sein und der Mantel mit einer Beschichtungsmischung (C) beschichtet sein.
  • Hiernach sind die einzelnen Komponenten im Detail beschrieben.
  • (1) Beschichtungsmischung (A)
  • Die Beschichtungsmischung (A) für den Draht, konfiguriert dazu Strom zuzuführen, kann enthalten: (a1) eine Menge von ca. 20 bis 80 parts per hundred rubber (phr) von Ethylen-Propylen Gummi (EPG) mit einer Mooney Viskosität von ca. 20 bis 60; (a2) eine Menge von ca. 10 bis 80 phr eines Polyolefin Harzes (PO); (a3) eine Menge von ca. 10 bis 50 phr eines Füllstoffes; (a4) eine Menge von ca. 1 bis 10 phr einer Vernetzungshilfe; (a5) eine Menge von ca. 0,1 bis 5 phr eines Antioxidans; und (a6) eine Menge von ca. 0,1 bis 5 phr eines Schmiermittels.
  • Der Ethylen-Propylen Gummi (EPG) (a1) wie hierin verwendet kann für eine exzellente Flexibilität und langzeitige Isolierkapazität sorgen. Der EPG kann typischerweise in einen Gummi- oder Pellettyp klassifiziert werden und kann passend zu der Komponentenausstattung ausgewählt werden. Bevorzugt kann der EPG Ethylen-Propylen-Diene-Monomer (EPDM) sein. EPG kann passenderweise eine Mooney Viskosität von ca. 20 bis 60 haben. Wenn die Mooney Viskosität kleiner als ca. 20 ist, können mechanische Eigenschaften nicht ausreichend verbessert werden, und wenn die Mooney Viskosität größer als ca. 30 ist, können Extrusionseigenschaften nicht ausreichend für das Verfahren sein. Dementsprechend, kann die Mooney Viskosität bevorzugt in obengenanntem Bereich gewählt werden.
  • Zusätzlich kann der Ethylen-Propylen Gummi passenderweise in einer Menge von ca. 20 bis 80 phr enthalten sein. Wenn der EPG in einer Menge von weniger als ca. 20 phr vorhanden ist, kann die Flexibilität nicht ausreichend sichergestellt werden, aufgrund zu hoher Härte, und wenn der EPG in einer Menge größer als ca. 80 phr vorhanden ist, kann eine Verschlechterung der Extrusionseigenschaften und der mechanischen Eigenschaften auftreten. Daher soll der Ethylen-Propylen Gummi bevorzugt innerhalb des obigen Bereiches enthalten sein.
  • Das Polyolefin Harz (PO) (a2) wie hierin verwendet kann die Extrudierbarkeit und Zugfestigkeit des Drahts verbessern. Das Polyolefin Harz (PO) kann passenderweise eines oder mehr ausgewählt aus der Gruppe bestehend aus linearem Polyethylen niederer Dichte (LLDPE), Polyethylen niederer Dichte (LDPE), Polyethylen sehr niederer Dichte (VLDPE), Polyethylen mittlerer Dichte (MDPE) und Polyethylen-Octen Elastomer (POE) enthalten, und passenderweise in einer Menge von ca. 10 bis 80 phr verwendet werden. Wenn das Polyolefin Harz in einer Menge von weniger als ca. 10 phr vorhanden ist, können die Extrusionseigenschaften nicht ausreichend für den Herstellungsprozess sein, und wenn das Polyolefin Harz in einer Menge von mehr als ca. 80 phr vorhanden ist, kann die Flexibilität nicht ausreichend erreicht werden wegen zu hoher Härte. Daher soll das Polyolefin Harz bevorzugt innerhalb des obigen Bereichs vorhanden sein.
  • Der Ethylen-Propylen Gummi kann ein Gummi sein und daher klebend an anderen Gummis sein, allerdings kann der Ethylen-Propylen Gummi seine Klebrigkeit verlieren wenn gemischt mit eine Polyolefin Harz (PO) und zu einem Pellet geformt. Zusätzlich, kann die Oberfläche unvorteilhaft ausbeulen oder schäumen, wenn der Ethylen-Propylen Gummi bei hoher Temperatur von 200 ± 10°C und hohem Druck von 4~8 kgf/mm2 nach Zugabe von Peroxid vernetzt wird. Der Ethylen-Propylen Gummi der vorliegenden Erfindung kann deshalb bevorzugt unter Verwendung eines Elektronenstrahls vernetzt werden.
  • Der Füllstoff (a3) wie hierin verwendet kann die Erscheinung verbessern und den äußeren Durchmesser gleichmäßig halten während der Extrusion. Der Füllstoff kann Silan beschichtet auf einer Oberfläche davon enthalten. Der Füllstoff kann passenderweise eines oder mehr aus der Gruppe bestehend aus SiO2, CaCO3, Mg(OH)2, und Hydrotalkit enthalten und kann eine mittlere Teilchengröße von ca. 0,5 bis 1 μm haben. Wenn die mittlere Teilchengröße kleiner als ca. 0,5 μ ist, kann die Dispergierbarkeit nicht ausreichend sein, und wenn die mittlere Teilchengröße größer als ca. 1 μ ist, kann keine passende Drahtoberfläche erreicht werden. Daher soll die mittlere Teilchengröße bevorzugt innerhalb des obigen Bereichs sein.
  • Des Weiteren kann der Füllstoff passenderweise in einer Menge von ca. 10 bis 50 phr enthalten sein. Wenn der Füllstoff in einer Menge von weniger als ca. 10 phr enthalten ist, gibt es eine nachteilige Variation des äußeren Durchmessers während der Extrusion, und wenn der Füllstoff in einer Menge von mehr als ca. 50 phr enthalten ist, kann eine Verschlechterung des Isolierwiderstands erfolgen. Daher soll der Füllstoff bevorzugt in einer Menge innerhalb des obigen Bereichs vorhanden sein.
  • Die Vernetzungshilfe (a4) kann verwendet werden für Elektronenstrahlvernetzung und kann die Vernetzungsstellen während der Elektronenstrahlvernetzung aktivieren und dadurch die Vernetzung effizient mit niedriger Energie verbessern. Die Vernetzungshilfe kann passenderweise aus einer Gruppe bestehend aus Triallylisocyanurat (TAIC), Triallylcyanurat (TAC) und Trimethylolpropantrimethylacrylat (TMPTMA) ausgewählt werden. Die Vernetzungshilfe kann bevorzugt in einer Menge von ca. 1 bis 10 phr verwendet werden. Wenn die Vernetzungshilfe in einer Menge von weniger als ca. 10 phr enthalten ist, kann die Dispergierbarkeit nicht ausreichend sein, und wenn die Vernetzungshilfe in einer Menge von mehr als ca. 10 phr verwendet wird, kann ein Aufblühen (Weißen) auf der Drahtoberfläche nach der Extrusion auftreten. Daher soll die Vernetzungshilfe bevorzugt in einer Menge innerhalb des obigen Bereichs enthalten sein.
  • Des Weiteren kann das Antioxidans (a5) wie hierin verwendet einen Alterungsprozess des Isoliermittels während der Verarbeitung des Rohmaterials und der Verwendung verhindern. Das Antioxidans kann passenderweise ein Phenol-basiertes Antioxidans, einen Metalldeaktivator, oder eine Mischung davon sein. Das Phenol-basiertes Antioxidans kann passenderweise eines oder mehrere aus der Gruppe bestehend aus IRGANOX® 1010, IRGANOX® 1035, IRGANOX® 1076, IRGANOX® 1790 und IRGANOX® 1024 enthalten.
  • Des Weiteren kann das Antioxidans passenderweise in einer Menge von ca. 0,1 bis 5 phr verwendet werden. Wenn das Antioxidans in einer Menge von weniger als ca. 0,1 phr enthalten ist, kann die Hitzeresistenz nicht ausreichend verbessert werden, und wenn das Antioxidans in einer Menge von mehr als ca. 5 phr verwendet wird, kann keine ausreichende Vernetzung erreicht werden. Daher soll das Antioxidans bevorzugt in einer Menge innerhalb des obigen Bereichs enthalten sein.
  • Das Schmiermittel (a6) wie hierin verwendet, kann die Dispersion während der Mischungsherstellung und die äußere Erscheinung während der Drahtextrusion verbessern. Das Schmiermittel kann passenderweise aus einer Gruppe bestehend aus Fluor-basierten, Silikon-basierten, Amid-basierten, Zink-basierten oder Fettsäure-basierten Schmiermitteln ausgewählt werden und in einer Menge von ca. 0,1 bis 5 phr verwendet werden. Wenn das Schmiermittel in einer Menge von weniger als ca. 0,1 phr enthalten ist, kann die Dispergierbarkeit nicht ausreichend sein, und wenn das Schmiermittel in einer Menge von mehr als ca. 5 phr verwendet wird, kann ein Aufblühen (Weißen) auf der Drahtoberfläche nach der Extrusion auftreten. Daher soll das Schmiermittel bevorzugt in einer Menge innerhalb des obigen Bereichs enthalten sein.
  • (2) Beschichtungsmischung (B)
