DE102016125412B4 - Schlitz-Array-Antenne und Radar, Radarsystem sowie Drahtlos-Kommunikationssystem mit der Schlitz-Array-Antenne - Google Patents

Schlitz-Array-Antenne und Radar, Radarsystem sowie Drahtlos-Kommunikationssystem mit der Schlitz-Array-Antenne Download PDF

Info

Publication number
DE102016125412B4
DE102016125412B4 DE102016125412.6A DE102016125412A DE102016125412B4 DE 102016125412 B4 DE102016125412 B4 DE 102016125412B4 DE 102016125412 A DE102016125412 A DE 102016125412A DE 102016125412 B4 DE102016125412 B4 DE 102016125412B4
Authority
DE
Germany
Prior art keywords
waveguide
electrically conductive
array antenna
radar
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
DE102016125412.6A
Other languages
English (en)
Other versions
DE102016125412A1 (de
Inventor
Hiroyuki KAMO
Hideki Kirino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Elesys Corp Kawasaki Shi Jp
WGR Co Ltd
Original Assignee
Nidec Elesys Corp
WGR Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Elesys Corp, WGR Co Ltd filed Critical Nidec Elesys Corp
Publication of DE102016125412A1 publication Critical patent/DE102016125412A1/de
Application granted granted Critical
Publication of DE102016125412B4 publication Critical patent/DE102016125412B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0037Particular feeding systems linear waveguide fed arrays
    • H01Q21/0043Slotted waveguides
    • H01Q21/005Slotted waveguides arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • G01S13/867Combination of radar systems with cameras
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/3208Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used
    • H01Q1/3233Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used particular used as part of a sensor or in a security system, e.g. for automotive radar, navigation systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/064Two dimensional planar arrays using horn or slot aerials

Abstract

Schlitz-Array-Antenne, umfassend:ein erstes elektrisch leitendes Bauglied (110) mit einer ersten elektrisch leitenden Oberfläche (110a) und einer Vielzahl von Schlitzen (112) darin, wobei die Vielzahl von Schlitzen (112) in einer ersten Richtung, die sich entlang der ersten elektrisch leitenden Oberfläche (110a) erstreckt, und in einer zweiten Richtung, welche die erste Richtung schneidet, arrayartig angeordnet ist;ein zweites elektrisch leitendes Bauglied (120) mit einer zweiten elektrisch leitenden Oberfläche (120a), die zu der ersten elektrisch leitenden Oberfläche (110a) entgegengesetzt ist;eine Vielzahl von Wellenleiterbaugliedern (122), die zwischen den ersten und zweiten elektrisch leitenden Baugliedern (110, 120) entlang einer dritten Richtung, welche die erste Richtung schneidet, arrayartig angeordnet ist, wobei jedes Wellenleiterbauglied (122) eine elektrisch leitende Wellenleiterfläche (122a) hat, die sich entlang der ersten Richtung erstreckt, um zu mindestens zwein aus der Vielzahl von Schlitzen (112) entgegengesetzt zu sein, wobei die Wellenleiterfläche (122a) eine gleichmäßige Streifenform aufweist, die sich über Positionen erstreckt, die den mindestens zwei Schlitzen gegenüberliegen, wobei sich die Wellenleiterfläche (122a) vollständig durch die mindestens zwei Schlitze erstreckt, wenn sie aus einer vierten Richtung betrachtet wird, die normal zu Wellenleiterfläche (122a) ist; undeinen künstlichen magnetischen Leiter in einer Subregion, die innerhalb einer Region zwischen den ersten und zweiten elektrisch leitenden Baugliedern (110,120) liegt, jedoch außerhalb einer Subregion, welche die Vielzahl von Wellenleiterbaugliedern (122) enthält,wobei der künstliche magnetische Leiter eine Vielzahl von elektrisch leitenden Stäben (124) umfasst, die auf dem zweiten elektrisch leitenden Baugliedern (120) arrayartig angeordnet sind;in einem Raum zwischen zwei benachbarten Wellenleiterflächen (122a) zweier benachbarter Wellenleiterbauglider der Vielzahl von Wellenleiterbaugliedern (122)keine elektrische Wand existiert; undzwischen den zwei benachbarten Wellenleiterbauglidern (122) eine Zeile elektrisch leitender Stäbe (124) vorgesehen ist.

