DE102016104464B4 - Optische prüfvorrichtung - Google Patents

Optische prüfvorrichtung Download PDF

Info

Publication number
DE102016104464B4
DE102016104464B4 DE102016104464.4A DE102016104464A DE102016104464B4 DE 102016104464 B4 DE102016104464 B4 DE 102016104464B4 DE 102016104464 A DE102016104464 A DE 102016104464A DE 102016104464 B4 DE102016104464 B4 DE 102016104464B4
Authority
DE
Germany
Prior art keywords
light beam
dichroic mirror
light
light source
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
DE102016104464.4A
Other languages
English (en)
Other versions
DE102016104464A1 (de
Inventor
Yeong-Feng Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TEST RESEARCH Inc
Original Assignee
TEST RESEARCH Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TEST RESEARCH Inc filed Critical TEST RESEARCH Inc
Publication of DE102016104464A1 publication Critical patent/DE102016104464A1/de
Application granted granted Critical
Publication of DE102016104464B4 publication Critical patent/DE102016104464B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/0006Industrial image inspection using a design-rule based approach
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/0016Technical microscopes, e.g. for inspection or measuring in industrial production processes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • G01B11/0625Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating with measurement of absorption or reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/1765Method using an image detector and processing of image signal
    • G01N2021/177Detector of the video camera type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/1765Method using an image detector and processing of image signal
    • G01N2021/177Detector of the video camera type
    • G01N2021/1776Colour camera
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • G02B21/08Condensers
    • G02B21/082Condensers for incident illumination only
    • G02B21/084Condensers for incident illumination only having annular illumination around the objective
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/141Beam splitting or combining systems operating by reflection only using dichroic mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30148Semiconductor; IC; Wafer

Abstract

Optische Prüfvorrichtung, die umfasst:
einen dichroitischen Spiegel mit einer ersten Seite und einer der ersten Seite gegenüberliegenden zweiten Seite, wobei der dichroitische Spiegel einen ersten Lichtstrahl transmittiert und einen zweiten Lichtstrahl reflektiert und eine Wellenlänge des zweiten Lichtstrahls sich von einer Wellenlänge des ersten Lichtstrahls unterscheidet;
eine erste Lichtquelle, die auf der ersten Seite des dichroitischen Spiegels angeordnet und dazu konfiguriert ist, den ersten Lichtstrahl, der den dichroitischen Spiegel passiert, an einer Prüfposition bereitzustellen; und
eine erste Bilderfassungseinheit, die auf der zweiten Seite des dichroitischen Spiegels angeordnet und dazu konfiguriert ist, den zweiten Lichtstrahl, der von der Prüfposition kommt und vom dichroitischen Spiegel reflektiert wird, zu erkennen; und
eine zweite Lichtquelle, die dazu konfiguriert ist, einen dritten Lichtstrahl an der Prüfposition entlang eines Strahlengangs bereitzustellen, auf dem der dichroitische Spiegel angeordnet ist, wobei die zweite Lichtquelle eine ringförmige Lichtquelle ist, die um die erste Bilderfassungseinheit angeordnet ist, und der dichroitische Spiegel ferner konfiguriert ist, den dritten Lichtstrahl zu der Prüfposition hin zu reflektieren.