  • Die Beschichtungsmischung für einen Draht, konfiguriert ein Signal zu übertragen, kann enthalten: (b1) eine Menge von ca. 20 bis 80 phr Polypropylen (PP); (b2) eine Menge von ca. 20 bis 80 phr von thermoplastischem Styrol Elastomer; (b3) eine Menge von ca. 10 bis 50 phr eines Füllstoffes; (b4) eine Menge von ca. 0,1 bis 5 phr eines Antioxidans; und (b5) eine Menge von ca. 0,1 bis 5 phr eines Schmiermittels. Hiernach sind die einzelnen Komponenten im Detail beschrieben.
  • Das Polypropylen (PP) (b1) wie hierin verwendet, kann Kompression während dem Drahtfertigung Mantelextrusion verhindern, wegen der Härte und dem hohen Schmelzpunkt (z. B. 163°C).
  • Des Weiteren, kann ein thermoplastisches Elastomer verwendet werden um Schmelzen während der Mantelextrusion zu vermeiden. Zum Beispiel kann eine Mischung von Polypropylen (b1) mit einem thermoplastischen Styrol Elastomer (b2) mit hohem molekularem Gewicht verwendet werden.
  • Das Polypropylen Harz (b1) kann passenderweise eines oder mehr aus einer Gruppe bestehend aus Block-Polypropylen (Block-PP), Random-Polypropylen (Random-PP), Homo-Polypropylen (Homo-PP), und Terpolymer-Polypropylen (Ter-PP) sein.
  • Zusätzlich kann das Polypropylen Harz passenderweise in einer Menge von ca. 20 bis 80 phr verwendet werden. Wenn das Polypropylen Harz in einer Menge von weniger als ca. 20 phr vorhanden ist, können die Extrusionseigenschaften nicht ausreichend für den Herstellungsprozess sein, und wenn das Polypropylen Harz in einer Menge von mehr als ca. 80 phr vorhanden ist, kann die Flexibilität und Kälteresistenz nicht ausreichend erreicht werden wegen zu hoher Härte. Bevorzugt soll das Polypropylen Harz in einer Menge innerhalb des obigen Bereichs vorhanden sein.
  • Das thermoplastische Styrol Elastomer (b2) wie hierin verwendet kann die Flexibilität bei niedrigen Temperaturen verbessern und Schmelzen während der Mantelextrusion verhindern, und kann passenderweise eines oder mehr ausgewählt aus einer Gruppe bestehend aus Styrol-Ethylen-Butylen-Styrol (SEBS), Styrol-Butadien-Styrol Blockcopolymer (SBS), und Styrol-Isopren-Styrol Blockcopolymer (SIS) sein.
  • Das thermoplastische Styrol Elastomer kann passenderweise in einer Menge von ca. 20 bis 80 phr verwendet werden. Wenn das thermoplastische Styrol Elastomer in einer Menge von weniger als ca. 20 phr vorhanden ist, kann die Flexibilität nicht ausreichend sichergestellt werden, und wenn das thermoplastische Styrol Elastomer in einer Menge größer als ca. 80 phr vorhanden ist, können die Extrusionseigenschaften nicht mehr ausreichend für den Herstellungsprozess sein. Bevorzugt ist das thermoplastische Styrol Elastomer in einer Menge innerhalb des obigen Bereiches enthalten.
  • Der Füllstoff (b3) kann derselbe sein wie der Füllstoff (a3) wie verwendet für Beschichtungsmischung (A) für den Draht zur Stromzufuhr. Zusätzlich kann der Füllstoff bevorzugt in einer Menge von ca. 10 bis 50 phr verwendet werden. Wenn der Füllstoff in einer Menge von weniger als ca. 10 phr enthalten ist, kann die Stabilität des äußeren Durchmessers während der Extrusion nicht ausreichend sein, und wenn der Füllstoff in einer Menge von mehr als ca. 50 phr enthalten ist, kann der Isolierwiderstands nicht ausreichend sein. Bevorzugt soll der Füllstoff (b3) in einer Menge innerhalb des obigen Bereichs vorhanden sein.
  • Zusätzlich kann das Antioxidans (b4) dasselbe sein wie das Antioxidans (a5) der Beschichtungsmischung (A) für die Stromzufuhr. Zusätzlich kann das Antioxidans passenderweise in einer Menge von ca. 0,1 bis 5 phr enthalten sein. Wenn das Antioxidans in einer Menge von weniger als ca. 0,1 phr verwendet wird, kann die Hitzeresistenz nicht ausreichend erhalten werden, und wenn das Antioxidans in einer Menge von mehr als ca. 5 phr verwendet wird, kann ein Aufblühen (Weißen) auf der Drahtoberfläche nach der Extrusion auftreten. Bevorzugt soll das Antioxidans in einer Menge innerhalb des obigen Bereichs enthalten sein.
  • Das Schmiermittel (b5) kann derselbe sein wie das Schmiermittel (a6) der Beschichtungsmischung (A) für die Stromzufuhr. Zusätzlich kann das Schmiermittel passenderweise in einer Menge von ca. 0,1 bis 5 phr enthalten sein. Wenn das Schmiermittel in einer Menge von weniger als ca. 0,1 phr enthalten ist, können die Extrusionseigenschaften nicht ausreichend für den Herstellungsprozess erhalten werden, und wenn das Schmiermittel in einer Menge von mehr als ca. 5 phr verwendet wird, können ein Rutschen während der Extrusion und ein Aufblühen (Weißen) auf der Drahtoberfläche nach der Extrusion auftreten. Daher soll das Schmiermittel bevorzugt in einer Menge innerhalb des obigen Bereichs verwendet werden.
  • (3) Mantel (Beschichtung) Mischung (C)
  • Die Mischung zur Beschichtung des Mantels (C) der vorliegenden Erfindung kann enthalten: (c1) eine Menge von ca. 50 bis 90 phr thermoplastisches Polyurethan (TPU) mit einem Schmelzindex (SI) von ca. 30 bis 50 g/10 min; (c2) eine Menge von ca. 10 bis 50 phr von einem thermoplastischem Styrol Elastomer mit einem Schmelzindex (SI) von ca. 1 bis 5 g/10 min; (c3) eine Menge von ca. 10 bis 70 phr eines Phosphor-basiertem Flammschutzmittels; (c4) eine Menge von ca. 1 bis 10 phr eines Flammschutzhilfsmittel; (c5) eine Menge von 0,1 bis 5 phr eines Antioxidans; (c6) eine Menge von 0,1 bis 5 phr eines UV Absorbers und eines Stabilisators; und (c7) eine Menge von 0,1 bis 5 phr eines Schmiermittels. Hiernach sind die einzelnen Komponenten im Detail beschrieben.
  • Das thermoplastische Polyurethan (TPU) (c1) wie hierin verwendet kann für eine überlegene Kälteresistenz, Ölresistenz, Abriebbeständigkeit und Wetterfestigkeit sorgen. Eine Mischung von thermoplastischen Polyurethanen (TPU) mit thermoplastischem Styrol Elastomer kann Flexibilität bei niedriger Temperatur befriedigen und den Benutzer von Unannehmlichkeiten erlösen.
  • Dementsprechend kann das thermoplastische Polyurethan (TPU) der vorliegenden Erfindung passenderweise in einer Menge von ca. 50 bis 90 phr enthalten sein. Wenn das thermoplastische Polyurethan in einer Menge von weniger als ca. 50 phr verwendet wird, können Kälteresistenz, Ölresistenz, Abriebbeständigkeit und Wetterfestigkeit nicht ausreichend sein, und wenn das thermoplastische Polyurethan in einer Menge von mehr als ca. 90 phr verwendet wird, kann Flexibilität nicht ausreichend wegen Rohstein und hoher Härte der Kabeloberfläche erhalten werden. Bevorzugt soll das thermoplastische Polyurethan in einer Menge innerhalb des obigen Bereichs enthalten sein.
  • Zusätzlich kann das thermoplastische Polyurethan (TPU) passenderweise eine Shore-Härte A von ca. 70, ca. 75, ca. 80, ca. 90 und ca. 95 haben. Das TPU kann passenderweise einen Schmelzindex (SI), welcher unter den Bedingungen von 200°C/10 kg gemessen wird, von ca. 30 bis 50 g/10 min haben. Wenn der Schmelzindex weniger als ca. 30 g/10 min ist, können die Extrusionseigenschaften nicht ausreichend für den Herstellungsprozess sein, und wenn der Schmelzindex größer als ca. 50 g/10 min ist, können mechanische Eigenschaften und Fließfähigkeit während der Mischungsherstellung nicht ausreichend erhalten werden. Daher, soll der Schmelzindex passenderweise innerhalb des obigen Bereiches sein.
  • Das thermoplastische Styrol Elastomer (TPE) (c2) wie hierin verwendet kann Flexibilität bei niedrigen Temperaturen vermitteln wenn es mit dem thermoplastischem Polyurethan gemischt wird und bevorzugt kann es Styrol-Ethylen-Butylen-Styrol (SEBS) sein, wegen dessen hoher Polarität.