Description

  • HINTERGRUND
  • 1. Technisches Gebiet:
  • Die vorliegende Offenbarung betrifft eine Schlitz-Array-Antenne.
  • 2. Beschreibung der verwandten Technik:
  • Eine Array-Antenne mit einer Vielzahl von Antennenelementen (die auch als „Abstrahlelemente“ bezeichnet werden können) in arrayartiger Anordnung auf einer Linie oder einer Ebene kommt in verschiedenen Anwendungen zur Verwendung, z.B. in Radar- und Kommunikationssystemen. Zum Abstrahlen elektromagnetischer Wellen aus einer Array-Antenne ist es notwendig, jedem Antennenelement elektromagnetische Wellen (z.B. Hochfrequenz-Signalwellen) aus einer Schaltung zuzuführen, die elektromagnetische Wellen generiert („Speisung“). Eine solche Speisung erfolgt über einen Wellenleiter. Ein Wellenleiter wird auch dazu verwendet, elektromagnetische Wellen, die an den Antennenelementen empfangen werden, an eine Empfangsschaltung zu senden.
  • Üblicherweise wird die Speisung in eine Array-Antenne bisher häufig durch Verwendung einer beziehungsweise mehrerer Mikrostreifenleitung(en) erreicht. In dem Fall, in dem die Frequenz einer durch eine Array-Antenne zu sendenden oder zu empfangenden elektromagnetischen Welle eine hohe Frequenz von über 30 Gigahertz (GHz) ist, z.B. das Millimeterband, unterliegt eine Mikrostreifenleitung jedoch hohem dielektrischem Verlust, so dass der Wirkungsgrad der Antenne beeinträchtigt wird. Daher wird in einer solchen Hochfrequenzregion ein alternativer Wellenleiter als Ersatz für eine Mikrostreifenleitung benötigt.
  • Es ist bekannt, dass die Verwendung eines Hohlwellenleiters anstelle einer Mikrostreifenleitung zum Speisen der einzelnen Antennenelemente eine Reduzierung des Verlustes auch in Frequenzregionen erlaubt, die über 30 GHz hinausgehen. Ein Hohlwellenleiter, auch als Metall-Hohlwellenleiter bekannt, ist ein Metallkörper mit kreisförmigem oder rechteckigem Querschnitt. Im Inneren eines Hohlwellenleiters wird eine elektromagnetische Feldmode erzeugt, die an Form und Größe des Körpers angepasst ist. Daher ist eine elektromagnetische Welle fähig, sich innerhalb des Körpers in einer bestimmten elektromagnetischen Feldmode auszubreiten. Da das Körperinnere hohl ist, tritt das Problem des dielektrischen Verlustes auch dann nicht auf, wenn sich die Frequenz der elektromagnetischen Welle, die sich ausbreiten soll, erhöht. Jedoch ist bei Verwendung eines Hohlwellenleiters die Anordnung von Antennenelementen mit hoher Dichte schwierig, weil der hohle Teil eines Hohlwellenleiters eine Breite haben muss, die gleich oder größer als eine halbe Wellenlänge der elektromagnetischen Welle ist, die sich ausbreiten soll, und zudem auch der Körper (Metallwand) des Hohlwellenleiters selbst dick genug sein muss.
  • Als Wellenleiterstrukturen zum Ersatz für Mikrostreifenleitungen und Hohlwellenleiter offenbaren die Patentdokumente 1 bis 3 sowie die Nicht- Patentdokumente 1 und 2 Strukturen, die elektromagnetische Wellen durch Nutzung eines künstlichen magnetischen Leiters (AMC) führen, der sich auf beiden Seiten eines Wellenleiters vom Rippentyp erstreckt.
    • [Patentdokument 1] Internationale Veröffentlichung Nr. WO 2010 / 050 122 A1
    • [Patentdokument 2] Patentschrift US-Patent Nr. US 8 803 638 B2
    • [Patentdokument 3] europäische Patentanmeldung mit der Veröffentlichungsnr. EP 1331 688 A1
  • [Nicht-Patentdokument 1] Kirino et al., „A 76 GHz Multi-Layered Phased Array Antenna Using o Non-Metal Contact Metamaterial Waveguide", IEEE Transaction on Antennas and Propagation,Vol. 60, Nr. 2, Februar 2012, S. 840-853
  • [Nicht-Patentdokument 2] Kildal et al., „Local Metamaterial-Based Waveguides in Gaps Between Parallel Metal Plates", IEEE Antennas and Wireless Propagation Letters, Vol. 8, 2009, S. 84-87
  • [Nicht-Patentdokument 3] Tomas Sehm et al., „A High-Gain 58-GHz Box-Horn Array Antenna with Suppressed Grating Lobes", IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, Nr. 7, Juli 1999, S. 1125-1130.
  • Zaman Uz, A., Kidal, P., Ku Band Linear Slot-Array in Ridge Gapwaveguide Technology. In: 7th European Conference on Antennas and Propagation, 2013, S. 3078-3081, offenbart eine Ku-Band-4x1-Schlitz-Array-Antenne, die auf Spaltwellenleitertechnologie basiert.
  • Die US 2013 / 0 033 404 A1 betrifft eine Antennenvorrichtung, die in einem Fahrzeug-Bordradargerät zur Überwachung der Fahrtrichtungen der Fahrzeuge verwendet werden kann.
  • ZUSAMMENFASSUNG
  • Eine Ausführungsform der vorliegenden Offenbarung stellt eine Schlitz-Array-Antenne bereit, deren mehrere Antennenelemente mit hoher Dichte in einer kleineren Region angeordnet sein können.
  • Eine Schlitz-Array-Antenne gemäß einer Implementierung der vorliegenden Offenbarung ist durch Anspruch 1 definiert.
  • Gemäß einer Ausführungsform der vorliegenden Offenbarung können elektromagnetische Wellen einer kurzen Wellenlänge, z.B. diejenigen, die einer Frequenz von über 30GHz entsprechen, durch eine Wellenleiterstruktur ausgebreitet werden, welche eine Verkleinerung erleichtert, und zum Senden/Empfang genutzt werden. Daher ist durch Verwendung einer Schlitz-Array-Antenne gemäß einer Ausführungsform der vorliegenden Offenbarung eine Größenverringerung eines Radars oder einer Kommunikationsvorrichtung und die Erhöhung ihrer Leistungsfähigkeit möglich.
  • Figurenliste
    • 1 ist eine perspektivische Ansicht, die eine exemplarische, allgemeine Konstruktion als Beispiel für eine Wellenleitervorrichtung gemäß der vorliegenden Offenbarung schematisch zeigt.
    • 2A ist ein Diagramm, das eine Querschnittskonstruktion der Wellenleitervorrichtung 100 aus 1, parallel zu der XZ-Ebene genommen, schematisch zeigt.
    • 2B ist ein Diagramm, das eine weitere Querschnittskonstruktion für die Wellenleitervorrichtung 100 aus 1, parallel zu der XZ-Ebene genommen, schematisch zeigt.
    • 3 ist eine perspektivische Ansicht, die eine Konstruktion für die Wellenleitervorrichtung 100 schematisch zeigt.
    • 4A ist eine Querschnittsansicht, die eine elektromagnetische Welle, die sich in der Wellenleitervorrichtung 100 ausbreitet, schematisch zeigt.
    • 4B ist eine Querschnittsansicht, die die Konstruktion eines bekannten Hohlwellenleiters 130 schematisch zeigt.
    • 4C ist eine Querschnittsansicht, die eine Implementierung zeigt, bei der zwei Wellenleiterbauglieder 122 auf einem zweiten leitenden Bauglied 120 vorgesehen sind.
    • 4D ist eine Querschnittsansicht, die die Konstruktion einer Wellenleitervorrichtung, bei der zwei Hohlwellenleiter 130 nebeneinander angeordnet sind, schematisch zeigt.
    • 5 ist eine perspektivische Ansicht, die eine Teilkonstruktion einer Schlitz-Array-Antenne 200 gemäß einem Vergleichsbeispiel schematisch zeigt.
    • 6 ist ein Diagramm, das die in 5 gezeigte Schlitz-Array-Antenne 200 teilweise, in einem Querschnitt, der zu der XZ-Ebene parallel ist und durch Mitten von zwei benachbarten Schlitzen 112 entlang der X-Richtung passiert, schematisch zeigt.
    • 7A ist ein Diagramm, das ein Beispiel für eine Verbindung zwischen einem Sender und einem Empfänger sowie zwei Wellenleiterbaugliedern zeigt.
    • 7B ist ein Diagramm, das ein Beispiel für eine Verbindung zwischen zwei Empfängern und zwei Wellenleiterbaugliedern zeigt.
    • 8A ist eine perspektivische Ansicht, die die Konstruktion einer Schlitz-Array-Antenne 300 gemäß Ausführungsform 1 der vorliegenden Offenbarung schematisch zeigt.
    • 8B ist ein Diagramm, das die in 8A gezeigte Schlitz-Array-Antenne 300 teilweise, in einem Querschnitt, der zu der XZ-Ebene parallel ist und durch Mitten von drei Schlitzen 112 entlang der X-Richtung passiert, schematisch zeigt.
    • 9 ist eine perspektivische Ansicht, die die Schlitz-Array-Antenne 300 schematisch so illustriert zeigt, dass die Beabstandung zwischen dem ersten leitenden Bauglied 110 und dem zweiten leitenden Bauglied 120 zum besseren Verständnis übertrieben ist.
    • 10 ist ein Diagramm, das ein Beispiel für einen Abmessungsbereich eines jeden Bauglieds in der in 8B gezeigten Struktur zeigt.
    • 11 ist eine perspektivische Ansicht, die eine Teilstruktur einer Schlitz-Array-Antenne, die ein Horn 114 um jeden Schlitz 112 aufweist, schematisch zeigt.
    • 12A ist eine Draufsicht von oben, welche die Schlitz-Array-Antenne aus 11, aus der positiven Z-Richtung gesehen, zeigt.
    • 12B ist eine entlang der Linie C-C in 12A genommene Querschnittsansicht.
    • 12C ist ein Diagramm, das ein planes Layout von Wellenleiterbaugliedern 122U in einer ersten Wellenleitervorrichtung 100a zeigt.
    • 12D ist ein Diagramm, das ein planes Layout von Wellenleiterbaugliedern 122L in einer zweiten Wellenleitervorrichtung 100b zeigt.
    • 12E ist ein Diagramm zur Beschreibung dessen, wie durch die Struktur gemäß Ausführungsform 2 gleichphasige Anregung erreicht wird.
    • 12F ist eine Querschnittsansicht, die eine Teilkonstruktion einer Wellenleitervorrichtung mit einer Umkehrphasen-Verteilerstruktur schematisch zeigt.
    • 12G ist eine perspektivische Ansicht, die eine detailliertere Struktur des zweiten leitenden Bauglieds 120, einen Anschluss 145, Rippen 122A1 und 122A2 sowie eine Vielzahl von elektrisch leitenden Stäben 124 in einer Wellenleitervorrichtung zeigt.
    • 13 ist eine perspektivische Ansicht, die eine Variante einer Schlitz-Array-Antenne gemäß Ausführungsform 2 zeigt.
    • 14 ist eine Draufsicht von oben, die das zweite leitende Bauglied 120 aus 13, aus der positiven Z-Richtung gesehen, zeigt.
    • 15A ist eine Draufsicht von oben, welche die Struktur einer Vielzahl von Hörnern 114 gemäß einer Variante von Ausführungsform 2 zeigt.
    • 15B ist eine entlang der Linie D-D in 15A genommene Querschnittsansicht.
    • 16 ist eine perspektivische Ansicht, die ein Beispiel für eine Schlitz-Array-Antenne zeigt, welche Hörner 114 aufweist, die jeweils Seitenwände haben, die plane geneigte Flächen sind.
    • 17A ist eine Querschnittsansicht, die eine Beispielstruktur zeigt, bei der nur eine Wellenleiterfläche 122a, die eine obere Fläche des Wellenleiterbauglieds 122 definiert, elektrisch leitend ist, während jeder andere Abschnitt des Wellenleiterbauglieds 122 außer der Wellenleiterfläche 122a nicht elektrisch leitend ist.
    • 17B ist ein Diagramm, das eine Variante zeigt, bei der das Wellenleiterbauglied 122 nicht auf dem zweiten leitenden Bauglied 120 gebildet ist.
    • 17C ist ein Diagramm, das eine Beispielstruktur zeigt, bei der das zweite leitende Bauglied 120, das Wellenleiterbauglied 122 und jeder von der Vielzahl von leitenden Stäben 124 aus einer dielektrischen Oberfläche gebildet sind, die mit einem elektrisch leitenden Material wie etwa einem Metall beschichtet ist.
    • 17D ist ein Diagramm, das eine Beispielstruktur eines leitenden Bauglieds 120 zeigt, dessen Oberfläche mit einer dielektrischen Schicht bedeckt ist.
    • 17E ist ein Diagramm, das eine Beispielstruktur eines leitenden Bauglieds 120 zeigt, bei dem die Oberfläche eines dielektrischen Bauglieds mit einer Schicht aus elektrisch leitendem Metall bedeckt ist, deren Oberfläche wiederum mit einer weiteren dielektrischen Schicht bedeckt ist.
    • 17F ist ein Diagramm, das ein Beispiel zeigt, bei dem die Höhe des Wellenleiterbauglieds 122 geringer als die Höhe der leitenden Stäbe 124 ist und ein Abschnitt einer leitenden Oberfläche 110a des ersten leitenden Bauglieds 110, der zu der Wellenleiterfläche 122a entgegengesetzt ist, in Richtung des Wellenleiterbauglieds 122 absteht.
    • 17G ist ein Diagramm, das ein Beispiel zeigt, bei dem weiterhin in der Struktur aus 17F Abschnitte der leitenden Oberfläche 110a, die zu den leitenden Stäben 124 entgegengesetzt sind, in Richtung der leitenden Stäbe 124 abstehen.
    • 18A ist ein Diagramm, das ein Beispiel zeigt, bei dem eine leitende Oberfläche 110a des ersten leitenden Bauglieds 110 als eine gekrümmte Oberfläche geformt ist.
    • 18B ist ein Diagramm, das ein Beispiel zeigt, bei dem auch eine leitende Oberfläche 120a des zweiten leitenden Bauglieds 120 als eine gekrümmte Oberfläche geformt ist.
    • 19A ist ein Diagramm, das eine weitere Beispielform eines Schlitzes zeigt.
    • 19B ist ein Diagramm, das noch eine weitere Beispielform eines Schlitzes zeigt.
    • 19C ist ein Diagramm, das noch eine weitere Beispielform eines Schlitzes zeigt.
    • 19D ist ein Diagramm, das noch eine weitere Beispielform eines Schlitzes zeigt.
    • 20 ist ein Diagramm, das ein planes Layout zeigt, bei dem die in 19A bis 19D gezeigten vier Arten von Schlitzen 112a bis 112d auf einem Wellenleiterbauglied 122 angeordnet sind.
    • 21 ist ein Diagramm, das ein Eigenfahrzeug 500 und ein voraus befindliches Fahrzeug 502 auf derselben Fahrspur wie das Eigenfahrzeug 500 zeigt.
    • 22 ist ein Diagramm, das ein Bordradarsystem 510 des Eigenfahrzeugs 500 zeigt.
    • 23A ist ein Diagramm, das ein Verhältnis zwischen einer Array-Antenne AA des Bordradarsystems 510 und mehreren eintreffenden Wellen k zeigt.
    • 23B ist ein Diagramm, das die Array-Antenne AAzeigt, welche die k-te eintreffende Welle empfängt.
    • 24 ist ein Blockdiagramm, das eine exemplarische Grundkonstruktion einer Fahrzeug-Fahrsteuereinrichtung 600 gemäß der vorliegenden Offenbarung zeigt.
    • 25 ist ein Blockdiagramm, das eine weitere Beispielkonstruktion für die Fahrzeug-Fahrsteuereinrichtung 600 zeigt.
    • 26 ist ein Blockdiagramm, das ein Beispiel für eine spezifischere Konstruktion der Fahrzeug-Fahrsteuereinrichtung 600 zeigt.
    • 27 ist ein Blockdiagramm, das eine detailliertere Beispielkonstruktion des Radarsystems 510 gemäß diesem Anwendungsbeispiel zeigt.
    • 28 ist ein Diagramm, das die Veränderung der Frequenz eines Sendesignals zeigt, das auf Basis des Signals moduliert ist, welches durch eine Dreieckswellen-Generierungsschaltung581 generiert ist.
    • 29 ist ein Diagramm, das eine Schwebungsfrequenz fu in einer „Anstiegs“-Periode und eine Schwebungsfrequenz fd in einer „Abfall“-Periode zeigt.
    • 30 ist ein Diagramm, das eine Beispielimplementierung zeigt, bei der eine Signalverarbeitungsschaltung 560 in Hardware mit einem Prozessor PR und einer Speichervorrichtung MD implementiert ist.
    • 31 ist ein Diagramm, das ein Verhältnis zwischen drei Frequenzen f1, f2 und f3 zeigt.
    • 32 ist ein Diagramm, das ein Verhältnis zwischen synthetischen Spektren F1 bis F3 auf einer komplexen Ebene zeigt.
    • 33 ist ein Ablaufdiagramm, das die Prozedur eines Bestimmungsprozess für relative Geschwindigkeit und Distanz gemäß einer Variante zeigt.
    • 34 ist ein Diagramm zu einer zusammengeführten Einrichtung, in der ein Radarsystem 510 mit einer Schlitz-Array-Antenne und ein Bordkamerasystem 700 enthalten sind.
    • 35 ist ein Diagramm, das illustriert, wie das Platzieren eines Millimeterwellenradars 510 und eines Bordkamerasystems 700 an im Wesentlichen derselben Position im Fahrzeugraum ermöglichen kann, dass dieselben ein identisches Sichtfeld und eine identische Sichtlinie erfassen, wodurch ein Abgleichprozess erleichtert wird.
    • 36 ist ein Diagramm, das eine Beispielkonstruktion für ein Überwachungssystem 1500 auf Basis von Millimeterwellenradar zeigt.
    • 37 ist ein Blockdiagramm, das eine Konstruktion für ein digitales Kommunikationssystem 800A zeigt.
    • 38 ist ein Blockdiagramm, das ein Beispielkommunikationssystem 800B zeigt, das einen Sender 810B aufweist, der fähig ist, sein Funkwellenabstrahlungsmuster zu ändern.
    • 39 ist ein Blockdiagramm, das ein Beispielkommunikationssystem 800C zeigt, welches eine MIMO-Funktion implementiert.
  • AUSFÜHRLICHE BESCHREIBUNG
  • Bevor Ausführungsformen der vorliegenden Offenbarung beschrieben werden, erfolgt eine Beschreibung von Feststellungen, welche die Basis der vorliegenden Offenbarung bilden.
  • Ein Rippenwellenleiter, der jeweils in den oben genannten Patentdokumenten 1 bis 3 und Nicht-Patentdokumenten 1 und 2 offenbart ist, ist in einer Waffeleisenstruktur bereitgestellt, die fähig ist, als künstlicher magnetischer Leiter zu funktionieren. Ein Rippenwellenleiter, bei dem ein solcher künstlicher magnetischer Leiter auf Basis der vorliegenden Offenbarung genutzt wird (der nachfolgend als WRG, Waffeleisen-Rippenwellenleiter bezeichnet werden kann), ist fähig zum Realisieren eines Antennenspeisenetzes mit niedrigen Verlusten im Mikrowellen- oder Millimeterwellenband. Zudem erlaubt die Verwendung eines solchen Rippenwellenleiters das Anordnen von Antennenelementen mit hoher Dichte. Nachfolgend wird ein Beispiel für Grundkonstruktion und Betrieb einer solchen Wellenleiterstruktur beschrieben.
  • Ein künstlicher magnetischer Leiter ist eine Struktur, die die Eigenschaften eines perfekten magnetischen Leiters (PMC), der in der Natur nicht vorkommt, künstlich realisiert. Eine Eigenschaft eines perfekten magnetischen Leiters besteht darin, dass „ein Magnetfeld auf seiner Oberfläche eine Tangentialkomponente von null hat“. Diese Eigenschaft ist entgegengesetzt zu der Eigenschaft eines perfekten elektrischen Leiters (PEC), dass nämlich „ein elektrisches Feld auf seiner Oberfläche eine Tangentialkomponente von null hat“. Obwohl ein perfekter magnetischer Leiter in der Natur nicht vorkommt, ist er durch eine künstliche periodische Struktur ausführbar. Ein künstlicher magnetischer Leiter funktioniert als perfekter magnetischer Leiter in einem spezifischen Frequenzband, das durch seine periodische Struktur definiert ist. Ein künstlicher magnetischer Leiter beschränkt oder verhindert die Ausbreitung einer elektromagnetischen Welle einer jeden Frequenz, die in dem in dem spezifischen Frequenzband enthalten ist (ausbreitungsbeschränktes Band), entlang der Oberfläche des künstlichen magnetischen Leiters. Daher kann die Oberfläche eines künstlichen magnetischen Leiters als Oberfläche mit hoher Impedanz bezeichnet werden.
  • Bei den Wellenleitervorrichtungen, die in den Patentdokumenten 1 und 2 sowie den Nicht-Patentdokumenten 1 bis 3 offenbart sind, ist ein künstlicher magnetischer Leiter durch eine Vielzahl von elektrisch leitenden Stäben realisiert, die entlang von Zeilen- und Spaltenrichtungen arrayartig angeordnet sind. Solche Stäbe sind Vorsprünge, die auch als Pfeiler oder Stifte bezeichnet werden können. Jede dieser Wellenleitervorrichtungen weist als Ganzes ein Paar entgegengesetzter elektrisch leitender Platten auf. Eine leitende Platte hat eine Rippe, die in Richtung der anderen leitenden Platte absteht, und Erstreckungen eines künstlichen magnetischen Leiters, die sich auf beiden Seiten der Rippe erstrecken. Eine obere Fläche der Rippe (d.h. ihre elektrisch leitende Fläche) ist über einen Abstand zu einer leitenden Oberfläche der anderen leitenden Platte entgegengesetzt. Eine elektromagnetische Welle (Signalwelle) von einer Wellenlänge oder Frequenz, die in dem ausbreitungsbeschränkten Band des künstlichen magnetischen Leiters enthalten ist, breitet sich entlang der Rippe in dem Raum (Abstand) zwischen dieser leitenden Oberfläche und der oberen Fläche der Rippe aus.
  • 1 ist eine perspektivische Ansicht, die ein Beispiel für eine solche Wellenleitervorrichtung schematisch zeigt. 1 zeigt XYZ-Koordinaten entlang der Richtungen X, Y und Z, die die zueinander orthogonal verlaufen. Die in der Figur gezeigte Wellenleitervorrichtung 100 weist ein plattenförmiges erstes leitendes Bauglied 110 und ein plattenförmiges zweites leitendes Bauglied 120 auf, die sich in zueinander entgegengesetzten und parallelen Positionen befinden. Eine Vielzahl von leitenden Stäben 124 ist arrayartig auf dem zweiten leitenden Bauglied 120 angeordnet.
  • Es wird darauf hingewiesen, dass jede in einer Figur der vorliegenden Anmeldung dargestellte Struktur in einer Ausrichtung gezeigt ist, die zur einfacheren Erläuterung gewählt ist, was ihre Ausrichtung bei einer tatsächlichen Umsetzung einer Ausführungsform der vorliegenden Offenbarung in keiner Weise einschränken soll. Zudem sollen Form und Größe eines Ganzen oder eines Teils jedweder Struktur, die in einer Figur gezeigt ist, ihre tatsächliche Form und Größe nicht einschränken.
  • 2A ist ein Diagramm, das eine Querschnittskonstruktion der Wellenleitervorrichtung 100, parallel zu der XZ-Ebene genommen, schematisch zeigt. Wie in 2A gezeigt, hat das erste leitende Bauglied 110 auf der dem zweiten leitenden Bauglied 120 zugewandten Seite eine leitende Oberfläche 110a. Das zweite leitende Bauglied 120 hat auf der dem ersten leitenden Bauglied 110 zugewandten Seite eine leitende Oberfläche 120a. Die leitende Oberfläche 110a hat eine zweidimensionale Ausdehnung entlang einer Ebene, die zu der axialen Richtung (Z-Richtung) der leitenden Stäbe 124 orthogonal ist (d.h. einer Ebene, die zu der XY-Ebene parallel ist). Obwohl die leitende Oberfläche 110a in diesem Beispiel als glatte Ebene gezeigt ist, braucht die leitende Oberfläche 110a keine Ebene zu sein, wie noch beschrieben wird.
  • 3 ist eine perspektivische Ansicht, welche die Wellenleitervorrichtung 100 schematisch so darstellt, dass die Beabstandung zwischen dem ersten leitenden Bauglied 110 und dem zweiten leitenden Bauglied 120 zum besseren Verständnis übertrieben ist. Bei einer tatsächlichen Wellenleitervorrichtung 100, wie in 1 und 2A gezeigt, ist die Beabstandung zwischen dem ersten leitenden Bauglied 110 und dem zweiten leitenden Bauglied 120 schmal, wobei das erste leitende Bauglied 110 alle leitenden Stäbe 124 auf dem zweiten leitenden Bauglied 120 überdeckt.
  • Wie in 2A gezeigt, haben die Vielzahl von leitenden Stäben 124, die arrayartig auf dem zweiten leitenden Bauglied 120 angeordnet sind, jeweils ein führendes Ende 124a, das zu der leitenden Oberfläche 110a entgegengesetzt ist. Bei dem in der Figur gezeigten Beispiel befinden sich die führenden Enden 124a der Vielzahl von leitenden Stäben 124 auf derselben Ebene. Diese Ebene definiert die Oberfläche 125 eines künstlichen magnetischen Leiters. Jeder leitende Stab 124 braucht nicht vollständig elektrisch leitend zu sein, solange mindestens die Oberfläche (die obere Fläche und die Seitenfläche) des leitenden Stabes 124 elektrisch leitend ist. Außerdem brauchen die einzelnen zweiten leitenden Bauglieder 120 nicht vollständig elektrisch leitend zu sein, solange sie die Vielzahl von leitenden Stäben 124 stützen können, um einen künstlichen magnetischen Leiter zu bilden. Von den Oberflächen des zweiten leitenden Bauglieds 120 kann eine Fläche 120a, welche die Vielzahl von leitenden Stäben 124 trägt, elektrisch leitend sein, so dass der elektrische Leiter die Oberflächen von benachbarten aus der Vielzahl von leitenden Stäben 124 elektrisch miteinander verbindet. Anders ausgedrückt: Die gesamte Kombination aus dem zweiten leitenden Bauglied 120 und der Vielzahl von leitenden Stäben 124 kann mindestens eine elektrisch leitende Oberfläche mit Anstiegen und Senkungen aufweisen, die zu der leitenden Oberfläche 110a des ersten leitenden Bauglieds 110 entgegengesetzt ist.
  • Auf dem zweiten leitenden Bauglied 120 ist ein rippenartiges Wellenleiterbauglied 122 zwischen der Vielzahl der leitenden Stäbe 124 vorgesehen. Insbesondere sind Erstreckungen eines künstlichen magnetischen Leiters in der Weise auf beiden Seiten des Wellenleiterbauglieds 122 vorhanden, dass das Wellenleiterbauglied 122 sandwichartig zwischen den Erstreckungen des künstlichen magnetischen Leiters auf beiden Seiten angeordnet ist. Wie aus 3 zu sehen, ist das Wellenleiterbauglied 122 in diesem Beispiel auf dem zweiten leitenden Bauglied 120 gestützt und erstreckt sich linear entlang derY-Richtung. Bei dem in der Figur gezeigten Beispiel hat das Wellenleiterbauglied 122 dieselbe Höhe und Breite wie diejenigen der leitenden Stäbe 124. Wie noch beschrieben wird, können Höhe und Breite des Wellenleiterbauglieds 122 sich jedoch von denen des leitenden Stabes 124 unterscheiden. Anders als die leitenden Stäbe 124 erstreckt sich das Wellenleiterbauglied 122 entlang einer Richtung (in diesem Beispiel entlang derY-Richtung), in welcher elektromagnetische Wellen entlang der leitenden Oberfläche 110a zu führen sind. Ebenso braucht das Wellenleiterbauglied 122 nicht vollständig elektrisch leitend zu sein, sondern kann mindestens eine elektrisch leitende Wellenleiterfläche 122a aufweisen, die zu der leitenden Oberfläche 110a des ersten leitenden Bauglieds 110 entgegengesetzt ist. Das zweite leitende Bauglied 120, die Vielzahl von leitenden Stäben 124 und das Wellenleiterbauglied 122 können Teile eines kontinuierlichen einstückigen Körpers sein. Darüber hinaus kann das erste leitende Bauglied 110 ebenfalls Teil eines solchen einstückigen Körpers sein.
  • Auf beiden Seiten des Wellenleiterbauglieds 122 lässt der Raum zwischen der Oberfläche 125 einer jeden Erstreckung eines künstlichen magnetischen Leiters und der leitenden Oberfläche 110a des ersten leitenden Bauglieds 110 keine Ausbreitung einer elektromagnetischen Welle jedweder Frequenz zu, die innerhalb eines spezifischen Frequenzbandes liegt. Dieses Frequenzband wird als „verbotenes Band“ bezeichnet. Der künstliche magnetische Leiter ist so gestaltet, dass die Frequenz einer Signalwelle zur Ausbreitung in der Wellenleitervorrichtung 100 (die nachfolgend als die „Betriebsfrequenz“ bezeichnet werden kann) in dem verbotenen Band enthalten ist. Das verbotene Band ist auf Basis von Folgendem einstellbar: die Höhe der leitenden Stäbe 124, d.h. die Tiefe einer jeden Vertiefung, die zwischen benachbarten leitenden Stäben 124 gebildet ist; die Breite eines jeden leitenden Stabes 124; das Intervall zwischen den leitenden Stäben124 sowie die Größe des Abstands zwischen dem führenden Ende 124a und der leitenden Oberfläche 110a eines jeden leitenden Stabes 124.
  • Die Distanz zwischen der ersten leitenden Oberfläche 110a und der zweiten leitenden Oberfläche 120a ist kürzer als eine Hälfte der Wellenlänge einer elektromagnetischen Welle in einem Wellenleiter gestaltet, die zwischen der Wellenleiterfläche 122a und der leitenden Oberfläche 110a erzeugt ist. Die Frequenz einer innerhalb eines Wellenleiters zu übertragenden elektromagnetischen Welle reicht gewöhnlich über einen bestimmten Bereich. In einem solchen Fall ist die Bemessung kürzer als eine Hälfte der Wellenlänge λm, im freien Raum, bei der höchsten Frequenz von allen Frequenzen auf diesem Wellenleiter. Zudem sind auch die Breite (d.h. die Größe entlang der X-Richtung) des Wellenleiterbauglieds 122, die Breite (d.h. die Größe entlang der X- und Y-Richtungen) eines jeden leitenden Stabes 124, die Breite (d.h. die Breite entlang der X- und Y-Richtungen) eines Abstands zwischen zwei benachbarten leitenden Stäben 124 sowie die Breite (d.h. die Breite entlang der X-Richtung) zwischen einem Abstand zwischen dem Wellenleiterbauglied 122 und einem benachbarten leitenden Stab 124 kürzer als eine Hälfte der Wellenlänge λm gestaltet. Dies hat den Zweck, Resonanz niedrigster Ordnung zu unterdrücken und eine Eindämmungswirkung auf die elektromagnetischen Wellen sicherzustellen.
  • Obwohl das in 2A gezeigte Beispiel illustriert, dass die zweite leitende Oberfläche 120a eine Ebene ist, sind Ausführungsformen der vorliegenden Erfindung nicht darauf beschränkt. Beispielsweise kann die leitende Oberfläche 120a, wie in 2B gezeigt, durch die unteren Teile von Flächen definiert sein, die jeweils einen Querschnitt ähnlich einer V-Form oder einer U-Form haben. Somit besteht keine Einschränkung auf eine Implementierung, bei der die leitende Oberfläche 120a eine plane Oberfläche hat. Die leitende Oberfläche 120a nimmt diese Konfiguration an, wenn jeder leitende Stab 124 oder jedes Wellenleiterbauglied 122 mit einer Breite geformt ist, die sich in Richtung der Wurzel erhöht. Auch bei einer solchen Implementierung kann die in 2B gezeigte Vorrichtung als eine Wellenleitervorrichtung gemäß einer Ausführungsform der vorliegenden Offenbarung funktionieren, solange die Distanz zwischen der ersten leitenden Oberfläche 110a und der zweiten leitenden Oberfläche 120a kürzer als eine Hälfte der Wellenlänge λm ist.
  • In der Wellenleitervorrichtung 100 mit der oben beschriebenen Konstruktion kann sich eine Signalwelle mit der Betriebsfrequenz nicht in dem Raum zwischen der Oberfläche 125 des künstlichen magnetischen Leiters und der leitenden Oberfläche 110a des ersten leitenden Bauglieds 110 ausbreiten, sondern breitet sich in dem Raum zwischen der Wellenleiterfläche 122a des Wellenleiterbauglieds 122 und der leitenden Oberfläche 110a des ersten leitenden Bauglieds 110 aus. Anders als bei einem Hohlwellenleiter braucht die Breite des Wellenleiterbauglieds 122 in einer solchen Wellenleiterstruktur nicht gleich oder größer zu sein als eine Hälfte der Wellenlänge der elektromagnetischen Welle, deren Ausbreitung erfolgen soll. Zudem brauchen das erste leitende Bauglied 110 und das zweite leitende Bauglied 120 nicht durch eine Metallwand verbunden zu sein, die sich entlang der Dickenrichtung (d.h. parallel zu der YZ-Ebene) erstreckt.
  • 4A zeigtschematisch eine elektromagnetische Welle, die sich in einem schmalen Raum, d.h. einem Abstand zwischen der Wellenleiterfläche 122a des Wellenleiterbauglieds 122 und der leitenden Oberfläche 110a des ersten leitenden Bauglieds 110, ausbreitet. In 4A zeigen drei Pfeile schematisch die Ausrichtung eines elektrischen Feldes der sich ausbreitenden elektromagnetischen Welle an. Das elektrische Feld der sich ausbreitenden elektromagnetischen Welle steht zu der leitenden Oberfläche 110a des ersten leitenden Bauglieds 110 und zu der Wellenleiterfläche 122a senkrecht.
  • Auf beiden Seiten des Wellenleiterbauglieds 122 befinden sich Erstreckungen künstlicher magnetischer Leiter, die durch die Vielzahl von leitenden Stäben 124 erzeugt sind. Eine elektromagnetische Welle breitet sich in dem Abstand zwischen der Wellenleiterfläche 122a des Wellenleiterbauglieds 122 und der leitenden Oberfläche 110a des ersten leitenden Bauglieds 110 aus. 4A ist schematisch und stellt die Größenordnung eines elektromagnetischen Feldes, das durch die elektromagnetische Welle tatsächlich erzeugbar ist, nicht korrekt dar. Ein Teil der elektromagnetischen Welle (elektromagnetisches Feld), die sich in dem Raum über der Wellenleiterfläche 122a ausbreitet, kann eine seitliche Ausdehnung aus dem Raum heraus haben, der durch die Breite der Wellenleiterfläche 122a umgrenzt ist (d.h. dorthin, wo der künstliche magnetische Leiter existiert). In diesem Beispiel breitet sich die elektromagnetische Welle in einer Richtung (Y-Richtung) aus, die zu der Ebene aus 4A senkrecht verläuft. Als solches braucht sich das Wellenleiterbauglied 122 nicht linear entlang der Y-Richtung zu erstrecken, sondern kann (eine) Biegung(en) und/oder einen Verzweigungsteil(e), nicht gezeigt, aufweisen. Da die elektromagnetische Welle sich entlang der Wellenleiterfläche 122a des Wellenleiterbauglieds 122 ausbreitet, würde die Ausbreitungsrichtung sich an einer Biegung ändern, während die Ausbreitungsrichtung sich an einem Verzweigungsteil in mehrere Richtungen gabeln würde.
  • In der Wellenleiterstruktur aus 4A existiert keine Metallwand (elektrische Wand), die für einen Hohlwellenleiter unerlässlich wäre, auf beiden Seiten der sich ausbreitenden elektromagnetischen Welle. Daher ist in der Wellenleiterstruktur aus diesem Beispiel „eine Beschränkung aufgrund einer Metallwand (elektrischen Wand)“ nicht in den Grenzbedingungen für die Erzeugung der elektromagnetischen Feldmode durch die sich ausbreitende elektromagnetische Welle enthalten, und die Breite (Größe entlang der X-Richtung) der Wellenleiterfläche 122a ist kleiner als eine Hälfte der Wellenlänge der elektromagnetischen Welle, die sich auf dem Wellenleiter ausbreitet.
  • Zum Vergleich zeigt 4B schematisch einen Querschnitt eines Hohlwellenleiters 130. Durch Pfeile zeigt 4B schematisch die Ausrichtung eines elektrischen Feldes einer elektromagnetischen Feldmode (TE10), die in dem inneren Raum 132 des Hohlwellenleiters 130 erzeugt ist. Die Längen der Pfeile entsprechen elektrischen Feldstärken. Die Breite des inneren Raums 132 des Hohlwellenleiters 130 muss breiter als eine Hälfte der Wellenlänge eingestellt sein. Anders ausgedrückt: Die Breite des inneren Raums 132 des Hohlwellenleiters 130 kann nicht kleiner eingestellt sein als eine Hälfte der Wellenlänge der sich ausbreitenden elektromagnetischen Welle.
  • 4C ist eine Querschnittsansicht, die eine Implementierung zeigt, bei der zwei Wellenleiterbauglieder 122 auf dem zweiten leitenden Bauglied 120 vorgesehen sind. In diesem Beispiel existiert ein künstlicher magnetischer Leiter, der durch die Vielzahl von leitenden Stäben 124 erzeugt ist, zwischen zwei benachbarten Wellenleiterbaugliedern 122 entlang der X-Richtung. Genauer gesagt, befinden sich Erstreckungen eines künstlichen magnetischen Leiters, der durch die Vielzahl von leitenden Stäben 124 erzeugt ist, auf beiden Seiten eines jeden Wellenleiterbauglieds 122, so dass jedes Wellenleiterbauglied 122 zum unabhängigen Ausbreiten einer elektromagnetischen Welle fähig ist.
  • Zum Vergleich zeigt 4D schematisch einen Querschnitt einer Wellenleitervorrichtung, bei der zwei Hohlwellenleiter 130 nebeneinander angeordnet sind. Die zwei Hohlwellenleiter 130 sind elektrisch voneinander isoliert. Jeder Raum, in dem eine elektromagnetische Welle sich ausbreiten soll, muss von einer eine Metallwand umgeben sein, die den jeweiligen Hohlwellenleiter 130 definiert. Daher kann das Intervall zwischen den inneren Räumen 132, in denen elektromagnetische Wellen sich ausbreiten sollen, nicht kleiner gestaltet sein als eine Gesamtdicke zweier Metallwände. Üblicherweise ist eine Gesamtdicke zweier Metallwände länger als eine Hälfte der Wellenlänge einer sich ausbreitenden elektromagnetischen Welle. Das Intervall zwischen den Hohlwellenleitern 130 (d.h. das Intervall zwischen ihren Mitten) kann daher nur schwer kürzer als die Wellenlänge einer sich ausbreitenden elektromagnetischen Welle sein. Insbesondere bei elektromagnetischen Wellen mit Wellenlängen im extrem hohen Frequenzbereich (d.h. Wellenlänge der elektromagnetischen Welle: 10 mm oder kleiner) oder noch kürzeren Wellenlängen ist es schwierig, eine Metallwand zu bilden, die im Verhältnis zur Wellenlänge ausreichend dünn ist. Bei einer gewerblich praktikablen Implementierung stellt dies ein Kostenproblem dar.
  • Dagegen kann eine Wellenleitervorrichtung 100, die einen künstlichen magnetischen Leiter aufweist, leicht eine Struktur realisieren, bei der Wellenleiterbauglieder 122 nahe beieinander platziert sind. Somit ist eine solche Wellenleitervorrichtung 100 zur Verwendung in einer Array-Antenne geeignet, die mehrere Antennenelemente in einer engen Anordnung aufweist.
  • Als Nächstes wird eine Beispielkonstruktion (Vergleichsbeispiel) einer Schlitz-Array-Antenne beschrieben, die die oben genannte Wellenleiterstruktur nutzt. „Schlitz-Array-Antenne“ bedeutet eine Array-Antenne, die eine Vielzahl von Schlitzen als Antennenelemente aufweist. In der folgenden Beschreibung kann eine Schlitz-Array-Antenne einfach als eine Array-Antenne bezeichnet werden.
  • 5 ist eine perspektivische Ansicht, die eine Teilkonstruktion einer Schlitz-Array-Antenne 200 gemäß dem Vergleichsbeispiel schematisch zeigt. 6 ist ein Diagramm, das die Schlitz-Array-Antenne 200 teilweise, in einem Querschnitt, der zu der XZ-Ebene parallel ist und durch Mitten von zwei benachbarten Schlitzen 112 entlang der X-Richtung passiert, schematisch zeigt. Bei der Schlitz-Array-Antenne 200 weist das erste leitende Bauglied 110 eine Vielzahl von Schlitzen 112 auf, die entlang der X-Richtung und derY-Richtung arrayartig angeordnet sind. In diesem Beispiel weist die Vielzahl von Schlitzen 112 Zeilen von Schlitzen auf. Jede Schlitzzeile besteht aus sechs Schlitzen 112, die entlang derY-Richtung in gleichen Intervallen liegen. Auf dem zweiten leitenden Bauglied 120 sind zwei Wellenleiterbauglieder 122 vorgesehen. Jedes Wellenleiterbauglied 122 hat eine elektrisch leitende Wellenleiterfläche 122a, die zu einer Schlitzzeile entgegengesetzt ist. In der Region zwischen den zwei Wellenleiterbaugliedern 122 und in der Region außerhalb der zwei Wellenleiterbauglieder 122 sind mehrere leitende Stäbe 124 vorgesehen. Die leitenden Stäbe 124 bilden einen künstlichen magnetischen Leiter.
  • In dem Wellenleiter, der sich zwischen jedem Wellenleiterbauglied 122 und der leitenden Oberfläche 110a erstreckt, wird eine elektromagnetische Welle aus einer Sendeschaltung, nicht gezeigt, zugeführt. In diesem Beispiel ist das Intervall zwischen den Mitten von Schlitzen 112 entlang derY-Richtung mit demselben Wert gestaltet wie die Wellenlänge der elektromagnetischen Welle, die sich in dem Wellenleiter ausbreitet. Daher werden elektromagnetische Wellen, die zueinander gleichphasig sind, aus jeder Zeile aus sechs Schlitzen 112 abgestrahlt, die nebeneinander entlang der Y-Richtung angeordnet sind.
  • Wie bereits mit Bezug auf 4C beschrieben wurde, kann bei der Schlitz-Array-Antenne 200 mit dieser Struktur das Intervall zwischen den zwei Wellenleiterbaugliedern 122 im Verhältnis zu einer herkömmlichen Wellenleiterstruktur, die auf Hohlwellenleitern basiert, schmal gestaltet sein. Jedoch bedeutet der künstliche magnetische Leiter, der zwischen den zwei Wellenleiterbaugliedern 122 existiert, eine Einschränkung bezüglich dessen, wie schmal das Intervall zwischen zwei Wellenleiterbaugliedern 122 gestaltet sein kann.
  • Bei der Konstruktion eines künstlichen magnetischen Leiters mit einer Anordnung einer Vielzahl von leitenden Stäben wurde bisher allgemein angenommen, dass die leitenden Stäbe periodisch platziert sein müssen. Wenn zwei Wellenleiterbauglieder (Rippen) nebeneinander existieren, wurde es daher für notwendig gehalten, dass Zeilen leitender Stäbe periodisch zwischen den zwei Rippen existieren, um bei dem künstlichen magnetischen Leiter eine Vermischung der elektromagnetischen Wellen zu vermeiden, die sich auf diesen zwei Rippen ausbreiten. Anders ausgedrückt: Wie beispielsweise in 4C gezeigt, ging man bislang davon aus, dass mindestens zwei Zeilen leitender Stäbe zwischen den Rippen existieren müssen. Bei nur einer Zeile leitender Stäbe wären nicht genug Stabzeilen vorhanden, um eine „Periode“ zu definieren, und somit würde eine solche Struktur nicht als künstlicher magnetischer Leiter angesehen. In der Bedeutung der vorliegenden Offenbarung wird, wenn nur eine Zeile leitender Stäbe vorhanden ist, der Raum zwischen den zwei Rippen nicht als einen künstlichen magnetischen Leiter enthaltend angesehen.
  • Jedoch wurde in einer Untersuchung durch die Erfinder festgestellt, dass auch bei einer Konstruktion mit nur einer Stabzeile zwischen zwei benachbarten Rippen elektromagnetische Wellen, die sich auf den zwei Rippen ausbreiten, auf einem praktisch angemessenen Niveau separierbar sind, so dass eine Durchmischung ausreichend gering gehalten werden kann. Anders ausgedrückt: Auch bei einer Struktur, in der nur eine Stabzeile zwischen zwei Rippen existiert, kann eine unabhängige Ausbreitung elektromagnetischer Wellen auf beiden Rippen ermöglicht werden. Der Grund, weshalb eine solche Separierung mit nur einer Stabzeile ermöglicht wird, ist gegenwärtig noch unbekannt.
  • Existieren dagegen gar keine Stabzeilen zwischen den zwei Rippen, wird der Raum zwischen den zwei Rippen wiederum nicht als einen künstlichen magnetischen Leiter enthaltend angesehen. Wenn eine Ausbreitung elektromagnetischer Wellen mit unterschiedlichen Phasen auf diesen Rippen zugelassen wird, kann in diesem Fall eine Vermischung zwischen den elektromagnetischen Wellen auftreten; somit erreichen die Wellenleiter in vielen Anwendungen nicht die erwarteten Funktionen. Jedoch ist eine Vermischung kein Problem bei Anwendungen derArt, bei der sich entlang der zwei Rippen phasengleiche elektromagnetische Wellen ausbreiten sollen. Daher brauchen in solchen Anwendungen keine Stabzeilen zwischen den zwei Rippen zu existieren. Wenn dafür gesorgt wird, dass zwischen den zwei benachbarten Rippen nur eine Stabzeile oder gar keine Stabzeile existiert, kann das Intervall zwischen den Rippen verkürzt werden.
  • Gemäß der Offenbarung aus Nicht-Patentdokument 1 ist es bei der Konstruktion einer Schlitz-Array-Antenne mit einer Vielzahl von Wellenleiterbaugliedern 122 zur Vermeidung einer Vermischung von elektromagnetischen Wellen notwendig, zwei oder mehr Zeilen leitender Stäbe 124 zwischen zwei benachbarten Wellenleiterbaugliedern 122 zu platzieren, was eine unabhängige Ausbreitung von Signalwellen auf den jeweiligen Wellenleitern erlaubt.
  • Die Erfinder sind jedoch zu dem Konzept gelangt, gezielt einen Raum einzuführen, in dem kein künstlicher magnetischer Leiter zwischen zwei benachbarten Wellenleiterbaugliedern 122 existiert, so dass das Intervall zwischen zwei benachbarten Wellenleiterbaugliedern 122, und somit das Intervall zwischen den zu diesen entgegengesetzten Schlitzen 112, reduziert wird. Gemäß der vorliegenden Verwendung wäre ein Raum, in dem kein künstlicher magnetischer Leiter existiert, typischerweise ein Raum, in dem keine zwei oder mehr aufeinanderfolgenden Zeilen leitender Stäbe 124 existieren. Anders ausgedrückt: In der vorliegenden Beschreibung gelten ein Raum, in dem keine Zeilen leitender Stäbe 124 vorgesehen sind, und ein Raum, in dem nur eine Zeile leitender Stäbe 124 vorgesehen ist, beide als „ein Raum, in dem kein künstlicher magnetischer Leiter existiert“. Obwohl in dem Fall, in dem nur eine Zeile leitender Stäbe 124 existiert, kein künstlicher magnetischer Leiter als vorhanden angesehen wird, kann die Vermischung zwischen elektromagnetischen Wellen, die sich entlang der zwei Wellenleiterbauglieder 122 ausbreiten, in solchen Fällen aus den oben beschriebenen Gründen zu vernachlässigen sein. Auch in dem Fall, dass gar keine leitenden Stäbe 124 existieren, wird kein künstlicher magnetischer Leiters als vorhanden angesehen; in diesem Fall kann jedoch zwischen den zwei benachbarten Wellenleitern eine Vermischung zwischen elektromagnetischen Wellen auftreten. Jedoch lässt sich dieses Problem lösen, indem zwei benachbarte Schlitze 112 entlang der X-Richtung auf gleichphasiger Basis oder mit einer Phasendifferenz von weniger als π/4 angeregt werden.
  • Es wird darauf hingewiesen, dass in dem Fall, in dem zwischen den zwei benachbarten Wellenleiterbaugliedern 122 nur eine Zeile leitender Stäbe 124 existiert, das Intensitäts- (Energie-) Verhältnis zwischen elektromagnetischen Wellen, die sich entlang der zwei Wellenleiterbauglieder 122 ausbreiten, bevorzugt das 100-fache (100:1) oder weniger ist. Dies hat den Grund, dass bei nur einer Zeile leitender Stäbe 124 die Funktion einer Hemmung der elektromagnetischen Wellenausbreitung schwächer ist als bei zwei oder mehr Zeilen, so dass eine Vermischung in Bezug auf circa 1/100 der Energie der sich ausbreitenden elektromagnetischen Wellen auftreten kann. Es sei nun ein in 7A illustrierter Fall betrachtet, bei dem ein Wellenleiterbauglied 122T über einen Anschluss (Durchgangsloch) 145T mit einem Sender 310T (oder einer Sendeschaltung) verbunden ist, während das andere Wellenleiterbauglied 122R über einen Anschluss 145R mit einem Empfänger 310R (oder einer Empfangsschaltung) verbunden ist. In diesem Fall ist es wünschenswert, dass zwei oder mehr Zeilen leitender Stäbe 124 zwischen den Wellenleiterbaugliedern 122T und 122R vorgesehen sind, wie gezeigt. Dies hat den Grund, dass, allgemein gesprochen, die Intensität einer elektromagnetischen Welle, die sich entlang des mit dem Sender 310T verbundenen Wellenleiterbauglieds 122T ausbreitet, weitaus größer, z.B. 100 (oder mehr) mal größer ist als die Intensität einer elektromagnetischen Welle, die sich entlang des mit dem Empfänger 310R verbundenen Wellenleiterbauglieds 122R ausbreitet. Dagegen genügt es, wie in 7B gezeigt, in dem Fall, in dem die zwei benachbarten Wellenleiterbauglieder 122 jeweils mit einem Empfänger 310R verbunden sind oderjeweils mit einem Sender verbunden sind, wenn zwischen den zwei Wellenleiterbaugliedern 122 nur eine Zeile leitender Stäbe 124 existiert, da in einem solchen Fall nur geringer Intensitätsunterschied zwischen den elektromagnetischen Wellen besteht, die sich entlang der zwei benachbarten Wellenleiter ausbreiten. Es wird darauf hingewiesen, dass jeder Sender 310T und jeder Empfänger 310R, die in 7A und 7B gezeigt sind, eine elektronische Schaltung wie etwa eine MMIC (integrierte monolithische Mikrowellenschaltung) einschließen kann, die noch beschrieben wird. Die Verbindung zwischen jedem Wellenleiterbauglied und dem Sender oder Empfänger kann überjeden Wellenleiter, wie etwa einen WRG, einen Hohlwellenleiter oder eine Mikrostreifenleitung erreicht werden. Obwohl 7A den Sender 310T und den Empfänger 310R als diskrete Elemente illustriert, können sie auch in einer einzigen Schaltung implementiert sein. Ebenso können, obwohl 7B die Empfänger 310R als diskrete Elemente illustriert, dieselben auch in einer einzigen Schaltung implementiert sein.
  • Nachfolgend werden spezifischere Beispielkonstruktionen für Schlitz-Array-Antennen gemäß Ausführungsformen der vorliegenden Offenbarung beschrieben. Es wird jedoch darauf hingewiesen, dass unnötig ausführliche Beschreibungen derselben weggelassen sein können. Beispielsweise werden ausführliche Beschreibungen technisch bekannter Sachverhalte oder redundante Beschreibungen von im Wesentlichen gleichen Ausbildungen möglicherweise weggelassen. Hierdurch soll eine übermäßig lange Beschreibung vermieden und dem Fachmann das Verständnis erleichtert werden. Die beigefügten Zeichnungen und die folgende Beschreibung, die von den Erfindern vorgelegt werden, um dem Fachmann ein ausreichendes Verständnis der vorliegenden Offenbaru ng zu ermöglichen, sollen den Umfang der Ansprüche nicht einschränken.
  • (Ausführungsform 1)
  • 8A ist eine perspektivische Ansicht, die die Konstruktion einer Schlitz-Array-Antenne 300 gemäß einer ersten Ausführungsform der vorliegenden Offenbarung schematisch zeigt. 8B ist ein Diagramm, das die Schlitz-Array-Antenne 300 teilweise, in einem Querschnitt, der zu derXZ-Ebene parallel ist und durch Mitten von drei Schlitzen 112 entlang der X-Richtung passiert, schematisch zeigt. Anders als die in 5 gezeigte Schlitz-Array-Antenne 200 gemäß dem Vergleichsbeispiel weist die Schlitz-Array-Antenne 300 drei Wellenleiterbauglieder 122 und eine Vielzahl von Schlitzen 112 auf, die in drei Zeilen arrayartig angeordnet sind. Die Anzahl der Wellenleiterbauglieder 122 und die Anzahl der Zeilen von Schlitzen 112 sind nicht auf drei begrenzt, sondern es kann jede Zahl von zwei oder darüber sein. Zudem kann die Anzahl der benachbarten Schlitze 112 entlang der Y-Richtungjede Zahl sein und ist nicht auf sechs begrenzt.
  • Zwischen zwei benachbarten Wellenleiterbaugliedern 122 entlang der X-Richtung existiert nur eine Zeile leitender Stäbe 124. Anders ausgedrückt: Der Raum zwischen den zwei benachbarten Wellenleiterbaugliedern 122 entlang der X-Richtung ist ein Raum, in dem kein künstlicher magnetischer Leiter existiert. Anders als bei jeder herkömmlichen Konstruktion auf Basis von Hohlwellenleitern existiert zudem auch keine elektrische Wand zwischen zwei benachbarten Wellenleiterbaugliedern 122. Dennoch ist gemäß der vorliegenden Ausführungsform eine korrekte Abstrahlung möglich. In der Region außerhalb derjenigen, wo die Vielzahl von Wellenleiterbaugliedern 122 enthalten ist, existieren Erstreckungen künstlicher magnetischer Leiter (d.h. Arrays, die jeweils aus zwei oder mehr Zeilen leitender Stäbe 124 bestehen). Infolgedessen kann ein Austreten elektromagnetischer Wellen aus den äußeren zwei Wellenleiterbaugliedern 122 nach außen verhindert werden.
  • Gemäß der vorliegenden Ausführungsform ist die Anzahl der Zeilen leitender Stäbe 124, die zwischen zwei benachbarten Wellenleiterbaugliedern 122 existieren, kleiner als bei der Konstruktion des Vergleichsbeispiels. Als Ergebnis hieraus können das Intervall zwischen Wellenleiterbaugliedern 122 und das Schlitzintervall entlang der X-Richtung reduziert werden, und entlang der X-Richtung wird das Azimut, in dem eine Gitterkeule der Schlitz-Array-Antenne 300 auftreten kann, von der zentralen Richtung ferngehalten. Wenn das Arrayanordnungs-Intervall von Antennenelementen (d.h. das Intervall zwischen den Mitten von zwei benachbarten Antennenelementen) größer als eine Hälfte der Wellenlänge der verwendeten elektromagnetischen Welle ist, kann bekanntermaßen eine Gitterkeule in dem sichtbaren Bereich der Antenne auftreten. Mit einer weiteren Vergrößerung des Arrayanordnungs-Intervalls von Antennenelementen nähert sich das Azimut, in dem die Gitterkeule auftritt, dem Azimut der Hauptkeule. Die Verstärkung einer Gitterkeule ist höher als die Verstärkung einer zweiten Keule und ist der Verstärkung der Hauptkeule ähnlich. Daher würde das Auftreten einer Gitterkeule zu Fehldetektionen durch einen Radar und zu einer Verringerung des Wirkungsgrades einer Kommunikationsantenne führen. Gemäß der vorliegenden Ausführungsform kann das Arrayanordnungs-Intervall von Antennenelementen (Schlitzen) kürzer gestaltet werden als bei dem Vergleichsbeispiel, wodurch die Gitterkeulen wirksamer unterdrückt werden können.
  • Nachfolgend wird eine detailliertere Konstruktion der Schlitz-Array-Antenne 300 gemäß der vorliegenden Ausführungsform beschrieben.
  • <Konstruktion>
  • Die Schlitz-Array-Antenne 300 weist ein plattenförmiges erstes leitendes Bauglied 110 und ein plattenförmiges zweites leitendes Bauglied 120 auf, die sich in zueinander entgegengesetzten und parallelen Positionen befinden. Das erste leitende Bauglied 110 hat eine Vielzahl von Schlitzen 112, die entlang einer ersten Richtung (derY-Richtung) und einer zweiten Richtung (der X-Richtung), welche die erste Richtung (in diesem Beispiel etwa orthogonal) schneidet, arrayartig angeordnet sind. Eine Vielzahl von leitenden Stäben 124 ist auf dem zweiten leitenden Bauglied 120 arrayartig angeordnet.
  • Die leitende Oberfläche 110a des ersten leitenden Bauglieds hat eine zweidimensionale Ausdehnung entlang einer Ebene, die zu der axialen Richtung (Z-Richtung) der leitenden Stäbe 124 orthogonal ist (d.h. einer Ebene, die zu der XY-Ebene parallel ist). Obwohl die leitende Oberfläche 110a in diesem Beispiel als glatte Ebene gezeigt ist, braucht die leitende Oberfläche 110a keine glatte Ebene zu sein, sondern kann winzige Anstiege und Senkungen aufweisen, wie noch beschrieben wird. Die Vielzahl von leitenden Stäben 124 und die Vielzahl von Wellenleiterbaugliedern 122 sind mit der zweiten leitenden Oberfläche 120a verbunden.
  • 9 ist eine perspektivische Ansicht, welche die Schlitz-Array-Antenne 300 schematisch so illustriert, dass die Beabstandung zwischen dem ersten leitenden Bauglied 110 und dem zweiten leitenden Bauglied 120 zum besseren Verständnis übertrieben ist. Bei einer tatsächlichen Schlitz-Array-Antenne 300, wie in 8A und 8B gezeigt, ist die Beabstandung zwischen dem ersten leitenden Bauglied 110 und dem zweiten leitenden Bauglied 120 schmal, wobei das erste leitende Bauglied 110 die leitenden Stäbe 124 auf dem zweiten leitenden Bauglied 120 abdeckt.
  • Wie in 9 gezeigt, hat die Wellenleiterfläche 122a des Wellenleiterbauglieds 122 gemäß der vorliegenden Ausführungsform eine Streifenform, die sich entlang derY-Richtung erstreckt. Jede Wellenleiterfläche 122a ist flach und hat eine konstante Breite (d.h. Größe entlang der X-Richtung). Jedoch ist die vorliegende Offenbarung nicht auf dieses Beispiel begrenzt; (ein) Abschnitt(e) der Wellenleiterfläche 122a kann beziehungsweise können eine andere Höhe oder Breite haben als jeder andere Abschnitt. Durch gezieltes Vorsehen eines solchen Teils beziehungsweise solcher Abschnitte kann die charakteristische Impedanz des Wellenleiters verändert werden, wodurch es möglich wird, die Ausbreitungswellenlänge der elektromagnetischen Welle innerhalb des Wellenleiters zu verändern oder den Anregungszustand an der Position eines jeden Schlitzes 112 einzustellen.
  • In der vorliegenden Beschreibung bedeutet „Streifenform“ eher eine Form, die durch einen einzelnen Streifen definiert ist, als eine durch Streifen gebildete Form. Nicht nur Formen, die sich linear in einer Richtung erstrecken, sondern auch jede Form, die sich entlang der Strecke biegt oder verzweigt, ist in „Streifenform“ eingeschlossen. In dem Fall, in dem ein Abschnitt, der einer Höhen- oder Breitenveränderung unterliegt, auf der Wellenleiterfläche 122a vorgesehen ist, fällt dieser noch unter die Bedeutung von „Streifenform“, solange die Form einen Abschnitt aufweist, der sich, aus der normalen Richtung der Wellenleiterfläche 122a gesehen, in einer Richtung erstreckt. Eine „Streifenform“ kann auch als „Bandform“ bezeichnet werden. Die Wellenleiterfläche 122a braucht sich nicht linear entlang derY-Richtung in zu der Vielzahl von Schlitzen 112 entgegengesetzten Regionen zu erstrecken, sondern kann sich entlang der Strecke biegen oder verzweigen.
  • Bei dem in 8B gezeigten Beispiel sind die führenden Enden 124a der Vielzahl von leitenden Stäben 124, die außerhalb der drei Wellenleiterbauglieder 122 liegen, auf derselben Ebene. Diese Ebene definiert die Oberfläche 125 eines künstlichen magnetischen Leiters. Dagegen bildet eine Zeile leitender Stäbe 124, die zwischen jeweils zwei benachbarten Wellenleiterbaugliedern von den drei Wellenleiterbaugliedern 122 eingefügt sind, keinen künstlichen magnetischen Leiter. Die zwischen zwei benachbarten Wellenleiterbaugliedern eingefügte Region ist daher ein Raum, in dem weder eine elektrische Wand noch ein künstlicher magnetischer Leiter existiert. Wie hier verwendet, bedeutet „zwei benachbarte Wellenleiterbauglieder“ zwei Wellenleiterbauglieder, die sich nebeneinander (d.h. am nächsten aneinander) befinden. Eine „elektrische Wand“ bedeutet eine elektrisch leitende Wand, die eine elektromagnetische Welle zwischen zwei benachbarten Wellenleiterbaugliedern 122 blockiert. Zwischen zwei benachbarten Wellenleiterbaugliedern 122 können elektrisch leitende Erhebungen auf der leitenden Oberfläche 110a existieren, oder einige der leitenden Stäbe 124 können beispielsweise mit der ersten leitenden Oberfläche 110a in Kontakt stehen; jedoch gilt eine solche Struktur nicht als „elektrische Wand“.
  • Jeder leitende Stab 124 braucht nicht vollständig elektrisch leitend zu sein, solange er mindestens eine elektrisch leitende Schicht aufweist, die sich entlang der oberen Fläche und der Seitenfläche der stabartigen Struktur erstreckt. Obwohl diese elektrisch leitende Schicht an der Oberflächenschicht der stabartigen Struktur angeordnet sein kann, kann die Oberflächenschicht aus einer Isolierbeschichtung oder einer Harzschicht gebildet sein, ohne dass eine elektrisch leitende Schicht auf der Oberfläche der stabartigen Struktur existiert. Zudem braucht jedes der zweiten leitenden Bauglieder 120 nicht vollständig elektrisch leitend zu sein, solange es die Vielzahl von leitenden Stäben 124 stützen kann, um einen äußeren künstlichen magnetischen Leiter zu bilden. Von den Oberflächen des zweiten leitenden Bauglieds 120 kann eine Fläche 120a, welche die Vielzahl von leitenden Stäben 124 trägt, in der Weise elektrisch leitend sein, dass der elektrische Leiter die Oberflächen von benachbarten aus der Vielzahl von leitenden Stäben 124 miteinander verbindet. Zudem kann die elektrisch leitende Schicht des zweiten leitenden Bauglieds 120 mit einer Isolierbeschichtung oder einer Harzschicht bedeckt sein. Anders ausgedrückt: Die gesamte Kombination aus dem zweiten leitenden Bauglied 120 und der Vielzahl von leitenden Stäben 124 kann mindestens eine leitende Oberfläche mit Anstiegen und Senkungen aufweisen, die zu der leitenden Oberfläche 110a des ersten leitenden Bauglieds 110 entgegengesetzt ist.
  • Auf dem zweiten leitenden Bauglied 120 sind drei rippenartige Wellenleiterbauglieder 122 zwischen der Vielzahl der leitenden Stäbe 124 vorgesehen. Die Anzahl der Wellenleiterbauglieder 122 ist nicht auf drei begrenzt, sondern kann zwei oder mehr betragen. Wie aus 8B zu sehen ist, ist in diesem Beispiel jedes Wellenleiterbauglied 122 auf das zweite leitende Bauglied 120 gestützt und erstreckt sich linear entlang derY-Richtung. In dem in der Figur gezeigten Beispiel hat jedes Wellenleiterbauglied 122 die gleiche Höhe und Breite wie diejenigen eines jeden leitenden Stabes 124. Wie noch beschrieben wird, können sich Höhe und Breite eines jeden Wellenleiterbauglieds 122 von denjenigen eines jeden leitenden Stabes 124 unterscheiden. Anders als die leitenden Stäbe 124 erstrecken sich die Wellenleiterbauglieder 122 entlang einer Richtung (die in diesem Beispiel die Y-Richtung ist), in der elektromagnetische Wellen entlang der leitenden Oberfläche 110a zu führen sind. Ebenso braucht jedes Wellenleiterbauglied 122 nicht vollständig elektrisch leitend zu sein, sondern kann mindestens eine elektrisch leitende Wellenleiterfläche 122a aufweisen, die zu der leitenden Oberfläche 110a des ersten leitenden Bauglieds 110 entgegengesetzt ist. Das zweite leitende Bauglied 120, die Vielzahl von leitenden Stäben 124 und die Wellenleiterbauglieder 122 können Abschnitte eines kontinuierlichen einstückigen Körpers sein. Außerdem kann das erste leitende Bauglied 110 ebenfalls Teil eines solchen einstückigen Körpers sein.
  • In Regionen außerhalb der Vielzahl von Wellenleiterbaugliedern 122 erlaubt der Raum zwischen der Oberfläche 125 einer jeden Erstreckung eines künstlichen magnetischen Leiters und der leitenden Oberfläche 110a des ersten leitenden Bauglieds 110 keine Ausbreitung einer elektromagnetischen Welle einer Frequenz, die innerhalb eines spezifischen Frequenzbandes (verbotenen Bandes) liegt. Der künstliche magnetische Leiter ist so gestaltet, dass die Frequenz einer Signalwelle zum Ausbreiten in der Schlitz-Array-Antenne 300 (Betriebsfrequenz) in dem verbotenen Band enthalten ist. Das verbotene Band ist auf Basis von Folgendem einstellbar: die Höhe der leitenden Stäbe 124, d.h. die Tiefe einer jeden Vertiefung, die zwischen benachbarten leitenden Stäben 124 gebildet ist; die Breite eines jeden leitenden Stabes 124; das Intervall zwischen den leitenden Stäben 124 sowie die Größe des Abstands zwischen dem führenden Ende 124a und der leitenden Oberfläche 110a an jedem leitenden Stab 124.
  • In der vorliegenden Ausführungsform ist das gesamte erste leitende Bauglied 110 aus einem elektrisch leitenden Material gebildet, und jeder Schlitz 112 ist eine Öffnung, die in dem ersten leitenden Bauglied 110 erzeugt ist. Jedoch sind die Schlitze 112 nicht auf eine solche Struktur begrenzt. Beispielsweise würden in einer Konstruktion, bei der das erste leitende Bauglied 110 eine innere dielektrische Schicht und eine äußerste elektrisch leitende Schicht aufweist, Öffnungen, die nur in der elektrisch leitenden Schicht und nicht in der dielektrischen Schicht erzeugt sind, ebenfalls als Schlitze funktionieren. Die Schlitze 112 oder die Schlitz-Array-Antenne 300 können als Primärstrahler zum Bereitstellen von Funkwellen für einen anderen Schlitz, Hohlraum oder eine andere Antenne usw. verwendet werden. In einem solchen Fall würden die Funkwellen aus dem anderen Schlitz, Hohlraum oder der anderen Antenne in den Raum abgestrahlt. Selbstverständlich kann eine ähnliche Konstruktion für den Empfang von Funkwellen angewendet werden.
  • Der Wellenleiter zwischen dem ersten leitenden Bauglied 110 und jedem Wellenleiterbauglied 122 ist an beiden Enden offen. Das Schlitzintervall entlang seiner Y-Richtung ist beispielsweise als ein ganzzahliges Vielfaches (typischerweise x1) der Wellenlänge λg einer elektromagnetischen Welle in dem Wellenleiter gestaltet. Hierbei steht λg für die Wellenlänge einer elektromagnetischen Welle in einem Rippenwellenleiter. Obwohl dies in 8A bis 9 nicht gezeigt ist, können in der Nähe beider Enden eines jeden Wellenleiterbauglieds 122 entlang der Y-Richtung Drosselstrukturen vorgesehen sein. Eine Drosselstruktur kann typischerweise gebildet sein aus: einer zusätzlichen Übertragungsleitung mit einer Länge von ungefähr λg/4 und einer Zeile aus mehreren Vertiefungen mit einer Tiefe von circa λο/4 oder mehreren Stäben mit einer Höhe von circa λο/4, die an einem Ende dieser zusätzlichen Übertragungsleitung angeordnet sind. Hierbei steht λο für die Wellenlänge einer elektromagnetischen Welle einer Mittelfrequenz in dem Betriebsfrequenzband im freien Raum. Die Drosselstrukturen verleihen eine Phasendifferenz von circa 180° (π) zwischen einer einfallenden Welle und einer reflektierten Welle, wodurch ein Austreten elektromagnetischer Wellen an beiden Enden des Wellenleiterbauglieds 122 eingeschränkt wird. Dies verhindert das Austreten einer elektromagnetischen Welle an beiden Enden eines jeden Wellenleiterbauglieds 122. Statt des zweiten leitenden Bauglieds 120 können solche Drosselstrukturen auf dem ersten leitenden Bauglied 110 bereitgestellt sein.
  • Obwohl dies nicht gezeigt ist, hat die wellenleitende Struktur in der Schlitz-Array-Antenne 300 einen Anschluss (Durchlass), der mit einer Sendeschaltung oder Empfangsschaltung (d.h. einer elektronischen Schaltung), nicht gezeigt, verbunden ist. Der Anschluss kann beispielsweise an einem Ende oder einer Zwischenposition (z.B. einem mittleren Abschnitt) des in 8A gezeigten Wellenleiterbauglieds 122 vorgesehen sein. Eine Signalwelle, die über den Anschluss aus der Sendeschaltung geschickt wird, breitet sich durch den Wellenleiter aus, der sich auf dem Wellenleiterbauglied 122 erstreckt, und wird durch jeden Schlitz 112 abgestrahlt. Dagegen breitet sich eine elektromagnetische Welle, die durch jeden Schlitz 112 in den Wellenleiter geführt wird, sich über den Anschluss zu der Empfangsschaltung aus. An der Rückseite des zweiten leitenden Bauglieds 120 kann eine Struktur vorgesehen sein, die einen weiteren Wellenleiter aufweist, welcher mit der Sendeschaltung oder Empfangsschaltung verbunden ist (die in der vorliegenden Beschreibung auch als „Verteilungsschicht“ bezeichnet werden kann). In diesem Fall dient der Anschluss zum Koppeln zwischen dem Wellenleiter in der Verteilungsschicht und dem Wellenleiter auf dem Wellenleiterbauglied 122.