Description

  • HINTERGRUND
  • Gebiet der Offenbarung
  • Die vorliegende Offenbarung bezieht sich auf eine optische Prüfvorrichtung.
  • Beschreibung des Standes der Technik
  • Ein Halbleiterchip wird durch Bilden einer integrierten Schaltung auf einem Halbleiterwafer hergestellt. Die oberste Oberfläche des Halbleiterchips wird im Allgemeinen durch Auftragen einer Passivierungsschicht geschützt. Die Passivierungsschicht kann verhindern, dass der Halbleiterchip unerwünschter Feuchtigkeit und ionischen Verunreinigungen ausgesetzt ist. Um die Dicke und Gleichmäßigkeit der Passivierungsschicht zu erkennen, kann der Wafer unter Verwendung einer Prüfvorrichtung geprüft werden.
  • Die EP 1 061 330 A1 betrifft eine Fehlererfassungsvorrichtung mit mehreren Bilderfassungseinheiten für Prüfobjekte. Die Bilderfassungseinheiten umfassen Prüfmittel für die Prüfobjekte und Speichermittel, die die Zustände der Prüfobjekte abhängig von Kenninformationen, welche die Position des Prüfobjekts angeben, speichern. Die Fehlererfassungsvorrichtung umfasst ferner kombinierte Erfassungsmittel, welche die Prüfergebnisse für die Prüfobjekte der mehreren Bilderfassungseinheiten untereinander auf Grundlage der Kenninformationen in Verbindung bringen und damit einen Fehler erfassen. Als Lichtquelle dienen einerseits eine erste Lichtquelle, die hier als Laser ausgeführt sein kann, und eine zweite Lichtquelle, die ringförmig ausgeführt sein kann. Dabei ist die zweite Lichtquelle nicht um eine der Bilderfassungseinheiten herum angeordnet und der ausgesendete Lichtstrahl durchläuft den dichroitischen Spiegel nicht.
  • Die US 2015/0168304 A1 betrifft einen Objektträger, ein System und ein Verfahren zur Prüfung eines transparenten oder halbtransparenten Objekts mittels Gegenlicht. Der Objektträger weist eine photolumineszente Schicht auf, auf die das Objekt gelegt wird. Das System umfasst eine erste Lichtquelle, die sich über der photolumineszenten Schicht befindet und Licht durch das Objekt zu der photolumineszenten Schicht hin ausstrahlt. Ein von der photolumineszenten Schicht zurückkommendes Licht wird von einer optischen Einheit aufgefangen und dann von einem Sensor erfasst. Die optische Einheit kann einen dichroitischen Strahlteiler aufweisen. Des Weiteren kann eine zweite, gegebenenfalls ringförmige Lichtquelle vorgesehen sein, deren ausgestrahltes Licht außerhalb der optischen Einheit zum Objektträger geführt wird und die nicht um die Bilderfassungseinheit herum angeordnet ist.
  • Die US 2013/0043405 A1 betrifft ein System und ein Verfahren zur Erfassung von photolumineszenten Bildern von Objekten (Solarzellen oder Wafer), die sich entlang einer Fertigungsstraße bewegen. Das System weist einen Transportmechanismus auf, mit dem das Objekt in eine Messzone transportiert wird, und einen Bewegungsapparat, um die Bewegung dieses Objekts während des Erfassens der photolumineszenten Bildern aufrecht zu erhalten. Eine photolumineszente Analyse dieses Objekts wird innerhalb der Messzone durch eine Analysevorrichtung durchgeführt. Die Analysevorrichtung weist eine Lichtquelle auf, mit der das Objekt bestrahlt wird, sodass Photolumineszenz an dem Objekt auftritt, und eine Bilderfassungseinheit, die ein Bild der Photolumineszenz erfasst. Außerdem kann die Lichtquelle als ringförmige Lichtquelle um die Bilderfassungseinheit angeordnet sein. Allerdings wird hier kein dichroitischer Spiegel erwähnt.
  • Die US 6,005,965 A betrifft einen Prüfapparat für Objekte (Halbleiterpaket) mit einer senkrechten Beleuchtung und einer schrägen Beleuchtung, die unterschiedliche Emissionsspektren aufweisen. Des Weiteren weist der Prüfapparat eine erste Bilderfassungseinheit, die eine Draufsicht auf das Objekt erfasst, und eine zweite Bilderfassungseinheit, die ein schräges Bild vom Objekt erfasst, sowie zwei Filter, die das entsprechend andere Licht vor den zugehörigen Bilderfassungseinheiten herausfiltern, auf. Es kann eine ringförmige Lichtquelle vorgesehen sein, die direkt um das Objekt herum angeordnet ist.
  • Die WO 2015/053712 A1 betrifft ein Prüfsystem, insbesondere für ophthalmische Linsen, mit mehreren Kameras, die als Bilderfassungseinheiten dienen. Die Kameras können monochrome Kameras sein, um eine höhere Auflösung zu erreichen.
  • ZUSAMMENFASSUNG
  • Ein Aspekt der vorliegenden Offenbarung ist eine optische Prüfvorrichtung bereitzustellen, die einen dichroitischen Spiegel, eine erste Lichtquelle, eine erste Bilderfassungseinheit und eine zweite Lichtquelle beinhaltet. Der dichroitische Spiegel hat eine erste Seite und eine der ersten Seite gegenüberliegende zweite Seite. Der dichroitische Spiegel transmittiert einen ersten Lichtstrahl und reflektiert einen zweiten Lichtstrahl. Die Wellenlänge des zweiten Lichtstrahls unterscheidet sich von der Wellenlänge des ersten Lichtstrahls. Die erste Lichtquelle ist auf der ersten Seite des dichroitischen Spiegels angeordnet und dazu konfiguriert, den ersten Lichtstrahl an einer Prüfposition bereitzustellen, der den dichroitischen Spiegel passiert. Die erste Bilderfassungseinheit ist auf der zweiten Seite des dichroitischen Spiegels angeordnet und dazu konfiguriert, den zweiten Lichtstrahl, der von der Prüfposition kommt und vom dichroitischen Spiegel reflektiert wird, zu erkennen. Die zweite Lichtquelle ist eine ringförmige Lichtquelle, die um die erste Bilderfassungseinheit angeordnet ist. Die zweite Lichtquelle ist dazu konfiguriert, einen dritten Lichtstrahl an der Prüfposition entlang eines Strahlengangs bereitzustellen, auf dem der dichroitische Spiegel angeordnet ist. Der dichroitische Spiegel ist ferner konfiguriert, den dritten Lichtstrahl zu der Prüfposition hin zu reflektieren.
  • Ein weiterer Aspekt der vorliegenden Offenbarung ist eine optische Prüfvorrichtung bereitzustellen, die eine erste Lichtquelle, einen dichroitischen Spiegel, eine erste Bilderfassungseinheit, eine zweite Lichtquelle und eine dritte Lichtquelle beinhaltet. Die erste Lichtquelle stellt einen ersten Lichtstrahl an einer Prüfposition bereit. Die erste Lichtquelle und die Prüfposition bilden eine optische Achse. Der dichroitische Spiegel ist in der optischen Achse angeordnet und hat eine erste Seite und eine der ersten Seite gegenüberliegende zweite Seite. Der erste Lichtstrahl passiert den dichroitischen Spiegel von der ersten Seite zur Prüfposition. Die erste Bilderfassungseinheit ist außerhalb der optischen Achse angeordnet und dazu konfiguriert, einen zweiten Lichtstrahl, der von der zweiten Seite des dichroitischen Spiegels reflektiert wird, zu erkennen. Der zweite Lichtstrahl kommt von der Prüfposition und hat eine andere Wellenlänge als der erste Lichtstrahl. Die erste Lichtquelle und die erste Bilderfassungseinheit teilen sich zumindest einen Teil eines gemeinsamen Strahlengangs. Die zweite Lichtquelle ist eine ringförmige Lichtquelle, die um die erste Bilderfassungseinheit angeordnet ist. Die zweite Lichtquelle ist dazu konfiguriert, einen dritten Lichtstrahl an der Prüfposition entlang eines Strahlengangs bereitzustellen, auf dem der dichroitische Spiegel angeordnet ist. Der dichroitische Spiegel ist ferner konfiguriert, den dritten Lichtstrahl zu der Prüfposition hin zu reflektieren Die dritte Lichtquelle ist dazu konfiguriert, einen vierten Lichtstrahl an der Prüfposition bereitzustellen. Ein Strahlengang des vierten Lichtstrahls ist vom dichroitischen Spiegel beabstandet.