  • Das thermoplastische Styrol Elastomer (TPE) kann passenderweise in einer Menge von ca. 10 bis 50 phr enthalten sein. Wenn das thermoplastische Styrol Elastomer in einer Menge von weniger als ca. 10 phr vorhanden ist, können die Flexibilität bei niedrigen Temperaturen und die Extrusionsformbarkeit nicht ausreichend erhalten werden, und wenn das thermoplastische Styrol Elastomer in einer Menge von mehr als ca. 50 phr vorhanden ist, können die mechanischen Eigenschaften und die chemischen Eigenschaften nicht ausreichend sein. Daher soll das thermoplastische Styrol Elastomer bevorzugt innerhalb des obigen Bereichs verwendet werden.
  • Zusätzlich kann das thermoplastische Styrol Elastomer passenderweise einen Schmelzindex (SI), welcher unter den Bedingungen von ca. 230°C/5 kg gemessen wird, von ca. 1 bis 5 g/10 min haben. Wenn das thermoplastische Styrol Elastomer einen Schmelzindex von weniger als ca. 1 g/10 min hat, können die Extrusionseigenschaften nicht ausreichend für den Herstellungsprozess sein, und wenn das thermoplastische Styrol Elastomer einen Schmelzindex größer als ca. 5 g/10 min hat, können mechanische Eigenschaften nicht ausreichend erhalten werden, resultierend aus einer Verschlechterung der Reißfestigkeit. Daher, soll der Schmelzindex des thermoplastischem Styrol Elastomers innerhalb des obigen Bereiches sein.
  • Das Flammschutzmittel (c3) der vorliegenden Erfindung kann ein halogenfreies Flammschutzmittel sein und kann bevorzugt ein Phosphor-basiertes Flammschutzmittel sein, da das Phosphor-basierte Flammschutzmittel eine hohe Kompatibilität mit dem thermoplastischen Polyurethan (TPU) hat. Das Flammschutzmittel kann passenderweise in einer Menge von ca. 10 bis 70 phr enthalten sein. Wenn das Flammschutzmittel in einer Menge von weniger als ca. 10 phr verwendet wird, kann die Flammhemmung nicht ausreichend erhalten werden, und wenn das Flammschutzmittel in einer Menge von mehr als ca. 70 phr verwendet wird, können die mechanischen Eigenschaften nicht ausreichend sein und die Extrusionseigenschaften können nicht ausreichend für den Herstellungsprozess sein. Daher soll das Flammschutzmittel passenderweise innerhalb des obigen Bereichs enthalten sein.
  • Das Flammschutzhilfsmittel (c4) wie hierin verwendet kann die Flammhemmung des Phosphor-basierten Flammschutzmittels verbessern. Das Flammschutzhilfsmittel kann ein Stickstoff-basiertes Flammschutzmittel sein und kann passenderweise in einer Menge von ca. 1 bis 10 phr enthalten sein. Wenn das Flammschutzhilfsmittel in einer Menge von weniger als ca. 1 phr vorhanden ist, können die Dispergierbarkeit und die Flammhemmung nicht ausreichend sein, und wenn das Flammschutzhilfsmittel in einer Menge von mehr als ca. 10 phr vorhanden ist, können die Extrusionseigenschaften nicht ausreichend für den Herstellungsprozess sein. Daher soll das Flammschutzhilfsmittel bevorzugt innerhalb des obigen Bereichs enthalten sein.
  • Zusätzlich kann das Antioxidans (c5) eines oder mehr ausgewählt aus der Gruppe bestehend aus einem Phenol-basierten Antioxidans, einem Phosphor-basierten Antioxidans und einem Hydrolysestabilisator sein. Das Antioxidans kann passenderweise in einer Menge von ca. 0,1 bis 5 phr enthalten sein. Wenn das Antioxidans in einer Menge von weniger als ca. 0,1 phr vorhanden ist, kann die Hitzeresistenz wegen der Dispergierbarkeit nicht ausreichend sein, und wenn das Antioxidans in einer Menge von mehr als ca. 5 phr vorhanden ist, kann ein Aufblühen (Weißen) auf der Drahtoberfläche nach der Extrusion auftreten. Bevorzugt soll das Antioxidans in einer Menge innerhalb des obigen Bereichs enthalten sein.
  • Der UV Absorber und Stabilisator (c6) können UV Licht absorbieren um Zersetzung des Polymers zu verzögern, und die Aktivität des absorbierten UV Licht zur Stabilisierung kontrollieren. Der UV Absorber und Stabilisator kann passenderweise in einer Menge von ca. 0,1 bis 5 phr verwendet werden. Wenn der UV Absorber und Stabilisator in einer Menge von weniger als ca. 0,1 phr verwendet wird, kann die UV Stabilität nicht ausreichend sein, und wenn der UV Absorber und Stabilisator in einer Menge von mehr als ca. 5 phr vorhanden ist, kann ein Aufblühen (Weißen) auf der Drahtoberfläche nach der Extrusion auftreten. Bevorzugt soll der UV Absorber und Stabilisator in einer Menge innerhalb des obigen Bereichs enthalten sein.
  • Das Schmiermittel (c7) wie hierin verwendet kann die Dispergierbarkeit während der Mischungsherstellung verbessern, und kann die äußere Erscheinung während der Extrusion verbessern. Das Schmiermittel kann passenderweise ein Montanwachs-basiertes Schmiermittel, eine Silikon-basiertes Schmiermittel, oder eine Mischung davon enthalten. Das Schmiermittel kann passenderweise in einer Menge von ca. 0,1 bis 5 phr enthalten sein. Wenn das Schmiermittel in einer Menge von weniger als ca. 0,1 phr enthalten ist, Extrusionseigenschaften (Extrusionskraft), und wenn das Schmiermittel in einer Menge von mehr als ca. 5 phr verwendet wird, können ein Rutschen während der Extrusion und ein Aufblühen (Weißen) auf der Drahtoberfläche nach der Extrusion auftreten. Bevorzugt soll das Schmiermittel in einer Menge innerhalb des obigen Bereichs enthalten sein.
  • Das Ladekabel beschichtet mit einer Beschichtungsmischung wie oben beschrieben nach verschiedenen Ausführungsformen der vorliegenden Erfindung kann eine Hitzeresistenz von 90°C erfüllen, in Übereinstimmung mit IEC 62893, und kann überlegene mechanische Eigenschaften wie Flexibilität bei niedrigen Temperaturen, Kälteresistenz und Ölresistenz, chemische Eigenschaften und elektrische Eigenschaften sicherstellen, ist dadurch weit verwendbar als ein Ladekabel für Elektrofahrzeuge.
  • BEISPIELE
  • Hiernach wird die vorliegende Erfindung in Bezug auf Beispiele beschrieben. Die folgenden Beispiele illustrieren die Erfindung und sind nicht dazu gedacht, diese zu limitieren.
  • Vergleichsbeispiel 1 und Beispiel 1: Kabel zur Stromzufuhr
  • Vergleichsbeispiel 1-1 bis 1-3
  • Die Bestandteile gezeigt in folgender Tabelle 1 wurden in den Verhältnissen wie in Tabelle 1 angegeben gemischt und zu einem Pellet vermischt, unter Verwendung eines Doppelschneckenextruders oder eines Kneters. Drahtproben zur Messung physikalischer Eigenschaften wurden hergestellt aus Pellets mit einem einfachen Extruder. TABELLE 1 Beschichtungsmischung verwendet für den Draht zur Stromzufuhr (Einheit: phr)
    Element (Einheit: phr) Zusammensetzung Beispiel 1-1 Beispiel 1-2 Beispiel 1-3 Vergleichs-Beispiel 1-1 Vergleichs-Beispiel 1-2 Vergleichs-Beispiel 1-3
    Harz Ethylen-Propylen Gummi (EPG) 1) 50 60 80 90 100 10
    Polyolefin Harz 2) 50 40 20 10 - 90
    Füllstoff Füllstoff A 3) 50 50 50 50 50 50
    Vernetzungshilfe Vernetzungshilfe A 4) 2 2 2 2 2 2
    Antioxidans Antioxidans A 5) 1 1 1 1 1 1
    Antioxidans B 6) 1 1 1 1 1 1
    Schmiermittel Zn-Amid-basiertes Schmiermittel 7) 1 1 1 1 1 1
    Silikon-basiertes Schmiermittel 8) 1 1 1 1 1 1
    1) Produkt von EPDM enthaltend 0.5% ENB (Produktname: Nordel, Herstellername: DOW) 2) POE (Produktname: Engage, Herstellername ame: DOW) 3) Mg(OH)2 Füllstoff, beschichtet mit Silan und mit einer mittleren Teilchengröße von 1 micron (μ) (Produktname: H5A, Herstellername: Albemarle) 4) Vernetzungshilfe (Produktname: Trim S, Herstellername: Rainchem) 5) Phenol-basiertes Antioxidans (Produktname: IRGANOX1010, Herstellername: BASF) 6) Metalldeaktivator (Produktname: IRGANOX1024, Herstellername: BASF) 7) Zn-Amid-basiertes Schmiermittel (Produktname: TR-016, Herstellername: Structol) 8) Silikon-basiertes Schmiermittel (Produktname: Pellet S, Herstellername: Wacker)
  • Beispiele 1-1 bis 1-3