  • In der vorliegenden Ausführungsform unterliegen zwei benachbarte Schlitze 112 entlang der X-Richtung gleichphasiger Anregung. Daher ist der Speiseweg so angeordnet, dass die Übertragungsdistanz von der Sendeschaltung zu zwei solchen Schlitzen 112 gleich ist. Weiter bevorzugt unterliegen zwei solche Schlitze 112 phasen- und amplitudengleicher Anregung. Außerdem ist die Distanz zwischen den Mitten von zwei benachbarten Schlitzen 112 entlang der Y-Richtung gleich der Wellenlänge λg innerhalb des Wellenleiters gestaltet. Als Ergebnis hieraus strahlen alle Schlitze 112 phasengleiche elektromagnetische Wellen ab, wodurch eine Hochleistungs-Sendeantenne realisiert werden kann.
  • Es wird darauf hingewiesen, dass das Intervall zwischen den Mitten von zwei benachbarten Schlitzen entlang derY-Richtung einen anderen Wert haben kann als denjenigen der Wellenlänge λg. Dies erlaubt das Auftreten einer Phasendifferenz an den Positionen der Vielzahl von Schlitzen 112, so dass das Azimut, bei dem die abgestrahlten elektromagnetischen Wellen einander stärken, von der frontalen Richtung zu einem anderen Azimut in der YZ-Ebene gewechselt werden kann. Zudem brauchen zwei benachbarte Schlitze 112 entlang der X-Richtung nicht exakt gleichphasiger Anregung zu unterliegen. Je nach Zweck wird eine Phasendifferenz von weniger als π/4 toleriert.
  • Eine solche Array-Antenne, die ein zweidimensionales Array aus solchen mehreren Schlitzen 112 auf einem plattenartigen leitenden Bauglied 110 aufweist, kann auch als Flachpanel-Array-Antenne bezeichnet werden. Je nach Zweck kann die Vielzahl von Schlitzzeilen, die entlang der X-Richtung nebeneinander platziert sind, in der Länge variieren (d.h. bezüglich der Distanz zwischen den Schlitzen an beiden Enden jeder Schlitzzeile). Es kann ein gestaffeltes Array in der Weise verwendet werden, dass zwischen zwei benachbarten Zeilen entlang der X-Richtung die Positionen der Schlitze entlang der Y-Richtung versetzt sind. Je nach Zweck können die Vielzahl von Schlitzzeilen und die Vielzahl von Wellenleiterbaugliedern Abschnitte aufweisen, die nicht parallel, sondern winklig sind. Ohne auf die Implementierung begrenzt zu sein, bei der die Wellenleiterfläche 122a eines jeden Wellenleiterbauglieds 122 allen Schlitzen 112 zugewandt ist, die entlang der Y-Richtung nebeneinander platziert sind, kann jede Wellenleiterfläche 122a mindestens einem Schlitz aus der Vielzahl von Schlitzen zugewandt sein, die entlang der Y-Richtung nebeneinander existieren.
  • <Beispielabmessungen usw. einesjeden Bauglieds>
  • Als Nächstes werden mit Bezug auf 10 Abmessungen, Form, Positionierung und dergleichen einesjeden Bauglieds beschrieben.
  • 10 ist ein Diagramm, das einen Beispiel-Abmessungsbereich einesjeden Bauglieds in der in 8B gezeigten Struktur zeigt. Die Schlitz-Array-Antenne wird für mindestens entweder das Senden oder den Empfang einer elektromagnetischen Welle eines vorbestimmten Bandes verwendet (als Betriebsfrequenzband bezeichnet). In der folgenden Beschreibung bezeichnet λο eine Wellenlänge (oder, in dem Fall, in dem das Betriebsfrequenzband einige Ausdehnung hat, eine zentrale Wellenlänge, die der Mittelfrequenz entspricht), im freien Raum, einer elektromagnetischen Welle (Signalwelle), die sich in einem Wellenleiter ausbreitet, welcher sich zwischen der leitenden Oberfläche 110a des ersten leitenden Bauglieds 110 und der Wellenleiterfläche 122a des Wellenleiterbauglieds 122 erstreckt. Außerdem bezeichnet in dem Fall, in dem das Betriebsfrequenzband einige Ausdehnung hat, λm eine Wellenlänge, im freien Raum, einer elektromagnetischen Welle der höchsten Frequenz in dem Betriebsfrequenzband. Das Ende eines jeden leitenden Stabes 124, das mit dem zweiten leitenden Bauglied 120 in Kontakt steht, wird als die „Wurzel“ bezeichnet. Wie in 10 gezeigt, hat jeder leitende Stab 124 das führende Ende 124a und die Wurzel 124b. Beispiele für Abmessungen, Formen, Positionierung und dergleichen der jeweiligen Bauglieder sind folgende.
  • (1) Breite des leitenden Stabes
  • Die Breite (d.h. die Größe entlang der X-Richtung und derY-Richtung) des leitenden Stabes 124 kann auf weniger als λm/2 eingestellt sein. Innerhalb dieses Bereiches kann das Auftreten von Resonanz niedrigster Ordnung entlang der X-Richtung und derY-Richtung verhindert werden. Da Resonanz möglicherweise nicht nur in derX-Richtung und derY-Richtung, sondern auch in jeder diagonalen Richtung in einem X-Y-Querschnitt auftreten kann, ist die diagonale Länge eines X-Y-Querschnitts des leitenden Stabes 124 bevorzugt ebenfalls kleiner als λm/2. Die unteren Grenzwerte für Breite und diagonale Länge des Stabes entsprechen den minimalen Längen, die mit dem gegebenen Fertigungsverfahren erzeugbar sind, sind jedoch nicht in besonderer Weise eingeschränkt.
  • (2) Distanz von der Wurzel des leitenden Stabes zu der leitenden Oberfläche des ersten leitenden Bauglieds
  • Die Distanz von der Wurzel 124b eines jeden leitenden Stabes 124 zu der leitenden Oberfläche 110a des ersten leitenden Bauglieds 110 kann länger als die Höhe der leitenden Stäbe 124, dabei aber kleiner als λm/2 sein. Wenn die Distanz λm/2 oder mehr beträgt, kann zwischen der Wurzel 124b eines jeden leitenden Stabes 124 und der leitenden Oberfläche 110a Resonanz auftreten, so dass die Wirkung der Signalwelleneindämmung verloren geht.
  • Die Distanz von der Wurzel 124b eines jeden leitenden Stabes 124 zu der leitenden Oberfläche 110a der ersten leitenden Bauglieder 110 entspricht der Beabstandung zwischen der leitenden Oberfläche 110a des ersten leitenden Bauglieds 110 und der leitenden Oberfläche 120a des zweiten leitenden Bauglieds 120. Wenn sich beispielsweise eine Signalwelle von 76,5 ± 0,5 GHz (die dem Millimeterband oder dem extrem hohen Frequenzband angehört) in dem Wellenleiter ausbreitet, liegt die Wellenlänge der Signalwelle im Bereich von 3,8923 mm bis 3,9435 mm. Daher ist λm in diesem Fall gleich 3,8923 mm, so dass die Beabstandung zwischen dem ersten leitenden Bauglied 110 und dem zweiten leitenden Bauglied 120 auf weniger als eine Hälfte von 3,8923 mm eingestellt sein kann. Solange das erste leitende Bauglied 110 und das zweite leitende Bauglied 120 eine so schmale Beabstandung realisieren und dabei zueinander entgegengesetzt angeordnet sind, brauchen das erste leitende Bauglied 110 und das zweite leitende Bauglied 120 nicht exakt parallel zu sein. Wenn die Beabstandung zwischen dem ersten leitenden Bauglied 110 und dem zweiten leitenden Bauglied 120 kleiner als λm/2 ist, kann außerdem die Gesamtheit oder ein Teil des ersten leitenden Bauglieds 110 und/oder des zweiten leitende Bauglieds 120 als gekrümmte Oberfläche geformt sein. Andererseits haben das erste und das zweite leitende Bauglied 110 und 120 jeweils eine plane Form (d.h. die Form ihrer Region, senkrecht auf die XY-Ebene projiziert) und eine plane Größe (d.h. die Größe ihrer Region, senkrecht auf die XY-Ebene projiziert), die je nach Zweckbestimmung beliebig gestaltet sein können.
  • (3) Distanz L2 von dem führenden Ende des leitenden Stabes zu der leitenden Oberfläche
  • Die Distanz L2 von dem führenden Ende 124a eines jeden leitenden Stabes 124 zu der leitenden Oberfläche 110a ist auf weniger als λm/2 eingestellt. Wenn die Distanz λm/2 oder mehr beträgt, kann eine zwischen dem führenden Ende 124a eines jeden leitenden Stabes 124 und der leitenden Oberfläche 110a hin und her bewegte Ausbreitungsmode entstehen, so dass ein Eindämmen einer elektromagnetischen Welle nicht mehr möglich ist. Es wird darauf hingewiesen, dass aus der Vielzahl von leitenden Stäben 124 mindestens bei den zu dem Wellenleiterbauglied 122 benachbarten die führenden Enden nicht in elektrischem Kontakt mit der leitenden Oberfläche 110a stehen. Dass das führende Ende eines leitenden Stabes nicht in elektrischem Kontakt mit der leitenden Oberfläche steht, bedeutet gemäß der vorliegenden Verwendung einen der folgenden Zustände: Zwischen dem führenden Ende und der leitenden Oberfläche besteht ein Luftspalt; oder das führende Ende des leitenden Stabes und die leitende Oberfläche liegen über eine isolierende Schicht aneinander, die in dem führenden Ende des leitenden Stabes oder in der leitenden Oberfläche existieren kann.
  • (4) Anordnung und Form der leitenden Stäbe
  • Der Zwischenraum zwischen zwei benachbarten leitenden Stäben 124 aus der Vielzahl leitender Stäbe 124 hat beispielsweise eine Breite von weniger als λm/2. Die Breite des Zwischenraums zwischen zwei beliebigen benachbarten leitenden Stäben 124 ist definiert durch die kürzeste Distanz von der Oberfläche (Seitenfläche) eines der zwei leitenden Stäbe 124 zu der Oberfläche (Seitenfläche) des anderen. Diese Breite des Zwischenraums zwischen den Stäben ist so zu bestimmen, dass in den Regionen zwischen den Stäben keine Resonanz niedrigster Ordnung auftritt. Die Bedingungen, unter denen Resonanz auftritt, werden auf Basis einer Kombination aus Folgendem bestimmt: die Höhe der leitenden Stäbe 124; die Distanz zwischen zwei beliebigen benachbarten leitenden Stäben sowie die Kapazität des Luftspalts zwischen dem führenden Ende 124a eines jeden leitenden Stabes 124 und der leitenden Oberfläche 110a. Daher kann die Breite des Zwischenraums zwischen den Stäben in geeigneter Weise nach anderen Gestaltungsparametern bestimmt werden. Obwohl es keine klare Untergrenze für die Breite des Zwischenraums zwischen den Stäben gibt, kann diese zur leichteren Fertigung z.B. λo/16 oder mehr betragen, wenn eine Ausbreitung einer elektromagnetischen Welle in dem extrem hohen Frequenzband erfolgen soll. Es wird darauf hingewiesen, dass der Zwischenraum keine konstante Breite zu haben braucht. Solange diese unter λm/2 bleibt, kann der Zwischenraum zwischen den leitenden Stäben 124 variieren.
  • Die Anordnung der Vielzahl von leitenden Stäben 124 ist nicht auf das illustrierte Beispiel beschränkt, solange dieselbe eine Funktion eines künstlichen magnetischen Leiters aufweist. Die Vielzahl von leitenden Stäben 124 braucht nicht in orthogonalen Zeilen und Spalten angeordnet zu sein; die Zeilen und Spalten können sich auch in anderen Winkeln als 90 Grad überschneiden. Die Vielzahl von leitenden Stäben 124 braucht kein lineares Array entlang von Zeilen oder Spalten zu bilden, sondern kann eine gestreute Anordnung haben, die keine einfache Regelmäßigkeit zeigt. Die leitenden Stäbe 124 können auch je nach der Position auf dem zweiten leitenden Bauglied 120 in Form und Größe variieren.
  • Die Oberfläche 125 des künstlichen magnetischen Leiters, die durch die führenden Enden 124a der Vielzahl von leitenden Stäben 124 gebildet ist, braucht keine exakte Ebene zu sein, sondern kann eine Ebene mit winzigen Anstiegen und Senkungen oder sogar eine gekrümmte Oberfläche sein. Anders ausgedrückt: Die leitenden Stäbe 124 brauchen keine einheitliche Höhe zu haben, vielmehr können die leitenden Stäbe 124 verschieden sein, solange das Array aus leitenden Stäben 124 als künstlicher magnetischer Leiter funktionieren kann.
  • Darüber hinaus brauchen die einzelnen leitenden Stäbe 124 keine Prismenform zu haben, wie in der Figur gezeigt, sondern können beispielsweise zylindrische Form haben. Außerdem brauchen die einzelnen leitenden Stäbe 124 keine einfache Säulenform zu haben, sondern können beispielsweise Pilzform haben. Der künstliche magnetische Leiter kann auch durch jede andere Struktur als durch ein Array aus leitenden Stäben 124 realisiert sein, und verschiedene künstliche magnetische Leiter sind für die Wellenleiterstruktur gemäß der vorliegenden Offenbarung anwendbar. Es wird darauf hingewiesen, dass, wenn das führende Ende 124a einesjeden leitenden Stabes 124 Prismenform hat, seine diagonale Länge bevorzugt weniger als λm/2 beträgt. Wenn es eine elliptische Form hat, beträgt die Länge ihrer langen Achse bevorzugt weniger als λm/2. Auch bei jeder anderen Form des führenden Endes 124a beträgt die Abmessung quer dazu auch an der längsten Position bevorzugt weniger als λm/2. In der vorliegenden Beschreibung gilt eine Vielzahl von stabartigen Strukturen, auch wenn sie in zwei oder mehr Zeilen, die keine offensichtliche Periode aufweisen, arrayartig angeordnet sind, dennoch als „künstlicher magnetischer Leiter“, solange sie die Funktion hat, die Ausbreitung einer elektromagnetischen Welle zu verhindern.
  • Die Höhe eines jeden leitenden Stabes 124, d.h. die Länge von der Wurzel 124b zu dem führenden Ende 124a, kann auf einen Wert eingestellt sein, der kürzer als die Distanz (d.h. kleiner als λm/2) zwischen der leitenden Oberfläche 110a und der leitenden Oberfläche 120a ist, z.B. λo/4.
  • (5) Breite der Wellenleiterfläche
  • Die Breite der Wellenleiterfläche 122a des Wellenleiterbauglieds 122, d.h. die Größe der Wellenleiterfläche 122a entlang einer Richtung, die orthogonal zu der Richtung ist, in der sich das Wellenleiterbauglied 122 erstreckt, kann auf weniger als λm/2 (z.B. λo/8) eingestellt sein. Wenn die Breite der Wellenleiterfläche 122a λm/2 oder mehr beträgt, tritt Resonanz entlang der Breitenrichtung auf, was bei jedem WRG ein Funktionieren als einfache Übertragungsleitung verhindert.
  • (6) Höhe des Wellenleiterbauglieds
  • Die Höhe des Wellenleiterbauglieds 122 (d.h. bei dem in der Figur gezeigten Beispiel die Größe entlang der Z-Richtung) ist auf weniger als λm/2 eingestellt. Der Grund hierfür ist, dass bei einer Höhe von λm/2 oder mehr die Distanz zwischen der leitenden Oberfläche 110a und der leitenden Oberfläche 120 λm/2 oder mehr beträgt. Ebenso ist die Höhe der leitenden Stäbe 124 (insbesondere derjenigen leitenden Stäbe 124, die zu dem Wellenleiterbauglied 122 benachbart sind) auf weniger als λm/2 eingestellt.
  • (7) Distanz L1 zwischen der Wellenleiterfläche und der leitenden Oberfläche
  • Die Distanz L1 zwischen der Wellenleiterfläche 122a des Wellenleiterbauglieds 122 und der leitenden Oberfläche 110a ist auf weniger als λm/2 eingestellt. Wenn die Distanz λm/2 oder mehr beträgt, tritt Resonanz zwischen der Wellenleiterfläche 122a und der leitenden Oberfläche 110a auf, was eine Funktionalität als Wellenleiter verhindert. In einem Beispiel beträgt die Distanz λo/4 oder weniger. Um eine einfache Fertigung zu gewährleisten, beträgt die Distanz L1 bevorzugt beispielsweise λo/16 oder mehr, wenn sich eine elektromagnetische Welle in dem extrem hohen Frequenzband ausbreiten soll.
  • Die Untergrenze der Distanz L1 zwischen der leitenden Oberfläche 110a und der Wellenleiterfläche 122a sowie die Untergrenze der Distanz L2 zwischen der leitenden Oberfläche 110a und dem führenden Ende 124a eines jeden leitenden Stabes 124 ist abhängig von der Bearbeitungsgenauigkeit und auch von der Genauigkeit beim Montieren der zwei oberen/unteren leitenden Bauglieder 110 und 120 in der Weise, dass sie um eine konstante Distanz voneinander entfernt sind. Bei Verwendung einer Presstechnik oder einer Spritztechnik beträgt die praktische Untergrenze der genannten Distanz circa 50 Mikrometer (µm). Im Fall der Verwendung einer Technik zur Herstellung eines MEMS (mikro-elektromechanischen Systems) zur Herstellung eines Produktes z.B. im Terahertz-Bereich beträgt die Untergrenze für die genannte Distanz circa 2 bis circa 3 µm.
  • (8) Arrayanordnungs-Intervall und Größe der Schlitze
  • Die Distanz (Schlitzintervall) zwischen den Mitten von zwei benachbarten Schlitzen 112 entlang derY-Richtung in der Schlitz-Array-Antenne 300 kann auf beispielsweise ein ganzzahliges Vielfaches von λg (typischerweise denselben Wert wir λg) eingestellt sein, wobei λg die innerhalb eines Wellenleiters bestehende Wellenlänge einer Signalwelle ist, die sich in dem Wellenleiter ausbreitet (oder in dem Fall, in dem das Betriebsfrequenzband einige Ausdehnung hat, eine zentrale Wellenlänge ist, die der Mittelfrequenz entspricht). Als Ergebnis hieraus kann, wenn z.B. Stehende-Welle-Reihenspeisung angewandt wird, ein amplitudengleicher und phasengleicher Zustand an der Position eines jeden Schlitzes realisiert werden. Es wird darauf hingewiesen, dass das Schlitzintervall entlang derY-Richtung durch die erforderliche Richtcharakteristik bestimmt ist und daher in einigen Fällen möglicherweise nicht gleich λg ist.
  • Die Distanz zwischen den Mitten von zwei benachbarten Schlitzen 112 entlang der X-Richtung ist gleich der Distanz zwischen den Mitten von zwei benachbarten Wellenleiterflächen 122a entlang der X-Richtung. Obwohl keine besondere Begrenzung besteht, kann diese Distanz beispielsweise auf weniger als λo und weiter bevorzugt auf weniger als λo/2 eingestellt sein. Durch Einstellen dieser Distanz auf weniger als λo/2 wird das Auftreten von Gitterkeulen in dem sichtbaren Bereich der Antenne verhindert. Somit werden Fehldetektionen durch einen Radar und eine Verringerung des Wirkungsgrades einer Kommunikationsantenne vermieden.
  • Bei den in 8A bis 9 gezeigten Beispielen hat jeder Schlitz eine plane Form, die nahezu rechteckig ist sowie entlang der X-Richtung länger und entlang der Y-Richtung kürzer ist. Angenommen, dass jeder Schlitz entlang der X-Richtung eine Größe (Länge) L und entlang derY-Richtung eine Größe (Breite) W hat, sind L und W auf Werte eingestellt, bei denen eine Modenoszillation höherer Ordnung nicht auftritt und bei denen die Schlitzimpedanz nicht zu klein ist. Beispielsweise kann L auf einen Bereich von λo/2 < L < λo eingestellt sein. W kann kleiner als λo/2 sein. Zur aktiven Nutzung von Moden höherer Ordnung kann L möglicherweise größer als λo sein.
  • Mit der obigen Konstruktion kann relativ zu der Konstruktion aus dem in 5 gezeigten Vergleichsbeispiel das Schlitzintervall entlang der X-Richtung verkürzt werden. Infolgedessen kann die Vorrichtung kleiner gestaltet sein. In der vorliegenden Ausführungsform erfolgt eine Leistungsspeisung durch die mit den einzelnen Wellenleitern verbundene elektronische Schaltung (Sendeschaltung) in der Weise, dass die Phase an den Positionen von zwei benachbarten Schlitzen entlang der X-Richtung übereinstimmt. Ohne auf ein solches Beispiel begrenzt zu sein, ist die Speisung jedoch auch in der Weise durchführbar, dass die Phase an den Positionen von zwei benachbarten Schlitzen entlang der X-Richtung nicht übereinstimmt. In der vorliegenden Ausführungsform existiert zwischen zwei benachbarten Wellenleitern eine Stabzeile. Daher kann eine Vermischung zwischen elektromagnetischen Wellen ausreichend unterdrückt werden, und es kann eine korrekte Abstrahlung erzielt werden. Ein spezifisches Beispiel für ein Speisungsverfahren der elektronischen Schaltung(en) wird in Ausführungsform 2 beschrieben.
  • Als Nächstes wird eine weitere Ausführungsform der vorliegenden Offenbarung beschrieben. Die vorliegende Ausführungsform bezieht sich auf eine Schlitz-Array-Antenne, die mindestens ein Horn aufweist.
  • 11 ist eine perspektivische Ansicht, die eine Teilstruktur einer Schlitz-Array-Antenne 300a, die ein Horn 114 um jeden Schlitz 112 aufweist, schematisch zeigt. Die Schlitz-Array-Antenne 300a weist auf: ein erstes leitendes Bauglied 110, das ein zweidimensionales Array aus einer Vielzahl von Schlitzen 112 und einer Vielzahl von Hörnern 114 aufweist; und ein zweites leitendes Bauglied 120, auf dem eine Vielzahl von Wellenleiterbaugliedern 122U und eine Vielzahl von leitenden Stäben 124U arrayartig angeordnet sind. Die Vielzahl von Schlitzen 112 des ersten leitenden Bauglieds 110 ist arrayartig entlang einer ersten Richtung (derY-Richtung), die sich entlang der leitenden Oberfläche 110a des ersten leitenden Bauglieds 110 erstreckt, und einer zweiten Richtung (der X-Richtung) angeordnet, welche die erste Richtung schneidet (in diesem Beispiel z.B. orthogonal). 11 zeigt auch Anschlüsse (Durchgangslöcher) 145U, von denen jedes in der Mitte eines entsprechenden Wellenleiterbauglieds 122U vorgesehen ist. Die Drosselstruktur, die an beiden Enden der Wellenleiterbauglieder 122U vorgesehen sein kann, ist in der Illustration weggelassen. Obwohl die Anzahl der Wellenleiterbauglieder 122U in der vorliegenden Ausführungsform vier ist, kann die Anzahl der Wellenleiterbauglieder 122U jede Zahl sein, die zwei oder größer ist. In der vorliegenden Ausführungsform ist jedes Wellenleiterbauglied 122U an der Position des zentralen Anschlusses 145U in zwei Abschnitte unterteilt.
  • 12A ist eine Draufsicht von oben auf die Array-Antenne 300a aus 11, in der 16 Schlitze in 4 Zeilen und 4 Spalten, in der Z-Richtung gesehen, arrayartig angeordnet sind. 12B ist eine entlang der Linie C-C in 12A genommene Querschnittsansicht. Das erste leitende Bauglied 110 der Array-Antenne 300a weist eine Vielzahl von Hörnern 114 auf, die jeweils der die Vielzahl von Schlitzen 112 entsprechen. Jedes aus der Vielzahl von Hörnern 114 weist vier elektrisch leitende Wände auf, die den Schlitz 112 umgeben. Solche Hörner 114 können die Richtcharakteristik verbessern.
  • Bei der in den Figuren gezeigten Array-Antenne 300a sind eine erste Wellenleitervorrichtung 100a und eine zweite Wellenleitervorrichtung 100b schichtartig angeordnet. Die erste Wellenleitervorrichtung 100a weist Wellenleiterbauglieder 122U auf, die direkt an Schlitze 112 koppeln. Die zweite Wellenleitervorrichtung 100b weist ferner Wellenleiterbauglieder 122L auf, die an die Wellenleiterbauglieder 122U der ersten Wellenleitervorrichtung 100a koppeln. Die Wellenleiterbauglieder 122L und die leitenden Stäbe 124L der zweiten Wellenleitervorrichtung 100b sind auf einem dritten leitenden Bauglied 140 angeordnet. Die zweite Wellenleitervorrichtung 100b ist der ersten Wellenleitervorrichtung 100a in der Konstruktion grundsätzlich ähnlich.
  • Wie in 12A gezeigt, weist das leitende Bauglied 110 eine Vielzahl von Schlitzen 112 auf, die entlang einer ersten Richtung (derY-Richtung) und einer zweiten Richtung (der X-Richtung), die zu der ersten Richtung orthogonal ist, arrayartig angeordnet sind. Die Wellenleiterflächen 122a der Vielzahl von Wellenleiterbaugliedern 122U erstrecken sich entlang derY-Richtung (11) und sind zu vier zueinander benachbarten Schlitzen entlang derY-Richtung aus der Vielzahl von Schlitzen 112 entgegengesetzt. Obwohl das leitende Bauglied 110 in diesem Beispiel 16 Schlitze 112 aufweist, die in 4 Zeilen und 4 Spalten arrayartig angeordnet sind, sind Anzahl und Anordnung der Schlitze 112 nicht auf dieses Beispiel begrenzt. Ohne auf das Beispiel begrenzt zu sein, bei dem jedes Wellenleiterbauglied 122U zu allen zueinander benachbarten Schlitzen entlang derY-Richtung aus der Vielzahl von Schlitzen 112 entgegengesetzt ist, kann jedes Wellenleiterbauglied 122U zu mindestens zwei zueinander benachbarten Schlitzen entlang der Y-Richtung entgegengesetzt sein. Das Intervall zwischen den Mitten von zwei benachbarten Wellenleiterflächen 122a entlang der X-Richtung ist beispielsweise kürzer als die Wellenlänge λo eingestellt und ist weiter bevorzugt kürzer als λo/2 eingestellt.
  • 12C ist ein Diagramm, das ein planes Layout von Wellenleiterbaugliedern 122U in der ersten Wellenleitervorrichtung 100a zeigt. 12D ist ein Diagramm, das ein planes Layout eines Wellenleiterbauglieds 122L in der zweiten Wellenleitervorrichtung 100b zeigt. Wie aus diesen Figuren ersichtlich, erstrecken sich die Wellenleiterbauglieder 122U der ersten Wellenleitervorrichtung 100a linear und weisen keine Verzweigungsteile oder Biegungen auf; dagegen weisen die Wellenleiterbauglieder 122L der zweiten Wellenleitervorrichtung 100b sowohl Verzweigungsteile als auch Biegungen auf. Die Kombination aus dem „zweiten leitenden Bauglied 120“ und dem „dritten leitenden Bauglied 140“ in der zweiten Wellenleitervorrichtung 100b entspricht der Kombination aus dem „ersten leitenden Bauglied 110“ und dem „zweiten leitenden Bauglied 120“ in der ersten Wellenleitervorrichtung 100a.
  • Siehe wiederum 11 und 12. Die Wellenleiterbauglieder 122U der ersten Wellenleitervorrichtung 100a koppeln an das Wellenleiterbauglied 122L der zweiten Wellenleitervorrichtung 100b durch Anschlüsse (Durchlässe) 145U, die in dem zweiten leitenden Bauglied 120 vorgesehen sind. Anders ausgedrückt, passiert eine elektromagnetische Welle, die sich durch das Wellenleiterbauglied 122L der zweiten Wellenleitervorrichtung 100b ausgebreitet hat, durch einen Anschluss 145U, um ein Wellenleiterbauglied 122U der ersten Wellenleitervorrichtung 100a zu erreichen, und breitet sich durch das Wellenleiterbauglied 122U der ersten Wellenleitervorrichtung 100a aus. In diesem Fall funktioniert jeder Schlitz 112 als Antennenelement, um das Abstrahlen einer elektromagnetischen Welle, die sich durch den Wellenleiter ausgebreitet hat, in den Raum zuzulassen. Umgekehrt koppelt, wenn eine elektromagnetische Welle, die sich im Raum ausgebreitet hat, auf einen Schlitz 112 auftrifft, die elektromagnetische Welle an das Wellenleiterbauglied 122U der ersten Wellenleitervorrichtung 100a direkt unter diesem Schlitz 112 und breitet sich durch das Wellenleiterbauglied 122U der ersten Wellenleitervorrichtung 100a aus. Eine elektromagnetische Welle, die sich durch ein Wellenleiterbauglied 122U der ersten Wellenleitervorrichtung 100a ausgebreitet hat, kann auch durch einen Anschluss 145U passieren, um das Wellenleiterbauglied 122L der zweiten Wellenleitervorrichtung 100b zu erreichen, und breitet sich durch das Wellenleiterbauglied 122L der zweiten Wellenleitervorrichtung 100b aus. Über einen Anschluss 145L des dritten leitenden Bauglieds 140 kann das Wellenleiterbauglied 122L der zweiten Wellenleitervorrichtung 100b an eine externe Wellenleitervorrichtung oder Hochfrequenzschaltung (elektronische Schaltung) koppeln. Als ein Beispiel illustriert 12D eine elektronische Schaltung 310, die mit dem Anschluss 145L verbunden ist. Ohne auf eine spezifische Position beschränkt zu sein, kann die elektronische Schaltung 310 an jeder beliebigen Position vorgesehen sein. Die elektronische Schaltung 310 kann auf einer Leiterplatte vorgesehen sein, die sich beispielsweise auf der Rückseite (d.h. der unteren Seite in 12B) des dritten leitenden Bauglieds 140 befindet. Eine solche elektronische Schaltung kann eine integrierte Mikrowellenschaltung, z.B. eine MMIC (integrierte monolithische Mikrowellenschaltung) sein, die beispielsweise Millimeterwellen generiert oder empfängt.
  • Das in 12A gezeigte erste leitende Bauglied 110 kann als „Abstrahlungsschicht“ bezeichnet werden. Außerdem kann die Gesamtheit des zweiten leitenden Bauglieds 120, der Wellenleiterbauglieder 122U und der leitenden Stäbe 124U, die in 12C gezeigt sind, als „Anregungsschicht“ bezeichnet werden, während die Gesamtheit des dritten leitenden Bauglieds 140, des Wellenleiterbauglieds 122L und der leitenden Stäbe 124L, die in 12D gezeigt sind, als „Verteilungsschicht“ bezeichnet werden kann. Außerdem können die „Anregungsschicht“ und die „Verteilungsschicht“ zusammen als „Speisungsschicht“ bezeichnet werden. Jede der Schichten „Abstrahlungsschicht“, „Anregungsschicht“ und „Verteilungsschicht“ kann durch Verarbeiten einer einzigen Metallplatte massengefertigt sein. Die Abstrahlungsschicht, die Anregungsschicht, die Verteilungsschicht und die elektronischen Schaltkreise, die auf der Rückflächenseite der Verteilungsschicht vorzusehen sind, können als Ein-Modul-Erzeugnis gefertigt sein.
  • Wie aus 12B ersichtlich, sind in der Array-Antenne aus diesem Beispiel schichtartig eine Abstrahlungsschicht, eine Anregungsschicht und eine Verteilungsschicht angeordnet, die Plattenform haben; somit ist eine flache und niedrigprofilige Flachpanel-Antenne als Ganzes realisiert. Die Höhe (Dicke) einer mehrschichtigen Struktur mit einer Querschnittskonstruktion wie der in 12B gezeigten kann beispielsweise auf 10 mm oder weniger eingestellt sein.
  • Das in 12D gezeigte Wellenleiterbauglied 122L weist einen Stammteil, der eine Verbindung mit dem Anschluss 145L herstellt, und vier Zweigteile auf, die von dem Stammteil abzweigen. Vier Anschlüsse 145U sind jeweils zu den oberen Flächen der führenden Enden der vier Zweigteile entgegengesetzt. Die Distanzen von dem Anschluss 145L des dritten leitenden Bauglieds 140 zu den vier Anschlüssen 145U (siehe 12C) des zweiten leitenden Bauglieds 120, entlang des Wellenleiterbauglieds 122L gemessen, sind alle auf einen identischen Wert eingestellt. Daher erreicht eine Signalwelle, die in das Wellenleiterbauglied 122L eingegeben wird, von dem Anschluss 145L des dritten leitenden Bauglieds 140 die vier Anschlüsse 145U (von denen jeder in der Mitte entlang der Y-Richtung des entsprechenden Wellenleiterbauglieds 122U angeordnet ist) alle in der gleichen Phase. Infolgedessen sind die vier Wellenleiterbauglieder 122U auf dem zweiten leitenden Bauglied 120 in der gleichen Phase anregbar.
  • Je nach Zweck ist es nicht notwendig, dass alle als Antennenelemente funktionierenden Schlitze 112 elektromagnetische Wellen in der gleichen Phase abstrahlen. Die Netzwerkmuster der Wellenleiterbauglieder 122U und 122L in der Anregungsschicht und derVerteilungsschicht können beliebig sein, ohne auf die illustrierte Implementierung begrenzt zu sein.
  • Wie in 12C gezeigt, existiert in der vorliegenden Ausführungsform nur eine Zeile leitender Stäbe 124U, die entlang derY-Richtung arrayartig angeordnet sind, zwischen zwei benachbarten Wellenleiterflächen 122a aus der Vielzahl von Wellenleiterbaugliedern 122U. Wie oben beschrieben, ist daher der Raum zwischen diesen zwei Wellenleiterflächen ein Raum, in dem weder eine elektrische Wand noch eine magnetische Wand (ein künstlicher magnetischer Leiter) existiert. Mit einer solchen Struktur kann das Intervall zwischen zwei benachbarten Wellenleiterbaugliedern 122U verglichen mit dem oben genannten Vergleichsbeispiel reduziert werden. Infolgedessen kann auch das Intervall zwischen zwei benachbarten Schlitzen 112 entlang der X-Richtung in ähnlicher Weise reduziert werden, wodurch das Auftreten von Gitterkeulen beschränkt wird.
  • In der vorliegenden Ausführungsform existiert zwischen zwei benachbarten Wellenleiterbaugliedern 122U weder eine elektrische Wand noch eine magnetische Wand, sondern es ist eine Zeile leitender Stäbe 124 angeordnet. Als Ergebnis hieraus wird eine Vermischung von Signalwellen, die sich auf den zwei Wellenleiterbaugliedern 122U ausbreiten, ausreichend unterdrückt. Es wird darauf hingewiesen, dass auch ohne diese Zeile leitender Stäbe 124 kein wesentliches Problem entsteht, da die Schlitz-Array-Antenne 300a der vorliegenden Ausführungsform so gestaltet ist, dass während eines Sendevorgangs der elektronischen Schaltung 310 die elektromagnetischen Wellen, die sich entlang der zwei benachbarten Wellenleiter ausbreiten, an den Positionen der zwei benachbarten Schlitze 112 entlang der X-Richtung im Wesentlichen die gleiche Phase haben. Die elektronische Schaltung 310 in der vorliegenden Ausführungsform ist über die in 12C und 12D gezeigten Anschlüsse 145U und 145L mit den Wellenleitern verbunden, die sich auf den Wellenleiterbaugliedern 122U beziehungsweise 122L erstrecken. Eine Signalwelle, die aus der elektronischen Schaltung 310 ausgegeben wird, verzweigt sich in derVerteilungsschicht und breitet sich dann auf der Vielzahl von Wellenleiterbaugliedern 122U aus, um die Vielzahl von Schlitzen 112 zu erreichen. Um sicherzustellen, dass die Signalwellen an den Positionen von zwei benachbarten Schlitzen 112 entlang der X-Richtung die gleiche Phase haben, können die Wellenleiter-Gesamtlängen von der elektronischen Schaltung zu den zwei Schlitzen 112 beispielsweise im Wesentlichen gleich gestaltet sein.
  • In der vorliegenden Ausführungsform sind in einer Richtung entlang eines jeden Wellenleiterbauglieds 122U (d.h. in der positiven Y-Richtung und der negativen Y-Richtung) eine Vielzahl von Schlitzen 112 an Positionen angeordnet, die von der Position eines jeden Anschlusses 145U, wie in 12C gezeigt, um ein halbes ganzzahliges Vielfaches der Wellenlänge λg der Signalwelle innerhalb des Wellenleiters, d.h. λg/2, (3/2) λg oder (5/2) λg, entfernt sind. Daher ist die Distanz zwischen den Mitten von zwei benachbarten Schlitzen entlang derY-Richtung gleich λg. Mit dieser Anordnung unterliegen die jeweiligen Schlitze 112 gleichphasiger Anregung, wodurch eine Abstrahlung mit hoher Verstärkung erzielt wird.
  • Herkömmlicherweise war noch keine Struktur bekannt, bei der wie in der vorliegenden Ausführungsform zwei Rippenwellenleiter (WRG), die sich von einem einzelnen Anschluss in entgegengesetzten Richtungen erstrecken, zum Anregen einer Vielzahl von Schlitzen verwendet werden, die von der Anschlussposition aus an symmetrischen Positionen angeordnet sind. Übliche Verzweigungsstrukturen können beispielsweise eine in Nicht-Patentdokument 3 offenbarte Struktur aufweisen, bei der ein Wellenleiter mit einer T-Verzweigung verwendet wird. Jedoch ist es bei Verwendung einer solchen Verzweigungsstruktur nicht möglich, eine gleichphasige Anregung einer Vielzahl von Abstrahlelementen zu erreichen, die von dem Verzweigungsteil aus symmetrisch angeordnet sind. Der Grund hierfür ist, dass an den Positionen von zwei Abstrahlelementen, die von dem Verzweigungsteil um eine gleiche Distanz in entgegengesetzten Richtungen entfernt sind, die Phasen der Potentialfluktuation übereinstimmen, jedoch die Richtungen der elektromagnetischen Wellenausbreitung entgegengesetzt sind, so dass innerhalb der zwei Abstrahlelemente immer elektrische Felder in entgegengesetzten Richtungen auftreten. Dagegen können in der Verzweigungsstruktur gemäß der vorliegenden Ausführungsform, bei der eine elektromagnetische Welle über den Anschluss aus einer anderen Schicht zugeführt wird, eine Vielzahl von Abstrahlelementen in der gleichen Phase angeregt werden, die von der Mitte eines Anschlusses als Verzweigungspunkt aus symmetrisch positioniert sind. Im Folgenden wird diese Wirkung spezifischer beschrieben.
  • 12E ist ein Diagramm zur Beschreibung dessen, wie durch die Struktur gemäß der vorliegenden Ausführungsform gleichphasige Anregung erreicht wird. 12E zeigt schematisch einen Querschnitt, der durch Mitten von zwei Schlitzen 112 passiert, die sich am nächsten an einem Anschluss 145U befinden, und der zu derYZ-Ebene parallel ist. Jeder Pfeil in der Figur illustriert eine Beispielausrichtung eines elektrischen Feldes zu einem gegebenen Moment. Zum leichteren Verständnis ist das Horn 114 in der Illustration weggelassen. Wie in 12E gezeigt, ist das Wellenleiterbauglied 122U geteilt in einen Abschnitt, der sich von der Position des Anschlusses 145U aus in der positiven Y-Richtung erstreckt, und einen Abschnitt, der sich von der Position des Anschlusses 145U aus in der negativen Y-Richtung erstreckt. In der folgenden Beschreibung wird aus praktischen Gründen der Abschnitt, der sich in der positiven Y-Richtung erstreckt, als die erste Rippe 122U1 bezeichnet, während der Abschnitt, der sich in der negativen Y-Richtung erstreckt, wird als die zweite Rippe 122U2 bezeichnet wird.
  • Zwischen einer elektromagnetischen Welle, die den Anschluss 145U passiert und sich auf der ersten Rippe 122U1 in der positiven Y-Richtung ausbreitet, und einer elektromagnetischen Welle, die den Anschluss 145U passiert und sich auf der zweite Rippe 122U2 in der negativen Y-Richtung ausbreitet, befinden sich die elektrischen Felder, die von dem Verzweigungspunkt aus an abstandsgleichen Positionen liegen, wie in 12E gezeigt, in entgegengesetzten Ausrichtungen (d.h. in entgegengesetzten Phasen). Durch diese Wirkung treten in den zwei Schlitzen 112, die von der Mitte des Anschlusses 145U in entgegengesetzten Richtungen um eine gleiche Distanz entfernt liegen, elektrische Felder in derselben Ausrichtung zum selben Zeitpunkt auf. Anders ausgedrückt: Die zwei Schlitze 112 unterliegen gleichphasiger Anregung. In der vorliegenden Beschreibung kann eine Vorrichtung, die so strukturiert ist, dass, wenn die Richtung der elektromagnetischen Wellenausbreitung sich in zwei Richtungen aufteilt, die elektromagnetischen Wellen, die sich in diesen zwei Richtungen ausbreiten, in dieser Weise entgegengesetzte Phasen haben, als „Umkehrphasen-Verteiler“ bezeichnet werden.
  • Die vorliegende Ausführungsform nutzt die oben genannte Umkehrphasen-Verteilerstruktur in der Weise, dass bei zwei gegebenen Schlitzen 112, die am nächsten an dem Anschluss 145U liegen, gleichphasige Anregung auch dann möglich ist, wenn die Distanz von der Mitte eines jeden Schlitzes 112 zu dem Anschluss 145U zwischen den zwei Schlitzen 112 identisch ist. In der vorliegenden Ausführungsform wird durch Einstellen dieser Distanz auf λg/2 sichergestellt, dass die Mitten der zwei Schlitze 112, die am nächsten an dem Anschluss 145U liegen, sich in einer Distanz von λg voneinander befinden. Allgemein gesprochen: Wenn eine Zwischenposition zwischen zwei benachbarten Abstrahlelementen der Speisepunkt ist, haben die elektromagnetischen Wellen, die sich von dem Speisepunkt in Richtung der zwei Abstrahlelemente bewegen, wie oben beschrieben, die gleiche Phase. Infolgedessen haben die von den zwei Abstrahlelementen abzustrahlenden elektromagnetischen Wellen entgegengesetzte Phasen. In diesem Fall muss sich zum Gleichrichten der Phase zum Beispiel möglicherweise ein Abstrahlelement an einer Position befinden, die von dem Speisepunkt in einer Richtung entlang des Wellenleiters um λg/4 entfernt ist, während das andere Abstrahlelement sich möglicherweise an einer Position befinden muss, die von dem Speisepunkt in der entgegengesetzten Richtung um (3/4)λg entfernt ist. Jedoch ist bei einer solchen Positionierung eine Beeinträchtigung des einen Abstrahlelementes, das nur Ag/4 von dem Speisepunkt entfernt ist, durch den Speisepunkt wahrscheinlich, was zu schlechten Abstrahleigenschaften des Abstrahlelementes führt. Die vorliegende Ausführungsform dagegen verwendet die Umkehrphasen-Verteilerstruktur in der Weise, dass aus der positiven Z-Richtung gesehen die Distanz von dem Speisepunkt (d.h. der mittleren Position des Anschlusses 145U) zu jedem der zwei Schlitze 112 in gleicher Weise λg/2 ist. Infolgedessen können beide Schlitze ausreichend weit von dem Speisepunkt entfernt platziert sein, während ein Schlitzintervall von λg sichergestellt wird. Bei einem Schlitzarray mit drei oder mehr Schlitzen 112 ermöglicht dies die Platzierung einer Vielzahl von Schlitzen 112 in Intervallen von λg. Es wird darauf hingewiesen, dass die Distanz zwischen den Mitten von zwei Schlitzen 112, die am nächsten an dem Speisepunkt liegen, möglicherweise nicht gleich λg ist. Solange die Distanz von der Mitte eines jeden der zwei Schlitze 112 von dem Speisepunkt zwischen den zwei Schlitzen 112 im Wesentlichen identisch ist, können elektromagnetische Wellen mit im Wesentlichen der gleichen Phase von den zwei Schlitzen 112 abgestrahlt werden. Wenn die Distanzen von den Mitten der zwei Schlitze 112 von dem Speisepunkt nur eine Differenz von λg/16 oder weniger haben, sind solche Distanzen für die Zwecke der vorliegenden Beschreibung als im Wesentlichen identisch anzusehen.
  • Eine solche Umkehrphasen-Verteilerstruktur ist nicht nur auf eine Schlitz-Array-Antenne wie in der vorliegenden Ausführungsform anwendbar, sondern auch auf jede WRGbasierte Wellenleitervorrichtung. Durch Nutzung einer Umkehrphasen-Verteilerstruktur wie der Verzweigungsstruktur in einer Wellenleitervorrichtung wird sichergestellt, dass eine elektromagnetische Welle, die durch einen Anschluss passiert und sich in einer Richtung ausbreitet, und eine elektromagnetische Welle, die durch einen Anschluss passiert und sich in der entgegengesetzten Richtung ausbreitet, entgegengesetzte Phasen haben. Dies funktioniert nicht nur im oben genannten Fall, in dem gleichphasige Anregung in einer Schlitz-Array-Antenne erreicht wird, sondern auch in vielfältigen Anwendungen, bei denen eine Verzweigung von Wellenleitern vorkommt und die eine Phaseneinstellung erfordern. Nachfolgend wird die Grundkonstruktion einer generischen Wellenleitervorrichtung mit einer Umkehrphasen-Verteilerstruktur beschrieben.
  • 12F ist eine Querschnittsansicht, die eine Teilkonstruktion einer Wellenleitervorrichtung mit einer Umkehrphasen-Verteilerstruktur schematisch zeigt. Jeder Pfeil in der Figur illustriert eine Beispielausrichtung eines elektrischen Feldes zu einem gegebenen Moment. Ähnlich wie die in 12E gezeigte Schlitz-Array-Antenne weist diese Wellenleitervorrichtung ein erstes leitendes Bauglied 110, ein zweites leitendes Bauglied 120, ein Wellenleiterbauglied 122 und eine Vielzahl von leitenden Stäben auf (in 12F nicht gezeigt). Das zweite leitende Bauglied 120 hat einen Anschluss (Durchgangsloch) 145. Das Wellenleiterbauglied 122 ist an der Position des Anschlusses 145 in zwei Abschnitte geteilt: Ein Abschnitt wird als die erste Rippe 122A1 und der andere Abschnitt als die zweite Rippe 122A2 bezeichnet. Eine elektromagnetische Welle, die von unterhalb der Ebene der Figur in den Anschluss 145 eintritt, passiert durch das Durchgangsloch 145 und den Raum zwischen den zwei Rippen 122A1 und 122A2 und verzweigt sich danach in eine elektromagnetische Welle, die sich entlang der ersten Rippe 122A1 in der positiven Y-Richtung ausbreitet, und eine elektromagnetische Welle, die sich entlang der zweiten Rippe 122A2 in der negativen Y-Richtung ausbreitet.
  • 12G ist eine perspektivische Ansicht, die eine detailliertere Struktur des zweiten leitenden Bauglieds 120, des Anschlusses 145, der Rippen 122A1 und 122A2 und der Vielzahl von elektrisch leitenden Stäben 124 in dieser Wellenleitervorrichtung zeigt. In Draufsicht hat der Anschluss 145 in diesem Beispiel eine H-Form ähnlich dem Buchstaben „H“. Die Innenumfangsfläche des Anschlusses 145 ist mit der Seitenfläche der ersten Rippe 122A1 und mit der Seitenfläche der zweiten Rippe 122A2 verbunden. Die nah zueinander entgegengesetzten Seitenflächen (Endflächen) 122s der Rippen 122A1 und 122A2 sind mit zwei entgegengesetzten Flächen der Innenumfangsfläche des Anschlusses 145 verbunden, ohne Niveauunterschiede dazwischen. Der Anschluss 145 mit einer solchen Struktur funktioniertalseine Art Hohlwellenleiter, bei dem eine elektromagnetische Welle sich hauptsächlich entlang der zwei entgegengesetzten Flächen der Innenumfangsfläche und der paarweisen Endflächen 122s der zwei Rippen 122A1 und 122A2 ausbreitet. Somit breitet sich eine elektromagnetische Welle, die von der darunterliegenden Schicht aus in den Anschluss 145 eintritt, entlang der entgegengesetzten Endflächen 122s und der jeweiligen Wellenleiterflächen der Rippen 122A1 und 122A2 aus. Beim Verzweigen in zwei Ausbreitungsrichtungen erhält die elektromagnetische Welle zueinander entgegengesetzte Phasen. Durch Verwendung der oben genannten Umkehrphasen-Verteilerkonstruktion kann die Verzweigung eines Wellenleiters in zwei Wellenleiter zugelassen werden. Ohne auf eine mit Schlitzen versehene Schicht begrenzt zu sein, ist diese Struktur auf jede beliebige Schicht der Wellenleitervorrichtung anwendbar. Es wird darauf hingewiesen, dass der Anschluss 145 eine andere Form als die H-Form haben kann (z.B. eine nahezu rechteckige oder elliptische Form). Zudem kann die Grenze zwischen den Endflächen 122s der Rippen 122A1 und 122A2 und den zwei entgegengesetzten Flächen der Innenumfangsfläche des Anschlusses 145 eine Niveaudifferenz haben, die nicht so groß ist, dass sie die elektromagnetische Wellenausbreitung signifikant beeinträchtigt.
  • Als Nächstes wird eine Variante der Schlitz-Array-Antenne gemäß der vorliegenden Ausführungsform beschrieben.
  • 13 ist eine perspektivische Ansicht, die eine Variante der Schlitz-Array-Antenne gemäß der vorliegenden Ausführungsform zeigt. Bei der Schlitz-Array-Antenne 300b gemäß dieser Variante existieren keine leitenden Stäbe 124U zwischen zwei benachbarten Wellenleiterbaugliedern 122 aus der Vielzahl von Wellenleiterbaugliedern 122. Auf diese Weise können leitende Stäbe 124U zwischen zwei benachbarten Wellenleiterbaugliedern 122 weggelassen sein. Auf Basis dieser Konstruktion kann das Intervall zwischen zwei Wellenleiterbaugliedern 122 weiter reduziert werden. Jedoch muss der Spalt zwischen benachbarten Wellenleiterbaugliedern 122 kleiner als λm/2 sein. Die Schlitzlänge muss mindestens λo/2 oder mehr betragen, und je nach Zweck kann λο um circa 4% größer als λm sein; daher ist möglicherweise einige Anpassung nötig, damit Schlitze, die sich entlang der X-Richtung erstrecken, entlang der X-Richtung nebeneinander liegen. Eine Struktur, bei der Schlitze schräg zu der Richtung angeordnet sind, in der die Wellenleiterbauglieder 122 sich erstrecken, ist ein Beispiel für solche Anpassung. Das Beispiel aus 13 enthält H-förmige Schlitze 112b, damit eine gedrängte Anordnung der Schlitze entlang der X-Richtung ermöglicht wird. Details der H-förmigen Schlitze 112b werden noch beschrieben. In diesem Beispiel sind die einzelnen Hörner 114 entlang der X-Richtung verlängert. Details der Hörner 114 dieser Form werden ebenfalls noch beschrieben. In 13 ist ein Anschluss oder eine Drosselstruktur, die an einem Ende oder der Mitte eines jeden Wellenleiterbauglieds 122U angeordnet sein kann, in der Illustration der Einfachheit halber weggelassen.
  • 14 ist eine Draufsicht des zweiten leitenden Bauglieds 120 aus 13 von oben, aus der positiven Z-Richtung gesehen. Wie in der Figur gezeigt, hat die Region zwischen dem ersten leitenden Bauglied 110 und dem zweiten leitenden Bauglied 120 eine erste Region 127, die eine Vielzahl von Wellenleiterbaugliedern 122 aufweist, und eine zweite Region 128 außerhalb der ersten Region 127. In der Figur ist die erste Region 127 von punktierten Linien umgeben gezeigt, während die zweite Region 128 außen liegt. In der zweiten Region 128 ist ein künstlicher magnetischer Leiter vorgesehen, der durch drei Zeilen leitender Stäbe 124U gebildet ist. Dies unterdrückt ein Austreten von elektromagnetischen Wellen aus der Vorrichtung. Obwohl der künstliche magnetische Leiter in diesem Beispiel aus drei Zeilen leitender Stäbe 124U gebildet ist, kann der künstliche magnetische Leiter jede andere Struktur haben, solange ein Austreten von sich ausbreitenden elektromagnetischen Wellen unterdrückt wird. Beispielsweise ist die Vielzahl von leitenden Stäben auf dem ersten leitenden Bauglied 110 statt auf dem zweiten leitenden Bauglied 120 vorgesehen.
  • Das obige Beispiel ist so illustriert, dass jede mögliche Kombination aus zwei benachbarten Wellenleiterbaugliedern, von allen Wellenleiterbaugliedern 122, die Bedingung erfüllt, dass dazwischen kein künstlicher magnetischer Leiter existiert. Jedoch ist diese Konstruktion keine Einschränkung. Es können (ein) Abschnitt(e) existieren, wo ein künstlicher magnetischer Leiter (z.B. ein Array aus zwei oder mehr Zeilen leitender Stäbe) zwischen zwei benachbarten Wellenleiterbaugliedern 122 existiert.
  • Als Nächstes werden Varianten von Hörnern 114 der vorliegenden Ausführungsform beschrieben. Die Hörner 114 können verschiedene Strukturen haben, ohne auf die in 11 und 13 gezeigten beschränkt zu sein.
  • 15A ist eine Draufsicht von oben, die die Struktur einer Vielzahl von Hörnern 114 gemäß einer Variante der vorliegenden Ausführungsform zeigt. 15B ist eine entlang der Linie D-D in 15A genommene Querschnittsansicht. Die Vielzahl von Hörnern 114 ist gemäß dieser Variante entlang derY-Richtung, auf einer Oberfläche des ersten leitenden Bauglieds 110, die zu der leitenden Oberfläche 110a entgegengesetzt ist, arrayartig angeordnet. Jedes Horn 114 enthält ein Paar erster elektrisch leitender Wände 114a, die sich entlang der Y-Richtung erstrecken, und ein Paar zweiter elektrisch leitender Wände 114b, die sich entlang der X-Richtung erstrecken. Das Paar erster leitender Wände 114a und das Paar zweiter leitender Wände 114b umgibt eine Vielzahl von Schlitzen 112 (d.h. in diesem Beispiel fünf), die entlang der X-Richtung arrayartig angeordnet sind, aus der Vielzahl von Schlitzen 112. Die Länge eines jeden zweiten elektrisch leitenden Stabes 114b entlang der X-Richtung ist länger als die Länge eines jeden ersten elektrisch leitenden Stabes 114a entlang derY-Richtung. Das Paar zweiter leitender Wände 114b ist treppenförmig. Wie hier verwendet, bezeichnet eine „Treppenform“ eine Form, die Niveaudifferenzen enthält, und kann auch als eine gestufte Form bezeichnet werden. Mit solchen Hörnern erhöht sich das Intervall zwischen dem Paar zweiter leitender Wände 114b entlang der Y-Richtung weg von der ersten leitenden Oberfläche 110a. Die Verwendung einer solchen Treppenform ermöglicht in vorteilhafter Weise eine leichtere Fertigung. Es wird darauf hingewiesen, dass das Paar zweiter leitender Wände 114b keine Treppenformen zu haben braucht. Beispielsweise können, wie bei einer in 16 gezeigten Schlitz-Array-Antenne 300c, Hörner 114 jeweils mit Seitenwänden verwendet werden, die plane geneigte Flächen sind. Auch bei solchen Hörnern erhöht sich das Intervall zwischen dem Paar zweiter leitender Wände 114b entlang der Y-Richtung weg von der ersten leitenden Oberfläche 110a.
  • Bei jedem Horn 114 in der vorliegenden Ausführungsform fehlen elektrisch leitende Stäbe zwischen zwei benachbarten Schlitzen 112 entlang der X-Richtung. Dies erhöht den effektiven Öffnungsbereich des Horns 114, wodurch eine höhere Verstärkung (d.h. ein höherer Wirkungsgrad) realisiert wird. Wenn die Konstruktion gemäß der vorliegenden Ausführungsform auf eine Sendeantenne angewandt wird, können elektromagnetische Wellen in vorbestimmten Richtungen mit einem hohen Wirkungsgrad abgestrahlt werden, der für Anwendungen geeignet ist, bei denen elektromagnetische Wellen lange Entfernungen überwinden sollen.
  • (Weitere Varianten)
  • • Varianten für Wellenleiterbauglied, leitende Bauglieder und leitende Stäbe
  • Als Nächstes werden Varianten des Wellenleiterbauglieds 122, der leitenden Bauglieder 110 und 120 sowie der leitenden Stäbe 124 beschrieben.
  • 17A ist eine Querschnittsansicht, die eine Beispielstruktur zeigt, bei der nur eine Wellenleiterfläche 122a, die eine obere Fläche des Wellenleiterbauglieds 122 definiert, elektrisch leitend ist, während jeder andere Abschnitt des Wellenleiterbauglieds 122 außer der Wellenleiterfläche 122a nicht elektrisch leitend ist. Das erste leitende Bauglied 110 und das zweite leitende Bauglied 120 sind beide gleichermaßen nur an ihrer Oberfläche, auf der das Wellenleiterbauglied 122 vorgesehen ist (d.h. der leitenden Oberfläche 110a, 120a) elektrisch leitend, während sie an allen anderen Abschnitten nicht elektrisch leitend sind. Somit brauchen das Wellenleiterbauglied 122, das erste leitende Bauglied 110 und das zweite leitende Bauglied 120 jeweils nicht vollständig elektrisch leitend zu sein.
  • 17B ist ein Diagramm, das eine Variante zeigt, bei der das Wellenleiterbauglied 122 nicht auf dem zweiten leitenden Bauglied 120 gebildet ist. In diesem Beispiel ist das Wellenleiterbauglied 122 an einem stützenden Bauglied (z.B. einer inneren Wand des Gehäuses) fixiert, welches das erste leitende Bauglied 110 und das zweite leitende Bauglied 120 stützt. Zwischen dem Wellenleiterbauglied 122 und dem zweiten leitenden Bauglied 120 existiert ein Spalt. Somit braucht das Wellenleiterbauglied 122 nicht mit dem zweiten leitenden Bauglied 120 verbunden zu sein.
  • 17C ist ein Diagramm, das eine Beispielstruktur zeigt, bei der das zweite leitende Bauglied 120, das Wellenleiterbauglied 122 und jeder von der Vielzahl von leitenden Stäben 124 aus einer dielektrischen Oberfläche gebildet sind, die mit einem elektrisch leitenden Material wie etwa einem Metall beschichtet ist. Das zweite leitende Bauglied 120, das Wellenleiterbauglied 122 und die Vielzahl von leitenden Stäben 124 sind über den elektrischen Leiter miteinander verbunden. Dagegen ist das erste leitende Bauglied 110 aus einem elektrisch leitenden Material wie etwa einem Metall hergestellt.
  • 17D und 17E sind Diagramme, die jeweils eine Beispielstruktur zeigen, bei der dielektrische Schichten 110b und 120b jeweils auf den äußersten Oberflächen von leitenden Baugliedern 110 und 120, einem Wellenleiterbauglied 122 und leitenden Stäben 124 bereitgestellt sind. 17D zeigt eine Beispielstruktur, bei der die Oberfläche von leitenden Baugliedern aus Metall, die Leiter sind, mit einer dielektrischen Schicht bedeckt ist. 17E zeigt ein Beispiel, bei dem das leitende Bauglied 120 so strukturiert ist, dass die Oberfläche von Baugliedern, die aus einem Dielektrikum, z.B. Harz, gebildet sind, mit einem Leiter wie etwa einem Metall bedeckt ist, wobei diese Metallschicht ferner mit einer dielektrischen Schicht beschichtet ist. Die dielektrische Schicht, die die Metalloberfläche bedeckt, kann eine Beschichtung aus Harz oder dergleichen oder ein Oxidfilm einer Passivierungsbeschichtung oder dergleichen sein, die mit der Oxidation des Metalls erzeugt wird.
  • Die dielektrische Schicht auf der äußersten Oberfläche lässt eine Erhöhung von Verlusten in der elektromagnetischen Welle zu, die sich durch den WRG-Wellenleiter ausbreitet, vermagjedoch die leitenden Oberflächen 110a und 120a (die elektrisch leitend sind) vor Korrosion zu schützen. Zudem kann ein Kurzschließen auch dann verhindert werden, wenn eine Leitung zum Führen einer Gleichspannung oder einer Wechselspannung von so niedriger Frequenz, dass sie zur Ausbreitung auf bestimmten WRG-Wellenleitern nicht fähig ist, an Stellen existiert, die mit den leitenden Stäben 124 in Kontakt gelangen können.
  • 17F ist ein Diagramm, das ein Beispiel zeigt, bei dem die Höhe des Wellenleiterbauglieds 122 niedriger als die Höhe der leitenden Stäbe 124 ist und ein Abschnitt einer leitenden Oberfläche 110a des ersten leitenden Bauglieds 110, der zu der Wellenleiterfläche 122a entgegengesetzt ist, in Richtung des Wellenleiterbauglieds 122 absteht. Auch eine solche Struktur funktioniert ähnlich wie die oben beschriebene Ausführungsform, solange die in 10 dargestellten Abmessungsbereiche eingehalten werden.
  • 17G ist ein Diagramm, das ein Beispiel zeigt, bei dem ferner in der Struktur aus 17F Abschnitte der leitenden Oberfläche 110a, die zu den leitenden Stäben 124 entgegengesetzt sind, in Richtung der leitenden Stäbe 124 abstehen. Auch eine solche Struktur arbeitet auf ähnliche Weise wie die oben beschriebene Ausführungsform, solange die in 10 dargestellten Abmessungsbereiche eingehalten werden. Anstelle einer Struktur, bei der die leitende Oberfläche 110a teilweise absteht, kann eine Struktur verwendet werden, bei der die leitende Oberfläche 110a teilweise mit Vertiefungen versehen ist.
  • 18A ist ein Diagramm, das ein Beispiel zeigt, bei dem eine leitende Oberfläche 110a des ersten leitenden Bauglieds 110 als gekrümmte Oberfläche geformt ist. 18B ist ein Diagramm, das ein Beispiel zeigt, bei dem auch eine leitende Oberfläche 120a des zweiten leitenden Bauglieds 120 als gekrümmte Oberfläche geformt ist. Wie durch diese Beispiele gezeigt, braucht mindestens eine der leitenden Oberfläche(n) 110a, 120a nicht als Ebene(n) geformt zu sein, sondern kann beziehungsweise können auch als gekrümmte Oberfläche(n) geformt sein. Wie mit Bezug auf 2B beschrieben, kann insbesondere das zweite leitende Bauglied 120 eine leitende Oberfläche 120a haben, der makroskopisch jeder plane Abschnitt fehlt.
  • • Schlitzvarianten
  • Als Nächstes werden Formvarianten für die Schlitze 112 beschrieben. Obwohl die obigen Beispiele illustrieren, dass jeder Schlitz 112 rechteckige plane Form hat, können die Schlitze 112 auch andere Formen haben. Nachfolgend werden Beispiele für andere Schlitzformen mit Bezug auf 19A bis 19D beschrieben. Es wird darauf hingewiesen, dass die Größe (Länge) eines jeden Schlitzes entlang der X-Richtung mit L bezeichnet ist und seine Größe (Breite) entlang derY-Richtung mit W bezeichnet ist.
  • 19A zeigt ein Beispiel für einen Schlitz 112a mit einer Form, deren beide Enden Abschnitten einer Ellipse ähneln. Die Länge dieses Schlitzes 112a, d.h. seine Größe entlang der Längsrichtung (die in der Figur durch Pfeilspitzen angezeigte Länge) L, ist so eingestellt, dass λo/2 < L < λo, z.B. circa λo/2, wobei λο eine Wellenlänge im freien Raum bezeichnet, die einer Mittelfrequenz der Betriebsfrequenz entspricht, wodurch sichergestellt wird, dass Resonanz höherer Ordnung nicht auftritt und dass die Schlitzimpedanz nicht zu klein ist.
  • 19B zeigt ein Beispiel für einen Schlitz 112b mit einer Form, die ein Paar vertikaler Abschnitte 113L und einen lateralen Abschnitt 113T aufweist, der das Paar vertikaler Abschnitte 113L verbindet (das in der vorliegenden Beschreibung als „H-Form“ bezeichnet wird). Der laterale Abschnitt 113T ist im Wesentlichen senkrecht zu dem Paar vertikaler Abschnitte 113L und verbindet im Wesentlichen zentrale Abschnitte des Paars vertikaler Abschnitte 113L miteinander. Auch bei einem solchen H-förmigen Schlitz 112b sind dessen Form und Größe so zu bestimmen, dass Resonanz höherer Ordnung nicht auftritt und dass die Schlitzimpedanz nicht zu klein ist. Um diese Bedingungen zu erfüllen, ist L definiert als das Doppelte der Länge entlang des lateralen Teils 113T und der vertikalen Abschnitte 113L, die sich in der Weise von dem Mittelpunkt (d.h. dem Mittelpunkt des lateralen Teils 113T) zu einem Ende (d.h. einem der Enden eines vertikalen Teils 113L) der H-Form erstreckt, dass λo/2 < L < λo. Somit kann die Länge (die in der Figur durch Pfeilspitzen angezeigte Länge) des lateralen Teils 113T z.B. kleiner als λo/2 gestaltet sein, wodurch das Schlitzintervall entlang der Längenrichtung des lateralen Teils 113T reduziert wird.
  • 19C zeigt ein Beispiel für einen Schlitz 112c, der einen lateralen Abschnitt 113T und ein Paar vertikaler Abschnitte 113L aufweist, die sich von beiden Enden des lateralen Teils 113T erstrecken. Die Richtungen, in denen das Paar vertikaler Abschnitte 113L sich von dem lateralen Abschnitt 113T erstreckt, die zueinander entgegengesetzt sind, sind im Wesentlichen senkrecht zu dem lateralen Abschnitt 113T. Auch in diesem Beispiel kann die Länge des lateralen Teils 113T (die in der Figur durch Pfeilspitzen angezeigte Länge) z.B. kleiner als λo/2 gestaltet sein, wodurch das Schlitzintervall entlang der Längenrichtung des lateralen Teils 113T reduziert werden kann.
  • 19D zeigt ein Beispiel für einen Schlitz 112d, der einen lateralen Abschnitt 113T und ein Paar vertikalerAbschnitte 113L aufweist, die sich von beiden Enden des lateralen Abschnitts 113T in derselben Richtung senkrecht zu dem lateralen Abschnitt 113T erstrecken. Auch in diesem Beispiel kann die Länge des lateralen Abschnitts 113T (die in der Figur durch Pfeilspitzen angezeigte Länge) z.B. kleiner als λo/2 gestaltet sein, wodurch das Schlitzintervall entlang der Längenrichtung des lateralen Abschnitts 113T reduziert werden kann.
  • 20 ist ein Diagramm, das ein planes Layout zeigt, bei dem die in 19A bis 19D gezeigten vier Arten von Schlitzen 112a bis 112d auf einem Wellenleiterbauglied 122 angeordnet sind. Wie in der Figur gezeigt, erlaubt die Verwendung der Schlitze 112b bis 112d eine Reduzierung der Größe des lateralen Abschnitts 113T entlang seiner Längenrichtung (als „laterale Richtung“ bezeichnet) gegenüber dem Fall einer Verwendung des Schlitzes 112a. In einer Struktur, bei der eine Vielzahl von Wellenleiterbaugliedern 122 parallel angeordnet sind, kann daher das Intervall von Schlitzen entlang der lateralen Richtung reduziert werden.
  • Das obige Beispiel illustriert, dass die Längsrichtung beziehungsweise die Richtung, in der sich der laterale Abschnitt eines Schlitzes erstreckt, mit der Breitenrichtung des Wellenleiterbauglieds 122 zusammenfällt; jedoch können diese zwei Richtungen einander überschneiden. Bei solchen Konstruktionen kann die Polarisationsebene der abzustrahlenden elektromagnetischen Welle geneigt sein. Infolgedessen ist eine beispielsweise für einen Bordradar verwendete elektromagnetische Welle, die von dem Eigenfahrzeug abgestrahlt wurde, von einer elektromagnetischen Welle unterscheidbar, die von einem entgegenkommenden Kraftfahrzeug abgestrahlt wurde.
  • Die Wellenleitervorrichtung und Schlitz-Array-Antenne (Antennenvorrichtung) gemäß der vorliegenden Offenbarung eignet sich zur Verwendung in einer Radarvorrichtung oder einem Radarsystem, das beispielsweise in bewegte Objekte wie etwa Fahrzeuge, Wasserfahrzeuge, Luftfahrzeuge, Roboter oder dergleichen einbaubar ist. Eine Radarvorrichtung würde eine Schlitz-Array-Antenne gemäß einer der oben beschriebenen Ausführungsformen und eine integrierte Mikrowellenschaltung aufweisen, die mit der Schlitz-Array-Antenne verbunden ist. Ein Radarsystem würde die Radarvorrichtung und eine Signalverarbeitungsschaltung aufweisen, die mit der integrierten Mikrowellenschaltung der Radarvorrichtung verbunden ist. Eine Schlitz-Array-Antenne gemäß einer Ausführungsform der vorliegenden Offenbarung weist eine WRG-Struktur auf, die eine Größenverringerung erlaubt und somit gegenüber einer Konstruktion, bei der ein herkömmlicher Hohlwellenleiter verwendet wird, eine merkliche Reduzierung des Bereiches der Fläche zulässt, auf der Antennenelemente arrayartig angeordnet sind. Daher ist ein Radarsystem, das die Antennenvorrichtung enthält, leicht in einen engen Raum montierbar, etwa auf eine Fläche eines Rückspiegels in einem Fahrzeug, die zu seiner Spiegeloberfläche entgegengesetzt ist, oder in einem bewegten Objekt geringer Größe wie etwa einem UAV (einem unbemannten Luftfahrzeug, einer sogenannten Drohne). Es wird darauf hingewiesen, dass ein Radarsystem, ohne auf die Implementierung in einem Fahrzeug begrenzt zu sein, beispielsweise an der Straße oder einem Gebäude fixiert verwendet werden kann.