  • Figurenliste
    • 1 ist ein schematisches Schaubild einer optischen Prüfvorrichtung gemäß einer Ausführungsform der vorliegenden Offenbarung;
    • 2 ist ein Transmissionsspektrum des dichroitischen Spiegels von 1, bei manchen Ausführungsformen;
    • 3 ist ein schematisches Schaubild einer optischen Prüfvorrichtung gemäß einer weiteren Ausführungsform der vorliegenden Offenbarung; und
    • 4 ist ein schematisches Schaubild einer optischen Prüfvorrichtung gemäß noch einer weiteren Ausführungsform der vorliegenden Offenbarung;
  • AUSFÜHRLICHE BESCHREIBUNG
  • Es wird nun ausführlich auf die vorliegenden Ausführungsformen der Offenbarung Bezug genommen, wobei Beispiele dafür in den beiliegenden Zeichnungen veranschaulicht sind. Nach Möglichkeit werden in den Zeichnungen und in der Beschreibung die gleichen Bezugszeichen verwendet, um sich auf die gleichen oder ähnliche Teile zu beziehen.
  • 1 ist ein schematisches Schaubild einer optischen Prüfvorrichtung gemäß einer Ausführungsform der vorliegenden Offenbarung. Die optische Prüfvorrichtung beinhaltet einen dichroitischen Spiegel 110, eine erste Lichtquelle 120 und eine erste Bilderfassungseinheit 130. Der dichroitische Spiegel 110 hat eine erste Seite 112 und eine der ersten Seite 112 gegenüberliegende zweite Seite 114. Der dichroitische Spiegel 110 transmittiert einen ersten Lichtstrahl 122 und reflektiert einen zweiten Lichtstrahl 912. Die Wellenlänge des zweiten Lichtstrahls 912 unterscheidet sich von der Wellenlänge des ersten Lichtstrahls 122. Die erste Lichtquelle 120 ist auf der ersten Seite 112 des dichroitischen Spiegels 110 angeordnet und dazu konfiguriert, dass sie den ersten Lichtstrahl 122 bereitstellt, der den dichroitischen Spiegel 110 passiert. Die erste Bilderfassungseinheit 130 ist auf der zweiten Seite 114 des dichroitischen Spiegels 110 angeordnet und dazu konfiguriert, den zweiten Lichtstrahl 912, der vom dichroitischen Spiegel 110 reflektiert wird, zu erkennen.
  • Bei manchen Ausführungsformen kann die optische Prüfvorrichtung eine Probe 910 mit einer Wellenlängenumwandlungsschicht (nicht gezeigt) prüfen, die den ersten Lichtstrahl 122 in den zweiten Lichtstrahl 912 umwandeln kann. Aus diesem Grund gibt die erste Lichtquelle 120 während des Prüfprozesses den ersten Lichtstrahl 122 ab, der den dichroitischen Spiegel 110 passiert und danach auf der Probe 910 auftrifft. Die Wellenlängenumwandlungsschicht der Probe 910 wandelt den ersten Lichtstrahl 122 in den zweiten Lichtstrahl 912 um und der zweite Lichtstrahl 912 wandert zurück zum dichroitischen Spiegel 110. Der dichroitische Spiegel 110 reflektiert dann den zweiten Lichtstrahl 912 zur ersten Bilderfassungseinheit 130, so dass die erste Bilderfassungseinheit 130 das Bild der Probe 910 empfangen kann.
  • Da die optische Prüfvorrichtung der vorliegenden Ausführungsform den dichroitischen Spiegel 110 verwendet, um die Strahlgänge des ersten Lichtstrahls 122 und des zweiten Lichtstrahls 912 anzuordnen, können der ersten Lichtstrahl 122 und der zweite Lichtstrahl 912 ggf. einen geringen, sogar im Wesentlichen keinen Energieverlust aufweisen. Mit anderen Worten kann die Energie des ersten Lichtstrahls 122 und des zweiten Lichtstrahls 912 effektiv genutzt werden. Da die erste Bilderfassungseinheit 130 den zweiten Lichtstrahl 912, der vom dichroitischen Spiegel 110 reflektiert wird, erkennt, zeigt das Bild der Probe 910 außerdem kein Problem der chromatischen Aberration, das auf die Dispersion von Licht zurückzuführen ist, wenn ein Lichtstrahl ein Material passiert. Aus diesem Grund kann das Bild direkt analysiert werden, ohne dass ein Bildkompensationsprozess durchgeführt wird.
  • Bei manchen Ausführungsformen kann der dichroitische Spiegel 110 ein Kurzpassfilter oder ein Bandpassfilter sein, das durch eine Kombination eines Kurzpassfilters und eines Langpassfilters gebildet sein kann. Das Kurzpassfilter transmittiert Licht unter einer gewissen Wellenlänge und reflektiert (oder blockiert) Licht über dieser Wellenlänge. Das Langpassfilter transmittiert Licht über einer gewissen Wellenlänge und reflektiert (oder blockiert) Licht unter dieser Wellenlänge. Das Bandpassfilter transmittiert Licht in einem gewissen Wellenlängenbereich und reflektiert (oder blockiert) Licht außerhalb dieses Wellenlängenbereichs.
  • Die optische Prüfvorrichtung beinhaltet des Weiteren die zweite Lichtquelle 140, die dazu konfiguriert ist, einen dritten Lichtstrahl 142 an der Prüfposition 900 entlang eines Strahlengangs P1 bereitzustellen, auf dem der dichroitische Spiegel 110 angeordnet ist. Außerdem reflektiert der dichroitische Spiegel 110 des Weiteren den dritten Lichtstrahl 142. Der dritte Lichtstrahl 142 kann eine andere Wellenlänge als der erste Lichtstrahl 122 und der zweite Lichtstrahl 912 haben. Beispielsweise ist der erste Lichtstrahl 122 ultraviolettes Licht, ist der zweite Lichtstrahl 912 blaues Licht und ist der dritte Lichtstrahl 142 rotes Licht oder gelbes Licht, d. h. die zweite Lichtquelle 140 ist eine Quelle für sichtbares Licht. Das Filter 170 transmittiert auch den dritten Lichtstrahl 142 und die erste Bilderfassungseinheit 130 erkennt des Weiteren den dritten Lichtstrahl 142. Der Klarheit wegen zeigt 1 die Ränder des dritten Lichtstrahls 142.
  • Der dritte Lichtstrahl 142, der von der zweiten Lichtquelle 140 abgegeben wird, wird vom dichroitischen Spiegel 110 reflektiert und tritt entlang des Strahlengangs P1 auf die Probe 910 auf. Die Probe 910 reflektiert zumindest einen Teil des dritten Lichtstrahls 142, der zurück zum dichroitischen Spiegel 110 wandert, das Filter 170 passiert und von der ersten Bilderfassungseinheit 130 erkannt wird.
  • Der dritte Lichtstrahl 142 kann das Signal des zweiten Lichtstrahls 912 betonen. Ausführlicher gesprochen können der zweite Lichtstrahl 912 und der dritte Lichtstrahl 142, in manchen Ausführungsformen, auf dem Farbspektrum weit auseinander liegen, um einen hohen Kontrast zu bilden. Somit kann der zweite Lichtstrahl 912 in dem von der ersten Bilderfassungseinheit 130 erkannten Bild betont sein und das Signal der Passivierungsschicht der Probe 910 ist besser ersichtlich.
  • Die zweite Lichtquelle 140 ist eine ringförmige Lichtquelle und die zweite Lichtquelle 140 ist um die erste Bilderfassungseinheit 130 angeordnet. Das heißt, dass der dritte Lichtstrahl 142 schräg auf die Probe 910 einfällt. Der Klarheit wegen zeigt 1 einen Halbkreis der zweiten Lichtquelle 140.