  • Drahtproben wurden auf dieselbe Art und Weise produziert wie beschrieben in Vergleichsbeispielen 1-1 bis 1-3, allerdings wurden die Drahtproben in Übereinstimmung mit den Verhältnissen in Tabelle 1 produziert.
  • Testbeispiel 1: Messung der physikalischen Eigenschaften
  • 5 Muster von jedem der Vergleichsbeispiele 1-1 bis 1-3, und der Beispiele 1-1 bis 1-3 wurden vorbereitet, Reißfestigkeit, Restspannung, Ausdehnungsrestspannung, Ausdehnung (bei niedrigen Temperaturen) und Härte wurde gemessen, und die resultierenden physikalischen Eigenschaften sind in der folgenden Tabelle 2 gegeben. Die hierin verwendeten Testverfahren werden unterhalb beschrieben.
    • (1) Messung der Reißfestigkeit: gemessen in Übereinstimmung mit EN 60811-501.
    • (2) Messung der Restspannung: gemessen in Übereinstimmung mit EN 60811-401.
    • (3) Messung der Ausdehnung: gemessen in Übereinstimmung mit EN 60811-501.
    • (4) Messung der Ausdehnungsrestspannung: gemessen in Übereinstimmung mit EN 60811-401.
    • (5) Messung der Ausdehnung (bei niedrigen Temperaturen, z. B. –40°): gemessen in Übereinstimmung mit EN 60811-505.
    • (6) Messung der Härte: gemessen in Übereinstimmung mit HD 605.
    TABELLE 2 Messresultate der physikalischen Größen
    Testelement Benötigter Wert Testbedingungen Beispiel 1-1 Beispiel 1-2 Beispiel 1-3 Vergleichsbeispiel 1-1 Vergleichsbeispiel 1-2 Vergleichsbeispiel 1-3
    Reißfestigkeit 8 N/mm2 oder mehr - 14,7 11,8 8,5 7,1 6,5 20,2
    Restspannung (gealtert) Variation von 30% oder weniger 135°C X 7 Tage 2 3 5 3 2 3
    Ausdehnung 200% oder mehr - 500 550 610 630 650 450
    Ausdehnungsrestspannung (gealtert) Variation von 30% oder weniger 135°C X 7 Tage 8 8 13 18 20 8
    Ausdehnung (bei niedrigen Temperaturen) Ausdehnung: 30% oder mehr –40°C 400 400 400 400 400 400
    Härte Shore A von 80 oder mehr, oder 90 oder weniger - 85 82 80 65 60 99
  • Wie oberhalb gezeigt in Tabelle 2, erfüllen Beispiele 1-1 bis 1-3 nach den beispielhaften Ausführungen der vorliegenden Erfindung alle Härte- und mechanischen Eigenschaften, basierend auf passender Verwendung der einzelnen Komponenten, im Vergleich zu Vergleichsbeispielen 1-1 bis 1-3, welche nicht im Umfang der vorliegenden Erfindung waren.
  • Vergleichsbeispiele 2 und Beispiele 2: Kabel zur Übertragung eines Signals
  • Vergleichsbeispiele 2-1 bis 2-2
  • Die Bestandteile gezeigt in folgender Tabelle 3 wurden in den Verhältnissen wie in Tabelle 3 angegeben gemischt und zu einem Pellet vermischt, unter Verwendung eines Doppelschneckenextruders oder eines Kneters. Drahtproben zur Messung physikalischer Eigenschaften wurden hergestellt aus Pellets mit einem einfachen Extruder.
  • Beispiele 2-1 bis 2-4
  • Drahtproben wurden auf dieselbe Art und Weise produziert wie beschrieben in Vergleichsbeispielen 2-1 bis 2-3, allerdings wurden die Drahtproben in Übereinstimmung mit den Verhältnissen in Tabelle 3 produziert. TABELLE 3 Beschichtungsmischung verwendet für den Draht zur Signalübertragung (Einheit: phr)
    Element (Einheit: phr) Zusammensetzung Beispiel 2-1 Beispiel 2-2 Beispiel 2-3 Beispiel 2-4 Vergleichsbeispiel 2-1 Vergleichsbeispiel 2-2
    Harz Polypropylen Harz 1) 60 50 40 30 10 90
    thermoplastisches Styrol Elastomer 2) 40 50 60 70 90 10
    Füllstoff Füllstoff A 3) 50 50 50 50 50 50
    Antioxidans Antioxidans A 4) 1 1 1 1 1 1
    Antioxidans B 5) 1 1 1 1 1 1
    Schmiermittel Zn-Amid-basiertes Schmiermittel 6) 1 1 1 1 1 1
    Silikon-basiertes Schmiermittel 7) 1 1 1 1 1 1
    1) Block-PP (Produktname: SB-930, Herstellername: Lotte Chemical) 2) SEBS (Produktname: G1651, Herstellername: Kraton) 3) Mg(OH)2 Füllstoff, beschichtet mit Silan und mit einer mittleren Teilchengröße von 1 micron (μ) (Produktname: H5A, Herstellername: Albemarle) 4) Phenol-basiertes Antioxidans (Produktname: IRGANOX1010, Herstellername: BASF) 5) Metalldeaktivator (Produktname: IRGANOX1024, Herstellername: BASF) 6) Zn-Amid-basiertes Schmiermittel (Produktname: TR-016, Herstellername: Structol) 7) Silikon-basiertes Schmiermittel (Produktname: Pellet S, Herstellername: Wacker)
  • Testbeispiel 2: Messung der physikalischen Eigenschaften
  • 5 Muster von jedem der Vergleichsbeispiele 2-1 bis 2-2, und der Beispiele 2-1 bis 2-4 wurden vorbereitet, Reißfestigkeit, Restspannung, Ausdehnungsrestspannung, Ausdehnung (bei niedrigen Temperaturen) und Härte wurde gemessen, und die resultierenden physikalischen Eigenschaften sind in der folgenden Tabelle 4 gegeben. TABELLE 4 Messresultate der physikalischen Größen
    Testelement Benötigter Wert Testbedingungen Beispiel 2-1 Beispiel 2-2 Beispiel 2-3 Beispiel 2-4 Vergleichsbeispiel 2-1 Vergleichsbeispiel 2-2
    Reißfestigkeit 15 N/mm2 oder mehr - 20,6 17,6 16,0 15,1 11,2 25,7
    Restspannung (gealtert) Variation von 30% oder weniger 135°C X 7 Tage 10 23 24 25 28 8
    Ausdehnung 300% oder mehr - 600 650 700 760 860 450
    Ausdehnungsrestspannung (gealtert) Variation von 30% oder weniger 135°C X 7 Tage 12 21 28 30 35 10
    Ausdehnung (bei niedrigen Temperaturen) Ausdehnung: 30% oder mehr –40°C 365 400 400 400 400 300
    Härte Shore D von 50 oder mehr, 60 oder weniger - 56 55 53 50 25 69
  • Wie oberhalb gezeigt in Tabelle 4, erfüllt Beispiel 2-1 nach den beispielhaften Ausführungen der vorliegenden Erfindung alle Härte- und mechanischen Eigenschaften, basierend aufpassender Verwendung der einzelnen Komponenten, im Vergleich zu Vergleichsbeispielen 2-1 bis 2-2, welche nicht im Umfang der vorliegenden Erfindung waren.
  • Vergleichsbeispiel 3 und Beispiel 3: Mantel
  • Vergleichsbeispiel 3-1 bis 3-3
  • Die Bestandteile gezeigt in folgender Tabelle 5 wurden in den Verhältnissen wie in Tabelle 5 angegeben gemischt und zu einem Pellet vermischt, unter Verwendung eines Doppelschneckenextruders oder eines Kneters. Drahtproben zur Messung physikalischer Eigenschaften wurden hergestellt aus Pellets mit einem einfachen Extruder.
  • Beispiele 3-1 bis 3-3
  • Drahtproben wurden auf dieselbe Art und Weise produziert wie beschrieben in Vergleichsbeispielen 3-1 bis 3-3, allerdings wurden die Drahtproben in Übereinstimmung mit den Verhältnissen in Tabelle 5 produziert. TABELLE 5 Mantelzusammensetzung für die Drähte (Einheit: phr)
    Element (Einheit: phr) Zusammensetzung Beispiel 3-1 Beispiel 3-2 Beispiel 3-3 Vergleichs-Beispiel 3-1 Vergleichs-Beispiel 3-2 Vergleichs-Beispiel 3-3
    Harz thermoplastisches Polyurethan (TPU) 1) 60 50 90 40 30 95
    thermoplastisches Styrol Elastomer 2) 40 50 10 60 70 5
    Flammschutzmittel Phosphor-basiertes Flammschutzmittel 3) 50 50 50 50 50 50
    Flammschutzhilfsmittel Stickstoff-basiertes Flammschutzmittel 4) 10 10 10 10 10 10
    Antioxidans Phenol-basiertes Antioxidans 5) 1 1 1 1 1 1
    Phosphor-basiertes Antioxidans 6) 1 1 1 1 1 1
    Hydrolysestabilisator 7) 1 1 1 1 1 1
    UV Stabilisierer UV Absorber 8) 0,5 0,5 0,5 0,5 0,5 0,5
    UV Stabilisierer 9) 0,5 0,5 0,5 0,5 0,5 0,5
    Schmiermittel Montan-basiertes Schmiermittel 10) 1 1 1 1 1 1
    Silikon-basiertes Schmiermittel 11) 1 1 1 1 1 1
    1) thermoplastisches Polyurethan harz mit einem Schmelzindex (SI) von 30 bis 50 g/10 min (Produktname: Elastollan, Herstellername: BASF) 2) thermoplastisches Styrol Elastomer mit einem Schmelzindex (SI) von 1 bis 5 g/10 min (Produktname: Kraton G, Herstellername: Kraton) 3) Phosphor-basiertes Flammschutzmittel (Produktname: OP-930, Herstellername: Clariant) 4 Stickstoff-basiertes Flammschutzmittel (Produktname: MC-110, Herstellername: UNIVERSAL CHEMTECH) 5) Phenol-basiertes Antioxidans (Produktname: IRGANOX1010, Herstellername: BASF) 6) Phosphor-basiertes Antioxidans (Produktname: IRGANOX1024, Herstellername: BASF) 7) Hydrolysestabilisator (Produktname: Stabaxol P, Herstellername: Rainchem) 8) UV Absorber (Produktname: LL28, Herstellername: Addivant) 9) UV Stabilisierer (Produktname: LL62, Herstellername: Addivant) 10) Montan-basiertes Schmiermittel (Produktname: CERIDUST 5551, Herstellername: Clariant) 11) Silikon-basiertes Schmiermittel (Produktname: Pellet S, Herstellername: Wacker)