  • Eine Schlitz-Array-Antenne gemäß einer Ausführungsform der vorliegenden Offenbarung kann auch in einem Drahtlos-Kommunikationssystem verwendet werden. Ein solches Drahtlos-Kommunikationssystem würde eine Schlitz-Array-Antenne gemäß einer der obigen Ausführungsformen und eine Kommunikationsschaltung (eine Sendeschaltung oder eine Empfangsschaltung) aufweisen. Details von Anwendungsbeispielen für Drahtlos-Kommunikationssysteme werden noch beschrieben.
  • Eine Schlitz-Array-Antenne gemäß einer Ausführungsform der vorliegenden Offenbarung kann ferner als Antenne in einem Innenpositionierungssystem (IPS) verwendet werden. Ein Innenpositionierungssystem ist fähig zum Identifizieren der Position eines bewegten Objektes wie etwa einer Person oder eines fahrerlosen Transportfahrzeugs (FTF), die sich in einem Gebäude befinden. Eine Array-Antenne kann auch als Funkwellensender (Funkbake) für ein System verwendet werden, das Informationen einem Informations-Endgerät (z.B. einem Smartphone) zuführt, welches von einer Person getragen wird, die ein Geschäft oder eine andere Einrichtung besucht hat. In einem solchen System kann eine Funkbake einmal alle paar Sekunden eine elektromagnetische Welle abstrahlen, die beispielsweise eine Kennung oder andere darauf aufgebrachte Informationen trägt. Wenn das Informations-Endgerät diese elektromagnetische Welle empfängt, sendet das Informations-Endgerät die empfangenen Informationen über Telekommunikationsverbindungen an einen entfernten Server-Computer. Auf Basis der Informationen, die aus dem Informations-Endgerät empfangen wurden, identifiziert der Server-Computer die Position dieses Informations-Endgerätes und führt Informationen, die dieser Position zugeordnet sind (z.B. Produktinformationen oder einen Gutschein) dem Informations-Endgerät zu.
  • <Anwendungsbeispiel 1: Bordradarsystem>
  • AlsAnwendungsbeispiel für die Nutzung der oben beschriebenen Schlitz-Array-Antenne wird als Nächstes ein Fall eines Bordradarsystems mit einer Schlitz-Array-Antenne beschrieben. Eine Sendewelle, die in einem Bordradarsystem verwendet wird, kann eine Frequenz z.B. im 76-Gigahertz- (GHz-) Band haben, die im freien Raum eine Wellenlänge λο von circa 4 mm hat.
  • In Sicherheitstechnik für Kraftfahrzeuge, z.B. in Kollisionsverhütungssystemen oder beim automatischen Fahren, kommt es insbesondere darauf an, ein oder mehr Fahrzeuge (Ziele) zu identifizieren, die vor dem Eigenfahrzeug fahren. Als Verfahren zum Identifizieren von Fahrzeugen sind Techniken zum Schätzen der Richtungen eintreffender Wellen durch Verwendung eines Radarsystems in Entwicklung.
  • 21 zeigt ein Eigenfahrzeug 500 und ein voraus befindliches Fahrzeug 502, das auf derselben Fahrspur wie das Eigenfahrzeug 500 fährt. Das Eigenfahrzeug 500 weist ein Bordradarsystem auf, das eine Schlitz-Array-Antenne gemäß einer der oben beschriebenen Ausführungsformen enthält. Wenn das Bordradarsystem des Eigenfahrzeugs 500 ein Hochfrequenz-Sendesignal abstrahlt, erreicht das Sendesignal das voraus befindliche Fahrzeug 502 und wird von demselben reflektiert, so dass ein Teil des Signals zu dem Eigenfahrzeug 500 zurückkehrt. Das Bordradarsystem empfängt dieses Signal, um eine Position des voraus befindlichen Fahrzeugs 502, eine Distanz („Entfernung“) zu dem voraus befindlichen Fahrzeug 502, eine Geschwindigkeit usw. zu berechnen.
  • 22 zeigt das Bordradarsystem 510 des Eigenfahrzeugs 500. Das Bordradarsystem 510 ist innerhalb des Fahrzeugs vorgesehen. Spezifischer ist das Bordradarsystem 510 auf einer Fläche des Rückspiegels angeordnet, die zu seiner Spiegelfläche entgegengesetzt ist. Aus dem Fahrzeug heraus strahlt das Bordradarsystem 510 ein Hochfrequenz-Sendesignal in der Fahrtrichtung des Fahrzeugs 500 ab und empfängt ein Signal(e), das aus der Fahrtrichtung eintrifft.
  • Das Bordradarsystem 510 aus diesem Anwendungsbeispiel weist eine Schlitz-Array-Antenne gemäß einer der obigen Ausführungsformen auf. Dieses Anwendungsbeispiel ist so angeordnet, dass die Richtung, in der jedes von der Vielzahl von Wellenleiterbaugliedern sich erstreckt, mit der vertikalen Richtung zusammenfällt und dass die Richtung, in der die Vielzahl von Wellenleiterbaugliedern arrayartig angeordnet sind, mit der horizontalen Richtung zusammenfällt. Infolgedessen kann die laterale Abmessung der Vielzahl von Schlitzen, von vorne gesehen, reduziert werden.
  • Wie oben beschrieben, erlaubt die Konstruktion gemäß der obigen Ausführungsform ein schmales Intervall zwischen einer Vielzahl von Wellenleiterbaugliedern (Rippen), die in der Sendeantenne verwendet werden. Außerdem verschmälert sie das Intervall zwischen einer Vielzahl von Schlitzen auf dem leitenden Bauglied. Dies erlaubt eine beträchtliche Reduzierung der Gesamtabmessungen des Bordradarsystems 510. Beispielabmessungen für eine Antennenvorrichtung mit der obigen Schlitz-Array-Antenne können 60 mm (Breite) x 30 mm (Länge) x 10 mm (Tiefe) sein. Es sei darauf hingewiesen, dass dies für ein Millimeterwellen-Radarsystem des 76-GHz-Bandes eine sehr geringe Größe ist.
  • Es wird darauf hingewiesen, dass viele herkömmliche Bordradarsysteme außen am Fahrzeug vorgesehen sind, z.B. ganz vorne an der Frontpartie. Der Grund hierfür ist, dass das Bordradarsystem relativ groß ist und somit nur schwer innerhalb des Fahrzeugs vorgesehen sein kann, wie in der vorliegenden Offenbarung. Das Bordradarsystem 510 aus diesem Anwendungsbeispiel kann innerhalb des Fahrzeugs installiert sein, wie oben beschrieben, ist aber stattdessen auch ganz vorne an die Frontpartie montierbar. Da der Platzbedarf des Bordradarsystems an der Frontpartie reduziert ist, wird die Anordnung anderer Teile erleichtert.
  • Das Anwendungsbeispiel ermöglicht ein schmales Intervall zwischen einer Vielzahl von Wellenleiterbaugliedern (Rippen), die in der Sendeantenne verwendet werden, wodurch sich auch das Intervall zwischen einer Vielzahl von Schlitzen verkleinert, die entgegengesetzt zu einer Anzahl von benachbarten Wellenleiterbaugliedern vorzusehen sind. Dies reduziert die Einflüsse von Gitterkeulen. Beispielsweise treten keine Gitterkeulen in Vorwärtsrichtung auf, wenn das Intervall zwischen den Mitten von zwei lateral benachbarten Schlitzen kürzer als die Wellenlänge im freien Raum λο der Sendewelle (d.h. kleiner als circa 4 mm) ist. Daher werden die Einflüsse von Gitterkeulen reduziert. Es wird darauf hingewiesen, dass Gitterkeulen dann auftreten, wenn das Intervall, in dem die Antennenelemente arrayartig angeordnet sind, größer als eine Hälfte der Wellenlänge einer elektromagnetischen Welle ist. Wenn das Intervall, in dem die An-tennenelemente arrayartig angeordnet sind, kleiner als die Wellenlänge ist, treten keine Gitterkeulen in Vorwärtsrichtung auf. In dem Fall, dass das Radarsystem keine Strahllenkung durchführt, um Phasendifferenzen auf die Funkwellen zu übertragen, die aus den jeweiligen Antennenelementen emittiert werden, aus denen eine Array-Antenne gebildet ist, haben Gitterkeulen daher im Wesentlichen keinen Einfluss, solange das Intervall, in dem die Antennenelemente arrayartig angeordnet sind, kleiner als die Wellenlänge ist. Durch Einstellen des Array-Faktors der Sendeantenne kann die Direktivität der Sendeantenne eingestellt werden. Es kann ein Phasenschieber vorgesehen sein, damit die Phasen elektromagnetischer Wellen, die auf mehreren Wellenleiterbaugliedern übertragen werden, individuell eingestellt werden können. In einem solchen Fall ist es vorzuziehen, dass das Intervall zwischen zwei benachbarten Antennenelementen kleiner als eine Hälfte der Wellenlänge im freien Raum λο ist, um die Einflüsse von Gitterkeulen zu vermeiden. Durch Vorsehen eines Phasenschiebers kann die Direktivität der Sendeantenne in jede gewünschte Richtung geändert werden. Da die Konstruktion eines Phasenschiebers bekannt ist, wird auf ihre Beschreibung verzichtet.
  • Eine Empfangsantenne gemäß dem Anwendungsbeispiel vermag den Empfang reflektierter Wellen, die Gitterkeulen zugeordnet sind, zu verringern, so dass die Genauigkeit der unten beschriebenen Verarbeitung verbessert werden kann. Im Folgenden wird ein Beispiel für einen Empfangsprozess beschrieben.
  • 23A zeigt ein Verhältnis zwischen einer Array-Antenne AAdes Bordradarsystems 510 und mehreren eintreffenden Wellen k (k: eine ganze Zahl von 1 bis K; das gleiche gilt nachfolgend durchgängig. K ist die Anzahl der Ziele, die in verschiedenen Azimuten vorhanden sind). Die Array-Antenne AA weist M Antennenelemente in einem linearen Array auf. Eine Antenne ist prinzipiell sowohl zum Senden als auch zum Empfang verwendbar, und daher kann die Array-Antenne AA sowohl für eine Sendeantenne als auch für eine Empfangsantenne verwendet werden. Im Folgenden wird ein Beispielverfahren für die Verarbeitung einer eintreffenden Welle beschrieben, die durch die Empfangsantenne empfangen wird.
  • Die Array-Antenne AA empfängt mehrere eintreffende Wellen, die gleichzeitig in verschiedenen Winkeln auftreffen. Einige der mehreren eintreffenden Wellen können eintreffende Wellen sein, die von der Sendeantenne desselben Bordradarsystems 510 abgestrahlt und durch (ein) Ziel(e) reflektiert wurden. Außerdem können einige der mehreren eintreffenden Wellen direkte oder indirekte eintreffende Wellen sein, die von anderen Fahrzeugen abgestrahlt wurden.
  • Der Einfallswinkel einer jeden eintreffenden Welle (d.h. ein Winkel, der die Richtung ihres Eintreffens repräsentiert) ist ein auf die breite Seite B der Array-Antenne AA bezogener Winkel. Der Einfallswinkel einer eintreffenden Welle repräsentiert einen Winkel mit Bezug auf eine Richtung, die zu der Richtung der Linie, entlang derer Antennenelemente arrayartig angeordnet sind, senkrecht steht.
  • Es werde nun eine k-te eintreffende Welle betrachtet. Wenn auf der Array-Antenne von K Zielen aus, die bei unterschiedlichen Azimuten vorhanden sind, K eintreffende Wellen auftreffen, bedeutet eine „k-te eintreffende Welle“ eine eintreffende Welle, die durch einen Einfallswinkel θk identifiziert ist.
  • 23B zeigt die Array-Antenne AA, die die k-te eintreffende Welle empfängt. Die durch die Array-Antenne AA empfangenen Signale können als ein „Vektor“ mit M Elementen durch die Gleichung 1 ausgedrückt werden. S = [ s 1 , s 2 , , s M ] T
    Figure DE102016125412B4_0001
  • In der obigen Gleichung ist sm (wobei m eine ganze Zahl von 1 bis M ist; dies gilt auch im Folgenden) der Wert eines Signals, das durch ein m-tes Antennenelement empfangen wird. Das hochgestellteT bedeutet Transposition. S ist ein Spaltenvektor. Der Spaltenvektor S ist definiert durch ein Produkt einer Multiplikation aus einem durch die Konstruktion der Array-Antenne bestimmten Richtungsvektor (als Lenkvektor oder Modenvektor bezeichnet) und einem komplexen Vektor, der ein Signal von dem jeweiligen Ziel repräsentiert (auch als Wellenquelle oder Signalquelle bezeichnet). Wenn die Anzahl der Wellenquellen K ist, sind die Wellen von Signalen, die von den jeweiligen K Wellenquellen an jedem einzelnen Antennenelement eintreffen, linear überlagert. In diesem Zustand kann sm durch die Gleichung 2 ausgedrückt werden. s m = k = 1 K a k  exp { j ( 2 π λ d m sin  θ k + φ k ) }
    Figure DE102016125412B4_0002
  • In Gleichung 2 bezeichnen ak, θk und ϕk die Amplitude, den Einfallswinkel beziehungsweise die Anfangsphase der k-ten eintreffenden Welle. Darüber hinaus bezeichnet λ die Wellenlänge einer eintreffenden Welle, und j ist eine imaginäre Einheit.
  • Wie aus Gleichung 2 ersichtlich, ist sm als komplexe Zahl ausgedrückt, die aus einem realen Teil (Re) und einem imaginären Teil (Im) besteht.
  • Wird dies durch Berücksichtigung von Rauschen (Eigenrauschen oder Wärmerauschen) weiter verallgemeinert, so lässt sich das Array-Empfangssignal X als Gleichung 3 ausdrücken. X = S + N
    Figure DE102016125412B4_0003
    N ist ein Vektorausdruck für das Rauschen.
  • Die Signalverarbeitungsschaltung erzeugt durch Verwendung des Array-Empfangssignals X, ausgedrückt durch Gleichung 3, eine räumliche Kovarianzmatrix Rxx (Gleichung 4) eintreffender Wellen und bestimmt Eigenwerte der räumlichen Kovarianzmatrix Rxx näher. R x x = X X H = [ R x x 11 R x x 1 M R x x M 1 R x x M M ]
    Figure DE102016125412B4_0004
  • In der obigen Gleichung bedeutet das das hochgestellteH konjugiert-komplexe Transposition (hermitesche Konjugierte).
  • Bei den Eigenwerten entspricht die Anzahl der Eigenwerte mit Werten, die gleich einem oder größer als ein vorbestimmter Wert sind, der auf Basis von Wärmerauschen definiert ist (Signalraumeigenwerte), der Anzahl eintreffender Wellen. Es werden dann Winkel berechnet, die die höchste Wahrscheinlichkeit hinsichtlich der Einfallsrichtungen reflektierter Wellen (d.h. die maximale Wahrscheinlichkeit) ergeben, wodurch die Anzahl der Ziele und die Winkel, in denen sich die jeweiligen Ziele befinden, identifizierbar sind. Dieser Prozess ist als eine Schätztechnik für die maximale Wahrscheinlichkeit bekannt.
  • Siehe als Nächstes 24. 24 ist ein Blockdiagramm, das ein Beispiel für eine Grundkonstruktion einer Fahrzeug-Fahrsteuereinrichtung 600 gemäß der vorliegenden Offenbarung zeigt. Die in 24 gezeigte Fahrzeug-Fahrsteuereinrichtung 600 weist ein Radarsystem 510, das in einem Fahrzeug montiert ist, und eine mit dem Radarsystem 510 verbundene elektronische Fahrassistenz-Steuereinrichtung 520 auf. Das Radarsystem 510 weist eine Array-Antenne AA und eine Radarsignal-Verarbeitungseinrichtung530 auf.
  • Die Array-Antenne AA weist eine Vielzahl von Antennenelementen auf, von denen jedes in Antwort auf eine oder mehrere eintreffende Wellen ein Empfangssignal ausgibt. Wie bereits erwähnt, ist die Array-Antenne AAzum Abstrahlen einer Millimeterwelle mit einer hohen Frequenz fähig. Es wird darauf hingewiesen, dass die Array-Antenne AA, ohne auf die Schlitz-Array-Antenne gemäß einer der obigen Ausführungsformen begrenzt zu sein, jede andere Array-Antenne sein kann, die in geeigneter Weise Empfang durchführt.
  • In dem Radarsystem 510 muss die Array-Antenne AA am Fahrzeug angebracht sein, während zumindest einige der Funktionen der Radarsignal-Verarbeitungseinrichtung 530 durch einen Computer 550 und eine Datenbank 552 implementiert sein können, die extern zu der Fahrzeug-Fahrsteuereinrichtung 600 (z.B. außerhalb des Eigenfahrzeugs) vorgesehen sind. In diesem Fall können die Abschnitte der Radarsignal-Verarbeitungseinrichtung 530, die sich im Fahrzeug befinden, dauerhaft oder gelegentlich mit dem Computer 550 und der Datenbank 552 verbunden sein, die zum Fahrzeug extern sind, so dass bidirektionale Übermittlungen von Signalen oder Daten möglich sind. Die Übermittlungen sind über eine Kommunikationsvorrichtung 540 des Fahrzeugs und ein üblicherweise verfügbares Kommunikationsnetz durchführbar.
  • Die Datenbank 552 kann ein Programm speichern, das verschiedene Signalverarbeitungsalgorithmen definiert. Der Inhalt der Daten und des Programms, die für den Betrieb des Radarsystems 510 benötigt werden, kann über die Kommunikationsvorrichtung 540 extern aktualisiert werden. Somit sind zumindest einige der Funktionen des Radarsystems 510 durch eine Cloud-Computing-Technik extern zum Eigenfahrzeug realisierbar (was das Innere eines anderen Fahrzeugs einschließt). Für ein „Bord“-Radarsystem in der Bedeutung der vorliegenden Offenbarung ist es daher nicht erforderlich, dass alle Bestandteile innerhalb des (Eigen-) Fahrzeugs montiert sind. Jedoch beschreibt die vorliegende Anmeldung der Einfachheit halber eine Implementierung, bei der alle Bestandteile gemäß der vorliegenden Offenbarung in einem einzigen Fahrzeug (d.h. dem Eigenfahrzeug) montiert sind, sofern nicht anders angegeben.
  • Die Radarsignal-Verarbeitungseinrichtung 530 weist eine Signalverarbeitungsschaltung 560 auf. Die Signalverarbeitungsschaltung 560 empfängt direkt oder indirekt Empfangssignale von der Array-Antenne AA und gibt die Empfangssignale oder ein sekundäre(s) Signal(e), die aus den Empfangssignalen generiert wurden, in eine Einfallswellen-Schätzeinheit AU ein. Ein Teil der Schaltung oder die gesamte Schaltung (nicht gezeigt), die aus den Empfangssignalen ein sekundäre(s) Signal(e) generiert, braucht nicht innerhalb der Signalverarbeitungsschaltung 560 vorgesehen zu sein. Ein Teil einer oder eine gesamte solche Schaltung (Vorverarbeitungsschaltung) kann zwischen der Array-Antenne AA und der Radarsignal-Verarbeitungseinrichtung 530 vorgesehen sein.
  • Die Signalverarbeitungsschaltung 560 ist dazu konfiguriert, durch Verwendung der Empfangssignale oder sekundären Signal(e) Berechnungen durchzuführen und ein Signal auszugeben, das die Anzahl der eintreffenden Wellen anzeigt. Gemäß der vorliegenden Verwendung kann als „Signal, das die Anzahl der eintreffenden Wellen anzeigt“ ein Signal bezeichnet werden, das die Anzahl voraus befindlicher Fahrzeuge vor dem Eigenfahrzeug anzeigt (die ein voraus befindliches Fahrzeug oder mehrere voraus befindliche Fahrzeuge sein können).
  • Die Signalverarbeitungsschaltung 560 kann zum Durchführen vielfältiger Signalverarbeitung konfiguriert sein, die durch bekannte Radarsignal-Verarbeitungseinrichtungen ausführbar ist. Beispielsweise kann die Signalverarbeitungsschaltung 560 dazu konfiguriert sein, „Überauflösungs-Algorithmen“ auszuführen wie etwa das MUSIC-Verfahren, das ESPRIT-Verfahren oder das SAGE-Verfahren, oder andere Algorithmen zur Einfallsrichtungsschätzung mit relativ niedriger Auflösung.
  • Die in 24 gezeigte Einfallswellen-Schätzeinheit AU schätzt einen Winkel, der das Azimut einer jeden eintreffenden Welle repräsentiert, durch einen beliebigen Algorithmus zur Einfallsrichtungsschätzung, und gibt ein Signal aus, das das Schätzungsergebnis anzeigt. Die Signalverarbeitungsschaltung 560 schätzt die Distanz zu jedem Ziel als Wellenquelle einer eintreffenden Welle, die relative Geschwindigkeit des Ziels und das Azimut des Ziels mit einem bekannten Algorithmus, der durch die Einfallswellen-Schätzeinheit AU ausgeführt wird, und gibt ein Signal aus, das das Schätzungsergebnis anzeigt.
  • In der vorliegenden Offenbarung ist der Ausdruck „Signalverarbeitungsschaltung“ nicht auf eine einzelne Schaltung beschränkt, sondern schließt jede Implementierung ein, bei der eine Kombination aus mehreren Schaltungen konzeptionell als ein einziges funktionelles Teil betrachtet wird. Die Signalverarbeitungsschaltung 560 kann durch ein oder mehr Ein-Chip-Systeme (Auf-dem-Chip-Systeme, SoCs) realisiert sein. Beispielsweise kann ein Teil der oder die gesamte Signalverarbeitungsschaltung560 ein FPGA (feldprogrammierbares Array) sein, das eine programmierbare Logikvorrichtung (PLD) ist. In diesem Fall weist die Signalverarbeitungsschaltung 560 eine Vielzahl von Berechnungselementen (z.B. Universallogiken und Multiplizierer) und eine Vielzahl von Speicherelementen (z.B. Verweistabellen oder Speicherblöcke) auf. Alternativ kann die Signalverarbeitungsschaltung 560 ein Satz aus einem Universalprozessor(en) und einer Hauptspeichervorrichtung(en) sein. Die Signalverarbeitungsschaltung560 kann eine Schaltung sein, die einen Prozessorkern(e) und eine Speichervorrichtung(en) aufweist. Diese können als die Signalverarbeitungsschaltung 560 funktionieren.
  • Die elektronische Fahrassistenz-Steuereinrichtung 520 ist dazu konfiguriert, Fahrassistenz für das Fahrzeug auf Basis verschiedener Signale bereitzustellen, die aus der Radarsignal-Verarbeitungseinrichtung 530 ausgegeben werden. Die elektronische Fahrassistenz-Steuereinrichtung 520 weist verschiedene elektronische Steuereinheiten dazu an, vorbestimmte Funktionen zu erfüllen, z.B. eine Funktion zur Alarmausgabe, um den Fahrer zu einem Bremsvorgang aufzufordern, wenn die Distanz zu einem voraus befindlichen Fahrzeug (Fahrzeugabstand) kürzer als ein vordefinierter Wert geworden ist; eine Funktion zur Steuerung der Bremsen und eine Funktion zur Beschleunigungssteuerung. Beispielsweise schickt im Fall eines Betriebsmodus, der eine adaptive Fahrgeschwindigkeitsregelung des Eigenfahrzeugs durchführt, die elektronische Fahrassistenz-Steuereinrichtung 520 vorbestimmte Signale an verschiedene elektronische Steuereinheiten (nicht gezeigt) und Aktoren, um die Distanz des Eigenfahrzeugs zu einem voraus befindlichen Fahrzeug auf einem vordefinierten Wert zu halten oder die Fahrgeschwindigkeit des Eigenfahrzeugs auf einem vordefinierten Wert zu halten.
  • Im Fall des MUSIC-Verfahrens bestimmt die Signalverarbeitungsschaltung 560 Eigenwerte der räumlichen Kovarianzmatrix und gibt als Signal, das die Anzahl eintreffender Wellen anzeigt, ein Signal aus, das die Anzahl derjenigen Eigenwerte („Signalraum-Eigenwerte“) anzeigt, die größer als ein vorbestimmter Wert sind, der auf Basis von Wärmerauschen definiert ist (thermische Rauschleistung).
  • Siehe als Nächstes 25. 25 ist ein Blockdiagramm, das eine weitere Beispielkonstruktion für die Fahrzeug-Fahrsteuereinrichtung 600 zeigt. Das Radarsystem 510 in der Fahrzeug-Fahrsteuereinrichtung 600 aus 25 weist eine Array-Antenne AA, die eine nur für den Empfang bestimmte Array-Antenne Rx (auch als Empfangsantenne bezeichnet) und eine nur zum Senden bestimmte Array-Antenne Tx (auch als Sendeantenne bezeichnet) aufweist; und eine Objektdetektionseinrichtung 570 auf.
  • Mindestens entweder die Sendeantenne Tx oder die Empfangsantenne Rx hat die oben genannte Wellenleiterstruktur. Die Sendeantenne Tx strahlt eine Sendewelle ab, die beispielsweise eine Millimeterwelle sein kann. Die Sendeantenne TX kann beispielsweise eine Schlitz-Array-Antenne gemäß einer der obigen Ausführungsformen sein. Die Sendeantenne Tx hat eine solche Richtverstärkungscharakteristik, dass sie das stärkste Sendesignal im Wesentlichen in der frontalen Richtung ausgibt. Die Sendeantenne Tx wird als Hochleistungsantenne für weite Entfernungen verwendet. Die Empfangsantenne Rx, die nur für den Empfang bestimmt ist, gibt ein Empfangssignal in Antwort auf eine oder mehrere eintreffende Wellen (z.B. (eine) Millimeterwelle(n)) aus.
  • Eine Sende-/Empfangsschaltung 580 sendet ein Sendesignal für eine Sendewelle an die Sendeantenne Tx aus und führt „Vorverarbeitung“ für Empfangssignale von Empfangswellen durch, die an der Empfangsantenne Rx empfangen werden. Ein Teil der oder die gesamte Vorverarbeitung kann durch die Signalverarbeitungsschaltung560 in der Radarsignal-Verarbeitungseinrichtung530 erfolgen. Ein typisches Beispiel für eine durch die Sende-/Empfangsschaltung 580 durchzuführende Vorverarbeitung kann es sein, aus einem Empfangssignal ein Schwebungssignal zu generieren und ein Empfangssignal mit analogem Format in ein Empfangssignal mit digitalem Format umzuwandeln.
  • Es wird darauf hingewiesen, dass das Radarsystem gemäß der vorliegenden Offenbarung, ohne auf die Implementierung beschränkt zu sein, bei der es in dem Eigenfahrzeug montiert ist, an der Straße oder einem Gebäude angebracht verwendet werden kann.
  • Als Nächstes wird ein Beispiel für eine spezifischere Konstruktion der Fahrzeug-Fahrsteuereinrichtung 600 beschrieben.
  • 26 ist ein Blockdiagramm, das ein Beispiel für eine spezifischere Konstruktion der Fahrzeug-Fahrsteuereinrichtung 600 zeigt. Die in 26 gezeigte Fahrzeug-Fahrsteuereinrichtung 600 weist ein Radarsystem 510 und ein Bordkamerasystem 700 auf. Das Radarsystem 510 weist eine Array-Antenne AA, eine Sende-/Empfangsschaltung 580, die mit der Array-Antenne AA verbunden ist, und eine Signalverarbeitungsschaltung 560 auf.
  • Das Bordkamerasystem 700 weist eine Bordkamera 710, die in einem Fahrzeug montiert ist, und eine Bildverarbeitungsschaltung 720 auf, die ein durch die Bordkamera 710 erfasstes Bild oder Video verarbeitet.
  • Die Fahrzeug-Fahrsteuereinrichtung 600 aus diesem Anwendungsbeispiel weist eine Objektdetektionseinrichtung 570, die mit der Array-Antenne AA und der Bordkamera 710 verbunden ist, und eine elektronische Fahrassistenz-Steuereinrichtung 520 auf, die mit der Objektdetektionseinrichtung 570 verbunden ist. Zusätzlich zu der oben beschriebenen Radarsignal-Verarbeitungseinrichtung 530 (einschließlich der Signalverarbeitungsschaltung 560) weist die Objektdetektionseinrichtung 570 eine Sende-/Empfangsschaltung 580 und eine Bildverarbeitungsschaltung 720 auf. Die Objektdetektionseinrichtung 570 detektiert ein Ziel auf der Straße oder in der Nähe der Straße durch Verwendung nicht nur der durch das Radarsystem 510 gewonnenen Informationen, sondern auch der durch die Bildverarbeitungsschaltung 720 gewonnenen Informationen. Beispielsweise kann die Bildverarbeitungsschaltung 720, während das Eigenfahrzeug auf einer von zwei oder mehr Fahrspuren derselben Richtung fährt, unterscheiden, auf welcher Fahrspur das Eigenfahrzeug fährt, und dieses Unterscheidungsergebnis der Signalverarbeitungsschaltung 560 zuführen. Wenn Anzahl und Azimut(e) von voraus befindlichen Fahrzeugen durch Verwendung eines vorbestimmten Algorithmus zur Einfallsrichtungsschätzung (z.B. das MUSIC-Verfahren) erkannt werden sollen, kann die Signalverarbeitungsschaltung 560 zuverlässigere Informationen zu einer räumlichen Verteilung voraus befindlicher Fahrzeuge liefern, indem auf die Informationen aus der Bildverarbeitungsschaltung 720 zurückgegriffen wird.
  • Es wird darauf hingewiesen, dass das Bordkamerasystem 700 ein Beispiel für ein Mittel zum Identifizieren dessen ist, auf welcher Fahrspur das Eigenfahrzeug fährt. Die Fahrspurposition des Eigenfahrzeugs kann auch durch jedes andere Mittel identifiziert werden. Beispielsweise ist es durch Nutzung einer Ultrabreitband- (UWB-) Technik möglich, zu identifizieren, auf welcher von einer Vielzahl von Fahrspuren das Eigenfahrzeug fährt. Es ist weithin bekannt, dass die Ultrabreitbandtechnik auf Positionsmessung und/oder Radar anwendbar ist. Die Verwendung der Ultrabreitbandtechnik erhöht die Entfernungsauflösung des Radars, so dass auch dann, wenn sich eine große Anzahl von Fahrzeugen voraus befindet, jedes einzelne Ziel auf Distanzbasis deutlich detektiert werden kann. Dies ermöglicht es, eine Distanz mit guter Genauigkeit aus einer Leitplanke am Seitenstreifen oder aus dem Mittelstreifen zu identifizieren. Die Breite einer jeden Fahrspur ist anhand der Gesetze des jeweiligen Landes oder dergleichen vordefiniert. Durch Verwendung solcher Informationen wird es möglich, zu identifizieren, wo sich die Fahrspur befindet, in der das Eigenfahrzeug gerade fährt. Es wird darauf hingewiesen, dass die Ultrabreitbandtechnik ein Beispiel ist. Es kann auch eine Funkwelle auf Basis jeder anderen Drahtlostechnik verwendet werden. Zudem kann zusammen mit einem Radar LIDAR (Lichtdetektion und Abstandsmessung) verwendet werden. LIDAR wird manchmal als „Laserradar“ bezeichnet.
  • Die Array-Antenne AA kann eine generische Millimeterwellen-Array-Antenne zur bordeigenen Verwendung sein. Die Sendeantenne Tx in diesem Anwendungsbeispiel strahlt eine Millimeterwelle als Sendewelle vor dem Fahrzeug ab. Ein Abschnitt der Sendewelle wird von einem Ziel reflektiert, das typischerweise ein voraus befindliches Fahrzeug ist, so dass von dem Ziel als Wellenquelle eine reflektierte Welle ausgeht. Ein Abschnitt der reflektierten Welle erreicht die Array-Antenne (Empfangsantenne) AA als eintreffende Welle. Jedes aus der Vielzahl von Antennenelementen der Array-Antenne AA gibt in Antwort auf eine oder mehrere eintreffende Wellen ein Empfangssignal aus. In dem Fall, in dem die Anzahl der Ziele, die als Wellenquellen reflektierter Wellen funktionieren, K ist (wobei K eine ganze Zahl mit dem Wert 1 oder mehr ist), ist die Anzahl eintreffender Wellen K, jedoch ist diese Zahl K eintreffender Wellen nicht im Voraus bekannt.
  • Bei dem Beispiel aus 24 wird vorausgesetzt, dass das Radarsystem 510 als integrales Stück, einschließlich der Array-Antenne AA, am Rückspiegel vorgesehen ist. Jedoch sind Anzahl und Positionen von Array-Antennen AA nicht auf eine spezifische Anzahl oder spezifische Positionen beschränkt. Eine Array-Antenne AA kann an der hinteren Oberfläche des Fahrzeugs angeordnet sein, um Ziele detektieren zu können, die sich hinter dem Fahrzeug befinden. Außerdem kann eine Vielzahl von Array-Antennen AA an der vorderen Oberfläche und der hinteren Oberfläche des Fahrzeugs angeordnet sein. Die Array-Antenne(n) AA können im Inneren des Fahrzeugs angeordnet sein. Auch in dem Fall, in dem eine Hornantenne, deren jeweilige Antennenelemente, wie oben erwähnt, Hörner aufweisen, als Array-Antenne(n) AA verwendet werden soll, können die Array-Antenne(n) mit solchen Antennenelementen sich im Inneren des Fahrzeugs befinden.
  • Die Signalverarbeitungsschaltung 560 empfängt und verarbeitet die Empfangssignale, die durch die Empfangsantenne Rx empfangen wurden und einer Vorverarbeitung durch die Sende-/Empfangsschaltung 580 unterzogen wurden. Dieser Prozess umfasst das Eingeben der Empfangssignale in die Einfallswellen-SchätzeinheitAU oder alternativ das Generieren eines beziehungsweise mehrerer sekundärer Signale aus den Empfangssignalen und Eingeben der sekundäre(n) Signal(e) in die Einfallswellen-SchätzeinheitAU.
  • In dem Beispiel aus 26 ist in der Objektdetektionseinrichtung 570 eine Auswahlschaltung 596 vorgesehen, die das aus der Signalverarbeitungsschaltung 560 ausgegebene Signal und das aus der Bildverarbeitungsschaltung 720 ausgegebene Signal empfängt. Die Auswahlschaltung 596 erlaubt es, dass von dem aus der Signalverarbeitungsschaltung 560 ausgegebenen Signal und dem aus der Bildverarbeitungsschaltung 720 ausgegebenen Signal eines oder beide in die elektronische Fahrassistenz-Steuereinrichtung 520 gespeist werden.
  • 27 ist ein Blockdiagramm, das eine detailliertere Beispielkonstruktion des Radarsystems 510 gemäß diesem Anwendungsbeispiel zeigt.
  • Wie in 27 gezeigt, weist die Array-Antenne AA eine Sendeantenne Tx, die eine Millimeterwelle sendet, und Empfangsantennen Rx auf, die eintreffende, von Zielen reflektierte Wellen empfangen. Obwohl in der Figur nur eine Sendeantenne Tx dargestellt ist, können zwei oder mehr Arten von Sendeantennen mit unterschiedlichen Charakteristiken vorgesehen sein. Die Array-Antenne AA weist M Antennenelemente 111, 112, ..., 11M auf (wobei M eine ganze Zahl gleich oder größer als 3 ist). In Antwort auf die eintreffenden Wellen geben die Vielzahl von Antennenelementen 111, 112, ..., 11M jeweils Empfangssignale s1, s2,..., sM aus (23B).
  • In der Array-Antenne AA sind die Antennenelemente 111 bis 11M beispielsweise in einem linearen Array oder einem zweidimensionalen Array in festen Intervallen angeordnet. Jede eintreffende Welle trifft auf die Array-Antenne AA aus einer Richtung in einem Winkel θ mit Bezug auf die Normale der Ebene auf, in der die Antennenelemente 111 bis 11M arrayartig angeordnet sind. Somit ist die Einfallsrichtung einer eintreffenden Welle durch diesen Winkel θ definiert.
  • Wenn eine eintreffende Welle von einem Ziel aus auf der Array-Antenne AA auftrifft, nähert sich dies einer ebenen Welle, die auf die Antennenelemente 111 bis 11M aus Azimuten desselben Winkels θ auftrifft. Wenn K eintreffende Wellen auf der Array-Antenne AA von K Zielen mit unterschiedlichen Azimuten auftreffen, können die einzelnen eintreffenden Wellen mithilfe jeweils unterschiedlicher Winkel θ1 bis θK identifiziert werden.
  • Wie in 27 gezeigt, weist die Objektdetektionseinrichtung 570 die Sende-/Empfangsschaltung 580 und die Signalverarbeitungsschaltung 560 auf.
  • Die Sende-/Empfangsschaltung 580 weist eine Dreieckswellen-Generierungsschaltung 581, einen VCO (spannungsgesteuerten Oszillator) 582, einen Distributor 583, Mischer 584, Filter 585, einen Schalter 586, einen A/D-Wandler 587 und eine Steuerung 588 auf. Obwohl das Radarsystem in diesem Anwendungsbeispiel dazu konfiguriert ist, Senden und Empfang von Millimeterwellen im FMCW-Verfahren durchzuführen, ist das Radarsystem der vorliegenden Offenbarung nicht auf dieses Verfahren beschränkt. Die Sende-/Empfangsschaltung 580 ist dazu konfiguriert, auf Basis eines Empfangssignals von der Array-Antenne AA und eines Sendesignals von der Sendeantenne Tx ein Schwebungssignal zu generieren.
  • Die Signalverarbeitungsschaltung 560 weist einen Distanzdetektionsabschnitt 533, einen Geschwindigkeitsdetektionsabschnitt 534 und einen Azimut-Detektionsabschnitt 536 auf. Die Signalverarbeitungsschaltung 560 ist dazu konfiguriert, ein Signal von dem A/D-Wandler 587 in der Sende-/Empfangsschaltung 580 zu verarbeiten und Signale auszugeben, die jeweils die detektierte Distanz zum Ziel, die relative Geschwindigkeit des Ziels und das Azimut des Ziels anzeigen.
  • Zunächst werden Konstruktion und Funktionsweise der Sende-/Empfangsschaltung 580 im Detail beschrieben.
  • Die Dreieckswellen-Generierungsschaltung 581 generiert ein Dreieckswellensignal und führt es dem VCO 582 zu. Der VCO 582 gibt ein Sendesignal mit einer Frequenz aus, wie auf Basis des Dreieckswellensignals moduliert. 28 ist ein Diagramm, das die Veränderung der Frequenz eines Sendesignals zeigt, die auf Basis des durch die Dreieckswellen-Generierungsschaltung581 generierten Signals moduliert ist. Diese Wellenform hat eine Modulationsbreite Δf und eine Mittelfrequenz von fo. Das Sendesignal mit einer so modulierten Frequenz wird dem Distributor 583 zugeführt. Der Distributor 583 lässt eine Verteilung des aus dem VCO 582 gewonnenen Sendesignals zwischen den Mischern 584 und der Sendeantenne Tx zu. Somit strahlt die Sendeantenne eine Millimeterwelle mit einer Frequenz ab, die in Dreieckswellen moduliert ist, wie in 28 gezeigt.
  • Zusätzlich zu dem Sendesignal zeigt 28 auch ein Beispiel für ein Empfangssignal aus einer eintreffenden Welle, die von einem einzelnen voraus befindlichen Fahrzeug reflektiert ist. Das Empfangssignal ist gegenüber dem Sendesignal verzögert. Diese Verzögerung steht in Proportion zu der Distanz zwischen dem Eigenfahrzeug und dem voraus befindlichen Fahrzeug. Zudem erhöht oder verringert sich die Frequenz des Empfangssignals aufgrund des Dopplereffekts entsprechend der relativen Geschwindigkeit des voraus befindlichen Fahrzeugs.
  • Wenn das Empfangssignal und das Sendesignal gemischt werden, wird auf Basis ihres Frequenzunterschieds ein Schwebungssignal generiert. Die Frequenz dieses Schwebungssignals (Schwebungsfrequenz) differiert zwischen einer Periode, in der das Sendesignal sich in der Frequenz erhöht (Anstieg) und einer Periode, in der das Sendesignal sich in der Frequenz verringert (Abfall). Sobald eine Schwebungsfrequenz für jede Periode auf Basis solcher Schwebungsfrequenzen bestimmt ist, werden die Distanz zum Ziel und die relative Geschwindigkeit des Ziels berechnet.
  • 29 zeigt eine Schwebungsfrequenz fu in einer „Anstiegs“-Periode und eine Schwebungsfrequenz fd in einer „Abfall“-Periode. In dem Graphen aus 29 steht die horizontale Achse die Frequenz und die vertikale Achse für die Signalintensität. Dieser Graph wird gewonnen, indem das Schwebungssignal einer Zeit-Frequenz-Umwandlung unterzogen wird. Sobald auf Basis einer bekannten Gleichung die Schwebungsfrequenzen fu und fd gewonnen sind, werden die Distanz zum Ziel und die relative Geschwindigkeit des Ziels berechnet. In diesem Anwendungsbeispiel werden mit der unten beschriebenen Konstruktion und Funktionsweise Schwebungsfrequenzen gewonnen, die einem jeden Antennenelement der Array-Antenne AA entsprechen, wodurch eine Schätzung der Positionsinformationen eines Ziels ermöglicht wird.
  • In dem in 27 gezeigten Beispiel werden Empfangssignale aus Kanälen Ch1 bis ChM, die den jeweiligen Antennenelementen 111 bis 11M entsprechen, jeweils durch einen Verstärker verstärkt und in die entsprechenden Mischer 584 eingegeben. Jeder Mischer 584 mischt das Sendesignal in das verstärkte Empfangssignal. Durch dieses Mischen wird ein Schwebungssignal generiert, das dem Frequenzunterschied zwischen dem Empfangssignal und dem Sendesignal entspricht. Das generierte Schwebungssignal wird in das entsprechende Filter 585 gespeist. Die Filter 585 wenden Bandbreitensteuerung auf die Schwebungssignale auf den Kanälen Ch1 bis ChM an und führen dem Schalter586 bandbreitengesteuerte Schwebungssignale zu.
  • Der Schalter 586 führt ein Schalten in Antwort auf ein aus der Steuerung 588 eingegebenes Abtastsignal durch. Die Steuerung588 kann beispielsweise durch einen Mikrocomputer gebildet sein. Auf Basis eines Computerprogramms, das in einem Speicher wie etwa einem ROM gespeichert ist, steuert die Steuerung 588 die gesamte Sende-/Empfangsschaltung 580. Die Steuerung 588 braucht nicht innerhalb der Sende-/Empfangsschaltung 580 vorgesehen zu sein, sondern kann innerhalb der Signalverarbeitungsschaltung 560 vorgesehen sein. Anders ausgedrückt: Die Sende-/Empfangsschaltung 580 kann entsprechend einem Steuersignal aus der Signalverarbeitungsschaltung 560 arbeiten. Alternativ können einige oder alle Funktionen der Steuerung 588 durch eine zentrale Verarbeitungseinheit realisiert sein, die die gesamte Sende-/Empfangsschaltung 580 und Signalverarbeitungsschaltung 560 steuert.
  • Nachdem die Schwebungssignale auf den Kanälen Ch1 bis ChM durch die jeweiligen Filter 585 passiert sind, werden sie über den Schalter 586 nacheinander dem A/D-Wandler 587 zugeführt. In Synchronisation mit dem Abtastsignal wandelt der A/D-Wandler 587 die Schwebungssignale auf den Kanälen Ch1 bis ChM, die aus dem Schalter 586 eingegeben werden, in digitale Signale um.
  • Im Folgenden werden Konstruktion und Funktionsweise der Signalverarbeitungsschaltung 560 im Detail beschrieben. In diesem Anwendungsbeispiel werden die Distanz zum Ziel und die relative Geschwindigkeit des Ziels im FMCW-Verfahren geschätzt. Ohne auf das unten beschriebene FMCW-Verfahren beschränkt zu sein, kann das Radarsystem auch durch Verwendung anderer Verfahren implementiert sein, z.B. in 2-Frequenz-CW- und Spreizspektrum-Verfahren.
  • In dem in 27 gezeigten Beispiel weist die Signalverarbeitungsschaltung 560 auf: einen Speicher 531, einen Empfangsintensitäts-Berechnungsabschnitt 532, einen Distanzdetektionsabschnitt 533, einen Geschwindigkeitsdetektionsabschnitt 534, einen DBF- (Digitale-Strahlformung-) Verarbeitungsabschnitt 535, einen Azimut-Detektionsabschnitt 536, einen Zielverbindungs-Verarbeitungsabschnitt 537, einen Matrixgenerierungsabschnitt 538, einen Zielausgabe-Verarbeitungsabschnitt539 und eine Einfallswellen-Schätzeinheit AU. Wie bereits erwähnt, kann ein Teil der oder die gesamte Signalverarbeitungsschaltung 560 durch FPGA oder durch einen Satz aus einem Universalprozessor(en) und einer Hauptspeichervorrichtung(en) implementiert sein. Der Speicher 531, der Empfangsintensitäts-Berechnungsabschnitt 532, der DBF-Verarbeitungsabschnitt 535, der Distanzdetektionsabschnitt 533, der Geschwindigkeitsdetektionsabschnitt 534, der Azimut-Detektionsabschnitt 536, der Zielverbindungs-Verarbeitungsabschnitt 537 und die Einfallswellen-Schätzeinheit AU können einzelne Teil, die in eigenständigen Hardware-Teilen implementiert sind, oder Funktionsblöcke einer einzigen Signalverarbeitungsschaltung sein.
  • 30 zeigt eine Beispielimplementierung, bei der die Signalverarbeitungsschaltung 560 in Hardware einschließlich eines Prozessors PR und einer Speichervorrichtung MD implementiert ist. Auch bei der Signalverarbeitungsschaltung 560 mit dieser Konstruktion kann ein in der Speichervorrichtung MD gespeichertes Computerprogramm die Funktionen des Empfangsintensitäts-Berechnungsabschnitts 532, des DBF-Verarbeitungsabschnitts 535, des Distanzdetektionsabschnitts 533, des Geschwindigkeitsdetektionsabschnitts 534, des Azimut-Detektionsabschnitts 536, des Zielverbindungs-Verarbeitungsabschnitts 537, des Matrixgenerierungsabschnitts 538 und der Einfallswellen-SchätzeinheitAU erfüllen, die in 27 gezeigt sind.
  • Die Signalverarbeitungsschaltung 560 in diesem Anwendungsbeispiel ist konfiguriert zum Schätzen der Positionsinformationen eines voraus befindlichen Fahrzeugs durch Verwendung eines jeden Schwebungssignals, das in ein digitales Signal umgewandelt ist, als sekundäres Signal des Empfangssignals sowie zum Ausgeben eines Signals, das das Schätzungsergebnis anzeigt. Im Folgenden werden Konstruktion und Funktionsweise der Signalverarbeitungsschaltung 560 in diesem Anwendungsbeispiel im Detail beschrieben.
  • Für jeden der Kanäle Ch1 bis ChM speichert der Speicher 531 in der Signalverarbeitungsschaltung 560 ein digitales Signal, das aus dem A/D-Wandler 587 ausgegeben wird. Der Speicher 531 kann durch ein generisches Speichermedium wie etwa einen Halbleiterspeicher oder eine Festplatte und/oder eine optische Platte gebildet sein.
  • Der Empfangsintensitäts-Berechnungsabschnitt 532 wendet Fourier-Transformation auf die jeweiligen Schwebungssignale für die Kanäle Ch1 bis ChM an (in dem unteren Graphen aus 28 gezeigt), die in dem Speicher 531 gespeichert sind. In der vorliegenden Beschreibung wird die Amplitude eines Komplexe-Zahl-Datums nach der Fourier-Transformation als „Signalintensität“ bezeichnet. Der Empfangsintensitäts-Berechnungsabschnitt 532 wandelt die Komplexe-Zahl-Daten eines Empfangssignals aus einem von der Vielzahl von Antennenelementen oder eine Summe der Komplexe-Zahl-Daten aller Empfangssignale aus der Vielzahl von Antennenelementen in ein Frequenzspektrum um. In dem so entstandenen Spektrum können Schwebungsfrequenzen detektiert werden, die jeweiligen Spitzenwerten entsprechen, welche Vorhandensein und Distanz von Zielen (voraus befindlichen Fahrzeugen) anzeigen. Das Errechnen einer Summe der Komplexe-Zahl-Daten der Empfangssignale aus allen Antennenelementen ermöglicht das Ausmitteln der Rauschanteile, wodurch das S/N-Verhältnis verbessert wird.
  • In dem Fall, in dem nur ein Ziel, d.h. ein voraus befindliches Fahrzeug, vorhanden ist, wie in 29 gezeigt, erzeugt die Fourier-Transformation ein Spektrum mit nur einem Spitzenwert in einer Periode mit steigender Frequenz (der „Anstiegs“-Periode) und nur einem Spitzenwert in einer Periode mit sich verringernder Frequenz (der „Abfall“-Periode). Die Schwebungsfrequenz des Spitzenwertes in der „Anstiegs“-Periode ist mit „fu“ bezeichnet, während die Schwebungsfrequenz des Spitzenwertes in der „Abfall“-Periode mit „fd“ bezeichnet ist.
  • Aus den Signalintensitäten von Schwebungsfrequenzen detektiert der Empfangsintensitäts-Berechnungsabschnitt 532jede Signalintensität, die einen vordefinierten Wert (Schwellenwert) überschreitet, wodurch das Vorhandensein eines Ziels bestimmt wird. Beim Detektieren einer Signalintensitätsspitze gibt der Empfangsintensitäts-Berechnungsabschnitt 532 die Schwebungsfrequenzen (fu, fd) der Spitzenwerte als die Frequenzen des Objektes von Interesse an den Distanzdetektionsabschnitt 533 und den Geschwindigkeitsdetektionsabschnitt 534 aus. Der Empfangsintensitäts-Berechnungsabschnitt 532 gibt Informationen, welche die Frequenzmodulations-breite Δf anzeigen, an den Distanzdetektionsabschnitt 533 aus und gibt Informationen, welche die Mittelfrequenz f0 anzeigen, an den Geschwindigkeitsdetektionsabschnitt 534 aus.
  • In dem Fall, in dem Signalintensitätsspitzen entsprechend mehreren Zielen detektiert werden, findet der Empfangsintensitäts-Berechnungsabschnitt 532 Verbindungen zwischen den Anstiegs-Spitzenwerten und den Abfall-Spitzenwerten auf Basis vordefinierter Bedingungen. Spitzen, die als zu Signalen von demselben Ziel gehörig bestimmt werden, erhalten dieselbe Nummer und werden somit in den Distanzdetektionsabschnitt 533 und den Geschwindigkeitsdetektionsabschnitt 534 gespeist.
  • Wenn es mehrere Ziele gibt, erscheinen nach der Fourier-Transformation so viele Spitzen, wie es Ziele gibt, in den Anstiegsteilen und den Abfallteilen des Schwebungssignals. In Proportion zu der Distanz zwischen dem Radar und einem Ziel wird das Empfangssignal weiter verzögert, und das Empfangssignal in 28 verschiebt sich mehr nach rechts. Daher erhält ein Schwebungssignal mit der Erhöhung der Distanz zwischen dem Ziel und dem Radar eine höhere Frequenz.
  • Auf Basis der aus dem Empfangsintensitäts-Berechnungsabschnitt 532 eingegebenen Schwebungsfrequenzen fu und fd berechnet der Distanzdetektionsabschnitt 533 durch die untenstehende Gleichung eine Distanz R und führt sie dem Zielverbindungs-Verarbeitungsabschnitt 537 zu. R = { c T / ( 2 Δ f ) } { ( fu + fd ) / 2 }
    Figure DE102016125412B4_0005
  • Außerdem berechnet der Geschwindigkeitsdetektionsabschnitt 534 durch die untenstehende Gleichung auf Basis der aus dem Empfangsintensitäts-Berechnungsabschnitt 532 eingegebenen Schwebungsfrequenzen fu und fd eine relative Geschwindigkeit V und führt sie dem Zielverbindungs-Verarbeitungsabschnitt 537 zu. V = { c / ( 2 f 0 ) } { ( fu fd ) / 2 }
    Figure DE102016125412B4_0006
  • In der Gleichung, die die Distanz R und die relative Geschwindigkeit V berechnet, ist c die Lichtgeschwindigkeit, und T ist die Modulationsperiode.
  • Es wird darauf hingewiesen, dass die an der Untergrenze liegende Auflösung der Distanz R als c/(2Δf) ausgedrückt ist. Mit einer Erhöhung von Δf erhöht sich daher die Auflösung der Distanz R. In dem Fall, in dem sich die Frequenz f0 im 76-GHz-Band befindet, liegt bei einer Einstellung von Δf in der Größenordnung von 660 Megahertz (MHz) die Auflösung der Distanz R beispielsweise in der Größenordnung von 0,23 Metern (m). Wenn zwei voraus befindliche Fahrzeuge nebeneinander fahren, kann es mit dem FMCW-Verfahren daher schwer zu identifizieren sein, ob ein Fahrzeug oder zwei Fahrzeuge vorhanden sind. In einem solchen Fall könnte das Betreiben eines Algorithmus zur Schätzung der Einfallsrichtung mit extrem hoher Winkelauflösung möglich sein, um zwischen den Azimuten der zwei voraus befindlichen Fahrzeuge zu separieren und die Detektion zu ermöglichen.
  • Durch Nutzung von Phasendifferenzen zwischen Signalen aus den Antennenelementen 111, 112, ..., 11M erlaubt der DBF-Verarbeitungsabschnitt 535 die Durchführung einer Fourier-Transformation der eintreffenden, den jeweiligen Antennenelementen entsprechenden komplexen Daten, die mit Bezug auf die Zeitachse Fourier-transformiert wurden, mit Bezug auf die Richtung, in der die Antennenelemente arrayartig angeordnet sind. Der DBF-Verarbeitungsabschnitt535 berechnet dann räumliche Komplexe-Zahl-Daten, die die Spektrumsintensität für jeden Winkelkanal, wie durch die Winkelauflösung bestimmt, anzeigen, und gibt sie für die jeweiligen Schwebungsfrequenzen an den Azimut-Detektionsabschnitt 536 aus.
  • Der Azimut-Detektionsabschnitt 536 ist zu dem Zweck vorgesehen, den Azimut eines voraus befindlichen Fahrzeugs zu schätzen. Aus den Werten von räumlichen Komplexe-Zahl-Daten, die für die jeweiligen Schwebungsfrequenzen berechnet wurden, wählt der Azimut-Detektionsabschnitt 536 einen Winkel θ, der den größten Wert annimmt, und gibt ihn an den Zielverbindungs-Verarbeitungsabschnitt 537 als das Azimut aus, bei dem ein Objekt von Interesse vorhanden ist.
  • Es wird darauf hingewiesen, dass das Verfahren zum Schätzen des Winkels θ, der die Einfallsrichtung einer eintreffenden Welle anzeigt, nicht auf dieses Beispiel beschränkt ist. Es können verschiedene Algorithmen zur Einfallsrichtungsschätzung eingesetzt werden, die bereits erwähnt wurden.
  • Der Zielverbindungs-Verarbeitungsabschnitt 537 berechnet absolute Werte der Differenzen zwischen den jeweiligen, im aktuellen Zyklus berechneten Werten der Distanz, der relativen Geschwindigkeit und des Azimuts des Objektes von Interesse und den 1 Zyklus zuvor berechneten jeweiligen Werten der Distanz, der relativen Geschwindigkeit und des Azimuts des Objektes von Interesse, die aus dem Speicher 531 ausgelesen werden. Wenn der absolute Wert einer jeden Differenz kleiner als ein Wert ist, der für den jeweiligen Wert definiert ist, bestimmt dann der Zielverbindungs-Verarbeitungsabschnitt 537, dass das Ziel, das 1 Zyklus zuvor detektiert wurde, und das in dem aktuellen Zyklus detektierte Ziel ein identisches Ziel sind. In diesem Fall erhöht der Zielverbindungs-Verarbeitungsabschnitt 537 die Zählung der verarbeiteten Zielverbindungen, die aus dem Speicher 531 gelesen werden, um eins.
  • Wenn der absolute Wert einer Differenz größer als vorbestimmt ist, bestimmt der Zielverbindungs-Verarbeitungsabschnitt 537, dass ein neues Objekt von Interesse detektiert wurde. Der Zielverbindungs-Verarbeitungsabschnitt 537 speichert die jeweiligen, im aktuellen Zyklus berechneten Werte der Distanz, der relativen Geschwindigkeit und des Azimuts des Objektes von Interesse und auch die Zählung der Zielverbindungsprozesse für dieses Objekt von Interesse in dem Speicher 531.
  • In der Signalverarbeitungsschaltung 560 können die Distanz zu dem Objekt von Interesse und seine relative Geschwindigkeit durch Verwendung eines Spektrums detektiert werden, das durch eine Frequenzanalyse von Schwebungssignalen gewonnen ist, die auf Basis von empfangenen reflektierten Wellen generierte Signale sind.
  • Der Matrixgenerierungsabschnitt 538 generiert eine räumliche Kovarianzmatrix durch Verwendung der jeweiligen Schwebungssignale für die Kanäle Ch1 bis ChM (unterer Graph in 28), die in dem Speicher 531 gespeichert sind. In der räumlichen Kovarianzmatrix aus Gleichung 4 ist jede Komponente der Wert eines Schwebungssignals, der in Form von realen und imaginären Teilen ausgedrückt ist. Ferner bestimmt der Matrixgenerierungsabschnitt 538 Eigenwerte der räumlichen Kovarianzmatrix Rxx und gibt die so entstehenden Eigenwertinformationen in die Einfallswellen-Schätzeinheit AU ein.
  • Wenn eine Vielzahl von Signalintensitätsspitzen, die mehreren Objekten von Interesse entsprechen, detektiert wurden, nummeriert der Empfangsintensitäts-Berechnungsabschnitt 532 die Spitzenwerte jeweils in dem Anstiegsteil und in dem Abfallteil, angefangen bei denjenigen mit kleineren Frequenzen, und gibt sie an den Zielausgabe-Verarbeitungsabschnitt 539 aus. In den Anstiegs- und Abfallteilen entsprechen Spitzen mit identischer Nummer demselben Objekt von Interesse. Die Identifikationsnummern sind als die Nummern anzusehen, die den Objekten von Interesse zugewiesen sind. Zur einfacheren Illustration ist eine Bezugslinie von dem Empfangsintensitäts-Berechnungsabschnitt532 zu dem Zielausgabe-Verarbeitungsabschnitt 539 in 27 der Einfachheit halber weggelassen.
  • Wenn das Objekt von Interesse eine voraus befindliche Struktur ist, gibt der Zielausgabe-Verarbeitungsabschnitt 539 die Identifikationsnummer dieses Objektes von Interesse als ein Ziel anzeigend aus. Beim Empfang von Bestimmungsergebnissen zu mehreren Objekten von Interesse in der Weise, dass es alles voraus befindliche Strukturen sind, gibt der Zielausgabe-Verarbeitungsabschnitt 539 die Identifikationsnummer eines Objektes von Interesse, das sich auf der Fahrspur des Eigenfahrzeugs befindet, als die Objektpositionsinformationen aus, die anzeigen, wo sich ein Ziel befindet. Beim Empfang von Bestimmungsergebnissen zu mehreren Objekten von Interesse in der Weise, dass es alles voraus befindliche Strukturen sind und dass sich auf der Fahrspur des Eigenfahrzeugs zwei oder mehr Objekte von Interesse befinden, gibt der Zielausgabe-Verarbeitungsabschnitt 539 außerdem die Identifikationsnummer eines Objektes von Interesse, das der höchsten aus dem Verbindungs-Verarbeitungsspeicher 531 gelesenen Zählung der Ziele zugeordnet ist, als die Objektpositionsinformationen aus, die anzeigen, wo sich ein Ziel befindet.
  • Wiederum mit Bezug auf 26 wird ein Beispiel beschrieben, bei dem das Bordradarsystem 510 in die in 38 gezeigte Beispielkonstruktion eingebaut ist. Die Bildverarbeitungsschaltung 720 erfasst Informationen eines Objektes aus dem Video und detektiert aus den Objektinformationen Zielpositionsinformationen. Beispielsweise ist die Bildverarbeitungsschaltung 720 dazu konfiguriert, durch Detektieren des Tiefenwertes eines Objektes innerhalb eines erfassten Videos Distanzinformationen eines Objektes zu schätzen oder aus charakteristischen Beträgen in dem Video Größeninformationen und dergleichen eines Objektes zu detektieren und so Positionsinformationen des Objektes zu detektieren.
  • Die Auswahlschaltung 596 führt Positionsinformationen, die aus der Signalverarbeitungsschaltung 560 oder der Bildverarbeitungsschaltung 720 empfangen werden, selektiv der elektronischen Fahrassistenz-Steuereinrichtung 520 zu. Beispielsweise vergleicht die Auswahlschaltung 596 eine erste Distanz, d.h. die Distanz von dem Eigenfahrzeug zu einem detektierten Objekt, wie in den Objektpositionsinformationen aus der Signalverarbeitungsschaltung 560 enthalten, mit einer zweiten Distanz, d.h. der Distanz von dem Eigenfahrzeug zu dem detektierten Objekt, wie in den Objektpositionsinformationen aus der Bildverarbeitungsschaltung 720 enthalten, und bestimmt, welche näher am Eigenfahrzeug ist. Beispielsweise kann die Auswahlschaltung 596 auf Basis des Bestimmungsergebnisses die Objektpositionsinformationen auswählen, die eine nähere Distanz zum Eigenfahrzeug anzeigen, und dieselben an die elektronische Fahrassistenz-Steuereinrichtung520 ausgeben. Wenn das Bestimmungsergebnis anzeigt, dass die erste Distanz und die zweite Distanz denselben Wert haben, kann die Auswahlschaltung 596 entweder eine davon oder beide an die elektronische Fahrassistenz-Steuereinrichtung 520 ausgeben.
  • Wenn aus dem Empfangsintensitäts-Berechnungsabschnitt 532 Informationen eingegeben werden, die anzeigen, dass kein potenzielles Ziel vorhanden ist, gibt der Zielausgabe-Verarbeitungsabschnitt 539 (27) als Objektpositionsinformationen null aus, was anzeigt, dass kein Ziel vorhanden ist. Die Auswahlschaltung 596 wählt dann, auf Basis der Objektpositionsinformationen aus dem Zielausgabe-Verarbeitungsabschnitt 539, durch Vergleich mit einem vordefinierten Schwellenwert, entweder die Objektpositionsinformationen aus der Signalverarbeitungsschaltung 560 oder die Objektpositionsinformationen aus der Bildverarbeitungsschaltung 720 zur Verwendung.
  • Auf Basis vordefinierter Bedingungen führt die elektronische Fahrassistenz-Steuereinrichtung 520 nach Empfang der Positionsinformationen eines voraus befindlichen Objektes aus der Objektdetektionseinrichtung 570 eine Steuerung durch, um den Betrieb für den Fahrer des Eigenfahrzeugs sicherer oder einfacher zu machen, entsprechend der durch die Objektpositionsinformation angezeigten Distanz und Größe, der Geschwindigkeit des Eigenfahrzeugs, Straßenbedingungen wie etwa Regen, Schneefall oder klarem Wetter oder anderen Bedingungen. Beispielsweise kann die elektronische Fahrassistenz-Steuereinrichtung520, wenn die Objektpositionsinformationen anzeigen, dass kein Objekt detektiert wurde, ein Steuersignal an eine Beschleunigungssteuerschaltung 526 schicken, um die Drehzahl bis zu einer vordefinierten Geschwindigkeit zu erhöhen, so dass die Beschleunigungssteuerschaltung 526 dazu gesteuert wird, eine Operation durchzuführen, die zu einem Herunterdrücken des Gaspedals äquivalent ist.
  • In dem Fall, in dem die Objektpositionsinformationen anzeigen, dass ein Objekt detektiert wurde, steuert die elektronische Fahrassistenz-Steuereinrichtung 520, wenn festgestellt wird, dass es sich in einer vorbestimmten Distanz zu dem Eigenfahrzeug befindet, die Bremsen über eine Bremssteuerschaltung 524 durch eine Brake-by-Wire-Konstruktion oder dergleichen. Anders ausgedrückt: Sie führt eine Operation der Geschwindigkeitsverringerung durch, um einen konstanten Fahrzeugabstand einzuhalten. Beim Empfang der Objektpositionsinformationen schickt die elektronische Fahrassistenz-Steuereinrichtung 520 ein Steuersignal an eine Alarmsteuerschaltung 522, um das Aufleuchten einer Lampe zu steuern oder Audio über einen im Fahrzeug vorgesehenen Lautsprecher zu steuern, so dass dem Fahrer die Annäherung eines voraus befindlichen Objektes mitgeteilt wird. Beim Empfang von Objektpositionsinformationen einschließlich einer räumlichen Verteilung von voraus befindlichen Fahrzeugen kann die elektronische Fahrassistenz-Steuereinrichtung 520, wenn die Fahrgeschwindigkeit innerhalb eines vordefinierten Bereiches liegt, automatisch eine Betätigung des Lenkrads nach links oder rechts erleichtern oder den Hydraulikdruck auf der Lenkradseite dazu steuern, eine Richtungsänderung der Räder zu erzwingen, wodurch Assistenz bei der Kollisionsverhütung mit Bezug auf das voraus befindliche Objekt bereitgestellt wird.
  • Die Objektdetektionseinrichtung 570 kann so eingerichtet sein, dass kontinuierliche Nachführung gewählt wird und Objektpositionsinformationen aus der Signalverarbeitungsschaltung 560 mit Priorität ausgegeben werden, wenn eine Objektpositionsinformation, die im vorherigen Detektionszyklus durch die Auswahlschaltung 596 für einige Zeit kontinuierlich detektiert wurde, die jedoch im aktuellen Detektionszyklus nicht detektiert wird, einer Objektpositionsinformation aus einem kameradetektierten Video zugeordnet wird, die ein voraus befindliches Objekt anzeigt.
  • Eine spezifische Beispielkonstruktion und -funktionsweise, mit denen die Auswahlschaltung 596 eine Auswahl zwischen den Ausgaben aus der Signalverarbeitungsschaltung 560 und der Bildverarbeitungsschaltung 720 vornehmen kann, sind in der Beschreibung des US-Patents Nr. US 8 446 312 B2 , der Beschreibung des US-Patents Nr. US 8 730 096 B2 und der Beschreibung des US-Patents Nr. US 8 730 099 B2 offenbart.
  • [Erste Variante]
  • In dem Radarsystem zur bordeigenen Verwendung aus dem obigen Anwendungsbeispiel beträgt die (Sweep-) Bedingung für eine einzelne Instanz von FMCW-Frequenzmodulation (frequenzmodulierte kontinuierliche Welle), d.h. eine Zeitspanne, die für eine solche Modulation erforderlich ist (Sweep-Zeit), z.B. 1 Millisekunde, obwohl die Sweep-Zeit auf circa 100 Mikrosekunden verkürzt sein könnte.
  • Jedoch müssen zur Realisierung einer solchen schnellen Sweep-Bedingung nicht nur diejenigen Bestandteile schnell arbeiten können, die an der Abstrahlung einer Sendewelle beteiligt sind, sondern auch diejenigen Bestandteile, die am Empfang unter dieser Sweep-Bedingung beteiligt sind. Beispielsweise wird ein A/D-Wandler 587 (27) benötigt, der unter dieser Sweep-Bedingung schnell arbeitet. Die Abtastfrequenz des A/D-Wandlers 587 kann beispielsweise 10 MHz betragen. Die Abtastfrequenz kann auch schneller als 10 MHz sein.
  • Bei der vorliegenden Variante wird eine relative Geschwindigkeit mit Bezug auf ein Ziel berechnet, ohne eine Frequenzkomponente auf Dopplerverschiebungs-Basis zu nutzen. Bei dieser Variante ist die Sweep-Zeit Tm = 100 Mikrosekunden, was sehr kurz ist. Die niedrigste Frequenz eines detektierbaren Schwebungssignals, die 1/Tm beträgt, ist in diesem Fall gleich 10 kHz. Dies würde einer Dopplerverschiebung einer reflektierten Welle von einem Ziel mit einer relativen Geschwindigkeit von circa 20 m/Sekunde entsprechen. Anders ausgedrückt: Solange man eine Dopplerverschiebung zu Grunde legt, wäre es unmöglich, relative Geschwindigkeiten zu detektieren, die gleich diesem Wert oder kleiner sind. Somit wird bevorzugt ein Berechnungsverfahren verwendet, das sich von einem Berechnungsverfahren auf Dopplerverschiebungs-Basis unterscheidet.
  • Als Beispiel illustriert diese Variante einen Prozess, der ein Signal (Aufwärts-Schwebungssignal) nutzt, das eine Differenz zwischen einer Sendewelle und einer Empfangswelle repräsentiert und in einem Aufwärts- (Anstiegs-) Abschnitt gewonnen ist, in dem die Sendewelle sich in der Frequenz erhöht. Eine einzelne Sweep-Zeit von FMCW beträgt 100 Mikrosekunden, und ihre Wellenform ist eine Sägezahnform, die nur aus einem Aufwärtsteil besteht. Anders ausgedrückt: Bei dieser Variante hat die durch die Dreieckswellen-/CW-Wellen-Generierungsschaltung581 generierte Signalwelle Sägezahnform. Die Sweep-Breite in der Frequenz beträgt 500 MHz. Da keine Dopplerverschiebungen zugeordneten Spitzen zu nutzen sind, generiert der Prozess nicht ein Aufwärts-Schwebungssignal und ein Abwärts-Schwebungssignal, um die Spitzen aus beiden zu nutzen, sondern er beruht nur auf einem dieser Signale. Obwohl hier ein Fall der Nutzung eines Aufwärts-Schwebungssignals dargestellt ist, kann ein ähnlicher Prozess auch durch Verwendung eines Abwärts-Schwebungssignals durchgeführt werden.
  • Der A/D-Wandler 587 (27) tastet jedes Aufwärts-Schwebungssignal mit einerAbtastfrequenz von 10 MHz ab und gibt mehrere hundert digitale Daten aus (nachfolgend als „Abtastdaten“ bezeichnet). Die Generierung der Abtastdaten erfolgt auf Basis von Aufwärts-Schwebungssignalen beispielsweise nach einem Zeitpunkt, an dem eine Empfangswelle erfasst wird, und bis zu einem Zeitpunkt, an dem eine Sendewelle die Übertragung beendet. Es wird darauf hingewiesen, dass der Prozess beendet sein kann, sobald eine bestimmte Anzahl von Abtastdaten gewonnen ist.
  • In dieser Variante werden 128 Aufwärts-Schwebungssignale in Serie gesendet/empfangen, für die jeweils mehrere hundert Abtastdaten gewonnen werden. Die Anzahl der Aufwärts-Schwebungssignale ist nicht auf 128 beschränkt. Sie kann 256 oder 8 betragen. Je nach Zweckbestimmung kann eine beliebige Anzahl ausgewählt werden.