  • Bei manchen Ausführungsformen beinhaltet die optische Prüfvorrichtung des Weiteren die dritte Lichtquelle 150, die dazu konfiguriert ist, einen vierten Lichtstrahl 152 an der Prüfposition 900 entlang eines Strahlengangs P2 bereitzustellen, der vom dichroitische Spiegel 110 beabstandet ist. Das heißt, dass der dichroitische Spiegel 110 den vierten Lichtstrahl 152, der von der dritten Lichtquelle 150 abgegeben wird, nicht blockiert. Der Klarheit wegen zeigt 1 Ränder des vierten Lichtstrahls 152. Der vierte Lichtstrahl 152 kann eine andere Wellenlänge als der erste Lichtstrahl 122, der zweite Lichtstrahl 912 und der dritte Lichtstrahl 142 haben. Beispielsweise ist der erste Lichtstrahl 122 ultraviolettes Licht, ist der zweite Lichtstrahl 912 blaues Licht, ist der dritte Lichtstrahl 142 rotes Licht und ist der vierte Lichtstrahl 152 gelbes Licht, d. h. die dritte Lichtquelle 150 ist eine Quelle für sichtbares Licht. Der dichroitische Spiegel 110 kann des Weiteren den vierten Lichtstrahl 152 reflektieren, das Filter 170 transmittiert auch den vierten Lichtstrahl 152 und die erste Bilderfassungseinheit 130 erkennt des Weiteren den vierten Lichtstrahl 152. Bei manchen Ausführungsformen können der zweite Lichtstrahl 912 und der vierte Lichtstrahl 152 auf dem Farbspektrum weit auseinander liegen, um einen hohen Kontrast zu bilden. Somit kann der zweite Lichtstrahl 912 in dem von der ersten Bilderfassungseinheit 130 erkannten Bild betont sein und das Signal der Passivierungsschicht der Probe 910 ist besser ersichtlich.
  • Die dritte Lichtquelle 150 ist eine ringförmige Lichtquelle. Die dritte Lichtquelle 150 ist um die optische Achse O angeordnet, die von der ersten Lichtquelle 120 und der Prüfposition 900 (und/oder dem dichroitischen Spiegel 110) gebildet wird. Das heißt, dass der vierte Lichtstrahl 152 schräg auf die Probe 910 einfällt. Der Klarheit wegen zeigt 1 einen Halbkreis der dritten Lichtquelle 150.
  • 2 ist ein Transmissionsspektrum des dichroitischen Spiegels 110 aus 1, bei manchen Ausführungsformen. Es wird auf die 1 und 2 Bezug genommen. In 2 ist der dichroitische Spiegel 110 ein Kurzbandfilter, das Licht unter einer Wellenlänge λ0 transmittiert und Licht über der Wellenlänge λ0 reflektiert (oder blockiert). Bei manchen Ausführungsformen hat der erste Lichtstrahl 122 eine Wellenlänge unter der Wellenlänge λ0 und der zweite Lichtstrahl 912 eine Wellenlänge über der Wellenlänge λ0. Mit anderen Worten ist die Wellenlänge des ersten Lichtstrahls 122 kürzer als die Wellenlänge des zweiten Lichtstrahls. Wie in 2 gezeigt, ist die Transmission der Wellenlänge unter der Wellenlänge λ0 hoch, wie z. B. im Wesentlichen 100 %, während die Transmission der Wellenlänge über der Wellenlänge λ0 hingegen niedrig ist, wie z. B. im Wesentlichen 0 %. Das heißt, dass der erste Lichtstrahl 122 eine hohe Lichttransmissionsrate hat, der zweite Lichtstrahl 912 hingegen eine geringe Transmissionsrate (oder eine hohe Reflexionsrate) in Bezug auf den dichroitischen Spiegel 110 hat. Somit können der erste Lichtstrahl 122 und der zweite Lichtstrahl 912 ggf. einen geringen, sogar im Wesentlichen keinen Energieverlust aufweisen. Das Transmissionsspektrum des dichroitischen Spiegels 110 dient lediglich zur Veranschaulichung und sollte den Umfang der beanspruchten Offenbarung nicht einschränken. Der durchschnittliche Fachmann kann ein Transmissionsspektrum für den dichroitischen Spiegel 110 gemäß den tatsächlichen Umständen auswählen.
  • Es wird auf 1 Bezug genommen. Bei manchen Ausführungsformen ist der erste Lichtstrahl 122 ein ultravioletter Lichtstrahl, d.h. die erste Lichtquelle 120 ist eine Quelle für ultraviolettes Licht, und ist der zweite Lichtstrahl 912 ein sichtbarer Lichtstrahl, wie z. B. ein blauer Lichtstrahl. Der beanspruchte Umfang der vorliegenden Offenbarung ist dieser Hinsicht jedoch nicht eingeschränkt.
  • Bei manchen Ausführungsformen kann die Probe 910 eine Leiterplatte (PCB) oder ein Wafer sein und dessen Wellenlängenumwandlungsschicht davon eine Passivierungsschicht (oder Schutzschicht), um darunter gebildete Schaltungen zu schützen. Die optische Prüfvorrichtung der vorliegenden Ausführungsform kann die Dicke und/oder die Gleichmäßigkeit der Passivierungsschicht messen. Um die Dicke der Passivierungsschicht zu messen, kann eine Mehrzahl von Wellenlängenumwandlungsmaterialien in die Passivierungsschicht hinzugefügt werden. Durch Anlegen eines einfallenden Lichts mit einer kürzeren Wellenlänge auf die Probe 910 können deren Wellenlängenumwandungsmaterialien Licht mit längerer Wellenlänge erzeugen. Die Intensität des Lichts mit längerer Wellenlänge hängt von der Dicke der Passivierungsschicht ab und dessen Lichtverteilung hängt von der Gleichmäßigkeit der Passivierungsschicht ab. Bei manchen Ausführungsformen sind die Wellenlängenumwandlungsmaterialien fluoreszierende Materialien, die Licht mit kürzerer Wellenlänge (wie z. B. ultraviolettes Licht) absorbieren und Licht mit längerer Wellenlänge (wie z. B. sichtbares Licht) abgeben können, und der beanspruchte Umfang der vorliegenden Offenbarung ist in dieser Hinsicht nicht eingeschränkt.
  • Bei manchen Ausführungsformen beinhaltet die optische Prüfvorrichtung des Weiteren ein Filter 170, das zwischen dem dichroitischen Spiegel 110 und der ersten Bilderfassungseinheit 130 angeordnet ist, um den ersten Lichtstrahl 122 zu blockieren und gleichzeitig den zweiten Lichtstrahl 912 zu transmittieren. Beispielsweise kann das Filter 170 vor einer Lichtempfangsoberfläche 132 der ersten Bilderfassungseinheit 130 angeordnet sein. Das Filter 170 kann ein Ultraviolett-Sperrfilter sein, wenn der erste Lichtstrahl 122 ultraviolettes Licht ist. Da das Filter 170 den ersten Lichtstrahl 122 blockieren kann, ist das Rauschen des ersten Lichtstrahls 122 nicht in dem von der ersten Bilderfassungseinheit 130 erkannten Bild enthalten.
  • In 1 stellt die erste Lichtquelle 120 den ersten Lichtstrahl 122 an einer Prüfposition 900 bereit. Die Probe 910 ist an der Prüfposition 900 angeordnet und die erste Bilderfassungseinheit 130 erkennt den zweiten Lichtstrahl 912, der von der an der Prüfposition 900 angeordneten Probe 910 kommt. In 1 bilden die erste Lichtquelle 120 und die Prüfposition 900 eine optische Achse O und der dichroitische Spiegel 110 ist auf der optischen Achse O angeordnet. Alternativ bilden die erste Lichtquelle 120 und der dichroitische Spiegel 110 die optische Achse O. Der erste Lichtstrahl 122 wandert entlang der optischen Achse O.
  • Bei manchen Ausführungsformen teilen sich die erste Lichtquelle 120 und die erste Bilderfassungseinheit 130 zumindest einen Teil eines gemeinsamen Strahlengangs. Beispielsweise teilen sich die erste Lichtquelle 120 und die erste Bilderfassungseinheit 130 einen Teil der optischen Achse O zwischen dem dichroitischen Spiegel 110 und der Prüfposition 900 und die erste Bilderfassungseinheit 130 ist außerhalb der optischen Achse O angeordnet. Bei dieser Konfiguration kann der erste Lichtstrahl 122 senkrecht auf die Probe 910 einfallen und die erste Bilderfassungseinheit 130 kann das senkrechte Licht (d. h. den zweiten Lichtstrahl 912) erkennen, der von der Probe 910 reflektiert wird. Gemäß der Fresnel-Gleichung hat normales Licht eine gleichmäßigere (oder geringere) Reflexionsrate als schräges Licht. Somit kann eine koaxiale Konfiguration den Energieverlust des ersten Lichtstrahls 122 und des zweiten Lichtstrahls 912 weiter verringern.