  • Testbeispiel 3: Messung der physikalischen Eigenschaften
  • 5 Muster von jedem der Vergleichsbeispiele 3-1 bis 1-3, und der Beispiele 3-1 bis 1-3 wurden vorbereitet, Reißfestigkeit, Restspannung, Ausdehnungsrestspannung, Ölresistenz, Ausdehnung (bei niedrigen Temperaturen, z. B. –40°C) und Hitzeeinfluss wurde gemessen, und die resultierenden physikalischen Eigenschaften sind in der folgenden Tabelle 6 gegeben. Das Testverfahren wird unterhalb beschrieben.
    • (1) Messung der Reißfestigkeit: gemessen in Übereinstimmung mit EN 60811-501.
    • (2) Messung der Restspannung: gemessen in Übereinstimmung mit EN 60811-401.
    • (3) Messung der Ausdehnung: gemessen in Übereinstimmung mit EN 60811-501.
    • (4) Messung der Ausdehnungsrestspannung: gemessen in Übereinstimmung mit EN 60811-401.
    • (5) Messung der Ölresistenz: in Übereinstimmung mit EN 60811-404.
    • (6) Messung der Ausdehnung (bei niedrigen Temperaturen, z. B. –40°C): gemessen in Übereinstimmung mit EN 60811-505.
    • (7) Hitzeeinfluss: gemessen in Übereinstimmung mit EN 60811-509.
    TABELLE 6 Measurement results of physical properties
    Testelement Benötigter Wert Testbedingungen Beispiel 3-1 Beispiel 3-2 Beispiel 3-3 Vergleichs-Beispiel 3-1 Vergleichs-Beispiel 3-2 Vergleichs-Beispiel 3-3
    Reißfestigkeit 20 N/mm2 oder mehr - 23,7 20,1 30,7 14,9 13,4 33,5
    Restspannung (gealtert) Variation von 30% oder weniger 110°C X 7 Tage 6 13 4 31 45 3
    Ausdehnung 300% oder mehr - 514 570 320 640 720 290
    Ausdehnungsrestspannung (gealtert) Variation von 30% oder weniger 110°C X 7 Tage 6 14 5 17 15 6
    Ölresistenz Spannungsvariation von 40% oder weniger IRM902 100°C X 7 Tage 28 35 14 50 60 12
    Ausdehnungsvariation von 30% oder weniger 3 12 2 4 5 3
    Ausdehnung (bei niedrigen Temperaturen) Ausdehnung: 30% oder mehr –40°C 380 400 250 395 398 250
    Hitzeeinfluss keine Risse 150°C X1h bestanden bestanden bestanden bestanden bestanden bestanden
  • Wie oberhalb gezeigt in Tabelle 6, sind Beispiele 3-1 bis 3-3 nach den beispielhaften Ausführungen der vorliegenden Erfindung geeignet für die Verwendung unter Bedingungen bei niedrigen Temperaturen wegen der Flexibilität bei niedrigen Temperaturen und der Kälteresistenz, verhinderten Permeation von Fahrzeugöl durch die exzellente Ölresistenz, und zeigten exzellente mechanische Eigenschaften wie Reißfestigkeit, basierend auf passenden Komponenten in den Beschichtungsmischungen nach beispielhaften Ausführungen der vorliegenden Erfindung, im Vergleich zu Vergleichsbeispielen 3-1 bis 3-3, welche nicht im Umfang der vorliegenden Erfindung waren.
  • Dementsprechend kann die Dicke des Mantels reduziert werden, wegen den überlegenen elektrischen, mechanischen und chemischen Eigenschaften, können die Größe und das Gewicht der Ladekabel reduziert werden und die Ladekabel können daher statt konventionellen Drähten beschichtet mit Polyvinylchlorid (PVC) verwendet werden.
  • Beispiel 4: Ladekabel
  • Das Ladekabel wurde aus der Zusammensetzung hergestellt, welche die überlegensten Messergebnisse der physikalischen Größen von Testbeispielen 1 bis 3 gezeigt hat. Die Zusammensetzung von Beispiel 1-1 wurde beschichtet auf einen 2,5 SQ Leiter um 3 Drähte zur Stromzufuhr zu produzieren, und die Zusammensetzung von Beispiel 2-1 wurde beschichtet auf einen 0,5 SQ Leiter um einen Draht zur Übertragung eines Signals herzustellen. Alle 4 erzeugten Drähte wurden zusammengesetzt und der Aufbau wurde mit der Zusammensetzung von Beispiel 3-1 beschichtet um Ladekabelproben herzustellen.
  • Zur Referenz ist ein beispielhafter Querschnitt eines beispielhaften Ladekabels in 1 gezeigt und das Ladekabel enthält drei Drähte zur Stromzufuhr (1), einen Draht zur Übertragung eines Signals (2) und einen Mantel (3) gebildet auf der äußeren Oberfläche des Kabels enthaltend der Drähte.
  • Testbeispiel 5: Messung der physikalischen Größen
  • Die Ladekabelprobe von Beispiel 4 wurde evaluiert, basierend auf ICE 62893 und die Evaluierungsergebnisse sind gezeigt in der folgenden Tabelle 7. TABELLE 7 Evaluierungsergebnisse basierend auf ICE 62893
    Testelemente Benötigte Werte und Testbedingungen Messergebnisse
    Drähte Reißfestigkeit 0,5 SQ 15 N/mm2 27,35
    2,5 SQ 8 N/mm2 13,07
    Ausdehnung 0,5 SQ 300% oder mehr 526
    2,5 SQ 200% oder mehr 476
    Erhitzungs-Restspannung 0,5 SQ Variation von 30% oder weniger (135°C X 7 Tage) 2,8
    Erhitzungs-Ausdehnungsrestspannung 2,5 SQ Variation von 30% oder weniger (135°C X 7 Tage) 4
    Ausdehnung bei niedrigen Temperaturen 0,5 SQ 30% oder mehr (–40°C) 360
    2,5 SQ 30% oder mehr (–40°C) 400
    Isolierwiderstand (90°C) 2,5 SQ 0,691 MΩKm oder mehr 120
    Mantel Reißfestigkeit 20 N/mm2 24,2
    Ausdehnung 300% oder mehr 514
    Erhitzungs-Restspannung Variation von 30% oder weniger (120°C X 7 Tage) 6
    Erhitzungs-Ausdehnungsrestspannung Variation of 30% or less (120°C X 7 Tage) 6
    Ölresistenz-Restspannung Variation of 40% oder weniger (IRM 902 100°C X 7 Tage) 28
    Ölresistenz-Ausdehnungsrestspannung Variation 30% oder weniger (IRM 902 100°C X 7 Tage) 3
    Ausdehnung bei niedrigen Temperaturen 30% oder mehr (–40°C) 380
    Biegetest des Mantels (bei –40°C) Beobachtung der Risse nach 4- oder 5-fachem Rollen Probe mit einem Stabdurchmesser, zwei Mal bestanden
    Abriebbeständigkeit 4,000 mm oder mehr unter Anwendung einer 400 g Last 5532 mm
    Drahtkabel (fertiges Produkt) Flexibilität Raumtemperatur (23°C) 10 N oder weniger 8
    Niedrige Temperatur (–40°C) 37 N oder weniger 16
  • Wie gezeigt in Tabelle 7, erfült das Ladekabel von Beispiel 4, hergestellt unter Verwendung der Beschichtungsmischung nach einer beispielhaften Ausführungsform der vorliegenden Erfindung, alle Anforderungen von ICE 62983.
  • Dementsprechend zeigte die Beschichtungsmischung nach verschiedenen beispielhaften Ausführungsformen der vorliegenden Erfindung, und die Drähte und der Mantel beschichtet mit der Zusammensetzung, physikalische Eigenschaften wie Flexibilität bei niedrigen Temperaturen, Kälteresistenz, Ölresistenz, und Abriebwiderstand, wie auch elektrische Eigenschaften.
  • Vergleichsbeispiel 4: Konventionelles Ladekabel, beschichtet mit Polyvinylchlorid (PVC)
  • Ein konventionelles Ladekabel (Hersteller: EVJT, Produktname: KYUNGSHIN CABLE) wurde vorbereitet. Dieses verwendet Polyvinylchlorid (PVC) harz als Material für die Drähte und den Mantel.
  • Testbeispiel 6: Messung der physikalischen Größen
  • 5 Muster von Beispiel 4 und Vergleichsbeispiel 4 wurden vorbereitet, mechanische Eigenschaften (Reißfestigkeit und Ausdehnung bei Raumtemperatur, Spannungsvariation, Ausdehnungsvariation und Abriebwiderstand bei hohen Temperaturen), elektrische Eigenschaften (Isolierwiderstand), und chemische Eigenschaften (Ölresistenz) wurden gemessen, und die resultierenden physikalischen Eigenschaften sind in der folgenden Tabelle 8 gegeben. Das hierin verwendete Testverfahren wurde unterhalb beschrieben.