  • Die so entstehenden Abtastdaten werden in dem Speicher 531 gespeichert. Der Empfangsintensitäts-Berechnungsabschnitt 532 wendet eine zweidimensionale schnelle Fourier-Transformation (FFT) auf die Abtastdaten an. Insbesondere wird zuerst für jedes der Abtastdaten, die durch einen einzelnen Sweep gewonnen wurden, ein erster FFT-Prozess (Frequenzanalyseprozess) durchgeführt, um ein Leistungsspektrum zu generieren. Als Nächstes führt der Geschwindigkeitsdetektionsabschnitt 534 einen zweiten FFT-Prozess für die Verarbeitungsergebnisse durch, die aus allen Sweeps gesammelt wurden.
  • Wenn die reflektierten Wellen von demselben Ziel stammen, haben Spitzenkomponenten in dem zu detektierenden Leistungsspektrum in jeder Sweep-Periode die gleiche Frequenz. Dagegen unterscheiden sich bei unterschiedlichen Zielen die Spitzenkomponenten in der Frequenz. Durch den ersten FFT-Prozess können mehrere Ziele separiert werden, die sich in unterschiedlichen Distanzen befinden.
  • In dem Fall, in dem eine relative Geschwindigkeit mit Bezug auf ein Ziel ungleich null ist, verändert sich die Phase des Aufwärts-Schwebungssignals von Sweep zu Sweep etwas. Anders ausgedrückt: Durch den zweiten FFT-Prozess wird ein Leistungsspektrum, dessen Elemente die Daten von Frequenzkomponenten sind, welche solchen Phasenveränderungen zugeordnet sind, für die jeweiligen Ergebnisse des ersten FFT-Prozesses gewonnen.
  • Der Empfangsintensitäts-Berechnungsabschnitt 532 extrahiert Spitzenwerte in dem obigen zweiten Leistungsspektrum und schickt sie an den Geschwindigkeitsdetektionsabschnitt 534.
  • Der Geschwindigkeitsdetektionsabschnitt 534 bestimmt aus den Phasenveränderungen eine relative Geschwindigkeit. Beispielsweise sei angenommen, dass eine Reihe gewonnener Aufwärts-Schwebungssignale durch jede Phase θ [RXd] 90 Phasenveränderungen durchläuft. Angenommen, dass die Sendewelle eine durchschnittliche Wellenlänge λ hat, bedeutet dies, dass jedes Mal, wenn ein Aufwärts-Schwebungssignal gewonnen wird, eine Veränderung der Distanz von λ/(4π/θ) besteht. Da diese Veränderung über ein Intervall der Aufwärts-Schwebungssignalübertragung Tm (=100 Mikrosekunden) aufgetreten ist, wird die relative Geschwindigkeit mit {λ/(4π/θ)}/Tm bestimmt.
  • Durch die obigen Prozesse können eine relative Geschwindigkeit mit Bezug auf ein Ziel und eine Distanz vom Ziel gewonnen werden.
  • [Zweite Variante]
  • Das Radarsystem 510 ist fähig zum Detektieren eines Ziels durch Verwendung (einer) kontinuierlichen Welle(n) CW mit einer oder mehreren Frequenzen. Dieses Verfahren ist besonders sinnvoll in einer Umgebung, wo eine Vielzahl reflektierter Wellen von unbewegten Objekten in der Umgebung auf dem Radarsystem 510 auftrifft, z.B. wenn das Fahrzeug in einem Tunnel ist.
  • Das Radarsystem 510 hat ein Antennen-Array zu Empfangszwecken, das fünf Kanäle unabhängiger Empfangselemente aufweist. Bei einem solchen Radarsystem ist die Einfallsazimut-Schätzung für einfallende reflektierte Wellen nur dann möglich, wenn vier oder weniger reflektierte Wellen vorhanden sind, die gleichzeitig einfallen. Bei einem Radar des FMCW-Typs kann die Anzahl reflektierter Wellen, die gleichzeitig einer Einfallsazimut-Schätzung unterzogen werden, reduziert werden, indem ausschließlich reflektierte Wellen aus einer spezifischen Distanz ausgewählt werden. In einer Umgebung, wo eine große Anzahl unbewegter Objekte in der Umgebung existiert, z.B. in einem Tunnel, ist es jedoch so, als gäbe es ein Kontinuum von Objekten zum Reflektieren von Funkwellen; daher ist möglicherweise auch dann, wenn man die reflektierten Wellen auf Basis der Distanz eingrenzt, die Anzahl der reflektierten Wellen immer noch nicht gleich oder kleiner als vier. Jedoch hat jedes solche unbewegte Objekt in der Umgebung mit Bezug auf das Eigenfahrzeug identische relative Geschwindigkeit, und die relative Geschwindigkeit ist größer als diejenige, die jedem anderen Fahrzeug zugeordnet ist, das vorausfährt. Auf dieser Basis können solche unbewegten Objekte auf Basis der Größen der Dopplerverschiebungen von jedem anderen Fahrzeug unterschieden werden.
  • Daher führt das Radarsystem 510 folgenden Prozess durch: Abstrahlen kontinuierlicher Wellen CW mehrerer Frequenzen sowie, unter Außerachtlassung von unbewegten Objekten entsprechenden Dopplerverschiebungsspitzen in den Empfangssignalen, Detektieren einer Distanz durch Verwendung einer Dopplerverschiebungsspitze(n) mit kleinerem Verschiebungsbetrag beziehungsweise -beträgen. Anders als beim FMCW-Verfahren ist beim CW-Verfahren ein Frequenzunterschied zwischen einer Sendewelle und einer Empfangswelle nur auf eine Dopplerverschiebung zurückführbar. Anders ausgedrückt: Jede Spitzenfrequenz, die in einem Schwebungssignal auftritt, ist nur auf eine Dopplerverschiebung zurückführbar.
  • Auch in der Beschreibung dieser Variante wird eine im CW-Verfahren zu verwendende kontinuierliche Welle als „kontinuierliche Welle CW“ bezeichnet. Wie oben beschrieben, hat eine kontinuierliche Welle CW eine konstante Frequenz; d.h. sie ist unmoduliert.
  • Angenommen, dass das Radarsystem 510 eine kontinuierliche Welle CW einer Frequenz fp abgestrahlt hat und eine reflektierte Welle einer Frequenz fq detektiert hat, die von einem Ziel reflektiert wurde. Die Differenz zwischen der Sendefrequenz fp und der Empfangsfrequenz fq wird als Dopplerfrequenz bezeichnet, die sich auf fp-fq=2 · Vr · fp/c nähert. Dabei ist Vr eine relative Geschwindigkeit zwischen dem Radarsystem und dem Ziel, und c ist die Lichtgeschwindigkeit. Die Sendefrequenz fp, die Dopplerfrequenz (fp-fq) und die Lichtgeschwindigkeit c sind bekannt. Daher kann aus dieser Gleichung die relative Geschwindigkeit Vr=(fp-fq) · c/2fp bestimmt werden. Die Distanz zum Ziel wird durch Nutzung von Phaseninformationen berechnet, wie noch beschrieben wird.
  • Zum Detektieren einer Distanz zu einem Ziel durch Verwendung kontinuierlicher Wellen CW wird ein 2-Frequenzen-CW-Verfahren verwendet. In dem 2-Frequenzen-CW-Verfahren werden kontinuierliche Wellen CW zweier Frequenzen, die etwas auseinander liegen, jeweils für eine bestimmte Periode abgestrahlt und ihre jeweiligen reflektierten Wellen erfasst. Beispielsweise würde im Fall der Verwendung von Frequenzen im 76-GHz-Band die Differenz zwischen den zwei Frequenzen mehrere hundert kHz betragen. Wie noch beschrieben wird, ist es vorzuziehen, die Differenz zwischen den zwei Frequenzen unter Berücksichtigung der Minimaldistanz zu bestimmen, bei welcher der verwendete Radar zum Detektieren eines Ziels fähig ist.
  • Angenommen, dass das Radarsystem 510 kontinuierliche Wellen CW der Frequenzen fp1 und fp2 (fp1<fp2) sequentiell abgestrahlt hat und dass die beiden kontinuierlichen Wellen CW von einem einzigen Ziel reflektiert wurden, so dass reflektierte Wellen der Frequenzen fq1 und fq2 durch das Radarsystem 510 empfangen werden.
  • Auf Basis der kontinuierlichen Welle CW der Frequenz fp1 und der reflektierten Welle (Frequenz fq1) derselben wird eine erste Dopplerfrequenz gewonnen. Auf Basis der kontinuierlichen Welle CW der Frequenz fp2 und der reflektierten Welle (Frequenz fq2) derselben wird eine zweite Dopplerfrequenz gewonnen. Die beiden Dopplerfrequenzen haben im Wesentlichen den gleichen Wert. Aufgrund der Differenz zwischen den Frequenzen fp1 und fp2 unterscheiden sich jedoch die komplexen Signale der jeweiligen Empfangswellen in der Phase. Durch Nutzung dieser Phaseninformationen kann eine Distanz (Entfernung) zum Ziel berechnet werden.
  • Insbesondere ist das Radarsystem 510 fähig zum Bestimmen der Distanz R als R=c· Δφ/(4π(fp2-fp1). Dabei bezeichnet Δφ die Phasendifferenz zwischen zwei Schwebungssignalen, d.h. Schwebungssignal 1, das als Differenz zwischen der kontinuierlichen Welle CW der Frequenz fp1 und der reflektierten Welle (Frequenz fq1) derselben gewonnen ist, und Schwebungssignal 2, das als Differenz zwischen der kontinuierlichen Welle CW der Frequenz fp2 und der reflektierten Welle (Frequenz fq2) derselben gewonnen ist. Das Verfahren zum Identifizieren der Frequenz fb1 des Schwebungssignals 1 und der Frequenz fb2 des Schwebungssignals 2 ist identisch mit demjenigen im oben genannten Fall eines Schwebungssignals aus einer kontinuierlichen Welle CW einer einzigen Frequenz.
  • Es wird darauf hingewiesen, dass eine relative Geschwindigkeit Vr gemäß dem 2-Frequenzen-CW-Verfahren folgendermaßen bestimmt wird: Vr = fb 1 c / 2 fp 1  oder Vr = fb 2 c / 2 fp 2
    Figure DE102016125412B4_0007
  • Außerdem ist die Entfernung, innerhalb derer eine Distanz zu einem Ziel eindeutig identifiziert werden kann, auf die Entfernung begrenzt, die durch Rmax<c/2(fp2-fp1) definiert ist. Der Grund hierfür ist, dass aus einer reflektierten Welle von einem weiter entfernten Ziel resultierende Schwebungssignale ein Δφ erzeugen würden, das größer als 2π ist, so dass sie nicht von Schwebungssignalen unterscheidbar wären, die Zielen an näheren Positionen zugeordnet sind. Daher ist es vorzuziehen, die Differenz zwischen den Frequenzen der zwei kontinuierlichen Wellen CW so einzustellen, dass Rmax größer als die minimale detektierbare Distanz des Radars wird. Im Fall eines Radars, dessen minimale detektierbare Distanz 100 m beträgt, kann fp2-fp1 z.B. als 1,0 MHz vorgesehen sein. In diesem Fall ist Rmax = 150 m, so dass ein Signal von jedem Ziel aus einer Position jenseits von Rmax nicht detektiert wird. Im Fall der Einrichtung eines Radars, der zur Detektion bis zu 250 m fähig ist, kann fp2-fp1 z.B. als 500 kHz vorgesehen sein. In diesem Fall ist Rmax = 300 m, so dass ein Signal von jedem Ziel aus einer Position jenseits von Rmax ebenfalls nicht detektiert wird. In dem Fall, in dem der Radar sowohl einen Betriebsmodus hat, in dem die minimale detektierbare Distanz 100 m und der horizontal Sichtwinkel 120 Grad beträgt, als auch einen Betriebsmodus hat, in dem die minimale detektierbare Distanz 250 m und der horizontale Sichtwinkel 5 Grad beträgt, ist es vorzuziehen, für den Betrieb in dem jeweiligen Betriebsmodus den Wert von fp2-fp1 zwischen 1,0 MHz und 500 kHz umzuschalten.
  • Es ist ein Detektionsansatz bekannt, bei dem durch Übertragung kontinuierlicher Wellen CW bei N unterschiedlichen Frequenzen (wobei N eine ganze Zahl gleich oder größer als 3 ist) und durch Nutzung von Phaseninformationen der jeweiligen reflektierten Wellen eine Distanz zu jedem Ziel detektiert wird. Gemäß diesem Detektionsansatz kann die Distanz für bis zu N-1 Ziele korrekt erkannt werden. Als Verarbeitung, die dies ermöglicht, wird beispielsweise eine schnelle Fourier-Transformation (FFT) verwendet. Bei gegebenem N = 64 oder 128 wird eine FFT für Abtastdaten eines Schwebungssignals als Differenz zwischen einem Sendesignal und einem Empfangssignal für jede Frequenz durchgeführt, wodurch ein Frequenzspektrum (relative Geschwindigkeit) gewonnen wird. Danach wird bei der Frequenz der CW-Welle eine weitere FFT für Spitzen derselben Frequenz durchgeführt, um so Distanzinformationen abzuleiten.
  • Im Folgenden wird dies spezifischer beschrieben.
  • Zur einfacheren Erläuterung wird zunächst ein Fall beschrieben, in dem Signale mit drei Frequenzen f1, f2 und f3 gesendet werden, während sie im Zeitverlauf geschaltet werden. Es wird angenommen, dassf1>f2>f3 und f1-f2=f2-f3=Δf. Eine Übertragungszeit Δt wird für die Signalwelle für jede Frequenz angenommen. 31 zeigt ein Verhältnis zwischen drei Frequenzen f1, f2 und f3.
  • Über die Sendeantenne Tx überträgt die Dreieckswellen-/CW-Wellen-Generierungsschaltung581 (27) kontinuierliche Wellen CW der Frequenzen f1, f2 und f3, die jeweils für die Zeit Δt andauern. Die Empfangsantennen Rx empfangen reflektierte Wellen, die sich aus der Reflexion der jeweiligen kontinuierlichen Wellen CW von einem oder mehreren Zielen ergeben.
  • Jeder Mischer 584 mischt eine Sendewelle und eine Empfangswelle, um ein Schwebungssignal zu generieren. Der A/D-Wandler 587 wandelt das Schwebungssignal, das ein analoges Signal ist, beispielsweise in mehrere hundert digitale Daten (Abtastdaten) um.
  • Unter Verwendung der Abtastdaten führt der Empfangsintensitäts-Berechnungsabschnitt532 FFT-Berechnung durch. Durch die FFT-Berechnung werden Frequenzspektrumsinformationen von Empfangssignalen für die jeweiligen Sendefrequenzen f1, f2 und f3 gewonnen.
  • Danach separiert der Empfangsintensitäts-Berechnungsabschnitt 532 Spitzenwerte aus den Frequenzspektrumsinformationen der Empfangssignale. Die Frequenz eines jeden Spitzenwertes, der vorbestimmt oder größer ist, steht in Proportion zu einer relativen Geschwindigkeit mit Bezug auf ein Ziel. Das Separieren von (einem) Spitzenwert(en) aus den Frequenzspektrumsinformationen von Empfangssignalen ist gleichbedeutend mit dem Separieren eines oder mehrerer Ziele mit unterschiedlichen relativen Geschwindigkeiten.
  • Als Nächstes misst der Empfangsintensitäts-Berechnungsabschnitt 532 mit Bezug auf jede der Sendefrequenzen f1 bis f3 Spektrumsinformationen von Spitzenwerten derselben relativen Geschwindigkeit oder relativen Geschwindigkeiten innerhalb eines vordefinierten Bereiches.
  • Es werde nun ein Szenario betrachtet, in dem zwei Ziele A und B existieren, die ungefähr dieselbe relative Geschwindigkeit haben, sich jedoch in jeweils unterschiedlichen Distanzen befinden. Ein Sendesignal der Frequenz f1 wird von beiden Zielen A und B reflektiert, so dass Empfangssignale gewonnen werden. Die reflektierten Wellen von den Zielen A und B ergeben im Wesentlichen dieselbe Schwebungssignalfrequenz. Daher werden die Leistungsspektren bei den Dopplerfrequenzen der Empfangssignale, entsprechend ihren relativen Geschwindigkeiten, als synthetisches Spektrum F1 gewonnen, in dem die Leistungsspektren von zwei Zielen A und B verschmolzen wurden.
  • Ebenso werden für jede der Frequenzen f2 und f3 die Leistungsspektren bei den Dopplerfrequenzen der Empfangssignale entsprechend ihren relativen Geschwindigkeiten als synthetisches Spektrum F1 gewonnen, in dem die Leistungsspektren von zwei Zielen A und B verschmolzen wurden.
  • 32 zeigt ein Verhältnis zwischen synthetischen Spektren F1 bis F3 auf einer komplexen Ebene. In den Richtungen der zwei Vektoren, die jedes der synthetischen Spektren F1 bis F3 bilden, entspricht der rechte Vektor dem Leistungsspektrum einer reflektierten Welle von Ziel A; d.h. in 32 die Vektoren F1A, f2A und f3A. Dagegen entspricht in den Richtungen der zwei Vektoren, die jedes der synthetischen Spektren F1 bis F3 bilden, der linke Vektor dem Leistungsspektrum einer reflektierten Welle von Ziel B; d.h. in 32 die Vektoren f1B, f2B und f3B.
  • Bei einer konstanten Differenz Δf zwischen den Sendefrequenzen steht die Phasendifferenz zwischen den Empfangssignalen, die den jeweiligen Sendesignalen der Frequenzen f1 und f2 entsprechen, in Proportion zu der Distanz zu einem Ziel. Daher haben die Phasendifferenz zwischen den Vektoren F1A und f2A und die Phasendifferenz zwischen den Vektoren f2A und f3A denselben Wert θA, wobei diese Phasendifferenz θA zu der Distanz zu Ziel A in Proportion steht. Ebenso haben die Phasendifferenz zwischen den Vektoren f1B und f2B und die Phasendifferenz zwischen den Vektoren f2B und f3B denselben Wert θB, wobei diese Phasendifferenz θB zu der Distanz zu Ziel B in Proportion steht.
  • Durch Verwendung eines bekannten Verfahrens können die jeweiligen Distanzen zu den Zielen A und B aus den synthetischen Spektren F1 bis F3 und der Differenz Δf zwischen den Sendefrequenzen bestimmt werden. Diese Technik ist beispielsweise im US-Patent Nr. US 6 703 967 B1 offenbart.
  • Eine ähnliche Verarbeitung ist auch anwendbar, wenn die übertragenen Signale vier oder mehr Frequenzen haben.
  • Es wird darauf hingewiesen, dass vor dem Übertragen kontinuierlicher Wellen CWs bei N unterschiedlichen Frequenzen ein Prozess der Bestimmung der Distanz zu jedem Ziel und der relativen Geschwindigkeit desselben im 2-Frequenzen-CW-Verfahren durchgeführt werden kann. Von diesem Prozess kann dann unter vorbestimmten Bedingungen zu einem Prozess der Übertragung kontinuierlicher Wellen CW bei N unterschiedlichen Frequenzen umgeschaltet werden. Beispielsweise kann FFT-Berechnung durch Verwendung der jeweiligen Schwebungssignale bei den zwei Frequenzen durchgeführt werden, und wenn das Leistungsspektrum einer jeden Sendefrequenz im Zeitverlauf einer Veränderung von 30% oder mehr unterliegt, kann der Prozess umgeschaltet werden. Die Amplitude einer reflektierten Welle von jedem Ziel unterliegt im Zeitverlauf einer großen Veränderung durch Mehrwegeinflüsse und dergleichen. Wenn eine Veränderung von einer vorbestimmten Größenordnung oder mehr existiert, kann in Betracht gezogen werden, dass möglicherweise mehrere Ziele vorhanden sind.
  • Außerdem ist bekannt, dass das CW-Verfahren ein Ziel nicht detektieren kann, wenn die relative Geschwindigkeit zwischen dem Radarsystem und dem Ziel null beträgt, d.h. wenn die Dopplerfrequenz null beträgt. Wenn jedoch beispielsweise mit den folgenden Verfahren ein Pseudo-Dopplersignal bestimmt wird, ist es möglich, durch Verwendung dieser Frequenz ein Ziel zu detektieren.
  • (Verfahren 1) Es wird ein Mischer hinzugefügt, der eine bestimmte Frequenzverschiebung in der Ausgabe einer empfangenden Antenne bewirkt. Durch Verwendung eines Sendesignals und eines Empfangssignals mit einer verschobenen Frequenz kann ein Pseudo-Dopplersignal gewonnen werden.
  • (Verfahren 2) Zwischen dem Ausgang einer empfangenden Antenne und einem Mischer wird zum kontinuierlichen Einführen von Phasenveränderungen im Zeitverlauf ein variabler Phasenschieber eingefügt, so dass zu dem Empfangssignal eine Pseudo-Phasendifferenz hinzugefügt wird. Durch Verwendung eines Sendesignals und eines Empfangssignals mit einer hinzugefügten Phasendifferenz kann ein Pseudo-Dopplersignal gewonnen werden.
  • Ein Beispiel für eine spezifische Konstruktion und Funktionsweise zum Einführen eines variablen Phasenschiebers zum Generieren eines Pseudo-Dopplersignals gemäß Verfahren 2 ist in der japanischen Patentveröffentlichungsschrift Nr. JP 2004 - 257 848 A offenbart.
  • Wenn Ziele ohne oder mit sehr geringer relativer Geschwindigkeit detektiert werden müssen, können die oben genannten Prozesse der Generierung eines Pseudo-Dopplersignals verwendet werden, oder es kann zu einem Zieldetektionsprozess im FMCW-Verfahren umgeschaltet werden.
  • Als Nächstes wird mit Bezug auf 33 eine Verarbeitungsprozedur beschrieben, die durch die Objektdetektionseinrichtung570 des Bordradarsystems 510 durchzuführen ist.
  • Das untenstehende Beispiel illustriert einen Fall, in dem kontinuierliche Wellen CW bei zwei unterschiedlichen Frequenzen fp1 und fp2 (fp1<fp2) übertragen werden und die Phaseninformationen einer jeden reflektierten Welle genutzt werden, um jeweils eine Distanz mit Bezug auf ein Ziel zu detektieren.
  • 33 ist ein Ablaufdiagramm, das die Prozedur eines Bestimmungsprozesses für die relative Geschwindigkeit und Distanz gemäß dieser Variante zeigt.
  • Bei Schritt S41 generiert die Dreieckswellen-/CW-Wellen-Generierungsschaltung 581 zwei kontinuierliche Wellen CW mit Frequenzen, die etwas auseinander liegen, d.h. den Frequenzen fp1 und fp2.
  • Bei Schritt S42 führen die Sendeantenne Tx und die Empfangsantennen Rx ein Senden / einen Empfang der generierten Serie kontinuierlicher Wellen CW durch. Es wird darauf hingewiesen, dass der Prozess aus Schritt S41 und der Prozess aus Schritt S42 durch die Dreieckswellen-/CW-Wellen-Generierungsschaltung 581 und das Sendeantennenelement Tx/ die Empfangsantenne Rxjeweils parallel durchführbar sind, anstelle einer Durchführung von Schritt S42 erst nach Beendigung von Schritt S41.
  • Bei Schritt S43 generiert jeder Mischer 584 durch Nutzung einer jeden Sendewelle und einer jeden Empfangswelle ein Differenzsignal, wodurch zwei Differenzsignale gewonnen werden. Jede Empfangswelle schließt eine von einem unbewegten Objekt ausgehende Empfangswelle und eine von einem Ziel ausgehende Empfangswelle ein. Daher wird als Nächstes ein Prozess der Identifikation von Frequenzen zur Nutzung als Schwebungssignale durchgeführt. Es wird darauf hingewiesen, dass der Prozess aus Schritt S41, der Prozess aus Schritt S42 und der Prozess aus Schritt S43 durch die Dreieckswellen-/CW-Wellen-Generierungsschaltung 581, die Sendeantenne Tx / Empfangsantenne Rx und die Mischer 584 parallel durchführbar sind, anstelle einer Durchführung von Schritt S42 erst nach Beendigung von Schritt S41 oder von Schritt S43 erst nach Beendigung von Schritt S42.
  • Bei Schritt S44 identifiziert die Objektdetektionseinrichtung 570 für jedes der zwei Differenzsignale bestimmte Spitzenfrequenzen als Frequenzen fb1 und fb2 von Schwebungssignalen in der Weise, dass diese Frequenzen gleich oder kleiner als eine Frequenz sind, die als Schwellenwert vordefiniert ist, dabei aber Amplitudenwerte haben, die gleich oder größer als ein vorbestimmter Amplitudenwert sind, und dass die Differenz zwischen den zwei Frequenzen gleich oder kleiner als ein vorbestimmter Wert ist.
  • Bei Schritt S45 detektiert der Empfangsintensitäts-Berechnungsabschnitt 532 auf Basis von einer der zwei identifizierten Schwebungssignalfrequenzen eine relative Geschwindigkeit. Der Empfangsintensitäts-Berechnungsabschnitt 532 berechnet die relative Geschwindigkeit beispielsweise gemäß Vr=fb1 · c/2 · fp1. Es wird darauf hingewiesen, dass eine relative Geschwindigkeit durch Nutzung einer jeden der zwei Schwebungssignalfrequenzen berechnet werden kann, was dem Empfangsintensitäts-Berechnungsabschnitt 532 eine Verifikation dessen erlaubt, ob sie übereinstimmen oder nicht, wodurch die Genauigkeit der Berechnung der relativen Geschwindigkeit erhöht wird.
  • Bei Schritt S46 bestimmt der Empfangsintensitäts-Berechnungsabschnitt 532 eine Phasendifferenz Δφ zwischen zwei Schwebungssignalen 1 und 2 und bestimmt eine Distanz R=c · Δφ4π(fp2-fp1) zu dem Ziel.
  • Durch die obigen Prozesse kann die relative Geschwindigkeit und Distanz zu einem Ziel detektiert werden.
  • Es wird darauf hingewiesen, dass kontinuierliche Wellen CW bei N unterschiedlichen Frequenzen übertragen werden können (wobei N = 3 oder mehr ist) und dass durch Nutzung von Phaseninformationen der jeweiligen reflektierten Welle Distanzen zu mehreren Zielen mit derselben relativen Geschwindigkeit, jedoch an unterschiedlichen Positionen detektiert werden können.
  • Zusätzlich zu dem Radarsystem 510 kann das oben beschriebene Fahrzeug 500 ferner ein weiteres Radarsystem aufweisen. Beispielsweise kann das Fahrzeug 500 ferner ein Radarsystem mit einem Detektionsbereich in Richtung der Rückseite oder der Seiten der Fahrzeugkarosserie aufweisen. Im Fall des Einbaus eines Radarsystems mit einem Detektionsbereich in Richtung der Fahrzeugkarosserierückseite kann das Radarsystem die Rückseite überwachen, und wenn die Gefahr besteht, dass ein anderes Fahrzeug hinten auffährt, eine Reaktion durchführen, indem beispielsweise ein Alarm ausgelöst wird. Im Fall des Einbaus eines Radarsystems mit einem Detektionsbereich in Richtung der Seiten der Fahrzeugkarosserie kann das Radarsystem eine benachbarte Fahrspur überwachen, wenn das Eigenfahrzeug die Fahrspur wechselt usw., und gegebenenfalls eine Reaktion durchführen, indem ein Alarm ausgelöst wird oder dergleichen.
  • Die Anwendungen des oben beschriebenen Radarsystems 510 sind nicht ausschließlich auf die bordeigene Verwendung beschränkt. Vielmehr kann das Radarsystem 510 als Sensoren für verschiedene Zwecke verwendet werden. Beispielsweise kann es als Radar zur Überwachung der Umgebung eines Hauses oder jedes anderen Gebäudes verwendet werden. Alternativ ist es verwendbar als Sensor zum Detektieren der Anwesenheit oder Abwesenheit einer Person an einer bestimmten Stelle in einem Innenraum, oder zum Detektieren dessen, ob eine solche Person sich bewegt usw., ohne Nutzung optischer Bilder.
  • [Ergänzende Details zur Verarbeitung]
  • Weitere Ausführungsformen werden in Verbindung mit den 2-Frequenz-CW- oder FMCW-Techniken für die oben beschriebenen Array-Antennen beschrieben. Wie bereits beschrieben, wendet der Empfangsintensitäts-Berechnungsabschnitt 532 in dem Beispiel aus 27 eine Fourier-Transformation auf die jeweiligen Schwebungssignale für die Kanäle Ch1 bis ChM an (unterer Graph in 28), die in dem Speicher 531 gespeichert sind. Diese Schwebungssignale sind komplexe Signale, damit die Phase des Signals identifiziert wird, das für die Berechnung von Interesse ist. Dies erlaubt eine korrekte Identifikation der Richtung einer eintreffenden Welle. In diesem Fall erhöht sich jedoch die Rechenlast für eine Fourier-Transformation, so dass es einer größeren Schaltung bedarf.
  • Zur Lösung dieses Problems kann ein skalares Signal als ein Schwebungssignal generiert werden. Für jedes von einerVielzahl von Schwebungssignalen, die generiert wurden, können zwei komplexe Fourier-Transformationen in Bezug auf die Raumachsenrichtung, die dem Antennen-Array entspricht, und auf die Zeitachsenrichtung, die dem Verstreichen der Zeit entspricht, durchgeführt werden, um so Ergebnisse der Frequenzanalyse zu gewinnen. Infolgedessen kann mit geringem Rechenaufwand letztlich eine Strahlformung in der Weise erreicht werden, dass Richtungen des Eintreffens reflektierter Wellen identifizierbar sind, wodurch Frequenzanalyseergebnisse für die jeweiligen Strahlen gewonnen werden können.
  • [Optischer Sensor, z.B. Kamera, und Millimeterwellenradar]
  • Als Nächstes werden ein Vergleich zwischen der oben beschriebenen Array-Antenne und herkömmlichen Antennen sowie ein Anwendungsbeispiel beschrieben, bei dem sowohl die vorliegende Array-Antenne als auch ein optischer Sensor (z.B. eine Kamera) genutzt werden. Es wird darauf hingewiesen, dass LIDAR oder dergleichen als der optische Sensor einsetzbar ist.
  • Ein Millimeterwellenradar ist fähig zum direkten Detektieren einer Distanz (Entfernung) zu einem Ziel und einer relativen Geschwindigkeit desselben. Eine weitere Eigenschaft besteht darin, dass seine Detektionsleistung sich nachts (einschließlich der Dämmerung) oder bei schlechtem Wetter, z.B. Regen, Nebel oder Schneefall, nicht besonders verringert. Andererseits wird davon ausgegangen, dass eine zweidimensionale Erfassung eines Ziels mit einem Millimeterwellenradar nicht so einfach ist wie mit einer Kamera. Dagegen ist eine zweidimensionale Erfassung eines Ziels und Erkennung seiner Form mit einer Kamera relativ einfach. Jedoch kann eine Kamera ein Ziel möglicherweise nicht bei Nacht oder schlechtem Wetter abbilden, was ein erhebliches Problem darstellt. Dieses Problem ist besonders dann bedeutsam, wenn sich an dem Abschnitt, durch den die Belichtung sichergestellt werden soll, Wassertröpfchen angelagert haben oder die Sicht durch Nebel eingeschränkt ist. Dieses Problem besteht in ähnlicher Weise für LIDAR oder dergleichen, was ebenfalls das Gebiet optischer Sensoren betrifft.
  • In Antwort auf eine steigende Nachfrage nach sichererem Fahrzeugbetrieb werden in den letzten Jahren Fahrerassistenzsysteme zurVerhinderung von Kollisionen oder dergleichen entwickelt. Ein Fahrerassistenzsystem erfasst ein Bild in Fahrtrichtung mit einem Sensor wie etwa einer Kamera oder einem Millimeterwellenradar, und wenn ein Hindernis erkannt wird, bei dem vorhergesagt wird, dass es die Fahrt des Fahrzeugs hemmt, werden Bremsen oder dergleichen automatisch betätigt, um Kollisionen oder dergleichen zu verhindern. Von einer solchen Funktion der Kollisionsvermeidung wird normales Funktionieren auch bei Nacht oder schlechtem Wetter erwartet.
  • Daher gewinnen Fahrerassistenzsysteme mit einer sogenannten zusammengeführten Konstruktion an Verbreitung, bei denen zusätzlich zu einem herkömmlichen optischen Sensor wie etwa einer Kamera ein Millimeterwellenradar als Sensor angebracht ist, wodurch ein Erkennungsprozess realisiert wird, der beides ausnutzt. Ein solches Fahrerassistenzsystem wird noch erläutert.
  • Andererseits werden an die Funktionen des Millimeterwellenradars selbst immer höhere Erwartungen gestellt. Ein Millimeterwellenradar zur bordeigenen Verwendung nutzt hauptsächlich elektromagnetische Wellen des 76-GHz-Bandes. Die Antennenleistung seiner Antenne ist gemäß den jeweiligen Landesgesetzen oder dergleichen auf ein bestimmtes Niveau begrenzt. Beispielsweise ist sie in Japan auf 0,01 W oder weniger begrenzt. Gemäß solchen Einschränkungen wird von einem Millimeterwellenradar zur bordeigenen Verwendung die erforderliche Leistung erwartet, dass beispielsweise sein Detektionsbereich 200 m oder mehr beträgt; die Antennengröße 60 mm x 60 mm oder weniger beträgt; ihr horizontaler Erfassungswinkel 90 Grad oder mehr beträgt; ihre Entfernungsauflösung 20 cm oder weniger beträgt; dass sie zu Nahbereichsdetektion innerhalb von 10 m fähig ist und so weiter. Bei herkömmlichen Millimeterwellenradars wurden Mikrostreifenleitungen als Wellenleiter und Patch-Antennen als Antennen verwendet (im Folgenden werden beide als „Patch-Antennen“ bezeichnet). Jedoch war mit einer Patch-Antenne die oben genannte Leistungsfähigkeit nur schwer zu erzielen.
  • Mit einer Schlitz-Array-Antenne, auf welche die Technik der vorliegenden Offenbarung angewandt wird, haben die Erfinder die oben genannte Leistungsfähigkeit erzielt. Infolgedessen wurde ein Millimeterwellenradar realisiert, der kleinere Größe hat, effizienter ist und höhere Leistungsfähigkeit besitzt als herkömmliche Patch-Antennen und dergleichen. Daneben wurde durch Kombinieren dieses Millimeterwellenradars und eines optischen Sensors wie etwa einer Kamera eine klein bemessene, hocheffiziente und hochleistungsfähige zusammengeführte Einrichtung realisiert, die es zuvor nicht gab. Dies wird unten ausführlich beschrieben.
  • 34 ist ein Diagramm zu einer zusammengeführten Einrichtung in einem Fahrzeug 500, wobei die zusammengeführte Einrichtung ein Bordkamerasystem 700 und ein Radarsystem 510 (im Folgenden als der Millimeterwellenradar 510 bezeichnet) mit einer Schlitz-Array-Antenne aufweist, auf welche die Technik der vorliegenden Offenbarung angewandt ist. Mit Bezug auf diese Figur werden unten verschiedene Ausführungsformen beschrieben.
  • [Einbau des Millimeterwellenradars im Fahrzeugraum]
  • Eine herkömmlicher Millimeterwellenradar 510' auf Patch-Antennen-Basis ist hinter und einwärts von einem Grill 512 platziert, der sich an der Frontpartie eines Fahrzeugs befindet. Eine elektromagnetische Welle, die aus einer Antenne abgestrahlt wird, gelangt durch die Öffnungen in dem Grill 512 und wird vor dem Fahrzeug 500 abgestrahlt. In der Region, durch welche die elektromagnetische Welle passiert, existiert in diesem Fall keine dielektrische Schicht, z.B. Glas, welche die Energie der elektromagnetischen Welle vermindert oder reflektiert. Infolgedessen reicht eine elektromagnetische Welle, die von dem Millimeterwellenradar 510' auf Patch-Antennen-Basis abgestrahlt wird, über eine weite Entfernung, z.B. zu einem Ziel, das 150 m oder weiter entfernt ist. Indem die davon reflektierte elektromagnetische Welle mit der Antenne empfangen wird, ist der Millimeterwellenradar 510' fähig, ein Ziel zu detektieren. Da die Antenne hinter und einwärts von dem Grill 512 des Fahrzeugs platziert ist, kann der Radar in diesem Fall jedoch beschädigt werden, wenn das Fahrzeug mit einem Hindernis kollidiert. Zudem kann er bei Regen usw. mit Schlamm oder dergleichen verschmutzt werden, und der an der Antenne anhaftende Schmutz kann Abstrahlung und Empfang elektromagnetischer Wellen hemmen.
  • Ähnlich wie auf herkömmliche Weise kann der Millimeterwellenradar 510, der eine Schlitz-Array-Antenne gemäß einer Ausführungsform der vorliegenden Offenbarung enthält, hinter dem Grill 512 platziert sein, der an der Frontpartie des Fahrzeugs (nicht gezeigt) angeordnet ist. Dies erlaubt eine Ausnutzung der von der Antenne abzustrahlenden elektromagnetischen Welle zu 100%, wodurch eine Ferndetektion über das übliche Niveau hinaus ermöglicht wird, z.B. die Detektion eines Ziels, das sich in einer Distanz von 250 m oder mehr befindet.
  • Außerdem kann der Millimeterwellenradar 510 gemäß einer Ausführungsform der vorliegenden Offenbarung auch im Fahrzeugraum, d.h. im Inneren des Fahrzeugs, platziert sein. In diesem Fall ist der Millimeterwellenradar 510 einwärts von der Windschutzscheibe 511 des Fahrzeugs platziert, um in einen Raum zwischen der Windschutzscheibe 511 und einer Fläche des Rückspiegels (nicht gezeigt) zu passen, die zu dessen Spiegeloberfläche entgegengesetzt ist. Der herkömmliche Millimeterwellenradar 510' auf Patch-Antennen-Basis kann dagegen hauptsächlich aus folgenden zwei Gründen nicht im Inneren des Fahrzeugraums platziert werden. Ein erster Grund ist seine große Größe, die eine Unterbringung in dem Raum zwischen der Windschutzscheibe 511 und dem Rückspiegel verhindert. Ein zweiter Grund besteht darin, dass eine nach vorn abgestrahlte elektromagnetische Welle von der Windschutzscheibe 511 reflektiertwird und sich aufgrund dielektrischer Verluste abschwächt, so dass sie die gewünschte Distanz nicht mehr überwinden kann. Daher können bei Platzierung eines herkömmlichen Millimeterwellenradars auf Patch-Antennen-Basis im Fahrzeugraum beispielsweise nur Ziele erfasst werden, die sich 100 m oder weniger voraus befinden. Dagegen vermag ein Millimeterwellenradar gemäß einer Ausführungsform der vorliegenden Offenbarung ein Ziel in einer Distanz von 200 m oder mehr trotz Reflexion an der Windschutzscheibe 511 zu detektieren. Diese Leistungsfähigkeit ist äquivalent zu oder sogar größer als in dem Fall, in dem ein herkömmlicher Millimeterwellenradar auf Patch-Antennen-Basis außerhalb des Fahrzeugraums platziert ist.
  • [Zusammengeführte Konstruktion auf Basis von Millimeterwellenradar und Kamera usw., die im Fahrzeugraum platziert sind]
  • Gegenwärtig wird in vielen Fahrerassistenzsystemen eine optische Bildgebungsvorrichtung wie etwa eine CCD-Kamera als der Hauptsensor verwendet. Üblicherweise ist eine Kamera oder dergleichen im Fahrzeugraum, einwärts von der Windschutzscheibe 511 platziert, um ungünstigen Einflüssen der Außenumgebung usw. Rechnung zu tragen. Zur Minimierung des optischen Effektes von Regentropfen und dergleichen wird dabei die Kamera oder dergleichen in einer Region platziert, die von den Scheibenwischern (nicht gezeigt) überstrichen wird, jedoch einwärts von der Windschutzscheibe 511 liegt.
  • Wegen des Bedarfs an erhöhter Leistungsfähigkeit eines Fahrzeugs, z.B. im Hinblick auf eine Bremsautomatik, besteht seit einigen Jahren der Wunsch nach einer Bremsautomatik oder dergleichen, deren Funktionieren unabhängig von der Außenumgebung gewährleistet ist. Wenn der einzige Sensor in dem Fahrerassistenzsystem eine optische Vorrichtung wie etwa eine Kamera ist, besteht in diesem Fall das Problem, dass ein zuverlässiges Funktionieren bei Nacht oder schlechtem Wetter nicht gewährleistet ist. Hierdurch entstand Bedarf an einem Fahrerassistenzsystem, das nicht nur einen optischen Sensor (wie etwa eine Kamera), sondern auch einen Millimeterwellenradar enthält, wobei diese für eine gemeinsame Verarbeitung verwendet werden, so dass ein zuverlässiger Betrieb auch bei Nacht oder schlechtem Wetter erreicht wird.
  • Wie bereits beschrieben, ist ein Millimeterwellenradar, der die vorliegende Schlitz-Array-Antenne enthält, aufgrund der Größenverringerung und merklichen Erhöhung des Wirkungsgrades der abgestrahlten elektromagnetischen Welle gegenüber einer herkömmlichen Patch-Antenne, im Fahrzeugraum platzierbar. Durch Nutzung dieser Eigenschaften erlaubt der Millimeterwellenradar 510, der nicht nur einen optischen Sensor (Bordkamerasystem) 700 wie etwa eine Kamera, sondern auch eine Schlitz-Array-Antenne gemäß der vorliegenden Offenbarung enthält, wie in 34 gezeigt, eine Platzierung von beidem einwärts von der Windschutzscheibe 511 des Fahrzeugs 500. Hierdurch sind folgende neuartige Wirkungen entstanden.
  • (1) Das Fahrerassistenzsystem ist leichter an dem Fahrzeug 500 anzubringen. Bei dem herkömmlichen Millimeterwellenradar 510' auf Patch-Antennen-Basis war bisher zur Aufnahme des Radars ein Raum hinter dem Grill 512 an der Frontpartie erforderlich. Da dieser Raum einige Stellen aufweisen kann, die sich auf die strukturelle Gestaltung des Fahrzeugs auswirken, konnte es bei einer Größenänderung der Radarvorrichtung notwendig sein, die strukturelle Gestaltung zu überdenken. Diese Schwierigkeit wird durch Platzierung des Millimeterwellenradars im Fahrzeugraum vermieden.
  • (2) Ohne Einflüsse durch Regen, Nacht oder andere äußere Umgebungsfaktoren auf das Fahrzeug kann ein zuverlässigeres Funktionieren erreicht werden. Durch Platzierung des Millimeterwellenradars (Bordkamerasystems) 510 und des Bordkamerasystems 700 an im Wesentlichen derselben Position im Fahrzeugraum, wie in 35 gezeigt, können dieselben insbesondere ein identisches Sichtfeld und eine identische Sichtlinie erreichen, was den „Abgleichprozess“, der noch beschrieben wird, erleichtert, d.h. einen Prozess, mit dem festgestellt werden soll, dass jeweilige Zielinformationen, die durch dieselben erfasst werden, von einem identischen Objekt stammen. Wenn der Millimeterwellenradar 510' dagegen hinter dem Grill 512 platziert wäre, der sich an der Frontpartie außerhalb des Fahrzeugraums befindet, würde seine Radarsichtlinie L von einer Radarsichtlinie M des Falls abweichen, in dem derselbe im Fahrzeugraum platziert ist, woraus sich gegenüber dem durch das Bordkamerasystem 700 zu erfassenden Bild ein großer Versatz ergäbe.
  • (3) Die Zuverlässigkeit der Millimeterwellen-Radarvorrichtung wird verbessert. Da die herkömmliche Millimeterwellenradar 510' auf Patch-Antennen-Basis hinter dem Grill 512 platziert ist, der sich an der Frontpartie befindet, setzt sie, wie oben beschrieben, leicht Schmutz an und kann schon bei einem kleinen Kollisionsunfall oder dergleichen beschädigt werden. Aus diesen Gründen sind Reinigung und Funktionalitätsprüfungen dauernd erforderlich. Wenn sich die Position oder Richtung der Anbringung des Millimeterwellenradars durch einen Unfall oder dergleichen verschiebt, ist zudem, wie unten beschrieben wird, eine Wiederherstellung der Ausrichtung bezüglich der Kamera notwendig. Die Wahrscheinlichkeit solcher Erscheinungen wird durch Platzierung des Millimeterwellenradars im Fahrzeugraum reduziert, so dass die oben genannten Schwierigkeiten vermieden werden.
  • In einem Fahrerassistenzsystem einer solchen zusammengeführten Konstruktion können der optische Sensor, z.B. eine Kamera, und der Millimeterwellenradar 510, der die vorliegende Schlitz-Array-Antenne enthält, eine integrierte Konstruktion haben, d.h. in Bezug zueinander an fester Position sein. In diesem Fall sollte eine bestimmte relative Positionierung zwischen der optischen Achse des optischen Sensors wie etwa einer Kamera und der Direktivität der Antenne des Millimeterwellenradars gewahrt bleiben, wie noch beschrieben wird. Wenn dieses Fahrerassistenzsystem mit einer integrierten Konstruktion im Fahrzeugraum des Fahrzeugs 500 fixiert ist, sollte die optische Achse der Kamera usw. so eingestellt sein, dass sie dem Fahrzeug voraus in einer bestimmten Richtung ausgerichtet ist. Siehe hierzu die Beschreibung der US-Patentanmeldung mit der Veröffentlichungsnr. US 2015 / 0 264 230 A1 , die Beschreibung der US-Patentanmeldung mit der Veröffentlichungsnr. US 2016 / 0 264 065 A1 , die US-Patentanmeldung mit der Veröffentlichungsnr. US 2017 / 057 421 A1 , die US-Patentanmeldung mit der Veröffentlichungsnr. US 2017 / 057 422 A1 und die US-Patentanmeldung mit der Veröffentlichungsnr. US 2017 / 0 064 165 A1 . Verwandte Techniken bezüglich der Kamera sind in der Beschreibung des US-Patents Nr. US 7 355 524 B2 und der Beschreibung des US-Patents Nr. US 7 420 159 B2 beschrieben.
  • Zur Platzierung eines optischen Sensors wie etwa einer Kamera und eines Millimeterwellenradars im Fahrzeugraum siehe beispielsweise die Beschreibung des US-Patents Nr. US 8 604 968 B2 , die Beschreibung des US-Patents Nr. US 8 614 640 B2 und die Beschreibung des US-Patents Nr. US 7 978 122 B2 . Jedoch waren zum Anmeldezeitpunkt dieser Patente nur herkömmliche Antennen mit Patch-Antennen die bekannten Millimeterwellenradare, und somit war eine Observation nicht über ausreichende Distanzen möglich. Beispielsweise wird die mit einem herkömmlichen Millimeterwellenradar observierbare Distanz mit höchstens 100 m bis 150 m beziffert. Wenn ein Millimeterwellenradar einwärts von der Windschutzscheibe platziert ist, wird außerdem durch die Größe des Radars das Sichtfeld des Fahrers in unpraktischer Weise versperrt, was eine sichere Fahrt verhindert. Dagegen ist ein Millimeterwellenradar, der eine Schlitz-Array-Antenne gemäß einer Ausführungsform der vorliegenden Erfindung enthält, wegen seiner geringen Größe und merklichen Erhöhung des Wirkungsgrades der abgestrahlten elektromagnetischen Welle gegenüber demjenigen einer herkömmlichen Patch-Antenne, im Fahrzeugraum platzierbar. Dies ermöglicht eine Fernobservation über 200 m, wobei das Sichtfeld des Fahrers nicht versperrt wird.
  • [Einstellen der Anbringungsposition zwischen Millimeterwellenradar und Kamera usw.]
  • Bei der Verarbeitung mit einer zusammengeführten Konstruktion (die im Folgenden als „zusammengeführter Prozess“ bezeichnet werden kann) ist es erwünscht, dass ein mit einer Kamera oder dergleichen gewonnenes Bild und die mit dem Millimeterwellenradar gewonnenen Radarinformationen auf dasselbe Koordinatensystem abgebildet werden, da bei ihrer Abweichung hinsichtlich Position und Zielgröße eine gemeinsame Verarbeitung zwischen beiden behindert wird.
  • Hierzu gehört eine Einstellung unter folgenden drei Gesichtspunkten.
    • (1) Die optische Achse der Kamera oder dergleichen und die Antennenrichtwirkung des Millimeterwellenradars müssen ein bestimmtes festes Verhältnis haben.
  • Es ist erforderlich, dass die optische Achse der Kamera oder dergleichen und die Antennenrichtwirkung des Millimeterwellenradars abgeglichen sind. Alternativ kann ein Millimeterwellenradar zwei oder mehr Sendeantennen und zwei oder mehr Empfangsantennen aufweisen, wobei die Direktivitäten dieser Antennen gezielt unterschiedlich gestaltet sind. Es muss daher gewährleistet sein, dass mindestens ein bestimmtes bekanntes Verhältnis zwischen der optischen Achse der Kamera oder dergleichen und den Direktivitäten dieser Antennen besteht.
  • In dem Fall, in dem die Kamera oder dergleichen und der Millimeterwellenradar die oben genannte integrierte Konstruktion haben, d.h. in fester Position zueinander stehen, bleibt die relative Positionierung zwischen der Kamera oder dergleichen und dem Millimeterwellenradar fest. Daher sind die oben genannten Anforderungen in Bezug auf eine solche integrierte Konstruktion erfüllt. Dagegen ist bei einer herkömmlichen Patch-Antenne oder dergleichen, bei welcher der Millimeterwellenradar hinter dem Grill 512 des Fahrzeugs 500 platziert ist, die relative Positionierung zwischen ihnen normalerweise gemäß (2) unten einzustellen.
  • (2) In einem Anfangszustand (z.B. bei Lieferung) nach Anbringung an dem Fahrzeug besteht zwischen einem mit der Kamera oder dergleichen erfassten Bild und Radarinformationen des Millimeterwellenradars ein bestimmtes festes Verhältnis.
  • Die Anbringungspositionen des optischen Sensors 700 wie etwa einer Kamera und des Millimeterwellenradars 510 oder 510' an dem Fahrzeug 500 werden letztlich auf folgende Weise bestimmt. An einer vorbestimmten Position 800 dem Fahrzeug 500 voraus wird ein als Referenz verwendbares Diagramm oder ein Ziel, das der Observation durch den Radar unterliegt, korrekt positioniert (im Folgenden als „Referenzdiagramm“ beziehungsweise „Referenzziel“ und zusammen als „Vergleichspunkt“ bezeichnet). Dies wird mit einem optischen Sensor wie etwa einer Kamera oder mit dem Millimeterwellenradar 510 observiert. Die Observationsinformationen bezüglich des observierten Vergleichspunktes werden mit zuvor gespeicherten Forminformationen oder dergleichen des Vergleichspunktes verglichen, und die aktuellen Versatzinformationen werden quantifiziert. Auf Basis dieser Versatzinformationen werden durch mindestens eins der folgenden Mittel die Anbringungspositionen eines optischen Sensors wie etwa einer Kamera und des Millimeterwellenradars 510 oder 510' eingestellt oder korrigiert. Es kann auch jedes andere Mittel eingesetzt werden, das ähnliche Ergebnisse zu liefern vermag.
    • (i) Einstellen der Anbringungspositionen der Kamera und des Millimeterwellenradars in der Weise, dass der Vergleichspunkt an einen Mittelpunkt zwischen der Kamera und dem Millimeterwellenradar gelangt. Diese Einstellung kann mit einem Hilfsmittel oder Werkzeug usw. erfolgen, das separat vorgesehen ist.
    • (ii) Bestimmung eines Versatzbetrags der Kamera und der Achse/Direktivität des Millimeterwellenradars relativ zu dem Vergleichspunkt und Korrigieren dieser Versatzbeträge der Achse/Direktivität durch Bildverarbeitung des Kamerabildes und Radarverarbeitung.
  • Zu beachten ist, dass in dem Fall, in dem der optische Sensor wie etwa eine Kamera und der Millimeterwellenradar 510, der eine Schlitz-Array-Antenne gemäß einer Ausführungsform der vorliegenden Offenbarung enthält, eine integrierte Konstruktion haben, d.h. in fester Position zueinander stehen, bei einer Einstellung eines Versatzes der Kamera oder des Radars mit Bezug auf den Vergleichspunkt der Versatzbetrag auch dem anderen bekannt wird, so dass sich eine Überprüfung des Versatzes des anderen mit Bezug auf den Vergleichspunkt erübrigt.
  • Spezifisch kann bezüglich des Bordkamerasystems 700 ein Referenzdiagramm an einer vorbestimmten Position 750 platziert sein, und ein durch die Kamera 700 aufgenommenes Bild wird mit Vorausinformationen verglichen, die anzeigen, wo in dem Sichtfeld der Kamera das Referenzdiagrammbild sich befinden soll, wodurch ein Versatzbetrag detektiert wird. Auf dieser Basis wird die Kamera durch mindestens eins der obigen Mittel (i) und (ii) eingestellt. Als Nächstes wird der Versatzbetrag, der für die Kamera festgestellt wurde, in einen Versatzbetrag des Millimeterwellenradars übersetzt. Danach wird eine Versatzbetragseinstellung in Bezug auf die Radarinformationen durch mindestens eins der obigen Mittel (i) und (ii) vorgenommen.
  • Alternativ kann dies auf Basis des Millimeterwellenradars 510 erfolgen. Anders ausgedrückt: In Bezug auf den Millimeterwellenradar 510 kann ein Referenzziel an einer vorbestimmten Position 800 platziert sein, und die Radarinformationen desselben werden mit Vorausinformationen verglichen, die anzeigen, wo in dem Sichtfeld des Millimeterwellenradars 510 das Referenzziel angeordnet sein soll, so dass ein Versatzbetrag detektiert wird. Auf dieser Basis wird der Millimeterwellenradar 510 durch mindestens eins der obigen Mittel (i) und (ii) eingestellt. Als Nächstes wird der Versatzbetrag, der für den Millimeterwellenradarfestgestellt wurde, in einen Versatzbetrag der Kamera übersetzt. Danach wird eine Versatzbetragseinstellung in Bezug auf die durch die Kamera gewonnenen Bildinformationen durch mindestens eins der obigen Mittel (i) und (ii) vorgenommen.
  • (3) Auch nach einem Anfangszustand des Fahrzeugs wird ein bestimmtes Verhältnis zwischen einem mit der Kamera oder dergleichen erfassten Bild und Radarinformationen des Millimeterwellenradars beibehalten.
  • Üblicherweise wird angenommen, dass ein mit der Kamera oder dergleichen erfasstes Bild und Radarinformationen des Millimeterwellenradars im Anfangszustand fixiert sind und kaum schwanken, es sei denn bei einem Unfall des Fahrzeugs oder dergleichen. Wenn jedoch tatsächlich ein Versatz zwischen denselben auftritt, ist eine Einstellung mit den folgenden Mitteln möglich.
  • Die Kamera ist beispielsweise so angebracht, dass Abschnitte 513 und 514 (charakteristische Punkte), die für das Eigenfahrzeug charakteristisch sind, in ihr Sichtfeld passen. Die Positionen, an denen diese charakteristischen Punkte durch die Kamera tatsächlich abgebildet werden, werden mit den Information der Positionen verglichen, die diese charakteristischen Punkte einnehmen sollten, wenn die Kamera korrekt an ihrem Ort angebracht ist, und (ein) Versatzbetrag/-beträge werden dazwischen detektiert. Auf Basis dieses/dieser detektierten Versatzbetrags/-beträge kann die Position jedes danach aufgenommenen Bildes korrigiert werden, wodurch ein Versatz der physikalischen Anbringungsposition der Kamera 700 ausgeglichen werden kann. Wenn diese Korrektur die von dem Fahrzeug erforderte Leistungsfähigkeit ausreichend ausbildet, erübrigt sich möglicherweise die Einstellung gemäß dem obigen Punkt (2). Durch regelmäßige Durchführung dieser Einstellung während des Startens oder Betriebs des Fahrzeugs 500 ist ein Ausgleich des Versatzbetrags auch bei erneutem Auftreten eines Versatzes der Kamera oder dergleichen möglich, was zur Fahrtsicherheit beiträgt.
  • Jedoch ergibt dieses Mittel nach allgemeiner Auffassung geringere Einstellgenauigkeit als bei dem oben genannten Mittel (2). Beim Vornehmen einer Einstellung auf Basis eines Bildes, das durch Abbilden eines Vergleichspunktes mit einer Kamera gewonnen ist, kann das Azimut des Vergleichspunktes mit hoher Präzision bestimmt werden, so dass eine hohe Einstellungsgenauigkeit leicht erreichbar ist. Da dieses Mittel für die Einstellungjedoch einen Teil der Fahrzeugkarosserie anstelle eines Vergleichspunktes nutzt, ist die Genauigkeit der Azimutbestimmung relativ schwierig zu erhöhen. Die entstehende Einstellgenauigkeit ist also etwas geringer. Als Korrekturmittel kann dies aber wirksam sein, wenn die Anbringungsposition der Kamera oder dergleichen aus Gründen wie etwa einem Unfall oder einer großen äußeren Kraft, die auf die Kamera oder dergleichen im Fahrzeugraum wirkt, usw. erheblich verändert ist.
  • [Abbildung des durch Millimeterwellenradar und Kamera oder dergleichen detektierten Ziels: Abgleichprozess]
  • In einem zusammengeführten Prozess muss für ein gegebenes Ziel festgestellt werden, dass ein mit einer Kamera oder dergleichen erfasstes Bild desselben und mit dem Millimeterwellenradar erfasste Radarinformationen sich auf „dasselbe Ziel“ beziehen. Es sei beispielsweise angenommen, dass zwei Hindernisse (erste und zweite Hindernisse), z.B. zwei Fahrräder, dem Fahrzeug 500 voraus aufgetreten sind. Diese zwei Hindernisse werden als Kamerabilder erfasst und als Radarinformationen des Millimeterwellenradars detektiert. Zu diesem Zeitpunkt müssen das Kamerabild und die Radarinformationen mit Bezug auf das erste Hindernis so aufeinander abgebildet sein, dass sie beide auf dasselbe Ziel gerichtet sind. Ebenso müssen das Kamerabild und die Radarinformationen mit Bezug auf das zweite Hindernis so aufeinander abgebildet sein, dass sie beide auf dasselbe Ziel gerichtet sind. Wenn das Kamerabild des ersten Hindernisses und die Radarinformationen des zweiten Hindernisses fälschlicherweise als auf ein identisches Objekt bezogen erkannt werden, kann es zu einem schwerwiegenden Unfall kommen. Ein solcher Prozess der Bestimmung dessen, ob ein Ziel auf dem Kamerabild und ein Ziel auf dem Radarbild dasselbe Ziel betreffen, kann in der vorliegenden Beschreibung nachfolgend als „Abgleichprozess“ bezeichnet werden.
  • Dieser Abgleichprozess kann durch verschiedene Detektionsvorrichtungen (oderVerfahren) implementiert sein, die unten beschrieben sind. Nachfolgend werden diese spezifisch beschrieben. Es wird darauf hingewiesen, dass jede der folgenden Detektionsvorrichtungen in dem Fahrzeug zu installieren ist und mindestens einen Millimeterwellenradar-Detektionsabschnitt, einen Bilddetektionsabschnitt (z.B. eine Kamera), der in einer Richtung ausgerichtet ist, welche die Richtung der Detektion durch den Millimeterwellenradar-Detektionsabschnitt überlagert, und einen Abgleichsabschnitt aufweist. Dabei weist der Millimeterwellenradar-Detektionsabschnitt eine Schlitz-Array-Antenne gemäß einer der Ausführungsformen der vorliegenden Offenbarung auf und erfasst mindestens Radarinformationen in seinem eigenen Sichtfeld. Der Bilderfassungsabschnitt erfasst mindestens Bildinformationen in seinem eigenen Sichtfeld. Der Abgleichsabschnitt weist eine Verarbeitungsschaltung auf, die ein Detektionsergebnis des Millimeterwellenradar-Detektionsabschnitts mit einem Detektionsergebnis des Bilddetektionsabschnitts abgleicht, um zu bestimmen, ob durch die zwei Detektionsabschnitte dasselbe Ziel detektiert wird oder nicht. Hierbei kann der Bilddetektionsabschnitt aus einem ausgewählten von, oder zwei oder mehr ausgewählten von, einer optischen Kamera, LIDAR, einem Infrarotradar und einem Ultraschallradar gebildet sein. Die folgenden Detektionsvorrichtungen unterscheiden sich voneinander hinsichtlich des Detektionsprozesses an ihrem jeweiligen Abgleichsabschnitt.
  • Bei einer ersten Detektionsvorrichtung führt der Abgleichsabschnitt zwei Abgleiche wie folgt durch. Zu einem ersten Abgleich gehören für ein Ziel von Interesse, das durch den Millimeterwellenradar-Detektionsabschnitt detektiert wurde, das Gewinnen von Distanzinformationen und Lateralpositionsinformationen desselben und auch das Finden eines Ziels, das sich am nächsten an dem Ziel von Interesse befindet, aus einem Ziel oder zwei oder mehr Zielen, die durch den Bilddetektionsabschnitt detektiert wurden, und das Detektieren von (einer) Kombination(en) daraus. Zu einem zweiten Abgleich gehören für ein Ziel von Interesse, das durch den Bilddetektionsabschnitt detektiert wurde, das Gewinnen von Distanzinformationen und Lateralpositionsinformationen desselben und auch das Finden eines Ziels, das sich am nächsten an dem Ziel von Interesse befindet, aus einem Ziel oder zwei oder mehr Zielen, die durch den Millimeterwellenradar-Detektionsabschnitt detektiert sind, und Detektieren von (einer) Kombination(en) daraus. Außerdem bestimmt dieser Abgleichsabschnitt, ob es eine übereinstimmende Kombination zwischen der beziehungsweise den Kombination(en) solcher Ziele, wie durch den Millimeterwellenradar-Detektionsabschnitt detektiert, und der beziehungsweise den Kombination(en) solcher Ziele, wie durch den Bilddetektionsabschnitt detektiert, gibt. Wenn es eine übereinstimmende Kombination gibt, wird sodann bestimmt, dass durch die zwei Detektionsabschnitte dasselbe Objekt detektiert wird. Auf diese Weise wird ein Abgleich zwischen den jeweiligen Zielen erreicht, die durch den Millimeterwellenradar-Detektionsabschnitt und den Bilddetektionsabschnitt detektiert wurden.
  • Eine verwandte Technik wird in der Beschreibung des US-Patents Nr. US 7 358 889 B2 beschrieben. In dieser Veröffentlichung ist der Bilddetektionsabschnitt durch eine sogenannte Stereokamera illustriert, die zwei Kameras aufweist. Jedoch ist diese Technik nicht darauf begrenzt. In dem Fall, in dem der Bilddetektionsabschnitt eine einzige Kamera aufweist, können detektierte Ziele gegebenenfalls einem Bilderkennungsprozess oder dergleichen unterzogen werden, um Distanzinformationen und Lateralpositionsinformationen der Ziele zu gewinnen. In ähnlicher Weise kann ein Laser-Sensor wie etwa ein Laser-Scanner als der Bilddetektionsabschnitt verwendet werden.
  • Bei einer zweiten Detektionsvorrichtung gleicht der Abgleichsabschnitt mit jeder vorbestimmten Zeitperiode ein Detektionsergebnis des Millimeterwellenradar-Detektionsabschnitts und ein Detektionsergebnis des Bilddetektionsabschnitts ab. Wenn der Abgleichsabschnitt bestimmt, dass durch die zwei Detektionsabschnitte in dem vorherigen Abgleichsergebnis dasselbe Ziel detektiert wurde, führt er einen Abgleich mithilfe dieses vorherigen Abgleichsergebnisses durch. Spezifisch gleicht der Abgleichsabschnitt ein Ziel, das aktuell durch den Millimeterwellenradar-Detektionsabschnitt detektiert wird, und ein Ziel, das aktuell durch den Bilddetektionsabschnitt detektiert wird, mit dem Ziel ab, das in dem vorherigen Abgleichsergebnis als durch die zwei Detektionsabschnitte detektiert bestimmt wurde. Sodann bestimmt der Abgleichsabschnitt auf Basis des Abgleichsergebnisses für das Ziel, das aktuell durch den Millimeterwellenradar-Detektionsabschnitt detektiert wird, und des Abgleichsergebnisses für das Ziel, das aktuell durch den Bilddetektionsabschnitt detektiert wird, ob durch die zwei Detektionsabschnitte dasselbe Ziel detektiert wird oder nicht. Statt eines direkten Abgleichs der Ergebnisse der Detektion durch die zwei Detektionsabschnitte führt diese Detektionsvorrichtung somit einen chronologischen Abgleich zwischen den zwei Detektionsergebnissen und einem vorherigen Abgleichsergebnis durch. Daher wird die Genauigkeit der Detektion gegenüber dem Fall verbessert, in dem nur ein momentaner Abgleich erfolgt, so dass eine stabiler Abgleich realisiert wird. Insbesondere ist durch die Nutzung vergangener Abgleichsergebnisse ein Abgleich auch dann noch möglich, wenn die Genauigkeit des Detektionsabschnitts momentan nachlässt. Zudem ist diese Detektionsvorrichtung durch Nutzung des vorherigen Abgleichsergebnisses zur leichten Durchführung eines Abgleichs zwischen den zwei Detektionsabschnitten fähig.
  • Bei dem aktuellen Abgleich, der das vorherige Abgleichsergebnis nutzt, schließt der Abgleichsabschnitt dieser Detektionsvorrichtung, wenn er bestimmt, dass durch die zwei Detektionsabschnitte dasselbe Objekt detektiert wird, dieses bestimmte Objekt bei der Durchführung des Abgleichs zwischen aktuell durch den Millimeterwellenradar-Detektionsabschnitt detektierten Objekten und aktuell durch den Bilddetektionsabschnitt detektierten Objekten aus. Sodann bestimmt dieser Abgleichsabschnitt, ob ein identisches Objekt existiert, das aktuell durch die zwei Detektionsabschnitte detektiert wird. Somit nimmt die Detektionsvorrichtung unter Berücksichtigung des Ergebnisses des chronologischen Abgleichs auch einen momentanen Abgleich auf Basis von zwei Detektionsergebnissen vor, die von Moment zu Moment gewonnen werden. Infolgedessen ist die Detektionsvorrichtung fähig zur sicheren Durchführung eines Abgleichs für jedes Objekt, das während der aktuellen Detektion detektiert wird.
  • Eine verwandte Technik wird in der Beschreibung des US-Patents Nr. US 7 417 580 B2 beschrieben. In dieser Veröffentlichung ist der Bilddetektionsabschnitt durch eine sogenannte Stereokamera illustriert, die zwei Kameras aufweist. Jedoch ist diese Technik nicht darauf begrenzt. In dem Fall, in dem der Bilddetektionsabschnitt eine einzige Kamera aufweist, können detektierte Ziele gegebenenfalls einem Bilderkennungsprozess oder dergleichen unterzogen werden, um Distanzinformationen und Lateralpositionsinformationen der Ziele zu gewinnen. In ähnlicher Weise kann ein Laser-Sensor wie etwa ein Laser-Scanner als der Bilddetektionsabschnitt verwendet werden.
  • In einer dritten Detektionsvorrichtung führen die zwei Detektionsabschnitte und der Abgleichsabschnitt eine Detektion von Zielen beziehungsweise Abgleiche dazwischen in vorbestimmten Zeitintervallen durch, und die Ergebnisse einer solchen Detektion sowie die Ergebnisse eines solchen Abgleichs werden chronologisch in einem Speicherungsmedium, z.B. Speicher, abgelegt. Auf Basis einer Veränderungsrate der Größe eines Ziels auf dem Bild, wie durch den Bilddetektionsabschnitt detektiert, und einer Distanz von dem Eigenfahrzeug zu einem Ziel und ihrer Veränderungsrate (relativen Geschwindigkeit in Bezug auf das Eigenfahrzeug), wie durch den Millimeterwellenradar-Detektionsabschnitt detektiert, bestimmt der Abgleichsabschnitt, ob das durch den Bilddetektionsabschnitt detektierte Ziel und das durch den Millimeterwellenradar-Detektionsabschnitt detektierte Ziel ein identisches Objekt sind.
  • Wenn auf Basis der Position des Ziels auf dem Bild, wie durch den Bilddetektionsabschnitt detektiert, und der Distanz von dem Eigenfahrzeug zu dem Ziel und/oder ihrer Veränderungsrate, wie durch den Millimeterwellenradar-Detektionsabschnitt detektiert, bestimmt wird, dass diese Ziele ein identisches Objekt sind, sagt der Abgleichsabschnitt eine Möglichkeit der Kollision mit dem Fahrzeug voraus.
  • Eine verwandte Technik ist in der Beschreibung des US-Patents Nr. US 6 903 677 B2 beschrieben.
  • Wie oben beschrieben, werden in einem zusammengeführten Prozess eines Millimeterwellenradars und einer Bildgebungsvorrichtung wie etwa einer Kamera ein Bild, das mit der Kamera oder dergleichen gewonnen ist, und Radarinformationen, die mit dem Millimeterwellenradar gewonnen sind, gegeneinander abgeglichen. Ein Millimeterwellenradar, der die oben genannte Array-Antenne gemäß einer Ausführungsform der vorliegenden Offenbarung enthält, kann so konstruiert sein, dass er geringe Größe und hohe Leistungsfähigkeit hat. Daher können für den gesamten zusammengeführten Prozess einschließlich des oben genannten Abgleichprozesses hohe Leistungsfähigkeit und Größenverringerung usw. erreicht werden. Dies verbessert die Genauigkeit der Zielerkennung und ermöglicht eine sicherere Fahrtsteuerung für das Fahrzeug.
  • [Weitere zusammengeführte Prozesse]
  • In einem zusammengeführten Prozess sind unterschiedliche Funktionen auf Basis eines Abgleichprozesses zwischen einem Bild, das mit einer Kamera oder dergleichen gewonnen ist, und Radarinformationen, die mit dem Millimeterwellenradar-Detektionsabschnitt gewonnen sind, realisiert. Beispiele für Verarbeitungseinrichtungen, die repräsentative Funktionen eines zusammengeführten Prozesses realisieren, werden nachfolgend beschrieben.