  • Bei manchen Ausführungsformen ist die erste Bilderfassungseinheit 130 eine Farbkamera und hat eine Modulationsübertragungsfunktion (MTF). Die Modulation (oder die Größenordnung) der MTF liegt in einem Bereich von ungefähr 30 % bis ungefähr 100 % bei ungefähr 50 Lp/mm (Linienpaaren pro mm) (entspricht einer Auflösung von ungefähr 10 µm) bis ungefähr 25 Lp/mm (entspricht einer Auflösung von ungefähr 20 µm). Beispielsweise ist die Modulation der MTF bei ungefähr 33,3 Lp/mm (entspricht ungefähr 15 µm) größer als 30 %. Die Farbkamera kann einen Lichtsensor und ein vor dem Lichtsensor angeordnetes Farbfilter beinhalten und der beanspruchte Umfang der vorliegenden Offenbarung ist in dieser Hinsicht nicht eingeschränkt. Bei dieser Konfiguration ist die Auflösung der ersten Bilderfassungseinheit 130 hoch genug, um die Intensität des zweiten Lichtstrahls 912 des erkannten Bildes zu bestimmen, jedoch nicht so hoch, dass der Hintergrund des erkannten Bildes betont wird.
  • Bei manchen anderen Ausführungsformen ist die erste Bilderfassungseinheit 130 eine Monochrom-Kamera und hat eine Modulationsübertragungsfunktion (MTF). Die Modulation der MTF liegt in einem Bereich von ungefähr 30 % bis ungefähr 100 % bei ungefähr 20 Lp/mm (entspricht einer Auflösung von ungefähr 25 µm) bis ungefähr 14,2 Lp/mm (entspricht einer Auflösung von ungefähr 35 µm). Beispielsweise ist die Modulation der MTF bei ungefähr 16,7 Lp/mm (entspricht ungefähr 30 µm) größer als 30 %. Bei manchen Ausführungsformen ist die Monochrom-Kamera ein Lichtsensor, um die Intensität von Licht zu erkennen und ein Bild in Graustufen zu zeigen. Bei dieser Konfiguration ist die Auflösung der ersten Bilderfassungseinheit 130 hoch genug, um die Intensität des zweiten Lichtstrahls 912 des erkannten Bildes zu bestimmen, jedoch nicht so hoch, dass der Hintergrund des erkannten Bildes betont wird.
  • 3 ist ein schematisches Schaubild einer optischen Prüfvorrichtung gemäß einer weiteren Ausführungsform der vorliegenden Offenbarung. Der Unterschied zwischen der optischen Prüfvorrichtung der Fig. und 3 ist die Anzahl der dritten Lichtquelle(n). In 3 gibt es mehrere dritte Lichtquellen. Beispielsweise gibt es zwei dritte Lichtquellen 150 und 150'. Die zwei dritten Lichtquellen 150 und 150' können ringförmige Lichtquellen und um die optische Achse O angeordnet sein, die von der ersten Lichtquelle 120 und der Prüfposition 900 (und/oder dem dichroitischen Spiegel 110) gebildet wird. Die vierten Lichtstrahlen 152 und 152' können unterschiedliche Wellenlängen aufweisen. Der vierte Lichtstrahl 152 wandert entlang des Strahlengangs P2 und der vierte Lichtstrahl 152' wandert entlang eines Strahlengangs P2', der vom Strahlengang P2 beabstandet ist. Das heißt, dass der dichroitische Spiegel 110 und die dritte Lichtquelle 150' den vierten Lichtstrahl 152 nicht blockieren und der dichroitische Spiegel 110 und die dritte Lichtquelle 150 den vierten Lichtstrahl 152' nicht blockieren. Andere relevante strukturelle Details der optischen Prüfvorrichtung in 3 ähneln der optischen Prüfvorrichtung aus 1 und daher wird im Folgenden eine diesbezügliche Beschreibung nicht wiederholt.
  • 4 ist ein schematisches Schaubild einer optischen Prüfvorrichtung gemäß noch einer weiteren Ausführungsform der vorliegenden Offenbarung. Der Unterschied zwischen der optischen Prüfvorrichtungen der 1 und 4 liegt in der Konfiguration der dritten Lichtquelle. In 4 ist die dritte Lichtquelle 150 von 1 durch eine zweite Bilderfassungseinheit 160 ersetzt. Die zweite Bilderfassungseinheit 160 ist dazu konfiguriert, dass sie ein Bild der Prüfposition 900 (oder der Probe 910) schräg erfasst. Die zweite Bilderfassungseinheit 160 hat ein Sichtfeld FOV, das zumindest einen Teil des dichroitischen Spiegels 110 und zumindest einen Teil der ersten Bilderfassungseinheit 120 sichtbar macht. Das heißt, dass sie zweite Bilderfassungseinheit 160 keine Bilder nur von dem dichroitischen Spiegels 110 und der ersten Bilderfassungseinheit 120 erfasst. Da die zweite Bilderfassungseinheit 160 das Bild der Prüfposition 900 (oder der Probe 910) schräg erfasst, können manche Merkmale, die von einem normalen Winkel aus kaum zu erfassen sind (wie z. B. die Lichtintensität eines Teils der Passivierungsschicht, die auf Seitenwänden der Schaltungen der Probe 910 angeordnet ist) von der zweiten Bilderfassungseinheit 160 erfasst werden. Bei manchen anderen Ausführungsformen kann die dritte Lichtquelle 150' aus 3 zur optischen Prüfvorrichtung von 4 hinzugefügt werden oder die dritte Lichtquelle 150' von 3 kann durch die zweite Bilderfassungseinheit 160 ersetzt werden, und der beanspruchte Umfang ist in dieser Hinsicht nicht eingeschränkt. Bei manchen Ausführungsformen können mehrere zweite Bilderfassungseinheiten 160 vorhanden sein. Bei manchen Ausführungsformen ist die zweite Bilderfassungseinheit 160 eine Farbkamera und hat eine Modulationsübertragungsfunktion (MTF). Die Modulation der MTF liegt in einem Bereich von ungefähr 30 % bis ungefähr 100 % bei ungefähr 50 Lp/mm (entspricht einer Auflösung von ungefähr 10 µm) bis ungefähr 25 Lp/mm (entspricht einer Auflösung von ungefähr 20 µm). Beispielsweise ist die Modulation der MTF bei ungefähr 33,3 Lp/mm (entspricht ungefähr 15 µm) größer als 30 %. Bei manchen anderen Ausführungsformen ist die zweite Bilderfassungseinheit 160 eine Monochrom-Kamera und hat eine Modulationsübertragungsfunktion (MTF). Die Modulation der MTF liegt in einem Bereich von ungefähr 30 % bis ungefähr 100 % bei ungefähr 20 Lp/mm (entspricht einer Auflösung von ungefähr 25 µm) bis ungefähr 14,2 Lp/mm (entspricht einer Auflösung von ungefähr 35 µm). Beispielsweise ist die Modulation der MTF bei ungefähr 16,7 Lp/mm (entspricht ungefähr 30 µm) größer als 30 %. Andere relevante strukturelle Details der optischen Prüfvorrichtung in 4 ähneln der optischen Prüfvorrichtung aus 1 und daher wird im Folgenden eine diesbezügliche Beschreibung nicht wiederholt.
  • Auch wenn die vorliegende Offenbarung in Bezug auf gewisse Ausführungsformen davon äußerst ausführlich beschrieben wurde, sind auch andere Ausführungsformen möglich. Aus diesem Grund sollten der Geist und der Umfang der beiliegenden Ansprüche nicht auf die Beschreibung der hier enthaltenen Ausführungsformen beschränkt sein.
  • Für den Fachmann ist ersichtlich, dass diverse Modifikationen und Variationen an der Struktur der vorliegenden Offenbarung vorgenommen werden können, ohne sich vom Umfang oder Geist der Offenbarung zu entfernen. Angesichts des Vorstehenden soll die vorliegende Offenbarung Modifikationen und Variationen dieser Offenbarung mit einschließen, sofern sie in den Umfang der folgenden Ansprüche fallen.