    • (1) Messung der Reißfestigkeit/Ausdehnung (bei Raumtemperatur 23°C): die Kapazität des Ladekabels einer angebrachten Last oder Zug auszuhalten. Bezüglich der Form der Ladekabelproben, Isolatoren mit einem inneren Durchmesser von weniger als 5 mm haben eine tubuläre Form, und andere Isolatoren eine Hantelform. Die tubulären Proben haben eine Länge von ca. 100 mm und Gradierungen in einem Abstand von 20 mm im Mittelpunkt davon. Die hantelförmigen Proben wurden hergestellt unter Entfernung des Leiters durch eine passende Methode und durch Abflachung der Oberfläche. Zu diesem Zeitpunkt sollten die hantelförmigen Proben eine Dicke von nicht weniger als 0,8 mm und nicht mehr als 2,0 mm haben. Die hantelförmigen Proben wurden gestanzt mit einer No. 3 oder No. 4 Hantel und haben Gradierungen in einem Abstand von 20 mm im Mittelpunkt davon. Test wurden unter Verwendung eines Spannungstesters durchgeführt, die vorbereitete Probe wurde festgehalten, und die maximale Spannungsladung und die Länge der Gradierungen beim Reißen wurden gemessen, nach Zug mit einer Rate von 250 mm/min. Die gemessenen Werte wurden in Reißfestigkeit und Ausdehnung umgerechnet, nach den Gleichungen wie beschrieben in der folgenden Tabelle 8. Ein Durchschnitt von 5 umgerechneten Werten wurde als resultierender Wert erhalten.
    TABELLE 8
    Figure DE102016223329A1_0002
    • (2) Messung der Hitzeresistenz: Hitzeresistenz wurde gemessen um die Lebensdauer des Drahtes zu evaluieren, genauer, um die Resistenz bei hohen Temperaturen zu inneren/äußeren Umgebungen, harscher als die tatsächlichen Betriebsbedingungen, zu evaluieren. Die Ladekabelprobe wurde in ein Bad mit einer konstanten Temperatur von 120°C für 168 Stunden gelegt. Zu diesem Zeitpunkt waren die Proben von der inneren Oberfläche des Bads mit konstanter Temperatur 20 mm oder mehr entfernt und es wurde nicht mit Proben anderen Materials getestet.
    • (3) Messung des Abriebwiderstands: Widerstand eines Isolators gegen raue externe Flächen, Zug- und Reibungskräfte wurden gemessen. Im Speziellen wurde eine Ladekabelprobe mit einer Länge von ca. 900 mm vorbereitet, an einem Abriebwiderstandstester mit Klebeband angebracht und in Kontakt mit einem Abriebwiderstandsband gebracht. Eine vorher bestimmte Last (400 g) wurde angewandt, das Band wurde überführt mit einer Rate von 1500 mm/min und die Länge des Bands wenn der Leiter das Band berührt wurde abgelesen. Nachdem die Messung an einem Punkt durchgeführt wurde, wurde die Probe um 25 mm bewegt, in einem Winkle von 90° gedreht und fixiert und der vorhergehende Test wurde wiederholt. Durch das Verfahren wie oben beschrieben wurde ein Durchschnitt als Abriebwiderstand bestimmt, der von 4 Werten gebildet wurde, welche von einer Probe erhalten wurden.
    • (4) Messung des Isolierwiderstands: gemessen unter Verwendung eines Isolierwiderstandtesters (4339B, Agilent).
    • (5) Messung der Ölresistenz: Ladekabelproben wurden in ein IRM902 Öl in einem Ölresistenzbad bei 100°C für 240 Stunden eingelegt. Die Reißfestigkeit und Ausdehnung des eingetauchten Ladekabels wurden in derselben Art und Weise gemessen wie die Reißfestigkeit/Ausdehnung.
    • (6) Messung der Flexibilität: Flexibilitätstests wurden durchgeführt um die Kraft zu messen, welche benötigt wird um ein Kabel zu biegen und die Flexibilität eines Kabels mit hoher Flexibilität zu erhalten. Eine Ladekabelprobe mit einer Länge von 400 mm oder länger wurde so angebracht, dass es einen Radius von 80 mm hatte, eine Lastzelle wurde mit einer Rate von 100 mm/min fallen gelassen und die maximale Last bis der Biegeradius 40 mm erreichte wurde gemessen.
    TABELLE 9 Messergebnisse der physikalischen Größen
    Figure DE102016223329A1_0003
    Figure DE102016223329A1_0004
    TABELLE 10 Messergebnisse der physikalischen Größen
    Figure DE102016223329A1_0005
  • Wie in Tabelle 9 gezeigt, zeigt Beispiel 4 nach einer beispielhaften Ausführungsform der vorliegenden Erfindung überlegene mechanische Eigenschaften wie Reißfestigkeit und Ausdehnung bei Raumtemperatur, wie auch Spannungsvariation und Ausdehnungsvariation unter harschen Bedingungen, im Vergleich zu Vergleichsbeispiel 4 (konventionelles Ladekabel) beschichtet mit PVC. Im Speziellen die Ausdehnung wurde außerordentlich verbessert, um 173% und andere physikalische Eigenschaften wurden auch um 40 bis 60% verbessert.
  • Zusätzlich, bezogen auf die chemische Eigenschaft der Ölresistenz von Beispiel 4, kann die Spannungsvariation um 24% erhöht werden und die Ausdehnungsvariation kann um 90% erhöht werden, im Vergleich zu Vergleichsbeispiel 4 (konventionelles Ladekabel). Insbesondere gab es beinahe keine Ausdehnungsvariation.
  • Zusätzlich, wenn der Isolierwiderstand als elektrische Eigenschaft gemessen wurde, zeigt Beispiel 4 einen hohen Isolierwiderstand, welcher um 357% erhöht war, im Vergleich zu Vergleichsbeispiel 4.
  • Wie gezeigt in Tabelle 10, zeigt Beispiel 4 überlegene Flexibilität, insbesondere sehr überlegene Flexibilität bei niedrigen Temperaturen als Vergleichsbeispiel 4.
  • Dementsprechend, erfüllt das Ladekabel nach verschiedenen beispielhaften Ausführungsformen der vorliegenden Erfindung, welches ein umweltfreundliches Kabel enthält, Flexibilität bei niedrigen Temperaturen wie auch mechanische Eigenschaften, chemische Eigenschaften und elektrische Eigenschaften, kann als Ladekabel für ein Elektrofahrzeug bereitgestellt werden, in der Lage dazu, dem Benutzer weitere Zuverlässigkeit zu bieten.
  • Dementsprechend können die Beschichtungsmischungen nach verschiedenen beispielhaften Ausführungsformen der vorliegenden Erfindung für die Beschichtung von Drähten oder der Mantel überlegene Extrusionsformbarkeit bieten und die Ladekabel für Elektrofahrzeuge daraus hergestellt können passenderweise unter Bedingungen bei niedrigen Temperaturen wegen der Flexibilität bei niedrigen Temperaturen, Kälteresistenz, und Biegbarkeit bieten.
  • Zusätzlich kann das Ladekabel nach verschiedenen beispielhaften Ausführungsformen der vorliegenden Erfindung für Elektrofahrzeuge Permeation von Fahrzeugöl verhindern, dank der deutlich verbesserten äußeren Erscheinung und Ölresistenz und kann sicher angebracht oder installiert werden in einem Fahrzeug zur Verwendung. Des Weiteren können die Kabel nach umweltfreundlichen Fahrzeugteiltrends recycelt werden. Da die Ladekabel der vorliegenden Erfindung kein Halogen-basiertes Flammschutzmittel enthalten, und umweltfreundlich sind, sichere Hitzeresistenz entsprechend bis Temperaturen von ca. 90°C von Drähten von Fahrzeugen, und mechanische Stärke, Hitzeresistenz und UV Stabilität haben, können sie als Alternative zu konventionellen Drähten beschichtet mit Polyvinylchlorid (PVC) verwendet werden.
  • Zusätzlich können die Ladekabel nach verschiedenen beispielhaften Ausführungsformen der vorliegenden Erfindung überlegene Isolierung und Reduktion der Dicke des Mantels realisieren, im Vergleich zu konventionellen Drähten beschichtet mit Polyvinylchlorid (PVC), wegen den exzellenten elektrischen und mechanischen Eigenschaften, daher vorteilhaft kleine und leichte Produkte bereitstellen.
  • Die Erfindung wurde im Detail in Bezug auf verschiedenen beispielhaften Ausführungsformen davon beschrieben. Allerdings werden jene geschult in der Technik anerkennen, dass verschiedene Modifikationen der Ausführungsformen möglich sind, ohne von den Prinzipien, und Geist der Erfindung, deren Umfang definiert ist in den beigefügten Ansprüchen und deren Äquivalenten, abzuweichen.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Nicht-Patentliteratur
    • IEC 62893 [0073]
    • EN 60811-501 [0077]
    • EN 60811-401 [0077]
    • EN 60811-505 [0077]
    • EN 60811-501 [0085]
    • EN 60811-401 [0085]
    • EN 60811-404 [0085]
    • EN 60811-505 [0085]
    • EN 60811-509 [0085]