  • Jede der folgenden Verarbeitungseinrichtungen ist in einem Fahrzeug zu installieren und weist mindestens auf: einen Millimeterwellenradar-Detektionsabschnitt zum Senden oder Empfangen von elektromagnetischen Wellen in einer vorbestimmten Richtung; einen Bilderfassungsabschnitt wie etwa eine monokulare Kamera mit einem Sichtfeld, welches das Sichtfeld des Millimeterwellenradar-Detektionsabschnitts überlagert; und einen Verarbeitungsabschnitt, der Informationen daraus gewinnt, um Zieldetektion und dergleichen durchzuführen. Der Millimeterwellenradar-Detektionsabschnitt erfasst Radarinformationen in seinem eigenen Sichtfeld. Der Bilderfassungsabschnitt erfasst Bildinformationen in seinem eigenen Sichtfeld. Ein ausgewähltes oder zwei oder mehr ausgewählte von einer optischen Kamera, LIDAR, einem Infrarotradar und einem Ultraschallradar können als der Bilderfassungsabschnitt verwendet werden. Der Verarbeitungsabschnitt kann durch eine Verarbeitungsschaltung implementiert sein, die mit dem Millimeterwellenradar-Detektionsabschnitt und dem Bilderfassungsabschnitt verbunden ist. Die folgenden Verarbeitungseinrichtungen unterscheiden sich voneinander mit Bezug auf den Inhalt der Verarbeitung durch diesen Verarbeitungsabschnitt.
  • Bei einer ersten Verarbeitungseinrichtung extrahiert der Verarbeitungsabschnitt aus einem Bild, das durch den Bilderfassungsabschnitt erfasst ist, ein Ziel, das als dasselbe Ziel wie das durch den Millimeterwellenradar-Detektionsabschnitt detektierte erkannt wird. Anders ausgedrückt: Es wird ein Abgleichprozess entsprechend der oben genannten Detektionsvorrichtung durchgeführt. Sodann erfasst sie Informationen eines rechten Randes und eines linken Randes des extrahierten Zielbildes und leitet Ortsnäherungslinien ab, die Geraden oder vorbestimmte gekrümmte Linien zum Annähern an Orte des erfassten rechten Randes und des linken Randes sind, die für beide Ränder erfasst werden. Der Rand, der eine größere Anzahl von Rändern hat, die auf der Ortsnäherungslinie liegen, wird als ein echter Rand des Ziels ausgewählt. Die laterale Position des Ziels wird auf Basis der Position des Randes abgeleitet, der als echter Rand ausgewählt wurde. Dies erlaubt eine weitere Verbesserung der Detektionsgenauigkeit für eine laterale Position des Ziels.
  • Eine verwandte Technik ist in der Beschreibung des US-Patents Nr. US 8 610 620 B2 beschrieben.
  • Bei einerzweiten Verarbeitungseinrichtung verändert der Verarbeitungsabschnitt bei der Bestimmung des Vorhandenseins eines Ziels eine Bestimmungsschwelle zur Verwendung bei der Überprüfung hinsichtlich eines Zielvorhandenseins in Radarinformationen auf der Basis von Bildinformationen. Wenn ein Zielbild, das ein Hindernis für die Fahrt des Fahrzeugs sein kann, mit einer Kamera oder dergleichen bestätigt wurde, oder wenn das Vorhandensein eines Ziels geschätzt wurde usw., ist somit beispielsweise die Bestimmungsschwelle für die Zieldetektion durch den Millimeterwellenradar-Detektionsabschnitt so optimierbar, dass korrektere Zielinformationen gewonnen werden können. Anders ausgedrückt: Wenn die Möglichkeit des Vorhandenseins eines Hindernisses groß ist, wird die Bestimmungsschwelle so verändert, dass diese Verarbeitungseinrichtung mit Sicherheit aktiviert wird. Ist die Möglichkeit des Vorhandenseins eines Hindernisses dagegen gering, wird die Bestimmungsschwelle so verändert, dass eine unerwünschte Aktivierung dieser Verarbeitungseinrichtungverhindert wird. Dies erlaubt eine angemessene Aktivierung des Systems.
  • Außerdem kann in diesem Fall auf Basis von Radarinformationen der Verarbeitungsabschnitt eine Detektionsregion für die Bildinformationen angeben und eine Möglichkeit des Vorhandenseins eines Hindernisses auf Basis von Bildinformationen innerhalb dieser Region schätzen. Hieraus ergibt sich ein effizienterer Detektionsprozess.
  • Eine verwandte Technik ist in der Beschreibung des US-Patents Nr. US 7 570 198 B2 beschrieben.
  • Bei einer dritten Verarbeitungseinrichtung führt der Verarbeitungsabschnitt ein kombiniertes Anzeigen durch, bei dem Bilder, die aus einer Vielzahl unterschiedlicher Bildgebungsvorrichtungen und einem Millimeterwellenradar-Detektionsabschnitt gewonnen sind, und ein Bildsignal auf Basis von Radarinformationen auf mindestens einer Anzeigevorrichtung angezeigt werden. In diesem Anzeigeprozess werden Horizontal- und Vertikal-Synchronisationssignale zwischen der Vielzahl von Bildgebungsvorrichtungen und dem Millimeterwellenradar-Detektionsabschnitt synchronisiert, und unter den Bildsignalen aus diesen Vorrichtungen kann selektiv zu einem gewünschten Bildsignal innerhalb einer Horizontal-Abtastungsperiode oder einer Vertikal-Abtastungsperiode umgeschaltet werden. Dies erlaubt, auf Basis der Horizontal- und Vertikal-Synchronisationssignale, ein Anzeigen von Bildern einer Vielzahl von ausgewählten Bildsignalen nebeneinander; und aus der Anzeigevorrichtung wird ein Steuersignal zum Einstellen eines Steuerbetriebes in der gewünschten Bildgebungsvorrichtung und dem Millimeterwellenradar-Detektionsabschnitt geschickt.
  • Wenn eine Vielzahl unterschiedlicher Anzeigevorrichtungen jeweilige Bilder oder dergleichen anzeigen, ist ein Vergleich der jeweiligen Bilder miteinander schwierig. Wenn Anzeigevorrichtungen separat von der dritten Verarbeitungseinrichtung selbst vorgesehen sind, besteht zudem nur geringe Funktionsfähigkeit der Vorrichtung. Mit der dritten Verarbeitungseinrichtung würden solche Nachteile behoben.
  • Eine verwandte Technik ist in der Beschreibung des US-Patents Nr. US 6 628 299 B2 und der Beschreibung des US-Patents Nr. US 7 161561 B2 beschrieben.
  • Bei einer vierten Verarbeitungseinrichtung weist der Verarbeitungsabschnitt mit Bezug auf ein Ziel, das sich einem Fahrzeug voraus befindet, einen Bilderfassungsabschnitt und einen Millimeterwellenradar-Detektionsabschnitt dazu an, ein Bild und Radarinformationen zu erfassen, die dieses Ziel enthalten. Aus solchen Bildinformationen bestimmt der Verarbeitungsabschnitt eine Region, in der das Ziel enthalten ist. Außerdem extrahiert der Verarbeitungsabschnitt Radarinformationen innerhalb dieser Region und detektiert eine Distanz von dem Fahrzeug zu dem Ziel und eine relative Geschwindigkeit zwischen dem Fahrzeug und dem Ziel. Auf Basis solcher Informationen bestimmt der Verarbeitungsabschnitt eine Möglichkeit, dass eine Kollision zwischen Ziel und Fahrzeug erfolgt. Dies ermöglicht eine frühzeitige Detektion einer möglichen Kollision mit einem Ziel.
  • Eine verwandte Technik ist in der Beschreibung des US-Patents Nr. US 8 068 134 B2 beschrieben.
  • Bei einer fünften Verarbeitungseinrichtung erkennt der Verarbeitungsabschnitt auf Basis von Radarinformationen oder durch einen zusammengeführten Prozess, der auf Radarinformationen und Bildinformationen basiert, ein Ziel oder zwei oder mehr Ziele, die sich dem Fahrzeug voraus befinden. Das „Ziel“ schließt jedes bewegte Objekt ein wie etwa andere Fahrzeuge oder Fußgänger, durch weiße Linien auf der Straße angezeigte Fahrspuren, Seitenstreifen und alle unbewegten Objekte (einschließlich Straßengräben, Hindernissen usw.), Ampeln, Fußgängerüberwege und dergleichen, die möglicherweise vorhanden sind. Der Verarbeitungsabschnitt kann eine GPS-Antenne (globales Positionierungssystem) einschließen. Durch Verwendung einer GPS-Antenne kann die Position des Eigenfahrzeugs detektiert werden, und auf Basis dieser Position kann eine Speicherungsvorrichtung (als Karteninformations-Datenbankvorrichtung bezeichnet), die Straßenkarteninformationen speichert, durchsucht werden, um eine aktuelle Position auf der Karte zu ermitteln. Diese aktuelle Position auf der Karte kann mit einem Ziel oder zwei oder mehr Zielen verglichen werden, die auf Basis von Radarinformationen oder dergleichen erkannt wurden, wodurch die Fahrtumgebung erkannt werden kann. Auf dieser Basis kann der Verarbeitungsabschnitt jedes Ziel extrahieren, das einer Einschätzung gemäß die Fahrt des Fahrzeugs behindert, sicherere Fahrtinformationen finden und diese gegebenenfalls auf einer Anzeigevorrichtung anzeigen, um den Fahrer zu informieren.
  • Eine verwandte Technik ist in der Beschreibung des US-Patents Nr. US 6 191 704 B1 beschrieben.
  • Die fünfte Verarbeitungseinrichtung kann weiterhin eine Datenkommunikationsvorrichtung (mit Kommunikationsschaltungen) aufweisen, die mit einer Karteninformations-Datenbankvorrichtung kommuniziert, die sich extern zum Fahrzeug befindet. Die Datenkommunikationsvorrichtung kann auf die Karteninformations-Datenbankvorrichtung mit einer Periode von z.B. einmal pro Woche oder einmal pro Monat zugreifen, um die neuesten Karteninformationen davon herunterzuladen. Dies erlaubt eine Durchführung der oben genannten Verarbeitung mit den neuesten Karteninformationen.
  • Außerdem kann die fünfte Verarbeitungseinrichtung zwischen den neuesten Karteninformationen, die während der oben genannten Fahrt des Fahrzeugs erfasst wurden, und Informationen, die auf Basis von Radarinformationen usw. über ein Ziel oder zwei oder mehr Ziele erkannt wurden, vergleichen, um Zielinformationen (im Folgenden als „Kartenaktualisierungsinformationen“ bezeichnet) zu extrahieren, die nicht in den Karteninformationen enthalten sind. Sodann können diese Kartenaktualisierungsinformationen über die Datenkommunikationsvorrichtung an die Karteninformations-Datenbankvorrichtung gesendet werden. Die Karteninformations-Datenbankvorrichtung kann diese Kartenaktualisierungsinformationen in Verknüpfung mit den Karteninformationen speichern, die in der Datenbank sind, und die aktuellen Karteninformationen nötigenfalls selbst aktualisieren. Bei der Durchführung der Aktualisierung können jeweilige einzelne Kartenaktualisierungsinformationen, die aus einer Vielzahl von Fahrzeugen gewonnen sind, miteinander verglichen werden, um die Sicherheit der Aktualisierung zu überprüfen.
  • Es wird darauf hingewiesen, dass diese Kartenaktualisierungsinformationen möglicherweise detailliertere Informationen enthalten als die Karteninformationen, die durch jede aktuell verfügbare Karteninformations-Datenbankvorrichtung geführt werden. Beispielsweise sind aus üblicherweise verfügbaren Karteninformationen möglicherweise schematische Formen von Straßen bekannt, sie enthalten jedoch typischerweise nicht Informationen wie etwa die Breite des Seitenstreifens, die Breite des möglicherweise vorhandenen Straßengrabens, neu aufgetretene Erhebungen oder Senken, Gebäudeformen und so weiter. Sie enthalten auch nicht die Höhen der Fahrbahn und des Bürgersteigs, eine mögliche Verbindung einer geneigten Fläche mit dem Bürgersteig usw. Auf Basis von separat eingestellten Bedingungen kann die Karteninformations-Datenbankvorrichtung solche detaillierten Informationen (im Folgenden als „Kartenaktualisierungs-Detailinformationen“ bezeichnet) in Verknüpfung mit den Karteninformationen speichern. Solche Kartenaktualisierungs-Detailinformationen liefern einem Fahrzeug (einschließlich des Eigenfahrzeugs) Informationen, die detaillierter sind als die ursprünglichen Karteninformationen, wodurch sie nicht nur zur Sicherstellung einer sicheren Fahrt, sondern auch für andere Zwecke verfügbar werden. Wie hier verwendet, kann ein „Fahrzeug (einschließlich des Eigenfahrzeugs)“ z.B. ein Kraftfahrzeug, ein Motorrad, ein Fahrrad oder jedes autonome Fahrzeug sein, das in Zukunft erhältlich wird, z.B. ein elektrischer Rollstuhl. Die Kartenaktualisierungs-Detailinformationen sind für die Fahrt eines jeden solchen Fahrzeugs verwendbar.
  • (Erkennung über neuronales Netz)
  • Jede der ersten bis fünften Verarbeitungseinrichtungen kann weiterhin eine komplexe Erkennungseinrichtung aufweisen. Die komplexe Erkennungseinrichtung kann extern zu dem Fahrzeug vorgesehen sein. In diesem Fall kann das Fahrzeug eine Hochgeschwindigkeits-Datenkommunikationsvorrichtung aufweisen, die mit der komplexen Erkennungseinrichtung kommuniziert. Die komplexe Erkennungseinrichtung kann aus einem neuronalen Netz gebildet sein, das sogenanntes tiefes Lernen und dergleichen einschließen kann. Dieses neuronale Netz kann beispielsweise ein neuronales Konvolutionsnetz aufweisen (im Folgenden als „CNN“ bezeichnet). Ein CNN, ein neuronales Netz, das sich bei der Bilderkennung als erfolgreich erwiesen hat, ist dadurch gekennzeichnet, dass es ein oder mehr Sätze aus zwei Schichten besitzt, und zwar eine Konvolutionsschicht und eine Pooling-Schicht.
  • Es existieren mindestens folgende drei Arten von Informationen, die jeweils in eine Konvolutionsschicht in der Verarbeitungseinrichtung eingebbar sind:
    • (1) Informationen, die auf Radarinformationen basieren, welche durch den Millimeterwellenradar-Detektionsabschnitt erfasst sind;
    • (2) Informationen, die auf spezifischen Bildinformationen basieren, welche auf Basis von Radarinformationen durch den Bilderfassungsabschnitt erfasst sind; oder
    • (3) zusammengeführte Informationen, die auf Radarinformationen und Bildinformationen, die durch den Bilderfassungsabschnitt erfasst sind, basieren, oder Informationen, die auf Basis solcher zusammengeführter Informationen gewonnen sind.
  • Auf Basis von Informationen jeder der oben genannten Arten oder Informationen auf Basis einer Kombination daraus werden Produkt-Summen-Operationen durchgeführt, die einer Konvolutionsschicht entsprechen. Die Ergebnisse werden in die nachfolgende Pooling-Schicht eingegeben, wo Daten gemäß einer vorbestimmten Regel ausgewählt werden. Im Fall eines Maximal-Poolings, bei dem ein Maximalwert unter Pixelwerten gewählt wird, kann die Regel beispielsweise vorschreiben, dass ein Maximalwert für jedeTeilungsregion in der Konvolutionsschicht gewählt wird, wobei dieser Maximalwert als der Wert der entsprechenden Position in der Pooling-Schicht angesehen wird.
  • Eine komplexe Erkennungseinrichtung, die aus einem CNN gebildet ist, kann einen einzelnen Satz aus einer Konvolutionsschicht und einer Pooling-Schicht oder eine Vielzahl solcher Sätze aufweisen, die in Serie kaskadiert sind. Dies ermöglicht eine korrekte Erkennung eines Ziels, das in den Radarinformationen und den Bildinformationen enthalten ist, die um ein Fahrzeug vorhanden sein können.
  • Verwandte Techniken sind beschrieben in US-Patent Nr. US 8 861842 B2 , in der Beschreibung des US-Patents Nr. US 9 286 524 B1 und der Beschreibung der US-Patentanmeldung mit der Veröffentlichungsnr. US 2016/0 140 424 A1 .
  • Bei einer sechsten Verarbeitungseinrichtung führt der Verarbeitungsabschnitt Verarbeitung bezüglich der Frontscheinwerfersteuerung eines Fahrzeugs durch. Wenn ein Fahrzeug nachts unterwegs ist, kann der Fahrer überprüfen, ob sich dem Eigenfahrzeug voraus ein anderes Fahrzeug oder ein Fußgänger befindet, und (einen) Lichtstrahl(en) aus dem/den Frontscheinwerfer(n) des Eigenfahrzeugs steuern, um zu verhindern, dass der Fahrer des anderen Fahrzeugs oder der Fußgänger durch den/die Frontscheinwerfer des Eigenfahrzeugs geblendet wird. Diese sechste Verarbeitungseinrichtung steuert automatisch den/die Frontscheinwerfer des Eigenfahrzeugs mithilfe von Radarinformationen oder einer Kombination aus Radarinformationen und einem Bild, das von einer Kamera oder dergleichen aufgenommen ist.
  • Auf Basis von Radarinformationen, oder durch einen zusammengeführten Prozess auf Basis von Radarinformationen und Bildinformationen, detektiert derVerarbeitungsabschnitt ein Ziel, das einem dem Fahrzeug voraus befindlichen Fahrzeug oder Fußgänger entspricht. In diesem Fall kann ein einem Fahrzeug voraus befindliches Fahrzeug ein voranfahrendes Fahrzeug, ein Fahrzeug oder ein Motorrad auf der Gegenfahrbahn und so weiter einschließen. Beim Detektieren eines solchen Ziels gibt der Verarbeitungsabschnitt einen Befehl aus, den/die Strahl(en) des Frontscheinwerfers beziehungsweise der Frontscheinwerfer abzublenden. Beim Empfang dieses Befehls kann der Steuerabschnitt (die Steuerschaltung), der sich intern im Fahrzeug befindet, den/die Frontscheinwerfer dazu steuern, den/die daraus ausgesandten Strahl(en) abzublenden.
  • Verwandte Techniken sind beschrieben in der Beschreibung des US-Patents Nr. US 6 403 942 B1 , der Beschreibung des US-Patents Nr. US 6 611 610 B1 , der Beschreibung des US-Patents Nr. US 8 543 277 B2 , der Beschreibung des US-Patents Nr. US 8 593 521 B2 und der Beschreibung des US-Patents Nr. US 8 636 393 B2 .
  • Gemäß der oben beschriebenen Verarbeitung durch den Millimeterwellenradar-Detektionsabschnitt und dem oben beschriebenen zusammengeführten Prozess des Millimeterwellenradar-Detektionsabschnitts und einer Bildgebungsvorrichtung wie etwa einer Kamera kann der Millimeterwellenradar mit geringer Größe und hoher Leistungsfähigkeit konstruiert sein, so dass hohe Leistungsfähigkeit und Größenverringerung usw. für die Radarverarbeitung oder den gesamten zusammengeführten Prozess erreicht werden können. Dies verbessert die Korrektheit der Zielerkennung und ermöglicht eine sicherere Fahrtsteuerung für das Fahrzeug.
  • <Anwendungsbeispiel 2: Verschiedene Überwachungssysteme (Naturelemente, Gebäude, Straßen, Bewachung, Sicherheit)>
  • Ein Millimeterwellenradar (Radarsystem), der eine Array-Antenne gemäß einer Ausführungsform der vorliegenden Offenbarung enthält, hat auch einen breiten Anwendungsbereich auf den Gebieten der Überwachung, was Naturelemente, das Wetter, Gebäude, Sicherheit, Pflege und dergleichen einschließen kann. Bei einem Überwachungssystem in diesem Zusammenhang kann eine Überwachungseinrichtung, die den Millimeterwellenradar aufweist, z.B. an einer festen Position installiert sein, um (einen) Überwachungsgegenstand/-gegenstände ständig zu überwachen. Die Detektionsauflösung an dem Millimeterwellenradar ist im Hinblick auf den/die Überwachungsgegenstand/-gegenstände eingestellt und auf einen optimalen Wert gesetzt.
  • Ein Millimeterwellenradar, der eine Array-Antenne gemäß einer Ausführungsform der vorliegenden Offenbarung enthält, ist fähig zur Detektion mit einer elektromagnetischen Welle mit einer Hochfrequenz von z.B. mehr als 100 GHz. Hinsichtlich des Modulationsbandes in den Schemata, die bei der Radarerkennung verwendet werden, z.B. dem FMCW-Verfahren, erzielt der Millimeterwellenradar aktuell ein breites Band von mehr als 4 GHz, wodurch das oben genannte Ultrabreitband (UWB) unterstützt wird. Es wird darauf hingewiesen, dass das Modulationsband mit der Entfernungsauflösung zusammenhängt. Bei einer herkömmlichen Patch-Antenne betrug das Modulationsband bis zu circa 600 MHz, was eine Entfernungsauflösung von 25 cm ergab. Dagegen hat ein Millimeterwellenradar im Zusammenhang mit der vorliegenden Array-Antenne eine Entfernungsauflösung von 3,75 cm, was eine Leistungsfähigkeit anzeigt, die mit der Entfernungsauflösung von herkömmlichem LIDAR konkurrieren kann. Während ein optischer Sensor wie etwa LIDAR zum Detektieren eines Ziels bei Nacht oder schlechtem Wetter nicht fähig ist, wie oben erwähnt, ist ein Millimeterwellenradar immer zur Detektion fähig, gleichgültig ob bei Tag oder Nacht und ungeachtet des Wetters. Infolgedessen ist ein der vorliegenden Array-Antenne zugeordneter Millimeterwellenradar für vielfältige Anwendungen verfügbar, die mit einem Millimeterwellenradar, der eine herkömmliche Patch-Antenne enthält, nicht möglich waren.
  • 36 ist ein Diagramm, das eine Beispielkonstruktion für ein Überwachungssystem 1500 auf Basis von Millimeterwellenradar zeigt. Das Überwachungssystem 1500 auf Basis von Millimeterwellenradar weist mindestens einen Sensorabschnitt 1010 und einen Hauptabschnitt 1100 auf. Der Sensorabschnitt 1010 weist mindestens eine Antenne 1011, die auf den Überwachungsgegenstand 1015 gerichtet ist, einen Millimeterwellenradar-Detektionsabschnitt 1012, der auf Basis einer gesendeten oder empfangenen elektromagnetischen Welle ein Ziel detektiert, und einen Kommunikationsabschnitt (Kommunikationsschaltung) 1013 auf, der detektierte Radarinformationen sendet. Der Hauptabschnitt 1100 weist mindestens einen Kommunikationsabschnitt (Kommunikationsschaltung) 1103, der Radarinformationen empfängt, einen Verarbeitungsabschnitt (Verarbeitungsschaltung) 1101, der vorbestimmte Verarbeitung auf Basis der empfangenen Radarinformationen durchführt, und einen Datenspeicherungsabschnitt (Speicherungsmedium) 1102 auf, in dem ältere Radarinformationen und andere Informationen gespeichert sind, die für die vorbestimmte Verarbeitung usw. benötigt werden. Zwischen dem Sensorabschnitt 1010 und dem Hauptabschnitt 1100 existieren Telekommunikationsverbindungen 1300, über die Senden und Empfang von Informationen und Befehlen zwischen denselben stattfinden. Wie hier verwendet, können die Telekommunikationsverbindungen beispielsweise ein Allzweck-Kommunikationsnetz wie etwa das Internet, ein Mobilkommunikationsnetz, dedizierte Telekommunikationsverbindungen und so weiter einschließen. Es wird darauf hingewiesen, dass das vorliegende Überwachungssystem 1500 so angeordnet sein kann, dass der Sensorabschnitt 1010 und der Hauptabschnitt 1100 statt über Telekommunikationsverbindungen direkt verbunden sind. Zusätzlich zu dem Millimeterwellenradar kann der Sensorabschnitt 1010 auch einen optischen Sensor wie etwa eine Kamera aufweisen. Dies erlaubt eine Zielerkennung durch einen zusammengeführten Prozess, der auf Radarinformationen und Bildinformationen aus der Kamera oder dergleichen basiert, wodurch eine komplexere Detektion des Überwachungsgegenstandes 1015 oder dergleichen ermöglicht wird.
  • Nachfolgend werden Beispiele für Überwachungssysteme, die diese Anwendungen verkörpern, spezifisch beschrieben.
  • [Naturelement-Überwachungssystem]
  • Ein erstes Überwachungssystem ist ein System, das Naturelemente überwacht (im Folgenden als „Naturelement-Überwachungssystem“ bezeichnet). Mit Bezug auf 36 wird dieses Naturelement-Überwachungssystem beschrieben. Überwachungsgegenstände 1015 des Naturelement-Überwachungssystems 1500 können beispielsweise ein Fluss, die Meeresoberfläche, ein Berg, ein Vulkan, die Bodenoberfläche oder dergleichen sein. Wenn der Überwachungsgegenstand 1015 beispielsweise ein Fluss ist, überwacht der an einer fixen Position befestigte Sensorabschnitt 1010 ständig die Wasseroberfläche des Flusses 1015. Diese Wasseroberflächeninformationen werden ständig an einen Verarbeitungsabschnitt 1101 in dem Hauptabschnitt 1100 gesendet. Erreicht oder überschreitet die Wasseroberfläche dann eine bestimmte Höhe, benachrichtigt der Verarbeitungsabschnitt 1101 ein getrenntes System 1200, das separat von dem Überwachungssystem existiert (z.B. ein Wetterbeobachtungs-Überwachungssystem), über die Telekommunikationsverbindungen 1300. Alternativ kann der Verarbeitungsabschnitt 1101 Informationen an ein System (nicht gezeigt) schicken, das die Schleuse verwaltet, wodurch das System auf Anweisung eine an dem Fluss 1015 vorgesehene Schleuse (nicht gezeigt) automatisch schließt usw.
  • Das Naturelement-Überwachungssystem 1500 ist fähig zum Überwachen einer Vielzahl von Sensorabschnitten 1010, 1020, usw. mit dem einzelnen Hauptabschnitt 1100. Wenn die Vielzahl von Sensorabschnitten über einen bestimmten Bereich verteilt sind können die Pegelstände von Flüssen in diesem Bereich gleichzeitig erfasst werden. Dies erlaubt eine Einschätzung dessen, wie der Niederschlag in diesem Bereich die Pegelstände der Flüsse beeinflussen kann, mit möglicherweise katastrophalen Folgen wie etwa Überschwemmungen. Informationen hierzu können über die Telekommunikationsverbindungen 1300 an das getrennte System 1200 (z.B. ein Wetterbeobachtungs-Überwachungssystem) übermittelt werden. So ist das getrennte System 1200 (z.B. ein Wetterbeobachtungs-Überwachungssystem) fähig, die übermittelten Informationen zur Wetterbeobachtung oder Katastrophenvorhersage in einem weiteren Bereich zu nutzen.
  • Das Naturelement-Überwachungssystem 1500 ist in ähnlicher Weise auch auf jedes andere Naturelement als einen Fluss anwendbar. Beispielsweise ist bei einem Überwachungssystem, das Tsunamis oder Sturmfluten überwacht, der Meeresspiegel der Überwachungsgegenstand. Es ist auch möglich, in Antwort auf einen Anstieg des Meeresspiegels automatisch eine Seedeichschleuse zu öffnen oder zu schließen. Alternativ kann der Überwachungsgegenstand eines Überwachungssystems, das Erdrutsche infolge von Niederschlag, Erdbeben oder dergleichen überwacht, die Bodenoberfläche einer Berggegend usw. sein.
  • [Verkehrsüberwachungssystem]
  • Ein zweites Überwachungssystem ist ein System, das den Verkehr überwacht (im Folgenden als „Verkehrsüberwachungssystem“ bezeichnet). Überwachungsgegenstand dieses Verkehrsüberwachungssystems kann beispielsweise ein Bahnübergang, eine spezifische Bahnlinie, eine Flughafen-Start- und -Landebahn, eine Straßenkreuzung, eine spezifische Straße, ein Parkplatz usw. sein.
  • Wenn der Überwachungsgegenstand beispielsweise ein Bahnübergang ist, ist der Sensorabschnitt 1010 an einer Position platziert, wo das Innere des Bahnübergangs überwacht werden kann. In diesem Fall kann der Sensorabschnitt 1010 zusätzlich zu dem Millimeterwellenradar auch einen optischen Sensor wie etwa eine Kamera aufweisen, der eine Detektion eines Ziels (Überwachungsgegenstandes) aus mehr Perspektiven durch einen zusammengeführten Prozess auf Basis von Radarinformationen und Bildinformationen zulässt. Die mit dem Sensorabschnitt 1010 gewonnenen Zielinformationen werden über die Telekommunikationsverbindungen 1300 an den Hauptabschnitt 1100 geschickt. Der Hauptabschnitt 1100 sammelt andere Informationen (z.B. Fahrplaninformationen), die bei einem komplexeren Erkennungsprozess oder komplexerer Steuerung notwendig sein können, und gibt auf dessen Basis notwendige Steueranweisungen oder dergleichen aus. Wie hier verwendet, kann eine notwendige Steueranweisung beispielsweise eine Anweisung sein, einen Zug anzuhalten, wenn bei geschlossenem Bahnübergang eine Person, ein Fahrzeug usw. in dem Bahnübergang aufgefunden wird.
  • Wenn der Überwachungsgegenstand eine Start- und Landebahn auf einem Flughafen ist, kann beispielsweise eine Vielzahl von Sensorabschnitten 1010, 1020 usw. entlang der Start- und Landebahn platziert sein, um die Start- und Landebahn auf eine vorbestimmte Auflösung einzustellen, z.B. eine Auflösung, die das Detektieren eines Fremdkörpers mit einer Größe von 5 cm mal 5 cm auf der Start- und Landebahn zulässt. Das Überwachungssystem 1500 überwacht die Start- und Landebahn ständig, gleichgültig, ob bei Tag oder Nacht und ungeachtet des Wetters. Ermöglicht wird diese Funktion gerade durch die Fähigkeit des Millimeterwellenradars gemäß einer Ausführungsform der vorliegenden Offenbarung, UWB zu unterstützen. Da die vorliegende Millimeterwellenradarvorrichtung mit geringer Größe, hoher Auflösung und niedrigen Kosten ausgebildet sein kann, stellt sie zudem eine realistische Lösung dafür dar, die gesamte Start- und Landebahnoberfläche von einem Ende zum anderen abzudecken. In diesem Fall hält der Hauptabschnitt 1100 die Vielzahl von Sensorabschnitten 1010, 1020 usw. unter integrierter Verwaltung. Wenn ein Fremdkörper auf der Start- und Landebahn gefunden wird, sendet der Hauptabschnitt 1100 Informationen bezüglich Position und Größe des Fremdkörpers an ein Flugsicherungssystem (nicht gezeigt). Beim Empfang derselben verbietet das Flugsicherungssystem vorübergehend das Starten und Landen auf dieser Bahn. In der Zwischenzeit sendet der Hauptabschnitt 1100 Informationen bezüglich Position und Größe des Fremdkörpers an ein separat vorgesehenes Fahrzeug, das beispielsweise automatisch die Oberfläche der Start- und Landebahn reinigt usw. Beim Empfang hiervon kann das Reinigungsfahrzeug sich autonom an die Position bewegen, an der sich der Fremdkörper befindet, und den Fremdkörper automatisch beseitigen. Sobald die Beseitigung des Fremdkörpers beendet ist, sendet das Reinigungsfahrzeug Informationen über die Beendigung an den Hauptabschnitt 1100. Der Hauptabschnitt 1100 bestätigt dann wiederum, dass der Sensorabschnitt 1010 oder dergleichen, der den Fremdkörper detektiert hat, nun meldet, dass „kein Fremdkörper vorhanden ist“ und dass es nun sicher ist, und benachrichtigt das Flugsicherungssystem darüber. Beim Empfang hiervon kann das Flugsicherungssystem die Unterbindung von Starten und Landen auf der Start- und Landebahn aufheben.
  • In dem Fall, in dem der Überwachungsgegenstand ein Parkplatz ist, kann es beispielsweise möglich sein, automatisch zu erkennen, welche Position auf dem Parkplatz aktuell frei ist. Eine verwandte Technik ist in der Beschreibung des US-Patents Nr. US 6 943 726 B2 beschrieben.
  • [Sicherheitsüberwachungssystem]
  • Ein drittes Überwachungssystem ist ein System, das einen Eindringling auf einem privaten Grundstück oder in einem Haus überwacht (im Folgenden als „Sicherheitsüberwachungssystem“ bezeichnet). Überwachungsgegenstand dieses Sicherheitsüberwachungssystems kann beispielsweise eine spezifische Region innerhalb eines privaten Grundstücks oder eines Hauses usw. sein.
  • Wenn der Überwachungsgegenstand ein privates Grundstück ist, kann/können der/die Sensorabschnitt(e) 1010 beispielsweise an einer Position oder zwei oder mehr Positionen platziert sein, an denen der/die Sensorabschnitt(e) 1010 dieselben zu überwachen vermögen. In diesem Fall kann/können der/die Sensorabschnitt(e) zusätzlich zu dem Millimeterwellenradar 1010 auch einen optischen Sensor wie etwa eine Kamera aufweisen, der eine Detektion eines Ziels (Überwachungsgegenstandes) aus mehr Perspektiven durch einen zusammengeführten Prozess auf Basis von Radarinformationen und Bildinformationen zulässt. Die mit dem Sensorabschnitt 1010 gewonnenen Zielinformationen werden über die Telekommunikationsverbindungen 1300 an den Hauptabschnitt 1100 geschickt. Der Hauptabschnitt 1100 sammelt andere Informationen (z.B. Referenzdaten oder dergleichen, die zur korrekten Erkennung dessen notwendig sind, ob der Eindringling eine Person oder ein Tier wie etwa ein Hund oder eine Vogel ist), die bei einem komplexeren Erkennungsprozess oder komplexerer Steuerung notwendig sein können, und gibt auf Basis dessen notwendige Steueranweisungen oder dergleichen aus. Wie hier verwendet, kann eine notwendige Steueranweisung beispielsweise eine Anweisung sein, einen Alarm auszulösen oder Beleuchtung zu aktivieren, die auf dem Gelände installiert ist, und auch eine Anweisung, über Mobil-Telekommunikationsverbindungen oder dergleichen einen für das Gelände Verantwortlichen direkt zu verständigen usw. Der Verarbeitungsabschnitt 1101 in dem Hauptabschnitt 1100 kann eine Erkennung des detektierten Ziels durch eine intern enthaltene, komplexe Erkennungseinrichtung zulassen (die tiefes Lernen oder eine ähnliche Technik verwendet). Alternativ kann eine solche komplexe Erkennungseinrichtung extern vorgesehen sein, wobei die komplexe Erkennungseinrichtung dann über die Telekommunikationsverbindungen 1300 angeschlossen sein kann.
  • Eine verwandte Technik ist in der Beschreibung des US-Patents Nr. US 7 425 983 B2 beschrieben.
  • Eine weitere Ausführungsform eines solchen Sicherheitsüberwachungssystems kann ein Personenüberwachungssystem sein, das an einem Gate auf einem Flughafen, einer Sperre am Bahnhof, einem Eingang eines Gebäudes oder dergleichen zu installieren ist. Der Überwachungsgegenstand eines solchen Personenüberwachungssystems kann beispielsweise ein Gate auf einem Flughafen, eine Sperre am Bahnhof, ein Eingang eines Gebäudes oder dergleichen sein.
  • Wenn der Überwachungsgegenstand ein Gate auf einem Flughafen ist, kann/können der/die Sensorabschnitt(e) 1010 beispielsweise in einer Anlage zur Überprüfung persönlicher Gegenstände an dem Gate installiert sein. In diesem Fall kann es folgende zwei Überprüfungsverfahren geben. In einem ersten Verfahren sendet der Millimeterwellenradar eine elektromagnetische Welle und empfängt die von einem Passagier (der der Überwachungsgegenstand ist) reflektierte elektromagnetische Welle, wodurch persönliche Gegenstände oder dergleichen des Passagiers überprüft werden. In einem zweiten Verfahren wird durch die Antenne eine vom Körper des Passagiers abgestrahlte schwache Millimeterwelle empfangen, wodurch eine Überprüfung auf etwaige Fremdkörper erfolgt, die der Passagier möglicherweise versteckt. In letzterem Verfahren hat der Millimeterwellenradar bevorzugt die Funktion, die empfangene Millimeterwelle abzutasten. Diese Abtastfunktion ist durch Verwendung digitaler Strahlformung oder durch einen mechanischen Abtastvorgang implementierbar. Es wird darauf hingewiesen, dass die Verarbeitung durch den Hauptabschnitt 1100 einen Kommunikationsprozess und einen Erkennungsprozess ähnliche denen in den oben beschriebenen Beispielen nutzen kann.
  • [Gebäudeuntersuchungssystem (zerstörungsfreie Untersuchung)]
  • Ein viertes Überwachungssystem ist ein System, das das Betonmaterial einer Straße, einer Eisenbahnüberführung, eines Gebäudes usw. oder das Innere einer Straße oder des Bodens usw. überwacht oder überprüft (im Folgenden als „Gebäudeuntersuchungssystem“ bezeichnet). Überwachungsgegenstand dieses Gebäudeuntersuchungssystems kann beispielsweise das Innere des Betonmaterials einer Überführung oder eines Gebäudes usw. oder das Innere einer Straße oder des Bodens usw. sein.
  • Wenn der Überwachungsgegenstand das Innere eines Betongebäudes ist, ist der Sensorabschnitt 1010 beispielsweise so strukturiert, dass die Antenne 1011 Abtastbewegungen entlang der Oberfläche eines Betongebäudes durchführen kann. Wie hier verwendet, können „Abtastbewegungen“ manuell implementiert sein, oder es kann separat eine ortsfeste Schiene für die Abtastbewegung vorgesehen sein, auf der die Bewegung durch Verwendung der Antriebskraft aus einem Elektromotor oder dergleichen bewirkt werden kann. In dem Fall, in dem der Überwachungsgegenstand eine Straße oder der Boden ist, kann die Antenne 1011 mit der Fläche nach unten an einem Fahrzeug oder dergleichen installiert sein, und das Fahrzeug kann mit einer konstanten Geschwindigkeit fahren gelassen werden, wodurch eine „Abtastbewegung“ erzeugt wird. Die durch den Sensorabschnitt 1010 zu verwendende elektromagnetische Welle kann eine Millimeterwelle z.B. in der sogenannten Terahertz-Region sein, die 100 GHz überschreitet. Wie bereits beschrieben, ist auch bei einer elektromagnetischen Welle von mehr als z.B. 100 GHz eine Array-Antenne gemäß einer Ausführungsform der vorliegenden Offenbarung dazu anpassbar, geringere Verluste aufzuweisen, als dies bei herkömmlichen Patch-Antennen oder dergleichen der Fall ist. Eine elektromagnetische Welle einer höheren Frequenz vermag tiefer in den überprüften Gegenstand, wie etwa Beton, einzudringen, wodurch eine korrektere zerstörungsfreie Untersuchung realisiert wird. Es wird darauf hingewiesen, dass die Verarbeitung durch den Hauptabschnitt 1100 auch einen Kommunikationsprozess und einen Erkennungsprozess ähnlich denen in den oben beschriebenen anderen Überwachungssystemen nutzen kann.
  • Eine verwandte Technik ist in der Beschreibung des US-Patents Nr. US 6 661367 B2 beschrieben.
  • [Personenüberwachungssystem]
  • Ein fünftes Überwachungssystem ist ein System, das eine Pflege erhaltende Person bewacht (im Folgenden als „Personenbewachungssystem“ bezeichnet). Überwachungsgegenstand dieses Personenbewachungssystems kann beispielsweise eine Pflege erhaltende Person oder ein Patient in einem Krankenhaus usw. sein.
  • Wenn der Überwachungsgegenstand eine Pflege erhaltende Person in einem Zimmer einer Pflegeeinrichtung ist, ist/sind der/die Sensorabschnitt(e) 1010 beispielsweise an einer Position oder zwei oder mehr Positionen in dem Zimmer platziert, an denen der/die Sensorabschnitt(e) 1010 zum Überwachen des gesamten Innenraums des Zimmers fähig ist/sind. In diesem Fall kann der Sensorabschnitt 1010 zusätzlich zu dem Millimeterwellenradar auch einen optischen Sensor wie etwa eine Kamera aufweisen. In diesem Fall kann der Überwachungsgegenstand durch einen zusammengeführten Prozess auf Basis von Radarinformationen und Bildinformationen aus mehr Perspektiven überwacht werden. Wenn der Überwachungsgegenstand eine Person ist, kann andererseits eine Überwachung mit einer Kamera oder dergleichen aus Datenschutzsicht unangebracht sein. Daher muss die Auswahl der Sensoren unter Berücksichtigung dieses Aspektes erfolgen. Es wird darauf hingewiesen, dass eine Zieldetektion durch den Millimeterwellenradar es erlaubt, eine Person, die der Überwachungsgegenstand ist, nicht durch ihr Bild, sondern durch ein Signal zu erfassen (das gewissermaßen ein Schatten der Person ist). Daher kann der Millimeterwellenradar als aus Datenschutzsicht vorteilhafter Sensor angesehen werden.
  • Informationen über die Pflege erhaltende Person, die durch den/die Sensorabschnitt(e) 1010 gewonnen wurden, werden über die Telekommunikationsverbindungen 1300 an den Hauptabschnitt 1100 geschickt. Der Hauptabschnitt 1100 sammelt andere Informationen (z.B. Referenzdaten oder dergleichen, die zum korrekten Erkennen von Zielinformationen der Pflege erhaltenden Person benötigt werden), die in einem komplexeren Erkennungsprozess oder komplexerer Steuerung möglicherweise benötigt werden, und gibt auf dieser Basis notwendige Steueranweisungen oder dergleichen aus. Wie hier verwendet, kann eine notwendige Steueranweisung beispielsweise eine Anweisung sein, auf Basis des Detektionsergebnisses einen Verantwortlichen direkt zu verständigen usw. DerVerarbeitungsabschnitt 1101 in dem Hauptabschnitt 1100 kann eine Erkennung des detektierten Ziels durch eine intern enthaltene, komplexe Erkennungseinrichtung zulassen (die tiefes Lernen oder eine ähnliche Technik verwendet). Alternativ kann eine solche komplexe Erkennungseinrichtung extern vorgesehen sein, wobei die komplexe Erkennungseinrichtung dann über die Telekommunikationsverbindungen 1300 angeschlossen sein kann.
  • In dem Fall, in dem der Überwachungsgegenstand des Millimeterwellenradars eine Person ist, können mindestens die folgenden zwei Funktionen hinzugefügt sein.
  • Eine erste Funktion ist eine Funktion der Überwachung der Herzfrequenz und/oder der Atemfrequenz. Bei einem Millimeterwellenradar ist eine elektromagnetische Welle fähig zum Hindurchsehen durch die Kleidung, um die Position und die Bewegungen der Hautoberfläche des Körpers einer Person zu detektieren. Zuerst detektiert der Verarbeitungsabschnitt 1101 eine Person, die der Überwachungsgegenstand ist, und eine äußere Form derselben. Als Nächstes kann im Fall der Detektion einer Herzfrequenz beispielsweise eine Position auf der Körperoberfläche identifiziert werden, an der die Herzschlagbewegungen leicht detektierbar sind, und die Bewegungen dort können chronologisch detektiert werden. Dies erlaubt beispielsweise das Detektieren einer Herzfrequenz pro Minute. Das gleiche gilt beim Detektieren einer Atemfrequenz. Durch Verwendung dieser Funktion kann der Gesundheitszustand einer Pflege erhaltenden Person ständig überprüft werden, was eine höherwertige Bewachung einer Pflege erhaltenden Person ermöglicht.
  • Eine zweite Funktion ist eine Funktion der Sturzdetektion. Eine Pflege erhaltende Person wie etwa eine ältere Person kann aufgrund einer Schwächung der Beine und Füße von Zeit zu Zeit stürzen. Wenn eine Person stürzt, gelangt die Geschwindigkeit oder Beschleunigung einer Spezifikationsstelle des Körpers der Person, z.B. des Kopfes, auf ein bestimmtes Niveau oder darüber. Wenn der Überwachungsgegenstand des Millimeterwellenradars eine Person ist, kann die relative Geschwindigkeit oder Beschleunigung des Ziels von Interesse ständig detektiert werden. Daher kann beispielsweise durch Identifizieren des Kopfes als des Überwachungsgegenstandes und chronologisches Detektieren seiner relativen Geschwindigkeit oder Beschleunigung ein Sturz erkannt werden, wenn eine Geschwindigkeit mit einem bestimmten Wert oder darüber detektiert wird. Beim Erkennen eines Sturzes kann der Verarbeitungsabschnitt 1101 eine Anweisung oder dergleichen ausgeben, die beispielsweise relevanter Pflegeassistenz entspricht.
  • Es wird darauf hingewiesen, dass der/die Sensorabschnitt(e) 1010 in dem oben beschriebenen Überwachungssystem oder dergleichen an (einer) festen Position(en) befestigt sind. Jedoch kann der / können die Sensorabschnitt(e) 1010 auch an einem bewegten Objekt installiert sein, z.B. einem Roboter, einem Fahrzeug, einem fliegenden Objekt wie etwa einer Drohne. Wie hier verwendet, kann das Fahrzeug oder dergleichen nicht nur ein Kraftfahrzeug einschließen, sondern beispielsweise auch ein kleineres bewegtes Objekt wie etwa einen elektrischen Rollstuhl. In diesem Fall kann dieses bewegte Objekt eine interne GPS-Einheit aufweisen, mit der seine aktuelle Position jederzeit bestätigt werden kann. Zusätzlich kann dieses bewegte Objekt auch die Funktion haben, die Genauigkeit seiner eigenen aktuellen Position durch Verwendung von Karteninformationen und den Kartenaktualisierungsinformationen, die mit Bezug auf die oben genannte fünfte Verarbeitungseinrichtung beschrieben wurden, weiter zu verbessern.
  • Außerdem kann bei jeder Vorrichtung oder jedem System, das den oben beschriebenen ersten bis dritten Detektionsvorrichtungen, ersten bis sechsten Verarbeitungseinrichtungen, ersten bis fünften Überwachungssystemen usw. ähnlich ist, die gleiche Konstruktion verwendet werden, um eine Array-Antenne oder einen Millimeterwellenradar gemäß einer Ausführungsform der vorliegenden Offenbarung zu nutzen.
  • <Anwendungsbeispiel3: Kommunikationssystem>
  • [Erstes Beispiel für ein Kommunikationssystem]
  • Die Wellenleitervorrichtung und Antennenvorrichtung (Array-Antenne) gemäß der vorliegenden Offenbarung kann für den Sender und/oder Empfänger verwendet werden, mit dem ein Kommunikationssystem (Telekommunikationssystem) konstruiert ist. Die Wellenleitervorrichtung und Antennenvorrichtung gemäß der vorliegenden Offenbarung sind aus schichtartig angeordneten leitenden Baugliedern gebildet und sind deshalb fähig, die Größe des Senders und/oder Empfängers kleiner zu halten als bei Verwendung eines Hohlwellenleiters. Zudem ist ein Dielektrikum nicht notwendig, und somit kann der dielektrische Verlust von elektromagnetischen Wellen kleiner gehalten werden als bei Verwendung einer Mikrostreifenleitung. Daher kann ein Kommunikationssystem konstruiert werden, das einen kleinen und hocheffizienten Sender und/oder Empfänger enthält.
  • Ein solches Kommunikationssystem kann ein Kommunikationssystem analoger Art sein, das ein analoges Signal sendet oder empfängt, welches direkt moduliert wird. Jedoch kann zur Konstruktion eines flexibleren und leistungsfähigeren Kommunikationssystems ein digitales Kommunikationssystem verwendet werden.
  • Nachfolgend wird mit Bezug auf 37 ein digitales Kommunikationssystem 800A beschrieben, bei dem eine Wellenleitervorrichtung und eine Antennenvorrichtung gemäß einer Ausführungsform der vorliegenden Offenbarung verwendet werden.
  • 37 ist ein Blockdiagramm, das eine Konstruktion für das digitale Kommunikationssystem 800Azeigt. Das Kommunikationssystem 800A weist einen Sender 810A und einen Empfänger 820A auf. Der Sender 810A weist einen Analog-Digital- (A/D-) Wandler 812, einen Codierer 813, einen Modulator 814 und eine Sendeantenne 815 auf. Der Empfänger 820A weist eine Empfangsantenne 825, einen Demodulator 824, einen Decodierer 823 und einen Digital-Analog- (D/A-) Wandler 822 auf. Mindestens entweder die Sendeantenne 815 oder die Empfangsantenne 825 können durch Verwendung einer Array-Antenne gemäß einer Ausführungsform der vorliegenden Offenbarung implementiert sein. In diesem Anwendungsbeispiel werden die Schaltkreise, die den Modulator 814, den Codierer 813, den A/D-Wandler 812 und so weiter aufweisen, welche mit der Sendeantenne 815 verbunden sind, als die Sendeschaltung bezeichnet. Die Schaltkreise, die den Demodulator 824, den Decodierer 823, den D/A-Wandler 822 und so weiter aufweisen, welche mit der Empfangsantenne 825 verbunden sind, werden als die Empfangsschaltung bezeichnet. Die Sendeschaltung und die Empfangsschaltung können zusammen als die Kommunikationsschaltung bezeichnet werden.
  • Mit dem Analog-Digital- (A/D-) Wandler 812 wandelt der Sender 810A ein analoges Signal, das aus der Signalquelle 811 empfangen wird, in ein digitales Signal um. Als Nächstes wird das digitale Signal durch den Codierer 813 codiert. Wie hier verwendet, bedeutet „Codieren“ ein Verändern des zu sendenden digitalen Signals in ein Format, das für die Kommunikation geeignet ist. Beispiele für eine solche Codierung sind unter anderem CDM (Code-Multiplexen) und dergleichen. Außerdem ist auch jede Wandlung zum Bewirken von TDM (Zeitmultiplexen) oder FDM (Frequenz-Multiplexen) oder OFDM (orthogonalem Frequenz-Multiplexen) ein Beispiel für die Codierung. Das codierte Signal wird durch den Modulator 814 in ein Hochfrequenzsignal gewandelt, um aus der Sendeantenne 815 gesendet zu werden.
  • Auf dem Gebiet der Kommunikation kann eine Welle, die ein auf eine Trägerwelle zu überlagerndes Signal repräsentiert, als eine „Signalwelle“ bezeichnet werden; jedoch hat der Ausdruck „Signalwelle“, wie er in der vorliegenden Beschreibung verwendet wird, nicht diese Definition. Eine „Signalwelle“ gemäß der vorliegenden Beschreibung bedeutet im breiten Sinne jede elektromagnetische Welle, die sich in einem Wellenleiter ausbreiten soll, oder jede elektromagnetische Welle zum Senden/Empfang über ein Antennenelement.
  • Der Empfänger 820Astellt das Hochfrequenzsignal, das durch die Empfangsantenne 825 empfangen wurde, an dem Demodulator 824 zu einem Niederfrequenzsignal und an dem Decodierer 823 zu einem digitalen Signal wieder her. Das decodierte digitale Signal wird durch den Digital-Analog- (D/A-) Wandler 822 zu einem analogen Signal wiederhergestellt und wird an ein Datensenke (einen Datenempfänger) 821 geschickt. Durch die oben genannten Prozesse wird eine Sequenz aus Sende- und Empfangsprozessen beendet.
  • Wenn die kommunizierende Einheit ein digitales Gerät wie etwa ein Computer ist, sind die Analog-Digital-Wandlung des Sendesignals und Digital-Analog-Wandlung des Empfangssignals in den oben genannten Prozessen nicht nötig. Somit können der Analog-Digital-Wandler 812 und der Digital-Analog-Wandler 822 in 37 weggelassen werden. Ein System mit einer solchen Konstruktion ist ebenfalls im digitalen Kommunikationssystem eingeschlossen.
  • In einem digitalen Kommunikationssystem können zur Sicherstellung der Signalintensität oder zur Erweiterung der Kanalkapazität verschiedene Verfahren verwendet werden. Viele solche Verfahren sind auch in einem Kommunikationssystem wirksam, das Funkwellen des Millimeterwellenbandes oder des Terahertz-Bandes nutzt.
  • Funkwellen im Millimeterwellenband oder im Terahertz-Band haben höhere Geradlinigkeit als Funkwellen niedrigerer Frequenzen und unterliegen geringerer Beugung, d.h. geringerem Umlenken auf die Schattenseite eines Hindernisses. Daher ist es nicht ungewöhnlich, dass ein Empfänger eine aus einem Sender gesendete Funkwelle nicht direkt empfängt. Auch in solchen Situationen können reflektierte Wellen oft empfangen werden, jedoch ist eine reflektierte Welle eines Funkwellensignals häufig von schlechterer Qualität als die direkte Welle, was einen stabilen Empfang schwieriger macht. Außerdem kann eine Vielzahl reflektierter Wellen auf unterschiedlichen Wegen eintreffen. In diesem Fall könnten die Empfangswellen mit unterschiedlichen Weglängen sich in der Phase voneinander unterscheiden und so Mehrwegeschwund verursachen.
  • Als eine Technik zur Verbesserung solcher Situationen kann eine sogenannte Antennendiversitätstechnik verwendet werden. Bei dieser Technik weist mindestens entweder der Sender oder der Empfänger eine Vielzahl von Antennen auf. Wenn die Vielzahl von Antennen voneinander um Distanzen getrennt sind, die sich mindestens um circa die Wellenlänge unterscheiden, sind die so entstehenden Zustände der Empfangswellen unterschiedlich. Dementsprechend wird selektiv die Antenne verwendet, die von allen zum Senden/Empfang mit der höchsten Qualität fähig ist, was die Zuverlässigkeit der Kommunikation verbessert. Alternativ können Signale, die aus mehr als einer Antenne gewonnen sind, zur Verbesserung der Signalqualität verschmolzen werden.
  • In dem in 37 gezeigten Kommunikationssystem 800A kann beispielsweise der Empfänger 820A eine Vielzahl von Empfangsantennen 825 aufweisen. In diesem Fall existiert zwischen der Vielzahl von Empfangsantennen 825 und dem Demodulator 824 eine Umschalteinrichtung. Durch die Umschalteinrichtung verbindet der Empfänger 820A die Antenne, die von der Vielzahl von Empfangsantennen 825 das Signal mit der höchsten Qualität bereitstellt, mit dem Demodulator 824. In diesem Fall kann der Sender 810A auch eine Vielzahl von Sendeantennen 815 aufweisen.
  • [Zweites Beispiel für ein Kommunikationssystem]
  • 38 ist ein Blockdiagramm, das ein Beispiel für ein Kommunikationssystem 800B zeigt, welches einen Sender 810B aufweist, der zum Variieren des Strahlungsmusters von Funkwellen fähig ist. In diesem Anwendungsbeispiel ist der Empfänger identisch mit dem in 37 gezeigten Empfänger 820A; deshalb ist der Empfänger in der Illustration in 38 weggelassen. Zusätzlich zu der Konstruktion des Senders 810A weist der Sender 810B auch ein Antennen-Array 815b auf, das eine Vielzahl von Antennenelementen 8151 aufweist. Das Antennen-Array 815b kann eine Array-Antenne gemäß einer Ausführungsform der vorliegenden Offenbarung sein. Der Sender 810B weist ferner eine Vielzahl von Phasenschiebern (PS) 816 auf, die jeweils zwischen dem Modulator 814 und der Vielzahl von Antennenelementen 8151 verbunden sind. In dem Sender 810B wird ein Ausgang des Modulators 814 an die Vielzahl von Phasenschiebern 816 geschickt, wo Phasendifferenzen eingebracht werden und die so entstehenden Signale zu der Vielzahl von Antennenelementen 8151 geführt werden. In dem Fall, in dem die Vielzahl von Antennenelementen 8151 in gleichen Intervallen angeordnet sind, ist eine Hauptkeule 817 des Antennen-Arrays 815b, wenn ein Hochfrequenzsignal, dessen Phase in Bezug auf ein benachbartes Antennenelement um einen bestimmten Betrag abweicht, in jedes Antennenelement 8151 gespeist wird, in einem Azimut ausgerichtet, das von vorne aus geneigt ist, wobei diese Neigung mit der Phasendifferenz übereinstimmt. Dieses Verfahren kann als Strahlformung bezeichnet werden.
  • Das Azimut der Hauptkeule 817 kann verändert werden, indem zugelassen wird, dass die jeweiligen Phasenschieber 816 variierende Phasendifferenzen einbringen. Dieses Verfahren kann als Strahllenkung bezeichnet werden. Durch Finden von Phasendifferenzen, die für den besten Sende-/Empfangszustand förderlich sind, kann die Zuverlässigkeit der Kommunikation erhöht werden. Obwohl das vorliegende Beispiel einen Fall illustriert, in dem die Phasendifferenz, die durch die Phasenschieber 816 einzubringen ist, zwischen jeweils benachbarten Antennenelementen 8151 konstant ist, ist dies nicht einschränkend. Zudem können Phasendifferenzen in der Weise eingebracht werden, dass die Funkwelle in einem Azimut abgestrahlt wird, welches ermöglicht, dass nicht nur die direkte Welle, sondern auch reflektierte Wellen den Empfänger erreichen.
  • Ein Verfahren namens Nullsteuerung kann in dem Sender 810B ebenfalls verwendet werden. Dies ist ein Verfahren, bei dem Phasendifferenzen dazu eingestellt werden, einen Zustand zu erzeugen, in dem die Funkwelle in keiner spezifischen Richtung abgestrahlt wird. Mit Durchführung von Nullsteuerung wird es möglich, ein Abstrahlen von Funkwellen in Richtung jedes anderen Empfängers, an den die Funkwelle nicht gesendet werden soll, einzuschränken. Hierdurch können Interferenzen vermieden werden. Obwohl für die digitale Kommunikation unter Nutzung von Millimeterwellen oder Terahertz-Wellen ein sehr breites Frequenzband zur Verfügung steht, ist es dennoch vorzuziehen, die Bandbreite möglichst effizient zu nutzen. Durch Verwendung von Nullsteuerung können mehrere Instanzen eines Sendens/Empfangs innerhalb desselben Bandes durchgeführt werden, wodurch der Nutzungsgrad der Bandbreite erhöht werden kann. Ein Verfahren, das den Nutzungsgrad der Bandbreite durch Verwendung von Techniken wie etwa Strahlformung, Strahllenkung und Nullsteuerung erhöht, kann manchmal als SDMA (Mehrfachzugriff mit räumlicher Teilung) bezeichnet werden.
  • [Drittes Beispiel für ein Kommunikationssystem]
  • Zur Erhöhung der Kanalkapazität in einem spezifischen Frequenzband kann ein Verfahren namens MIMO (Mehrfach-Eingang und Mehrfach-Ausgang) verwendet werden. Gemäß MIMO wird eine Vielzahl von Sendeantennen und eine Vielzahl von Empfangsantennen verwendet. Aus jeder von der Vielzahl von Sendeantennen wird eine Funkwelle abgestrahlt. In einem Beispiel können jeweils unterschiedliche Signale auf die abzustrahlenden Funkwellen überlagert sein. Jede von der Vielzahl von Empfangsantennen empfängt sämtliche aus der gesendeten Vielzahl von Funkwellen. Da jedoch unterschiedliche Empfangsantennen Funkwellen empfangen, die auf unterschiedlichen Wegen eintreffen, treten unter den Phasen der empfangenen Funkwellen Differenzen auf. Durch Nutzung dieser Differenzen ist es möglich, auf der Empfängerseite die Vielzahl von Signalen, die in der Vielzahl von Funkwellen enthalten waren, zu separieren.
  • Die Wellenleitervorrichtung und Antennenvorrichtung gemäß der vorliegenden Offenbarung kann auch in einem Kommunikationssystem verwendet werden, das MIMO nutzt. Nachfolgend wird ein Beispiel für ein solches Kommunikationssystem beschrieben.
  • 39 ist ein Blockdiagramm, das ein Beispiel für ein Kommunikationssystem 800C zeigt, welches eine MIMO-Funktion implementiert. In dem Kommunikationssystem 800C weist ein Sender 830 einen Codierer 832, einen TX-MIMO-Prozessor 833 sowie zwei Sendeantennen 8351 und 8352 auf. Ein Empfänger 840 weist zwei Empfangsantennen 8451 und 8452, einen RX-MIMO-Prozessor 843 sowie einen Decodierer 842 auf. Es wird darauf hingewiesen, dass die Anzahl der Sendeantennen und die Anzahl der Empfangsantennen jeweils größer als zwei sein kann. Hier wird zur einfacheren Erläuterung ein Beispiel illustriert, bei dem es von jeder Sorte zwei Antennen gibt. Allgemein erhöht sich die Kanalkapazität eines MIMO-Kommunikationssystems proportional zu der Anzahl der Sendeantennen oder der Empfangsantennen;je nachdem, welche geringer ist.
  • Nach dem Empfang eines Signals aus der Datensignalquelle 831 codiert der Sender 830 das Signal an dem Codierer 832 in der Weise, dass das Signal zum Senden bereit ist. Das codierte Signal wird durch den TX-MIMO-Prozessor 833 zwischen den zwei Sendeantennen 8351 und 8352 verteilt.
  • In einem Verarbeitungsverfahren gemäß einem Beispiel des MIMO-Verfahrens teilt der TX-MIMO-Prozessor 833 eine Sequenz codierter Signale in zwei, d.h. so viele, wie es Sendeantennen 8352 gibt, und schickt sie parallel an die Sendeantennen 8351 und 8352. Die Sendeantennen 8351 und 8352 strahlen jeweils Funkwellen ab, die Informationen der geteilten Signalsequenzen enthalten. Wenn N Sendeantennen vorhanden sind, wird die Signalsequenz in N geteilt. Die abgestrahlten Funkwellen werden durch die zwei Empfangsantennen 8451 und 8452 gleichzeitig empfangen. Anders ausgedrückt: In den Funkwellen, die durch jede der Empfangsantennen 8451 und 8452 empfangen werden, sind die zwei Signale, die zur Zeit des Sendens geteilt wurden, gemischt enthalten. Die Separierung zwischen diesen gemischten Signalen wird durch den RX-MIMO-Prozessor 843 erreicht.
  • Die zwei gemischten Signale können separiert werden, indem beispielsweise die Phasendifferenzen zwischen den Funkwellen beachtet werden. Eine Phasendifferenz zwischen zwei Funkwellen des Falls, in dem die aus der Sendeantenne 8351 eingetroffenen Funkwellen durch die Empfangsantennen 8451 und 8452 empfangen werden, unterscheidet sich von einer Phasendifferenz zwischen zwei Funkwellen des Falls, in dem die aus der Sendeantenne 8352 eingetroffenen Funkwellen durch die Empfangsantennen 8451 und 8452 empfangen werden. Das bedeutet: Die Phasendifferenz zwischen Empfangsantennen differiert abhängig von dem Sende-/Empfangsweg. Sofern das räumliche Verhältnis zwischen einer Sendeantenne und einer Empfangsantenne nicht verändert wird, bleibt zudem die Phasendifferenz dazwischen unverändert. Auf Basis einer Korrelation zwischen Empfangssignalen, die durch die zwei Empfangsantennen empfangen werden, verschoben um eine Phasendifferenz, die durch den Sende-/Empfangsweg bestimmt ist, ist es daher möglich, jedes Signal zu extrahieren, das auf diesem Sende-/Empfangsweg empfangen wird. Der RX-MIMO-Prozessor 843 kann die zwei Signalsequenzen aus dem Empfangssignal z.B. durch dieses Verfahren separieren, wodurch die Signalsequenz vor der Teilung wiederhergestellt wird. Die wiederhergestellte Signalsequenz ist noch codiert und wird daher an den Decodierer 842 geschickt, um dort zu dem ursprünglichen Signal wiederhergestellt zu werden. Das wiederhergestellte Signal wird an die Datensenke 841 geschickt.
  • Obwohl das MIMO-Kommunikationssystem 800C in diesem Beispiel ein digitales Signal sendet oder empfängt, kann auch ein MIMO-Kommunikationssystem realisiert werden, das ein analoges Signal sendet oder empfängt. In diesem Fall sind zusätzlich zu der Konstruktion aus 39 ein Analog-Digital-Wandler und ein Digital-Analog-Wandler vorgesehen, wie sie mit Bezug auf 37 beschrieben wurden. Es wird darauf hingewiesen, dass die Informationen, die zum Unterscheiden zwischen Signalen aus unterschiedlichen Sendeantennen verwendbar sind, nicht auf Phasendifferenzinformationen begrenzt sind. Allgemein ausgedrückt, kann für eine andere Kombination aus Sendeantenne und Empfangsantenne die empfangene Funkwelle nicht nur bezüglich der Phase, sondern auch bezüglich Streuung, Schwund, und anderer Bedingungen differieren. Diese werden gemeinsam als CSI (Kanalzustandsinformationen) bezeichnet. CSI sind in einem System, das MIMO nutzt, zur Unterscheidung zwischen unterschiedlichen Sende-/Empfangswegen nutzbar.
  • Es wird darauf hingewiesen, dass es keine wesentliche Bedingung ist, dass die Vielzahl von Sendeantennen Sendewellen abstrahlt, die jeweils unabhängige Signale enthalten. Solange ein Separieren auf der Seite der Empfangsantenne möglich ist, kann jede Sendeantenne eine Funkwelle abstrahlen, die eine Vielzahl von Signalen enthält. Zudem kann auf der Seite der Sendeantenne Strahlformung durchgeführt werden, während eine Sendewelle, die ein einzelnes Signal enthält, als eine synthetische Welle der Funkwellen aus den jeweiligen Sendeantennen an der Empfangsantenne geformt werden kann. Auch in diesem Fall ist jede Sendeantenne zum Abstrahlen einer Funkwelle angepasst, die eine Vielzahl von Signalen enthält.
  • Wie im ersten und zweiten Beispiel können auch in diesem dritten Beispiel verschiedene Verfahren wie etwa CDM, FDM, TDM und OFDM als Verfahren zur Signalcodierung verwendet werden.
  • In einem Kommunikationssystem kann eine Leiterplatte, die eine integrierte Schaltung implementiert (als Signalverarbeitungsschaltung oder Kommunikationsschaltung bezeichnet), zum Verarbeiten von Signalen als eine Schicht auf die Wellenleitervorrichtung und Antennenvorrichtung gemäß einer Ausführungsform der vorliegenden Offenbarung gestapelt sein. Da die Wellenleitervorrichtung und Antennenvorrichtung gemäß einer Ausführungsform der vorliegenden Offenbarung so strukturiert ist, dass plattenartige leitende Bauglieder darin schichtartig angeordnet sind, ist es einfach, eine Leiterplatte mehr auf dieselben zu stapeln. Durch Verwendung einer solchen Anordnung können ein Sender und ein Empfänger mit kleinerem Volumen als in dem Fall realisiert werden, in dem ein Hohlwellenleiter oder dergleichen eingesetzt wird.
  • Im ersten bis dritten Beispiel des Kommunikationssystems, wie oben beschrieben, ist jedes Element eines Senders oder eines Empfängers, z.B. ein Analog-Digital-Wandler, ein Digital-Analog-Wandler, ein Codierer, ein Decodierer, ein Modulator, ein Demodulator, ein TX-MIMO-Prozessor oder ein RX-MIMO-Prozessor in 37, 38 und 39 als ein unabhängiges Element illustriert; jedoch brauchen dieselben nicht getrennt zu sein. Beispielsweise können diese Elemente alle durch eine einzige integrierte Schaltung implementiert sein. Alternativ können einige dieser Elemente kombiniert sein, um durch eine einzige integrierte Schaltung implementiert zu sein. Beide Fälle gelten als Ausführungsform der vorliegenden Erfindung, solange die Funktionen, die in der vorliegenden Offenbarung beschrieben wurden, dadurch realisiert werden.
  • Eine Schlitz-Array-Antenne gemäß der vorliegenden Offenbarung ist auf jedes technische Feld anwendbar, auf dem Antennen verwendet werden. Beispielsweise steht sie für verschiedene Anwendungen zur Verfügung, bei denen Senden/Empfang von elektromagnetischen Wellen des Gigahertz-Bandes oder des Terahertz-Bandes durchgeführt werden. Insbesondere wird sie geeigneterweise in Bordradarsystemen, Überwachungssystemen verschiedener Art, Innenpositionierungssystemen, Drahtlos-Kommunikationssystemen und dergleichen verwendet, wo Größenverringerung erwünscht ist.
  • Die vorliegende Erfindung wurde zwar mit Bezug auf Ausführungsbeispiele derselben beschrieben, jedoch ist für den Fachmann erkennbar, dass die offenbarte Erfindung auf zahlreiche Weisen modifizierbar ist und viele andere Ausführungsformen als die oben spezifisch beschriebenen annehmen kann. Dementsprechend ist beabsichtigt, dass die beigefügten Ansprüche alle Abwandlungen der Erfindung abdecken, die innerhalb des eigentlichen Gedankens und Umfangs der Erfindung fallen.

Claims (15)

  1. Schlitz-Array-Antenne, umfassend: ein erstes elektrisch leitendes Bauglied (110) mit einer ersten elektrisch leitenden Oberfläche (110a) und einer Vielzahl von Schlitzen (112) darin, wobei die Vielzahl von Schlitzen (112) in einer ersten Richtung, die sich entlang der ersten elektrisch leitenden Oberfläche (110a) erstreckt, und in einer zweiten Richtung, welche die erste Richtung schneidet, arrayartig angeordnet ist; ein zweites elektrisch leitendes Bauglied (120) mit einer zweiten elektrisch leitenden Oberfläche (120a), die zu der ersten elektrisch leitenden Oberfläche (110a) entgegengesetzt ist; eine Vielzahl von Wellenleiterbaugliedern (122), die zwischen den ersten und zweiten elektrisch leitenden Baugliedern (110, 120) entlang einer dritten Richtung, welche die erste Richtung schneidet, arrayartig angeordnet ist, wobei jedes Wellenleiterbauglied (122) eine elektrisch leitende Wellenleiterfläche (122a) hat, die sich entlang der ersten Richtung erstreckt, um zu mindestens zwein aus der Vielzahl von Schlitzen (112) entgegengesetzt zu sein, wobei die Wellenleiterfläche (122a) eine gleichmäßige Streifenform aufweist, die sich über Positionen erstreckt, die den mindestens zwei Schlitzen gegenüberliegen, wobei sich die Wellenleiterfläche (122a) vollständig durch die mindestens zwei Schlitze erstreckt, wenn sie aus einer vierten Richtung betrachtet wird, die normal zu Wellenleiterfläche (122a) ist; und einen künstlichen magnetischen Leiter in einer Subregion, die innerhalb einer Region zwischen den ersten und zweiten elektrisch leitenden Baugliedern (110,120) liegt, jedoch außerhalb einer Subregion, welche die Vielzahl von Wellenleiterbaugliedern (122) enthält, wobei der künstliche magnetische Leiter eine Vielzahl von elektrisch leitenden Stäben (124) umfasst, die auf dem zweiten elektrisch leitenden Baugliedern (120) arrayartig angeordnet sind; in einem Raum zwischen zwei benachbarten Wellenleiterflächen (122a) zweier benachbarter Wellenleiterbauglider der Vielzahl von Wellenleiterbaugliedern (122)keine elektrische Wand existiert; und zwischen den zwei benachbarten Wellenleiterbauglidern (122) eine Zeile elektrisch leitender Stäbe (124) vorgesehen ist.
  2. Schlitz-Array-Antenne gemäß Anspruch 1, wobei die zweite Richtung zu der ersten Richtung orthogonal ist; aus der Vielzahl von Schlitzen zwei benachbarte Schlitze entlang der zweiten Richtung jeweils zu den zwei benachbarten Wellenleiterflächen entgegengesetzt sind; die Schlitz-Array-Antenne weiterhin eine elektronische Schaltung umfasst, die mit zwei Wellenleitern, welche sich zwischen der ersten elektrisch leitenden Oberfläche und den zwei Wellenleiterflächen erstreckt, verbunden ist und eine Ausbreitung elektromagnetischer Wellen in den zwei Wellenleitern erlaubt; und während des Betriebs der elektronischen Schaltung eine Differenz der Phase zwischen den elektromagnetischen Wellen, die sich in den zwei Wellenleitern ausbreiten, an den Positionen der zwei Schlitze kleiner als π/4 ist.
  3. Schlitz-Array-Antenne gemäß Anspruch 2, wobei die elektronische Schaltung eine Ausbreitung elektromagnetischer Wellen eines Frequenzbandes mit einer zentralen Wellenlänge λo im freien Raum in den zwei Wellenleitern erlaubt und die Vielzahl von Wellenleiterbaugliedern entlang der zweiten Richtung arrayartig so angeordnet ist, dass ein Intervall zwischen den Mitten der Vielzahl von Wellenleiterbaugliedern kürzer als die Wellenlänge λο ist.
  4. Schlitz-Array-Antenne gemäß Anspruch 3, wobei eine Distanz zwischen der ersten elektrisch leitenden Oberfläche und jeder Wellenleiterfläche λο/4 oder kleiner ist.
  5. Schlitz-Array-Antenne gemäß einem der Ansprüche 1 bis 4, wobei der künstliche magnetische Leiter eine Vielzahl von elektrisch leitenden Stäben aufweist, die jeweils ein führendes Ende, das zu der ersten elektrisch leitenden Oberfläche entgegengesetzt ist, und eine Wurzel, die mit der zweiten elektrisch leitenden Oberfläche verbunden ist, haben.
  6. Schlitz-Array-Antenne gemäß Anspruch 5, wobei in einem Raum zwischen den zwei benachbarten Wellenleiterflächen kein elektrisch leitender Stab existiert.
  7. Schlitz-Array-Antenne gemäß einem der Ansprüche 5 bis 6, wobei die Schlitz-Array-Antenne für mindestens entweder Senden oder Empfang einer elektromagnetischen Welle eines vorbestimmten Bandes verwendet wird und eine Breite jedes Wellenleiterbauglieds, eine Breite jedes elektrisch leitenden Stabes, eine Breite des Raumes zwischen zwei benachbarten elektrisch leitenden Stäben und eine Distanz von der Wurzel jedes elektrisch leitenden Stabes zu der elektrisch leitenden Oberflächejeweils kleiner als λm/2 sind, wobei λm eine Wellenlänge, im freien Raum, einer elektromagnetischen Welle der höchsten Frequenz in dem Betriebsfrequenzband unter elektromagnetischen Wellen in dem vorbestimmten Band bezeichnet.
  8. Schlitz-Array-Antenne gemäß einem der Ansprüche 1 bis 7, wobei das erste elektrisch leitende Bauglied auf einer zu der ersten elektrisch leitenden Oberfläche entgegengesetzten Oberfläche eine Vielzahl von elektrisch leitenden Hörnern aufweist und jedes Horn ein Paar erster elektrisch leitender Wände, die sich entlang der ersten Richtung erstrecken, und ein Paar zweiter elektrisch leitender Wände, die sich entlang der zweiten Richtung erstrecken, aufweist, wobei das Paar erster elektrisch leitender Wände und das Paar zweiter elektrisch leitender Wände aus der Vielzahl von Schlitzen mindestens zwei Schlitze umgibt, die entlang der zweiten Richtung arrayartig angeordnet sind.
  9. Schlitz-Array-Antenne gemäß Anspruch 8, eine Länge der zweiten elektrisch leitenden Wand entlang der zweiten Richtung ist größer als eine Länge der ersten elektrisch leitenden Wand entlang der ersten Richtung.
  10. Schlitz-Array-Antenne gemäß Anspruch 8 oder 9, wobei ein Intervall zwischen dem Paar zweiter elektrisch leitender Wände entlang der ersten Richtung sich von der ersten elektrisch leitenden Oberfläche weg erhöht.
  11. Schlitz-Array-Antenne gemäß Anspruch 10, wobei das Paar zweiter elektrisch leitender Wände Treppenformen hat.
  12. Die Schlitz-Array-Antenne gemäß einem der Ansprüche 1 bis 11, wobei jeder Schlitz eine H-Form hat, die ein Paar vertikaler Abschnitte und einen lateralen Abschnitt, der das Paar vertikaler Abschnitte miteinander verbindet, umfasst.
  13. Radar, umfassend: die Schlitz-Array-Antenne gemäß einem der Ansprüche 1 bis 12 und eine integrierte Mikrowellenschaltung, die mit der Schlitz-Array-Antenne verbunden ist.
  14. Radarsystem, umfassend: den Radar gemäß Anspruch 13 und eine Signalverarbeitungsschaltung, die mit der integrierten Mikrowellenschaltung des Radars verbunden ist.
  15. Funkkommunikationssystem, umfassend: die Schlitz-Array-Antenne gemäß einem der Ansprüche 1 bis 12 und eine mit der Schlitz-Array-Antenne verbundene Kommunikationsschaltung.
DE102016125412.6A 2015-12-24 2016-12-22 Schlitz-Array-Antenne und Radar, Radarsystem sowie Drahtlos-Kommunikationssystem mit der Schlitz-Array-Antenne Active DE102016125412B4 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015251018 2015-12-24
JP2015-251018 2015-12-24

Publications (2)

Publication Number Publication Date
DE102016125412A1 DE102016125412A1 (de) 2017-06-29
DE102016125412B4 true DE102016125412B4 (de) 2023-08-17

Family

ID=59010791

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102016125412.6A Active DE102016125412B4 (de) 2015-12-24 2016-12-22 Schlitz-Array-Antenne und Radar, Radarsystem sowie Drahtlos-Kommunikationssystem mit der Schlitz-Array-Antenne

Country Status (4)

Country Link
US (3) US10381741B2 (de)
JP (1) JP6879729B2 (de)
CN (7) CN207664236U (de)
DE (1) DE102016125412B4 (de)

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014109402B4 (de) * 2014-07-04 2017-06-14 Sick Ag Sensor für eine Rollenbahn und Verfahren zum Erkennen von auf einer Rollenbahn befindlichen Objekten
JP2018511951A (ja) * 2015-11-05 2018-04-26 日本電産株式会社 スロットアンテナ
CN208093734U (zh) * 2015-11-05 2018-11-13 日本电产株式会社 缝隙阵列天线以及雷达系统
US10237843B2 (en) * 2015-11-10 2019-03-19 Mitsubishi Electric Corporation Vehicle-mounted apparatus
JP2019075597A (ja) * 2016-05-20 2019-05-16 日本電産エレシス株式会社 アンテナ装置、アンテナアレイ、レーダ装置、およびレーダシステム
EP3567677A4 (de) * 2017-02-10 2020-02-05 Huawei Technologies Co., Ltd. Antennengruppe und kommunikationsvorrichtung
JP2018182740A (ja) * 2017-04-13 2018-11-15 日本電産株式会社 スロットアレーアンテナ
CN208093762U (zh) * 2017-04-14 2018-11-13 日本电产株式会社 缝隙天线装置以及雷达装置
JP7294608B2 (ja) * 2017-08-18 2023-06-20 ニデックエレシス株式会社 アンテナアレイ
CN108511882B (zh) * 2018-02-10 2024-02-09 广州司南技术有限公司 一种便于自动化生产的振子和天线
KR102481505B1 (ko) * 2018-06-11 2022-12-26 엘지이노텍 주식회사 안테나
US11217902B2 (en) * 2018-07-13 2022-01-04 Metawave Corporation Analog beamforming antenna for millimeter wave applications
EP3844845A1 (de) * 2018-08-27 2021-07-07 Compagnie Plastic Omnium Fahrzeugkarosserieteil mit mindestens einer richtantenne
CN110970711A (zh) * 2018-09-28 2020-04-07 日本电产株式会社 天线元件和天线阵列
CN109301411B (zh) * 2018-10-22 2019-11-15 中国电子科技集团公司第三十八研究所 一种基于超材料技术的多频段波导滤波器
WO2020083474A1 (en) * 2018-10-24 2020-04-30 Abb Schweiz Ag Radar sensor and robot using the same
US11201414B2 (en) 2018-12-18 2021-12-14 Veoneer Us, Inc. Waveguide sensor assemblies and related methods
US11742588B2 (en) * 2019-02-13 2023-08-29 Wisense Technologies Ltd. System and method for feeding a patch antenna array
JP7072724B2 (ja) * 2019-06-25 2022-05-20 京セラ株式会社 アンテナ、無線通信モジュール及び無線通信機器
US10838061B1 (en) * 2019-07-16 2020-11-17 Blackmore Sensors & Analytics, LLC. Method and system for enhanced velocity resolution and signal to noise ratio in optical phase-encoded range detection
US11283162B2 (en) 2019-07-23 2022-03-22 Veoneer Us, Inc. Transitional waveguide structures and related sensor assemblies
US11114733B2 (en) 2019-07-23 2021-09-07 Veoneer Us, Inc. Waveguide interconnect transitions and related sensor assemblies
US11196171B2 (en) 2019-07-23 2021-12-07 Veoneer Us, Inc. Combined waveguide and antenna structures and related sensor assemblies
US10957971B2 (en) 2019-07-23 2021-03-23 Veoneer Us, Inc. Feed to waveguide transition structures and related sensor assemblies
US11171399B2 (en) 2019-07-23 2021-11-09 Veoneer Us, Inc. Meandering waveguide ridges and related sensor assemblies
FI20195844A1 (en) * 2019-10-03 2021-04-04 Koherent Oy SYSTEM AND METHOD FOR MONITORING STRUCTURAL DEFORMATIONS
CN112864635B (zh) * 2019-11-28 2022-08-09 上海华为技术有限公司 一种阵列天线以及设备
SE2030028A1 (en) * 2020-01-31 2021-01-12 Gapwaves Ab A SCALABLE MODULAR ANTENNA ARRANGEMENT
US11378683B2 (en) 2020-02-12 2022-07-05 Veoneer Us, Inc. Vehicle radar sensor assemblies
US11349220B2 (en) 2020-02-12 2022-05-31 Veoneer Us, Inc. Oscillating waveguides and related sensor assemblies
US11563259B2 (en) 2020-02-12 2023-01-24 Veoneer Us, Llc Waveguide signal confinement structures and related sensor assemblies
CN111585050B (zh) * 2020-05-18 2021-03-02 宁波大学 一种宽频带平板阵列天线
CN114063014A (zh) * 2020-07-29 2022-02-18 华为技术有限公司 一种雷达装置和工作设备
CN111948631B (zh) * 2020-08-12 2023-06-30 天津汇智三维科技有限公司 一种地基式动态定位系统
CN112490635B (zh) * 2020-11-05 2023-03-14 陕西飞机工业(集团)有限公司 一种矩阵波导与飞机一体化集成方法及系统
US11757166B2 (en) 2020-11-10 2023-09-12 Aptiv Technologies Limited Surface-mount waveguide for vertical transitions of a printed circuit board
US11901601B2 (en) 2020-12-18 2024-02-13 Aptiv Technologies Limited Waveguide with a zigzag for suppressing grating lobes
US11749883B2 (en) 2020-12-18 2023-09-05 Aptiv Technologies Limited Waveguide with radiation slots and parasitic elements for asymmetrical coverage
US11444364B2 (en) 2020-12-22 2022-09-13 Aptiv Technologies Limited Folded waveguide for antenna
CN112436295B (zh) * 2021-01-28 2021-05-04 南京理工大学 基于脊间隙波导的毫米波高增益高辐射效率槽天线阵列
US11668787B2 (en) 2021-01-29 2023-06-06 Aptiv Technologies Limited Waveguide with lobe suppression
CN113009474B (zh) * 2021-02-09 2023-11-10 北京算丰征途科技有限公司 一种大范围高分辨率人体姿态检测毫米波雷达天线及系统
US11721905B2 (en) * 2021-03-16 2023-08-08 Aptiv Technologies Limited Waveguide with a beam-forming feature with radiation slots
US11855346B2 (en) 2021-03-19 2023-12-26 Veoneer Us, Llc Parallel plate slot array antenna with defined beam squint
US11616306B2 (en) 2021-03-22 2023-03-28 Aptiv Technologies Limited Apparatus, method and system comprising an air waveguide antenna having a single layer material with air channels therein which is interfaced with a circuit board
US11914067B2 (en) * 2021-04-29 2024-02-27 Veoneer Us, Llc Platformed post arrays for waveguides and related sensor assemblies
US11962085B2 (en) 2021-05-13 2024-04-16 Aptiv Technologies AG Two-part folded waveguide having a sinusoidal shape channel including horn shape radiating slots formed therein which are spaced apart by one-half wavelength
US11668788B2 (en) 2021-07-08 2023-06-06 Veoneer Us, Llc Phase-compensated waveguides and related sensor assemblies
US11616282B2 (en) 2021-08-03 2023-03-28 Aptiv Technologies Limited Transition between a single-ended port and differential ports having stubs that match with input impedances of the single-ended and differential ports
CN114511916B (zh) * 2022-04-19 2022-06-17 亿慧云智能科技(深圳)股份有限公司 基于人脸识别的终端设备控制方法、控制装置及终端设备
TWI829494B (zh) * 2022-12-30 2024-01-11 輝創電子股份有限公司 開槽波導天線

Citations (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6191704B1 (en) 1996-12-19 2001-02-20 Hitachi, Ltd, Run environment recognizing apparatus
US6403942B1 (en) 2000-03-20 2002-06-11 Gentex Corporation Automatic headlamp control system utilizing radar and an optical sensor
EP1331688A1 (de) 2002-01-29 2003-07-30 Era Patents Limited Wellenleiter
US6611610B1 (en) 1997-04-02 2003-08-26 Gentex Corporation Vehicle lamp control
US6628299B2 (en) 1998-02-10 2003-09-30 Furuno Electric Company, Limited Display system
US6661367B2 (en) 2001-03-19 2003-12-09 International Business Machines Corporation Non-destructive probing system and a method thereof
US6703967B1 (en) 2000-01-28 2004-03-09 Hitachi Ltd. Distance measuring device
JP2004257848A (ja) 2003-02-26 2004-09-16 Tech Res & Dev Inst Of Japan Def Agency 電波近接センサ
US6943726B2 (en) 2002-05-08 2005-09-13 Daimlerchrysler Ag Device for searching a parking space
US7355524B2 (en) 2001-07-31 2008-04-08 Donnelly Corporation Automotive lane change aid
US7358889B2 (en) 2003-09-11 2008-04-15 Toyota Jidosha Kabushiki Kaishi Object detection system and method of detecting object
US7417580B2 (en) 2003-09-11 2008-08-26 Toyota Jidosha Kabushiki Kaisha Object detection system and object detection method
US7420159B2 (en) 1998-01-07 2008-09-02 Donnelly Corporation Accessory mounting system for mounting a plurality of accessories to the windshield of a vehicle and viewing through a light transmitting portion of a light absorbing layer at the windshield
US7425983B2 (en) 2003-01-21 2008-09-16 Hitachi, Ltd. Security system
US7570198B2 (en) 2004-06-02 2009-08-04 Toyota Jidosha Kabushiki Kaisha Obstacle recognition system and obstacle recognition method
WO2010050122A1 (ja) 2008-10-29 2010-05-06 パナソニック株式会社 高周波導波路およびそれを用いた移相器、放射器、この移相器および放射器を用いた電子機器、アンテナ装置およびこれを備えた電子機器
US7978122B2 (en) 2009-08-13 2011-07-12 Tk Holdings Inc. Object sensing system
US8068134B2 (en) 2005-05-13 2011-11-29 Honda Motor Co., Ltd. Apparatus and method for predicting collision
US20130033404A1 (en) 2011-08-02 2013-02-07 Honda Elesys Co., Ltd. Antenna device
US8446312B2 (en) 2007-12-25 2013-05-21 Honda Elesys Co., Ltd. Electronic scanning type radar device, estimation method of direction of reception wave, and program estimating direction of reception wave
US8543277B2 (en) 2004-12-23 2013-09-24 Magna Electronics Inc. Imaging system for vehicle
US8593521B2 (en) 2004-04-15 2013-11-26 Magna Electronics Inc. Imaging system for vehicle
US8604968B2 (en) 2008-10-08 2013-12-10 Delphi Technologies, Inc. Integrated radar-camera sensor
US8610620B2 (en) 2009-12-08 2013-12-17 Toyota Jidosha Kabushiki Kaisha Object detecting apparatus and object detecting method
US8614640B2 (en) 2007-01-25 2013-12-24 Magna Electronics Inc. Forward facing sensing system for vehicle
US8636393B2 (en) 2006-08-11 2014-01-28 Magna Electronics Inc. Driver assistance system for vehicle
US8803638B2 (en) 2008-07-07 2014-08-12 Kildal Antenna Consulting Ab Waveguides and transmission lines in gaps between parallel conducting surfaces
US8861842B2 (en) 2010-02-05 2014-10-14 Sri International Method and apparatus for real-time pedestrian detection for urban driving
US20150264230A1 (en) 2014-03-17 2015-09-17 Nidec Elesys Corporation Method of manufacturing vehicle-mounted camera housing, vehicle-mounted camera housing, and vehicle-mounted camera
US9286524B1 (en) 2015-04-15 2016-03-15 Toyota Motor Engineering & Manufacturing North America, Inc. Multi-task deep convolutional neural networks for efficient and robust traffic lane detection
US20160140424A1 (en) 2014-11-13 2016-05-19 Nec Laboratories America, Inc. Object-centric Fine-grained Image Classification
US20160264065A1 (en) 2015-03-12 2016-09-15 Nidec Elesys Corporation Vehicle-mounted camera, method of manufacturing vehicle-mounted camera, and method of manufacturing vehicle body
US20170057421A1 (en) 2015-08-27 2017-03-02 Nidec Elesys Corporation Method of attaching vehicle-mounted camera
US20170057422A1 (en) 2015-08-27 2017-03-02 Nidec Elesys Corporation Method of manufacturing vehicle
US20170064165A1 (en) 2015-08-27 2017-03-02 Nidec Elesys Corporation Vehicle-mounted camera and method of manufacturing vehicle-mounted camera

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4873501A (en) * 1986-06-27 1989-10-10 The United States Of America As Represented By The Secretary Of The Navy Internal transmission line filter element
JPH10126118A (ja) * 1996-10-16 1998-05-15 Nec Corp ショートスロット型方向性結合器
JP3498624B2 (ja) 1999-03-31 2004-02-16 株式会社デンソー レーダ装置
WO2001067837A1 (fr) 2000-03-06 2001-09-13 Fujitsu Limited Plaque metallique blindee et dispositif a circuit utilisant cette plaque metallique blindee
JP2001267838A (ja) 2000-03-17 2001-09-28 Kobe Steel Ltd 導波管アンテナの製造方法
JP3779280B2 (ja) 2003-03-28 2006-05-24 富士通株式会社 衝突予測装置
JP2005204344A (ja) * 2005-03-31 2005-07-28 Matsushita Electric Ind Co Ltd スロットアレイアンテナ、導波管製造法および回路形成方法
US7626216B2 (en) * 2005-10-21 2009-12-01 Mckinzie Iii William E Systems and methods for electromagnetic noise suppression using hybrid electromagnetic bandgap structures
JP4602276B2 (ja) 2006-03-23 2010-12-22 三菱電機株式会社 導波管スロットアレーアンテナ装置
WO2008068825A1 (ja) 2006-12-01 2008-06-12 Mitsubishi Electric Corporation 同軸線路スロットアレーアンテナとその製造方法
WO2008081807A1 (ja) 2006-12-28 2008-07-10 Panasonic Corporation 移相器およびアンテナ
EP2117078B1 (de) * 2008-05-05 2017-07-05 Nokia Solutions and Networks Oy Anordnung aus Patchantennenelementen
JP5007281B2 (ja) 2008-07-11 2012-08-22 東光株式会社 誘電体導波管スロットアンテナ
FR2944153B1 (fr) 2009-04-02 2013-04-19 Univ Rennes Antenne multicouche a plans paralleles, de type pillbox, et systeme d'antenne correspondant
JP2011055377A (ja) * 2009-09-03 2011-03-17 Fujitsu Ltd 導波管変換器及びその製造方法
JP2012004700A (ja) 2010-06-15 2012-01-05 Fujitsu Ten Ltd レーダ用アンテナ、及びレーダ装置
FR2966985B1 (fr) * 2010-11-03 2012-12-07 Commissariat Energie Atomique Conducteur magnetique artificiel et antenne
JP6034616B2 (ja) * 2011-09-09 2016-11-30 キヤノン株式会社 導波路及びその製造方法、ならびに電磁波分析装置
US20150244079A1 (en) 2014-02-24 2015-08-27 Hrl Laboratories, Llc. Cavity-backed artificial magnetic conductor
EP2945222A1 (de) * 2014-05-14 2015-11-18 Gapwaves AB Mikrowellen- oder Millimeterwellen-HF-Teil mit Pin-Grid-Array (PGA)- und/oder Ball-Grid-Array (BGA)-Technologien
EP3143665B1 (de) 2014-05-14 2021-04-07 Gapwaves AB Wellenleiter und übertragungsleitungen in lücken zwischen parallelen leitenden oberflächen
JP6379695B2 (ja) 2014-06-04 2018-08-29 ヤマハ株式会社 人工磁気導体及びアンテナ用反射器
CN208093734U (zh) * 2015-11-05 2018-11-13 日本电产株式会社 缝隙阵列天线以及雷达系统
JP2017188867A (ja) * 2015-12-24 2017-10-12 日本電産エレシス株式会社 導波路装置、スロットアンテナ、ならびに当該スロットアンテナを備えるレーダ、レーダシステム、および無線通信システム
DE102017102284A1 (de) * 2016-02-08 2017-08-10 Nidec Elesys Corporation Wellenleitervorrichtung und Antennenvorrichtung mit der Wellenleitervorrichtung
RU2703604C1 (ru) * 2016-02-12 2019-10-21 Телефонактиеболагет Лм Эрикссон (Пабл) Переходное устройство, содержащее бесконтактный переход или соединение между siw и волноводом или антенной

Patent Citations (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6191704B1 (en) 1996-12-19 2001-02-20 Hitachi, Ltd, Run environment recognizing apparatus
US6611610B1 (en) 1997-04-02 2003-08-26 Gentex Corporation Vehicle lamp control
US7420159B2 (en) 1998-01-07 2008-09-02 Donnelly Corporation Accessory mounting system for mounting a plurality of accessories to the windshield of a vehicle and viewing through a light transmitting portion of a light absorbing layer at the windshield
US6628299B2 (en) 1998-02-10 2003-09-30 Furuno Electric Company, Limited Display system
US7161561B2 (en) 1998-02-10 2007-01-09 Furuno Electric Company Limited Display system
US6703967B1 (en) 2000-01-28 2004-03-09 Hitachi Ltd. Distance measuring device
US6403942B1 (en) 2000-03-20 2002-06-11 Gentex Corporation Automatic headlamp control system utilizing radar and an optical sensor
US6661367B2 (en) 2001-03-19 2003-12-09 International Business Machines Corporation Non-destructive probing system and a method thereof
US7355524B2 (en) 2001-07-31 2008-04-08 Donnelly Corporation Automotive lane change aid
EP1331688A1 (de) 2002-01-29 2003-07-30 Era Patents Limited Wellenleiter
US6943726B2 (en) 2002-05-08 2005-09-13 Daimlerchrysler Ag Device for searching a parking space
US7425983B2 (en) 2003-01-21 2008-09-16 Hitachi, Ltd. Security system
JP2004257848A (ja) 2003-02-26 2004-09-16 Tech Res & Dev Inst Of Japan Def Agency 電波近接センサ
US7358889B2 (en) 2003-09-11 2008-04-15 Toyota Jidosha Kabushiki Kaishi Object detection system and method of detecting object
US7417580B2 (en) 2003-09-11 2008-08-26 Toyota Jidosha Kabushiki Kaisha Object detection system and object detection method
US8593521B2 (en) 2004-04-15 2013-11-26 Magna Electronics Inc. Imaging system for vehicle
US7570198B2 (en) 2004-06-02 2009-08-04 Toyota Jidosha Kabushiki Kaisha Obstacle recognition system and obstacle recognition method
US8543277B2 (en) 2004-12-23 2013-09-24 Magna Electronics Inc. Imaging system for vehicle
US8068134B2 (en) 2005-05-13 2011-11-29 Honda Motor Co., Ltd. Apparatus and method for predicting collision
US8636393B2 (en) 2006-08-11 2014-01-28 Magna Electronics Inc. Driver assistance system for vehicle
US8614640B2 (en) 2007-01-25 2013-12-24 Magna Electronics Inc. Forward facing sensing system for vehicle
US8446312B2 (en) 2007-12-25 2013-05-21 Honda Elesys Co., Ltd. Electronic scanning type radar device, estimation method of direction of reception wave, and program estimating direction of reception wave
US8730096B2 (en) 2007-12-25 2014-05-20 Honda Elesys Co., Ltd. Electronic scanning type radar device and method for estimating direction of reception wave
US8730099B2 (en) 2007-12-25 2014-05-20 Honda Elesys Co., Ltd. Electronic scanning type radar device and method for estimating direction of reception wave
US8803638B2 (en) 2008-07-07 2014-08-12 Kildal Antenna Consulting Ab Waveguides and transmission lines in gaps between parallel conducting surfaces
US8604968B2 (en) 2008-10-08 2013-12-10 Delphi Technologies, Inc. Integrated radar-camera sensor
WO2010050122A1 (ja) 2008-10-29 2010-05-06 パナソニック株式会社 高周波導波路およびそれを用いた移相器、放射器、この移相器および放射器を用いた電子機器、アンテナ装置およびこれを備えた電子機器
US7978122B2 (en) 2009-08-13 2011-07-12 Tk Holdings Inc. Object sensing system
US8610620B2 (en) 2009-12-08 2013-12-17 Toyota Jidosha Kabushiki Kaisha Object detecting apparatus and object detecting method
US8861842B2 (en) 2010-02-05 2014-10-14 Sri International Method and apparatus for real-time pedestrian detection for urban driving
US20130033404A1 (en) 2011-08-02 2013-02-07 Honda Elesys Co., Ltd. Antenna device
US20150264230A1 (en) 2014-03-17 2015-09-17 Nidec Elesys Corporation Method of manufacturing vehicle-mounted camera housing, vehicle-mounted camera housing, and vehicle-mounted camera
US20160140424A1 (en) 2014-11-13 2016-05-19 Nec Laboratories America, Inc. Object-centric Fine-grained Image Classification
US20160264065A1 (en) 2015-03-12 2016-09-15 Nidec Elesys Corporation Vehicle-mounted camera, method of manufacturing vehicle-mounted camera, and method of manufacturing vehicle body
US9286524B1 (en) 2015-04-15 2016-03-15 Toyota Motor Engineering & Manufacturing North America, Inc. Multi-task deep convolutional neural networks for efficient and robust traffic lane detection
US20170057421A1 (en) 2015-08-27 2017-03-02 Nidec Elesys Corporation Method of attaching vehicle-mounted camera
US20170057422A1 (en) 2015-08-27 2017-03-02 Nidec Elesys Corporation Method of manufacturing vehicle
US20170064165A1 (en) 2015-08-27 2017-03-02 Nidec Elesys Corporation Vehicle-mounted camera and method of manufacturing vehicle-mounted camera

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Kildal et al., „Local Metamaterial-Based Waveguides in Gaps Between Parallel Metal Plates", IEEE Antennas and Wireless Propagation Letters, Vol. 8, 2009, S. 84-87
Kirino et al., „A 76 GHz Multi-Layered Phased Array Antenna Using o Non-Metal Contact Metamaterial Waveguide", IEEE Transaction on Antennas and Propagation,Vol. 60, Nr. 2, Februar 2012, S. 840-853
Tomas Sehm et al., „A High-Gain 58-GHz Box-Horn Array Antenna with Suppressed Grating Lobes", IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, Nr. 7, Juli 1999, S. 1125-1130
UZ ZAMAN, Ashraf ; KILDA, Per-Simon: Ku band linear slot-array in ridge gapwaveguide technology. In: Antennas and Propagation (EuCAP), 2013 7th European Conference on. 2013, S. 3078-3081. ISBN 978-88-907018-3-2 (e); 978-1-4673-2187-7 (p); 978-88-907018-1-8 (o). URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6546873 [abgerufen am 04.02.2022].
Zaman Uz, A., Kidal, P., Ku Band Linear Slot-Array in Ridge Gapwaveguide Technology. In: 7th European Conference on Antennas and Propagation, 2013, S. 3078-3081

Also Published As

Publication number Publication date
US20190296447A1 (en) 2019-09-26
CN208001004U (zh) 2018-10-23
US10559889B2 (en) 2020-02-11
US10381741B2 (en) 2019-08-13
JP2017121050A (ja) 2017-07-06
JP6879729B2 (ja) 2021-06-02
CN207781871U (zh) 2018-08-28
DE102016125412A1 (de) 2017-06-29
CN207664233U (zh) 2018-07-27
CN206471503U (zh) 2017-09-05
US10957988B2 (en) 2021-03-23
US20200136264A1 (en) 2020-04-30
CN207781897U (zh) 2018-08-28
US20170187121A1 (en) 2017-06-29
CN107039770A (zh) 2017-08-11
CN207664236U (zh) 2018-07-27

Similar Documents

Publication Publication Date Title
DE102016125412B4 (de) Schlitz-Array-Antenne und Radar, Radarsystem sowie Drahtlos-Kommunikationssystem mit der Schlitz-Array-Antenne
DE102016125419B4 (de) Wellenleitervorrichtung, Schlitzantenne und Radar, Radarsystem sowie Drahtlos-Kommunikationssystem mit der Schlitzantenne
DE112016000178B4 (de) Schlitzantenne
DE112016000180B4 (de) Schlitz-Array-Antenne
DE112017000573B4 (de) Wellenleitervorrichtung und Antennenvorrichtung mit der Wellenleitervorrichtung
DE102017102559A1 (de) Wellenleitervorrichtung und Antennenvorrichtung mit der Wellenleitervorrichtung
DE102017102284A1 (de) Wellenleitervorrichtung und Antennenvorrichtung mit der Wellenleitervorrichtung
DE102018115610A1 (de) Wellenleitervorrichtungsmodul, Mikrowellenmodul, Radarvorrichtung und Radarsystem
DE102017100654A1 (de) Wellenleitervorrichtung, Schlitz-Array-Antenne und Radar, Radarsystem sowie Drahtlos-Kommunikationssystem mit der Schlitz-Array-Antenne
DE112018001406T5 (de) Schlitzantennenvorrichtung
DE102018120050A1 (de) Antennen-Array
DE112018002020T5 (de) Wellenleitervorrichtung und antennenvorrichtung mit der wellenleitervorrichtung
DE102018115213A1 (de) Hornantennen-Array
DE112017001568T5 (de) Montagesubstrat, Wellenleitermodul, mit integriertem Schaltkreis zusammenmontiertes Substrat, Mikrowellenmodul
DE112017001257T5 (de) Wellenleitervorrichtung und Antennen-Array
DE112018001974T5 (de) Wellenleitervorrichtung und antennenvorrichtung mit derwellenleitervorrichtung
US20200176886A1 (en) Slot array antenna
DE102018124924A1 (de) Wellenleitende Vorrichtung
DE102016119473B4 (de) Wellenleitervorrichtung und Antennenvorrichtung mit der Wellenleitervorrichtung

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R083 Amendment of/additions to inventor(s)
R081 Change of applicant/patentee

Owner name: NIDEC ELESYS CORPORATION, KAWASAKI-SHI, JP

Free format text: FORMER OWNERS: NIDEC ELESYS CORPORATION, KAWASAKI-SHI, KANAGAWA, JP; WGR CO., LTD., KYOTO-SHI, JP

Owner name: WGR CO., LTD., JP

Free format text: FORMER OWNERS: NIDEC ELESYS CORPORATION, KAWASAKI-SHI, KANAGAWA, JP; WGR CO., LTD., KYOTO, JP

Owner name: NIDEC CORPORATION, JP

Free format text: FORMER OWNERS: NIDEC ELESYS CORPORATION, KAWASAKI-SHI, KANAGAWA, JP; WGR CO., LTD., KYOTO, JP

Owner name: NIDEC CORPORATION, JP

Free format text: FORMER OWNERS: NIDEC ELESYS CORPORATION, KAWASAKI-SHI, KANAGAWA, JP; WGR CO., LTD., KYOTO-SHI, JP

Owner name: WGR CO., LTD., JP

Free format text: FORMER OWNERS: NIDEC ELESYS CORPORATION, KAWASAKI-SHI, KANAGAWA, JP; WGR CO., LTD., KYOTO-SHI, JP

R082 Change of representative

Representative=s name: FLEUCHAUS & GALLO PARTNERSCHAFT MBB PATENTANWA, DE

Representative=s name: FLEUCHAUS & GALLO PARTNERSCHAFT MBB, DE

R081 Change of applicant/patentee

Owner name: NIDEC ELESYS CORPORATION, KAWASAKI-SHI, JP

Free format text: FORMER OWNERS: NIDEC CORPORATION, KYOTO, JP; WGR CO., LTD., KYOTO-SHI, JP

Owner name: WGR CO., LTD., JP

Free format text: FORMER OWNERS: NIDEC CORPORATION, KYOTO, JP; WGR CO., LTD., KYOTO-SHI, JP

R082 Change of representative

Representative=s name: FLEUCHAUS & GALLO PARTNERSCHAFT MBB PATENTANWA, DE

R016 Response to examination communication
R016 Response to examination communication
R016 Response to examination communication
R018 Grant decision by examination section/examining division