Claims (16)

  1. Optische Prüfvorrichtung, die umfasst: einen dichroitischen Spiegel mit einer ersten Seite und einer der ersten Seite gegenüberliegenden zweiten Seite, wobei der dichroitische Spiegel einen ersten Lichtstrahl transmittiert und einen zweiten Lichtstrahl reflektiert und eine Wellenlänge des zweiten Lichtstrahls sich von einer Wellenlänge des ersten Lichtstrahls unterscheidet; eine erste Lichtquelle, die auf der ersten Seite des dichroitischen Spiegels angeordnet und dazu konfiguriert ist, den ersten Lichtstrahl, der den dichroitischen Spiegel passiert, an einer Prüfposition bereitzustellen; und eine erste Bilderfassungseinheit, die auf der zweiten Seite des dichroitischen Spiegels angeordnet und dazu konfiguriert ist, den zweiten Lichtstrahl, der von der Prüfposition kommt und vom dichroitischen Spiegel reflektiert wird, zu erkennen; und eine zweite Lichtquelle, die dazu konfiguriert ist, einen dritten Lichtstrahl an der Prüfposition entlang eines Strahlengangs bereitzustellen, auf dem der dichroitische Spiegel angeordnet ist, wobei die zweite Lichtquelle eine ringförmige Lichtquelle ist, die um die erste Bilderfassungseinheit angeordnet ist, und der dichroitische Spiegel ferner konfiguriert ist, den dritten Lichtstrahl zu der Prüfposition hin zu reflektieren.
  2. Optische Prüfvorrichtung nach Anspruch 1, wobei sich die erste Lichtquelle und die erste Bilderfassungseinheit zumindest einen Teil eines gemeinsamen Strahlengangs teilen.
  3. Optische Prüfvorrichtung nach Anspruch 1, wobei der dichroitische Spiegel ein Bandpassfilter oder ein Kurzpassfilter ist.
  4. Optische Prüfvorrichtung nach Anspruch 1, wobei die Wellenlänge des ersten Lichtstrahls kürzer als die Wellenlänge des zweiten Lichtstrahls ist.
  5. Optische Prüfvorrichtung nach Anspruch 1, wobei der erste Lichtstrahl ein ultravioletter Lichtstrahl ist und der zweite Lichtstrahl ein sichtbarer Lichtstrahl ist.
  6. Optische Prüfvorrichtung nach Anspruch 1, die des Weiteren umfasst: ein Filter, das zwischen dem dichroitischen Spiegel und der ersten Bilderfassungseinheit angeordnet ist, um den ersten Lichtstrahl zu blockieren und gleichzeitig den zweiten Lichtstrahl zu transmittieren.
  7. Optische Prüfvorrichtung nach Anspruch 1, die des Weiteren umfasst: eine dritte Lichtquelle, die dazu konfiguriert ist, einen vierten Lichtstrahl an der Prüfposition entlang eines Strahlengangs bereitzustellen, der vom dichroitischen Spiegel beabstandet ist.
  8. Optische Prüfvorrichtung nach Anspruch 7, wobei die dritte Lichtquelle eine ringförmige Lichtquelle ist.
  9. Optische Prüfvorrichtung nach Anspruch 8, wobei die dritte Lichtquelle um eine optische Achse angeordnet ist, die von der erste Lichtquelle und dem dichroitischen Spiegel gebildet wird.
  10. Optische Prüfvorrichtung nach Anspruch 7, wobei der vierte Lichtstrahl ein sichtbarer Lichtstrahl ist.
  11. Optische Prüfvorrichtung nach Anspruch 1, wobei der dritte Lichtstrahl ein sichtbarer Lichtstrahl ist.
  12. Optische Prüfvorrichtung nach Anspruch 1, wobei die erste Lichtquelle den ersten Lichtstrahl an der Prüfposition bereitstellt, wobei die erste Bilderfassungseinheit den zweiten Lichtstrahl, der von der Prüfposition kommt, erkennt, und wobei die optische Prüfvorrichtung des Weiteren umfasst: eine zweite Bilderfassungseinheit, die dazu konfiguriert ist, ein Bild der Prüfposition schräg zu erkennen, wobei die zweite Bilderfassungseinheit ein Sichtfeld hat, das zumindest einen Teil des dichroitischen Spiegels und zumindest einen Teil der ersten Bilderfassungseinheit sichtbar macht.
  13. Optische Prüfvorrichtung nach Anspruch 1, wobei die erste Bilderfassungseinheit eine Farbkamera ist und eine Modulationsübertragungsfunktion (MTF) hat und die Modulation der MTF in einem Bereich von ungefähr 30 % bis ungefähr 100 % bei ungefähr 50 Lp/mm bis ungefähr 25 Lp/mm liegt
  14. Optische Prüfvorrichtung nach Anspruch 1, wobei die erste Bilderfassungseinheit eine Monochrom-Kamera ist und eine Modulationsübertragungsfunktion (MTF) hat und die Modulation der MTF in einem Bereich von ungefähr 30 % bis ungefähr 100 % bei ungefähr 20 Lp/mm bis ungefähr 14,2 Lp/mm liegt
  15. Optische Prüfvorrichtung, die umfasst: eine erste Lichtquelle, die einen ersten Lichtstrahl an einer Prüfposition bereitstellt, wobei die erste Lichtquelle und die Prüfposition eine optische Achse bilden; einen dichroitischen Spiegel, der auf der optischen Achse angeordnet ist und eine erste Seite und eine der ersten Seite gegenüberliegende zweite Seite hat, wobei der erste Lichtstrahl den dichroitischen Spiegel von der ersten Seite zur Prüfposition passiert; eine erste Bilderfassungseinheit, die außerhalb der optischen Achse angeordnet und dazu konfiguriert ist, einen zweiten Lichtstrahl, der von der zweiten Seite des dichroitischen Spiegels reflektiert wird, zu erkennen, wobei der zweite Lichtstrahl von der Prüfposition kommt und eine andere Wellenlänge als der erste Lichtstrahl aufweist, und wobei sich die erste Lichtquelle und die erste Bilderfassungseinheit zumindest einen Teil eines gemeinsamen Strahlengangs teilen; eine zweite Lichtquelle, die dazu konfiguriert ist, einen dritten Lichtstrahl an der Prüfposition entlang eines Strahlengangs bereitzustellen, auf dem der dichroitische Spiegel angeordnet ist, wobei die zweite Lichtquelle eine ringförmige Lichtquelle ist, die um die erste Bilderfassungseinheit angeordnet ist, und der dichroitische Spiegel ferner konfiguriert ist, den dritten Lichtstrahl zu der Prüfposition hin zu reflektieren; und eine dritte Lichtquelle, die dazu konfiguriert ist, einen vierten Lichtstrahl an der Prüfposition bereitzustellen, wobei ein Strahlengang des vierten Lichtstrahls vom dichroitischen Spiegel beabstandet ist.
  16. Optische Prüfvorrichtung nach Anspruch 15, die des Weiteren eine zweite Bilderfassungseinheit umfasst, die dazu konfiguriert ist, ein Bild der Prüfposition zu erfassen, wobei die zweite Bilderfassungseinheit ein Sichtfeld hat, das zumindest einen Teil des dichroitischen Spiegels, zumindest einen Teil der ersten Bilderfassungseinheit und zumindest einen Teil der zweiten Lichtquelle sichtbar macht.
DE102016104464.4A 2015-12-29 2016-03-11 Optische prüfvorrichtung Active DE102016104464B4 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/983,470 US10600174B2 (en) 2015-12-29 2015-12-29 Optical inspection apparatus
US14/983,470 2015-12-29