Claims (16)

  1. Ladekabel mit Flexibilität bei niedrigen Temperaturen und Ölresistenz, umfassend einen Draht, konfiguriert dazu Strom zuzuführen, beschichtet mit einer Beschichtungsmischung (A), umfassend: (a1) eine Menge von ca. 20 bis 80 parts per hundred rubber (phr) von Ethylen-Propylen Gummi (EPG) mit einer Mooney Viskosität von ca. 20 bis 60; (a2) eine Menge von ca. 10 bis 80 phr eines Polyolefin Harzes (PO); (a3) eine Menge von ca. 10 bis 50 phr eines Füllstoffes; (a4) eine Menge von ca. 1 bis 10 phr einer Vernetzungshilfe; (a5) eine Menge von ca. 0,1 bis 5 phr eines Antioxidans; und (a6) eine Menge von ca. 0,1 bis 5 phr eines Schmiermittels; einen Draht, konfiguriert ein Signal zu übertragen, beschichtet mit einer Beschichtungsmischung (B), umfassend: (b1) eine Menge von ca. 20 bis 80 phr Polypropylen (PP); (b2) eine Menge von ca. 20 bis 80 phr von thermoplastischem Styrol Elastomer; (b3) eine Menge von ca. 10 bis 50 phr eines Füllstoffes; (b4) eine Menge von ca. 0,1 bis 5 phr eines Antioxidans; und (b5) eine Menge von ca. 0,1 bis 5 phr eines Schmiermittels; und einen Mantel, beschichtet mit einer Mantelmischung (C), umfassend: (c1) eine Menge von ca. 50 bis 90 phr eines thermoplastischen Polyurethans (TPU) mit einem Schmelzindex (SI) von ca. 30 bis 50 g/10 min; (c2) eine Menge von ca. 10 bis 50 phr von thermoplastischem Styrol Elastomer mit einem Schmelzindex (SI) von ca. 1 bis 5 g/10 min; (c3) eine Menge von ca. 10 bis 70 phr eines Phosphor-basiertem Flammschutzmittels; (c4) eine Menge von ca. 1 bis 10 phr eines Flammschutzhilfsmittel; (c5) eine Menge von 0,1 bis 5 phr eines Antioxidans; (c6) eine Menge von 0,1 bis 5 phr eines UV Absorbers und eines Stabilisators; und (c7) eine Menge von 0,1 bis 5 phr eines Schmiermittels.
  2. Ladekabel nach Anspruch 1, wobei der Füllstoff (a3) oder der Füllstoff (b3) eines oder mehr ausgewählt aus der Gruppe bestehend aus SiO2, CaCO3, Mg(OH)2 und Hydrotalkit umfasst.
  3. Ladekabel nach Anspruch 1, wobei der Füllstoff (a3) oder der Füllstoff (b3) Silan beschichtet auf einer Oberfläche davon umfasst.
  4. Ladekabel nach Anspruch 1, wobei der Füllstoff (a3) oder der Füllstoff (b3) eine mittlere Teilchengröße von ca. 0,1 bis 1 μ haben.
  5. Ladekabel nach Anspruch 1, wobei die Vernetzungshilfe (a4) eines oder mehr ausgewählt aus der Gruppe bestehend aus Triallylisocyanurat (TAIC), Triallylcyanurat (TAC) und Trimethylolpropantrimethylacrylat (TMPTMA) umfasst.
  6. Ladekabel nach Anspruch 1, wobei das Antioxidans (a5) oder das Antioxidans (b4) ein Phenol-basiertes Antioxidans, einen Metalldeaktivator, oder eine Mischung davon umfasst.
  7. Ladekabel nach Anspruch 1, wobei das Schmiermittel (a6) oder das Schmiermittel (b5) eines oder mehr ausgewählt aus der Gruppe bestehend aus Fluor-basierten, Silikon-basierten, Amid-basierten, Zink-basierten oder Fettsäure-basierten Schmiermitteln umfasst.
  8. Ladekabel nach Anspruch 1, wobei das thermoplastische Styrol Elastomer (b2) eines oder mehr ausgewählt aus der Gruppe bestehend aus Styrol-Ethylen-Butylen-Styrol (SEBS), Styrol-Butadien-Styrol Blockcopolymer (SBS), und Styrol-Isopren-Styrol Blockcopolymer (SIS) umfasst.
  9. Ladekabel nach Anspruch 1, wobei das thermoplastische Styrol Elastomer (c2) Styrol-Ethylen-Butylen-Styrol (SEBS) ist.
  10. Ladekabel nach Anspruch 1, wobei das Antioxidans (c5) eines oder mehr ausgewählt aus der Gruppe bestehend einem Phenol-basiertem Antioxidans, einem Phosphor-basiertem Antioxidans und einem Hydrolysestabilisator umfasst.
  11. Ladekabel nach Anspruch 1, wobei das Schmiermittel (c7) ein Montanwachs-basiertes Schmiermittel, ein Silikon-basiertes Schmiermittel, oder eine Mischung davon umfasst.
  12. Fahrzeugteil umfassend ein Ladekabel nach Anspruch 1.
  13. Fahrzeug umfassend eine Ladekabel nach Anspruch 1.
  14. Draht zur Stromzufuhr, umfassend eine Beschichtungsmischung, wobei die Beschichtungsmischung umfasst: eine Menge von ca. 20 bis 80 parts per hundred rubber (phr) von Ethylen-Propylen Gummi (EPG) mit einer Mooney Viskosität von ca. 20 bis 60; eine Menge von ca. 10 bis 80 phr eines Polyolefin Harzes (PO); eine Menge von ca. 10 bis 50 phr eines Füllstoffes; eine Menge von ca. 1 bis 10 phr einer Vernetzungshilfe; eine Menge von ca. 0,1 bis 5 phr eines Antioxidans; und eine Menge von ca. 0,1 bis 5 phr eines Schmiermittels.
  15. Draht zur Übertragung eines Signals umfassend eine Beschichtungsmischung, wobei die Beschichtungsmischung umfasst: eine Menge von ca. 20 bis 80 phr Polypropylen (PP); eine Menge von ca. 20 bis 80 phr von thermoplastischem Styrol Elastomer; eine Menge von ca. 10 bis 50 phr eines Füllstoffes; eine Menge von ca. 0,1 bis 5 phr eines Antioxidans; und eine Menge von ca. 0,1 bis 5 phr eines Schmiermittels.
  16. Mantel für ein Ladekabel umfassend eine Beschichtungsmischung, die Beschichtungsmischung umfassend: eine Menge von ca. 50 bis 90 phr eines thermoplastischen Polyurethans (TPU) mit einem Schmelzindex (SI) von ca. 30 bis 50 g/10 min; eine Menge von ca. 10 bis 50 phr von thermoplastischem Styrol Elastomer mit einem Schmelzindex (SI) von ca. 1 bis 5 g/10 min; eine Menge von ca. 10 bis 70 phr eines Phosphor-basiertem Flammschutzmittels; eine Menge von ca. 1 bis 10 phr eines Flammschutzhilfsmittel; eine Menge von 0,1 bis 5 phr eines Antioxidans; eine Menge von 0,1 bis 5 phr eines UV Absorbers und eines Stabilisators; und eine Menge von 0,1 bis 5 phr eines Schmiermittels.
DE102016223329.7A 2016-05-13 2016-11-24 Ladekabel mit Flexibilität bei niedrigen Temperaturen und Ölresistenz Withdrawn DE102016223329A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160059123A KR20170128025A (ko) 2016-05-13 2016-05-13 저온 유연성과 내유성이 우수한 충전 케이블
KR10-2016-0059123 2016-05-13