Publications (2)

Publication Number Publication Date
DE102016104464A1 DE102016104464A1 (de) 2017-06-29
DE102016104464B4 true DE102016104464B4 (de) 2023-07-06

Family

ID=59010748

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102016104464.4A Active DE102016104464B4 (de) 2015-12-29 2016-03-11 Optische prüfvorrichtung

Country Status (5)

Country Link
US (1) US10600174B2 (de)
JP (1) JP6229005B2 (de)
CN (1) CN106931892B (de)
DE (1) DE102016104464B4 (de)
TW (1) TWI579524B (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109425474A (zh) * 2017-08-22 2019-03-05 中国科学院长春光学精密机械与物理研究所 一种光学对准方法、装置及系统
CN110186925A (zh) * 2018-02-22 2019-08-30 致茂电子(苏州)有限公司 检测装置
US20210109267A1 (en) * 2019-10-09 2021-04-15 Viavi Solutions Inc. Optical filter and device
TWI738232B (zh) * 2020-02-27 2021-09-01 由田新技股份有限公司 基板量測系統及其方法
WO2023180916A1 (en) * 2022-03-22 2023-09-28 Copan Italia S.P.A. Device and method for acquiring images of biological sample

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6005965A (en) 1997-04-07 1999-12-21 Komatsu Ltd. Inspection apparatus for semiconductor packages
EP1061330A1 (de) 1998-11-30 2000-12-20 Olympus Optical Co., Ltd. Fehlstellendetektor
US20080118886A1 (en) 2006-11-21 2008-05-22 Rongguang Liang Apparatus for dental oct imaging
US20130043405A1 (en) 2010-01-04 2013-02-21 BT Imaging Pty. Ltd. In-Line Photoluminescence Imaging of Semiconductor Devices
WO2015053712A1 (en) 2013-10-08 2015-04-16 Emage Vision Pte. Ltd. System and method for inspection of wet ophthalmic lens
US20150168304A1 (en) 2012-08-27 2015-06-18 Kla-Tencor Corporation Object carrier, system and method for back light inspection

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8802933A (nl) * 1988-11-28 1990-06-18 Heuft Qualiplus Bv Werkwijze en inrichting voor het inspekteren van de binnenwand van een lichaam.
KR100423714B1 (ko) * 1998-08-10 2004-03-18 미쓰비시덴키 가부시키가이샤 프린트기판의 검사장치
CN1198135C (zh) 2000-04-10 2005-04-20 财团法人工业技术研究院 生物芯片检测装置
US6657216B1 (en) * 2002-06-17 2003-12-02 Nanometrics Incorporated Dual spot confocal displacement sensor
US20040207836A1 (en) * 2002-09-27 2004-10-21 Rajeshwar Chhibber High dynamic range optical inspection system and method
JP2004101533A (ja) 2003-09-19 2004-04-02 Mitsubishi Electric Corp 積層材料の凹設部検査装置及びレーザ加工装置
US7356176B2 (en) 2004-02-26 2008-04-08 Omron Corporation Mounting-error inspecting method and substrate inspecting apparatus using the method
DE102004024785A1 (de) 2004-05-17 2005-12-15 Schott Ag Verfahren zur Vermessung topographischer Strukturen auf Bauelementen
JP3660936B1 (ja) 2004-06-24 2005-06-15 株式会社ファースト 硬化コンクリートの気泡計測方法および気泡計測装置
EP1612569A3 (de) 2004-06-30 2006-02-08 Omron Corporation Verfahren und Vorrichtung zur Substrat-Oberflächeninspektion mittels eines vielfarbigen Lichtdemissionssystems
CN101536021A (zh) * 2006-11-01 2009-09-16 微软公司 健康集成平台api
JP2010151745A (ja) * 2008-12-26 2010-07-08 Omron Corp 変位センサ
CN101699128A (zh) 2009-09-30 2010-04-28 苏州明富自动化设备有限公司 一种自动检测用光源及自动检测设备
CN102052950B (zh) 2009-11-03 2012-08-22 瀚萱科技有限公司 影像测定胶量的方法
CN102213680A (zh) 2010-04-09 2011-10-12 久元电子股份有限公司 用来检测发光二极管晶粒外观的检测装置及检测方法
CN101913105B (zh) 2010-08-16 2012-01-18 合肥工业大学 用于数控机床在位测量的非接触三维光学测头及测量方法
JP5681452B2 (ja) 2010-11-08 2015-03-11 株式会社ディスコ 測定方法および測定装置
KR101240947B1 (ko) 2010-12-30 2013-03-18 주식회사 미르기술 비전검사장치
US20130265459A1 (en) * 2011-06-28 2013-10-10 Pelican Imaging Corporation Optical arrangements for use with an array camera
TWI431240B (zh) 2011-11-21 2014-03-21 Univ Southern Taiwan Tech 三維量測系統
JP5743958B2 (ja) 2012-05-30 2015-07-01 キヤノン株式会社 計測方法、露光方法および装置
TW201425863A (zh) 2012-12-21 2014-07-01 Ind Tech Res Inst 曲率量測系統及其方法
CN103335819B (zh) 2013-06-12 2015-08-05 中国科学院光电技术研究所 一种用于高精度角锥棱镜光学检测的装置与方法
GB201315248D0 (en) 2013-08-28 2013-10-09 Univ Singapore Imaging
CN103438831A (zh) 2013-09-16 2013-12-11 上海现代先进超精密制造中心有限公司 一种离轴椭球面镜的检测装置及其检测方法
US9551672B2 (en) * 2013-12-18 2017-01-24 Lasertec Corporation Defect classifying method and optical inspection apparatus for silicon carbide substrate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6005965A (en) 1997-04-07 1999-12-21 Komatsu Ltd. Inspection apparatus for semiconductor packages
EP1061330A1 (de) 1998-11-30 2000-12-20 Olympus Optical Co., Ltd. Fehlstellendetektor
US20080118886A1 (en) 2006-11-21 2008-05-22 Rongguang Liang Apparatus for dental oct imaging
US20130043405A1 (en) 2010-01-04 2013-02-21 BT Imaging Pty. Ltd. In-Line Photoluminescence Imaging of Semiconductor Devices
US20150168304A1 (en) 2012-08-27 2015-06-18 Kla-Tencor Corporation Object carrier, system and method for back light inspection
WO2015053712A1 (en) 2013-10-08 2015-04-16 Emage Vision Pte. Ltd. System and method for inspection of wet ophthalmic lens

Also Published As

Publication number Publication date
TWI579524B (zh) 2017-04-21
CN106931892B (zh) 2020-08-04
US20170186150A1 (en) 2017-06-29
TW201723419A (zh) 2017-07-01
DE102016104464A1 (de) 2017-06-29
JP6229005B2 (ja) 2017-11-08
US10600174B2 (en) 2020-03-24
JP2017120248A (ja) 2017-07-06
CN106931892A (zh) 2017-07-07

Similar Documents

Publication Publication Date Title
DE102016104464B4 (de) Optische prüfvorrichtung
DE112013001409T5 (de) Prozess und Vorrichtung zum Messen der Kristallfraktion von Kristallinen Monocast-Siliziumwafern
DE112012002619T5 (de) Verfahren und Vorrichtung zur Inspektion von lichtemittierenden Halbleiterelementen mittels Photolumineszenz-Abbildung
DE102009044151B4 (de) Vorrichtung zur optischen Waferinspektion
DE112015003394B4 (de) Vorrichtung zur gleichzeitigen dunkelfeldinspektion und inspektion mittels differentialinterferenzkontrast
DE102007006525A1 (de) Verfahren und Vorrichtung zur Detektierung von Defekten
DE112016004097T5 (de) Waferinspektionsverfahren und Waferinspektionsvorrichtung
DE112008002816B4 (de) Prüfverfahren anhand von erfassten Bildern und Prüfvorrichtung
DE102009000528A1 (de) Inspektionsvorrichtung und -verfahren für die optische Untersuchung von Objektoberflächen, insbesondere von Waferoberflächen
DE112015001898T5 (de) Automatisierte Inspektion während des Produktionsprozesses von Profilen der Deformation des Waferrandes unter Verwendung der schnellen Photoreflexions-Spektroskopie
DE112017000464T5 (de) Einzelwellenlängen-Ellipsometrie mit verbesserter Spotgrößen-Fähigkeit
WO2010121753A1 (de) Verfahren zur detektion von fehlstellen in einer dünnen waferscheibe für ein solarelement sowie vorrichtung zur durchführung des verfahrens
DE112017001576T5 (de) Metrologiesystem für alle oberflächenschichten
EP3134726B1 (de) Verfahren und vorrichtung zum erkennen von nickelsulfid-einschlüssen in einer glasplatte
DE60025878T2 (de) Vorrichtung und Verfahren zur Überprüfung eines Resistmusters
EP4014027A1 (de) Verfahren und vorrichtung zur analyse einer mehrfachsolarzelle mit zumindest zwei sub-solarzellen mittels lumineszenzstrahlung
DE102008028869A1 (de) Verfahren und Vorrichtung zur Inspektion eines scheibenförmigen Gegenstandes
DE112020002180T5 (de) Normaleinfall-phasenverschiebungs-deflektometrie-sensor, -system und - verfahren zum prüfen einer oberfläche einer probe
EP2831570B1 (de) Verfahren zur detektion vergrabener schichten
DE102022108486A1 (de) Optisches Prüfsystem und optisches Prüfverfahren
DE10359723B4 (de) Vorrichtung und Verfahren zur Inspektion eines Wafers
DE102016202198A1 (de) Vorrichtung zur Moiré-Vermessung eines optischen Prüflings
DE102008052223A1 (de) Lumineszenzscanner sowie Verfahren zur Detektion von Lumineszenz in Halbleiterbauteilen
DE102018201723B4 (de) Verfahren zur Inspektion von vergrabenen Strukturen in Solarzellen und Solarzellen-Vorstufen
DE102019132585B4 (de) Prüfsystem zur optischen Oberflächenprüfung eines Prüfkörpers

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R016 Response to examination communication
R018 Grant decision by examination section/examining division