Publications (1)

Publication Number Publication Date
DE102016223329A1 true DE102016223329A1 (de) 2017-11-16

Family

ID=60163658

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102016223329.7A Withdrawn DE102016223329A1 (de) 2016-05-13 2016-11-24 Ladekabel mit Flexibilität bei niedrigen Temperaturen und Ölresistenz

Country Status (4)

Country Link
US (1) US20170330644A1 (de)
KR (1) KR20170128025A (de)
CN (1) CN107365532A (de)
DE (1) DE102016223329A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102141732B1 (ko) * 2018-07-27 2020-08-05 한국전력공사 절연재 조성물을 이용한 전력케이블용 절연재
CN111816360A (zh) * 2020-07-03 2020-10-23 文家洪 一种基于油充褶皱的抗冻电缆及其使用方法
US20220203857A1 (en) * 2020-12-30 2022-06-30 Ford Global Technologies, Llc Accelerated electric vehicle charging with subcooled coolant boiling

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5728761B2 (ja) * 2010-07-19 2015-06-03 ディーエスエム アイピー アセッツ ビー.ブイ. 難燃性絶縁電線
BR112013032293B1 (pt) * 2011-06-21 2020-10-27 Dow Global Technologies Llc. composição polimérica retardante de chamas livre de halogênio e bainha de fio ou cabo
CN103937114A (zh) * 2014-05-08 2014-07-23 上海蓝昊电气江苏有限公司 一种低成本高性能绝缘橡皮材料
CN204229900U (zh) * 2014-11-12 2015-03-25 肇庆中乔电气实业有限公司 一种电动汽车充电电缆

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
EN 60811-401
EN 60811-404
EN 60811-501
EN 60811-505
EN 60811-509
IEC 62893

Also Published As

Publication number Publication date
CN107365532A (zh) 2017-11-21
KR20170128025A (ko) 2017-11-22
US20170330644A1 (en) 2017-11-16

Similar Documents

Publication Publication Date Title
DE112011100601B4 (de) Zusammensetzung für eine Leitungsbeschichtung und deren Verwendung zur Herstellung einer isolierten Leitung und eines Kabelstrangs
DE112008001402B4 (de) Verfahren zur Herstellung eines flammhemmenden silanvernetzten Olefinharzes und eines isolierten Drahts
DE112008001781B4 (de) Zusammensetzung für ein flammwidriges Silan-quervernetztes Olefinharz, Verfahren zu ihrer Herstellung und ihre Verwendung zum Beschichten eines Leiters, flammwidriges Silan-quervernetzten Olefinharz sowie Verfahren zu seiner Herstellung
DE112006001039B4 (de) Nicht-halogenhaltiger isolierter Draht und Kabelbaum
DE112011101191B4 (de) Zusammensetzung für eine Leitungsbeschichtung, deren Verwendung zur Herstellung einer nicht vernetzten isolierenden Beschichtung einer isolierten Leitung und Verfahren zur Herstellung einer isolierten Leitung
DE112010000002B4 (de) Flammhemmende Zusammensetzung, Verfahren zur Herstellung der flammhemmenden Zusammensetzung und und deren Verwendung zur Herstellung eines isolierten Drahts
DE112011103020T5 (de) Zusammensetzung für ein Leitungsbeschichtungsmaterial, isolierte Leitung und Kabelbaum
DE112004002371B4 (de) Vernetzte flammhemmende Harzzusammensetzung und deren Verwendung in einem nichthalogenhaltigen Draht
DE112012000622T5 (de) Zusammensetzung für ein Leitungsbeschichtungsmaterial, isolierte Leitung und Kabelbaum
DE69915424T2 (de) Flammbeständige flexible Harzzusammensetzung für Elektrokabelbeschichtung
EP3201284A1 (de) Dichtkörper für dynamische anwendungen
DE112004002347B4 (de) Unvernetzte flammhemmende Harzzusammensetzung sowie deren Verwendung
DE112014002500B4 (de) Umhüllungsmaterial für einen elektrischen Draht und umhüllter elektrischer Draht
DE102016223329A1 (de) Ladekabel mit Flexibilität bei niedrigen Temperaturen und Ölresistenz
KR20190055932A (ko) 내한성 및 유연성이 우수한 절연 조성물 및 이로부터 형성된 절연층을 포함하는 케이블
KR20190000063A (ko) 내한성 및 내유성이 우수한 비할로겐계 절연 조성물 및 이로부터 형성된 절연층을 포함하는 전선
DE102015226788B4 (de) Harzzusammensetzung und Verfahren zur Herstellung eines Kabelmaterials für ein Fahrzeug
DE112017005312T5 (de) Isolierter elektrischer Draht und isolierende Harzzusammensetzung
DE112010000847T5 (de) Flammschutzmittel, flammhemmende Harzzusammensetung, und isolierter Draht
DE112019001430T5 (de) Zusammensetzung für Drahtbeschichtungsmaterial, isolierter Draht und Kabelbaum
DE102020123056A1 (de) Kommunikationskabel und Kabelbaum
DE112014005808T5 (de) Isolierter Draht
EP2415823A1 (de) Vernetzbare Polymermischung für Mäntel von Kabeln und Leitungen
KR20180096171A (ko) 고전압 케이블용 절연 조성물 및 이로부터 형성된 절연층을 포함하는 케이블
DE102011089095A1 (de) Isoliertes Kabel und Verfahren zur Herstellung davon

Legal Events

Date Code Title Description
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee