DE102016008326A1 - Chemo-enzymatische Katalyse zur Herstellung von Pyruvat und anderen α-Keto-Säuren - Google Patents
Chemo-enzymatische Katalyse zur Herstellung von Pyruvat und anderen α-Keto-Säuren Download PDFInfo
- Publication number
- DE102016008326A1 DE102016008326A1 DE102016008326.3A DE102016008326A DE102016008326A1 DE 102016008326 A1 DE102016008326 A1 DE 102016008326A1 DE 102016008326 A DE102016008326 A DE 102016008326A DE 102016008326 A1 DE102016008326 A1 DE 102016008326A1
- Authority
- DE
- Germany
- Prior art keywords
- pyruvate
- chemo
- keto acids
- production
- catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 150000004716 alpha keto acids Chemical class 0.000 title claims abstract description 9
- 238000002360 preparation method Methods 0.000 title claims description 9
- 238000006555 catalytic reaction Methods 0.000 title claims 2
- LCTONWCANYUPML-UHFFFAOYSA-M Pyruvate Chemical compound CC(=O)C([O-])=O LCTONWCANYUPML-UHFFFAOYSA-M 0.000 title abstract description 29
- 238000000034 method Methods 0.000 claims abstract description 41
- 239000003054 catalyst Substances 0.000 claims abstract description 26
- 102000004190 Enzymes Human genes 0.000 claims abstract description 23
- 108090000790 Enzymes Proteins 0.000 claims abstract description 23
- 238000006243 chemical reaction Methods 0.000 claims abstract description 14
- 239000011942 biocatalyst Substances 0.000 claims abstract description 12
- 239000000126 substance Substances 0.000 claims abstract description 6
- BAWFJGJZGIEFAR-NNYOXOHSSA-N NAD zwitterion Chemical compound NC(=O)C1=CC=C[N+]([C@H]2[C@@H]([C@H](O)[C@@H](COP([O-])(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 BAWFJGJZGIEFAR-NNYOXOHSSA-N 0.000 claims abstract 2
- XJLXINKUBYWONI-NNYOXOHSSA-N NADP zwitterion Chemical compound NC(=O)C1=CC=C[N+]([C@H]2[C@@H]([C@H](O)[C@@H](COP([O-])(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](OP(O)(O)=O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 XJLXINKUBYWONI-NNYOXOHSSA-N 0.000 claims abstract 2
- 229950006238 nadide Drugs 0.000 claims abstract 2
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 claims abstract 2
- 230000003647 oxidation Effects 0.000 claims description 12
- 238000007254 oxidation reaction Methods 0.000 claims description 12
- 230000018044 dehydration Effects 0.000 claims description 6
- 238000006297 dehydration reaction Methods 0.000 claims description 6
- 229910000510 noble metal Inorganic materials 0.000 claims description 5
- 108090001042 Hydro-Lyases Proteins 0.000 claims description 3
- 102000004867 Hydro-Lyases Human genes 0.000 claims description 3
- 150000001323 aldoses Chemical class 0.000 claims description 3
- 102000004316 Oxidoreductases Human genes 0.000 claims description 2
- 108090000854 Oxidoreductases Proteins 0.000 claims description 2
- 238000011065 in-situ storage Methods 0.000 claims description 2
- 230000001419 dependent effect Effects 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 18
- 239000000758 substrate Substances 0.000 abstract description 16
- 239000007858 starting material Substances 0.000 abstract 1
- 231100000331 toxic Toxicity 0.000 abstract 1
- 230000002588 toxic effect Effects 0.000 abstract 1
- 229940076788 pyruvate Drugs 0.000 description 28
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 17
- 239000008103 glucose Substances 0.000 description 17
- LCTONWCANYUPML-UHFFFAOYSA-N Pyruvic acid Chemical compound CC(=O)C(O)=O LCTONWCANYUPML-UHFFFAOYSA-N 0.000 description 16
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 14
- 239000010931 gold Substances 0.000 description 14
- 229910052737 gold Inorganic materials 0.000 description 14
- 108700016168 Dihydroxy-acid dehydratases Proteins 0.000 description 13
- 241000588724 Escherichia coli Species 0.000 description 12
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 229940088598 enzyme Drugs 0.000 description 11
- 229910052760 oxygen Inorganic materials 0.000 description 10
- MNQZXJOMYWMBOU-VKHMYHEASA-N D-glyceraldehyde Chemical compound OC[C@@H](O)C=O MNQZXJOMYWMBOU-VKHMYHEASA-N 0.000 description 9
- 229940107700 pyruvic acid Drugs 0.000 description 8
- 238000000926 separation method Methods 0.000 description 8
- 241000205101 Sulfolobus Species 0.000 description 7
- LZCLXQDLBQLTDK-UHFFFAOYSA-N ethyl 2-hydroxypropanoate Chemical compound CCOC(=O)C(C)O LZCLXQDLBQLTDK-UHFFFAOYSA-N 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 230000003197 catalytic effect Effects 0.000 description 5
- 238000003958 fumigation Methods 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 108090000623 proteins and genes Proteins 0.000 description 5
- WPAMZTWLKIDIOP-WVZVXSGGSA-N 2-dehydro-3-deoxy-D-gluconic acid Chemical compound OC[C@@H](O)[C@@H](O)CC(=O)C(O)=O WPAMZTWLKIDIOP-WVZVXSGGSA-N 0.000 description 4
- PALQXFMLVVWXFD-KODRXGBYSA-N 2-deoxy-D-gluconic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)CC(O)=O PALQXFMLVVWXFD-KODRXGBYSA-N 0.000 description 4
- 108010068561 Fructose-Bisphosphate Aldolase Proteins 0.000 description 4
- 102000001390 Fructose-Bisphosphate Aldolase Human genes 0.000 description 4
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000002638 heterogeneous catalyst Substances 0.000 description 4
- AGBQKNBQESQNJD-UHFFFAOYSA-M lipoate Chemical compound [O-]C(=O)CCCCC1CCSS1 AGBQKNBQESQNJD-UHFFFAOYSA-M 0.000 description 4
- 235000019136 lipoic acid Nutrition 0.000 description 4
- 229960002663 thioctic acid Drugs 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- 102000016938 Catalase Human genes 0.000 description 3
- 108010053835 Catalase Proteins 0.000 description 3
- QMMFVYPAHWMCMS-UHFFFAOYSA-N Dimethyl sulfide Chemical compound CSC QMMFVYPAHWMCMS-UHFFFAOYSA-N 0.000 description 3
- 241000588915 Klebsiella aerogenes Species 0.000 description 3
- MNQZXJOMYWMBOU-GSVOUGTGSA-N L-(-)-glyceraldehyde Chemical compound OC[C@H](O)C=O MNQZXJOMYWMBOU-GSVOUGTGSA-N 0.000 description 3
- 108010093894 Xanthine oxidase Proteins 0.000 description 3
- 102100033220 Xanthine oxidase Human genes 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000000502 dialysis Methods 0.000 description 3
- 229940092559 enterobacter aerogenes Drugs 0.000 description 3
- 239000000543 intermediate Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 2
- 108010016941 2-keto-3-deoxy-D-glucarate aldolase Proteins 0.000 description 2
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 2
- RGHNJXZEOKUKBD-SQOUGZDYSA-M D-gluconate Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O RGHNJXZEOKUKBD-SQOUGZDYSA-M 0.000 description 2
- RBNPOMFGQQGHHO-UWTATZPHSA-N D-glyceric acid Chemical compound OC[C@@H](O)C(O)=O RBNPOMFGQQGHHO-UWTATZPHSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 108010015776 Glucose oxidase Proteins 0.000 description 2
- 239000007995 HEPES buffer Substances 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- DFPAKSUCGFBDDF-UHFFFAOYSA-N Nicotinamide Chemical compound NC(=O)C1=CC=CN=C1 DFPAKSUCGFBDDF-UHFFFAOYSA-N 0.000 description 2
- 108091028043 Nucleic acid sequence Proteins 0.000 description 2
- 241000588769 Proteus <enterobacteria> Species 0.000 description 2
- 241000205098 Sulfolobus acidocaldarius Species 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 238000001311 chemical methods and process Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 229940116333 ethyl lactate Drugs 0.000 description 2
- WBJZTOZJJYAKHQ-UHFFFAOYSA-K iron(3+) phosphate Chemical class [Fe+3].[O-]P([O-])([O-])=O WBJZTOZJJYAKHQ-UHFFFAOYSA-K 0.000 description 2
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 150000007523 nucleic acids Chemical group 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 150000004728 pyruvic acid derivatives Chemical class 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- 238000010626 work up procedure Methods 0.000 description 2
- BUHVIAUBTBOHAG-FOYDDCNASA-N (2r,3r,4s,5r)-2-[6-[[2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)ethyl]amino]purin-9-yl]-5-(hydroxymethyl)oxolane-3,4-diol Chemical compound COC1=CC(OC)=CC(C(CNC=2C=3N=CN(C=3N=CN=2)[C@H]2[C@@H]([C@H](O)[C@@H](CO)O2)O)C=2C(=CC=CC=2)C)=C1 BUHVIAUBTBOHAG-FOYDDCNASA-N 0.000 description 1
- DPZHKLJPVMYFCU-UHFFFAOYSA-N 2-(5-bromopyridin-2-yl)acetonitrile Chemical compound BrC1=CC=C(CC#N)N=C1 DPZHKLJPVMYFCU-UHFFFAOYSA-N 0.000 description 1
- KVZLHPXEUGJPAH-UHFFFAOYSA-N 2-oxidanylpropanoic acid Chemical compound CC(O)C(O)=O.CC(O)C(O)=O KVZLHPXEUGJPAH-UHFFFAOYSA-N 0.000 description 1
- 0 CC*(C)(C)*N Chemical compound CC*(C)(C)*N 0.000 description 1
- 241000222120 Candida <Saccharomycetales> Species 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 1
- JVTAAEKCZFNVCJ-UWTATZPHSA-N D-lactic acid Chemical class C[C@@H](O)C(O)=O JVTAAEKCZFNVCJ-UWTATZPHSA-N 0.000 description 1
- 241001198387 Escherichia coli BL21(DE3) Species 0.000 description 1
- RGHNJXZEOKUKBD-SQOUGZDYSA-N Gluconic acid Natural products OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 1
- 239000004366 Glucose oxidase Substances 0.000 description 1
- 241000235058 Komagataella pastoris Species 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 241000320412 Ogataea angusta Species 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229920000388 Polyphosphate Polymers 0.000 description 1
- 239000011865 Pt-based catalyst Substances 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 238000000026 X-ray photoelectron spectrum Methods 0.000 description 1
- 241000222126 [Candida] glabrata Species 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 150000001299 aldehydes Chemical group 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000003698 anagen phase Effects 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 230000002210 biocatalytic effect Effects 0.000 description 1
- 238000011138 biotechnological process Methods 0.000 description 1
- 238000013452 biotechnological production Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 238000009295 crossflow filtration Methods 0.000 description 1
- 238000006114 decarboxylation reaction Methods 0.000 description 1
- 238000011033 desalting Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 235000015872 dietary supplement Nutrition 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 239000013613 expression plasmid Substances 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 238000012262 fermentative production Methods 0.000 description 1
- 229940050410 gluconate Drugs 0.000 description 1
- 229940116332 glucose oxidase Drugs 0.000 description 1
- 235000019420 glucose oxidase Nutrition 0.000 description 1
- 230000034659 glycolysis Effects 0.000 description 1
- 125000001487 glyoxylate group Chemical group O=C([O-])C(=O)[*] 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229910000398 iron phosphate Inorganic materials 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Inorganic materials O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229960003966 nicotinamide Drugs 0.000 description 1
- 235000005152 nicotinamide Nutrition 0.000 description 1
- 239000011570 nicotinamide Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 238000005839 oxidative dehydrogenation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 239000001205 polyphosphate Substances 0.000 description 1
- 235000011176 polyphosphates Nutrition 0.000 description 1
- CHKVPAROMQMJNQ-UHFFFAOYSA-M potassium bisulfate Chemical compound [K+].OS([O-])(=O)=O CHKVPAROMQMJNQ-UHFFFAOYSA-M 0.000 description 1
- 229910000343 potassium bisulfate Inorganic materials 0.000 description 1
- 239000008057 potassium phosphate buffer Substances 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 230000010666 regulation of catalytic activity Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- -1 salt pyruvate Chemical class 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 150000003722 vitamin derivatives Chemical class 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/40—Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
- C12P7/58—Aldonic, ketoaldonic or saccharic acids
Landscapes
- Organic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Microbiology (AREA)
- General Chemical & Material Sciences (AREA)
- Biotechnology (AREA)
- Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
1. Verfahren zur chemo-enzymatisch katalysierten Herstellung von Pyruvat und anderen α-Keto-Säuren. 2. α-Keto-Säuren werden großtechnisch auf Basis von petrochemischen Ausgangsstoffen hergestellt. Die Reaktionen finden unter hohen Temperaturen und Verwendung von giftigen Katalysatoren statt. 3. Mittels des chemo-enzymatischen Verfahrens lassen sich Substrate effizienter verwenden und die Reaktion läuft unter sehr einfachen Bedingungen ohne Druck bei Temperaturen zwischen 25–70°C ab. Das Verfahren kombiniert chemische Katalysatoren mit Biokatalysatoren und erlaubt damit eine sehr effiziente Nutzung der Ausgangssubstrate. Auf den Einsatz von Nicotinamidadenindinukleotid oder Nicotinamidadenindinukleotidphosphat in der oxidierten oder reduzierten Form kann verzichtet werden.
Description
- Hintergrund der Erfindung
- Gebiet der Erfindung
- Die vorliegende Erfindung bezieht sich auf ein Verfahren zur Herstellung von α-Keto-Säuren, wie z. B. Pyruvat oder 2-Keto-3-deoxygluconat, aus Aldosen unter Verwendung mehrerer Katalysatoren, dadurch gekennzeichnet, dass oxidative Schritte unter Verwendung von Sauerstoff als Oxidationsmittel erfolgen und eine im Prozess direkt sich anschließende Defunktionalisierung durch eine enzymkatalysierte Dehydratisierung erfolgt.
- Stand der Technik
- α-Keto-Säuren und ihre Salze stellen wichtige Intermediate für Synthesen und als Nahrungsergänzungsmittel dar. Eine der wichtigsten ist die neben Glyoxylat kleinste α-Keto-Säure, die Brenztraubensäure bzw. ihr Salz das Pyruvat. Eine α-Keto-Säure, die für Synthese von biobasierten Monomeren wesentlich ist, ist α-Keto-3-Desoxygluconat (KDG).
- KDG kann z. B. durch die Dehydratisierung von Gluconat erhalten werden (K. Matsubara, R. Kohling, B. Schonenberger, T. Kouril, D. Esser, C. Grasen, B. Siebers, R. Wohlgemuth; (2014): One-step synthesis of 2-keto-3-deoxy-D-gluconate by biocatalytic dehydration of D-gluconate. J Biotechnol., 191, 69–77).
- Die chemische Darstellung von Pyruvat erfolgt auf Basis von Weinsäure und deren Dehydratisierung und Decarboxylierung. Hierbei handelt es sich um eine Pyrolyse, welche z. B. Kaliumhydrogensulfat und Schwermetalle als Katalysator benötigt, und bei Temperaturen um 220°C durchgeführt wird. Die Ausbeuten bewegen sich hierbei jedoch nur bei circa 50% (Römpp Chemie Lexikon).
- Weiterhin sind verschiedene chemische Prozesse beschrieben, welche das Salz der Milchsäure (Laktat) oder den Milchsäureethylester als Substrat für die Herstellung von Pyruvat nutzen. Die Nutzung von Milchsäureethylester als Substrat unter Einsatz verschiedener heterogener Katalysatoren, z. B. V2O2-Mischoxidkatalysatoren, binäre Oxide (TeO2-MoO3), Pd/Pt-basierte Katalysatoren oder Phosphate oder Polyphosphate von Molybdän oder Vanadium immobilisiert auf Kieselgel, in der Dampfphase sind beschrieben (
JP-Patent 5619854 US-Patent 4242525 ;DE19756584 ). Bei Temperature zwischen 250–300°C lassen sich Ausbeuten von 80% erreichen. Die direkte Oxidation von Laktat zu Pyruvat ist schwieriger, da es leicht zu einer Abspaltung von CO2 kommt und dadurch Acetaldehyd entsteht. Mittels des Einsatzes von Eisenphosphaten P/Fe (diese schließen FePO4, Fe2P2O7 und Fe3(P2O7)2 ein) als Katalysator konnte eine direkte Umsetzung von Laktat zu Pyruvat bei 220°C bei einer Ausbeute von 60% erreicht werden (Mamoru, A.; (2002): Catalytic activity of iron phosphate doped with a small amount of molybdenum in the oxidative dehydrogenation of lactic acid to pyruvic acid. Appl. Catal., A, 234. 235–243). - Weiterhin existieren verschiedene biotechnologische Verfahren zur Herstellung von Pyruvat. Mehrere Prozesse sind beschrieben, welche auf Basis von Lactat die Herstellung von Pyruvat erlauben. Ein Ganzzell-Ansatz unter Verwendung von Hansenula polymorpha oder Pichia pastoris, welche das Gene für eine (S)-Hydroxysäure-Oxidase heterolog exprimieren (DiCosimo, R; Eisenberg, A.; Seip, J. E.; Gavagan, J. E.; Payne, M. S.; Anton, D. L.; (1997): Pyruvic acid production using methylotrophic yeast transformants as catalyst. J. Mol. Cat. B: Enzymatic Volumen 2, 223–232;
US5538875A ). Hierbei entsteht Wasserstoffperoxid, das durch eine endogene Katalase direkt in H2O und O2 umgewandelt wird. Dieses Enzymsystem kann auch zellfrei verwendet werden (Burdick, B. A.; Schaeffer, J. R.; (1987): Co-immobilized coupled enzyme systems on nylon mesh capable of gluconic and pyruvic acid production. Biotechnol. Lett. 9: 253–258). Mikroorganismen der Gattung Proteus können unter anaerober Anzucht ebenfalls für die Produktion von Pyruvat aus Lactat verwendet werden (Simon, H.; Schinschel, C.; (1993): Preparation of pyruvate from (R)-lactate with Proteus species. J. Biotechnol. 31: 191–203). In den hierbei beschriebenen Systemen konnte eine Ausbeute von mehr als 90% erreicht werden. Ein Nachteil dabei ist die Notwendigkeit eines Redoxmediators, welcher unter Einsatz eines Cosubstrats (Dimethylsulfoxid Reduktion zu Dimethylsulfid) regeneriert werden muss. - Als Stoffwechsel-Intermediat der Glykolyse ist es möglich, unter Verwendung von Glucose mittels Mikroorganismen Pyruvat herzustellen. Durch den Einsatz von auxotrophen Stämmen kann eine gezielte Steuerung des Stoffwechsels erfolgen, wodurch eine Akkumulation von Pyruvat möglich wird. Mehrere Verfahren unter Verwendung von Vertretern der Gattung Torulopsis, welche mehrere Vitamin-Auxotrophien aufweisen, sind in der Literatur beschrieben (Yonehara, T.; Miyata, R.; (1994): Fermentative production of pyruvate from gucose by Torulopsis glabrata. J. Ferm. Bioeng. 78: 155–159). Daneben sind Produktionsprozesse unter Verwendung von Liponsäure-auxotrophen Stämmen von Enterobacter aerogenes sowie Escherichia coli beschrieben Yokota, A.; (1989): Pyruvic acid production by lipoic acid auxotrophs of Enterobacter aerogenes. Agric. Biol. Chem. 53: 705–711; Yokota, A.; Shimizu, H.; Terasawa, Y.; Takaoka, N.; Tomita, F.; (1994a): Pyruvic acid production by lipoic acid auxotroph of Escherichia coli W1485. Appl. Micorbiol. Biotechnol. 41: 638–643). Mit Glucose als Substrat konnte mit Stämmen von Enterobacter aerogenes während der Fermentation eine Ausbeute von 0,8 Mol Pyruvat pro Mol Glucose erreicht werden. Für Escherichia coli sind Ausbeuten von 1,2 Mol Pyruvat/Mol Glucose beschrieben (Yokota, A.; Shimizu, H.; Terasawa, Y.; Takaoka, N.; Tomita, F.; (1994a): Pyruvic acid production by an F1-ATPase-defective mutant of Escherichia coli W14851ip2. Biosci. Biotechnol. Biochem. 58: 2164–2167;. Weitere Optimierungen wurden für Escherichia coli durchgeführt. Mittels dem gezielten Regulieren von Enzymaktivitäten und durch Knock-Outs konnte ein Escherichia coli Stamm YYC202 erzeugt werden, der eine höhere Ausbeute an Pyruvat erlaubt (1,9 Mol Pyruvat/Mol Glucose) (Zelic, B.; Gerharz, T.; Bott, M.; Vasic-Racki, D.; Wandrey, C.; Takors, R.; (2003): Fed-Batch Process for pyruvate production by recombinant Escherichia coli YYC202 strain. Eng. Life Sci. 7: 299–305;
DE-Patent 10129711 ,DE-Patent 10220234 ). - Die bekannten chemischen Verfahren sind nicht wirtschaftlich umzusetzen. Alle Verfahren benötigen sehr hohe Temperaturen und sind somit sehr energie-intensiv. Zusätzlich sind die Ausbeuten nicht immer ausreichend und die Bildung von unerwünschten Nebenprodukten ist teilweise schwer zu regulieren.
- Die biotechnologische Herstellung von Pyruvat weist ebenfalls noch mehrere Nachteile auf. Eine teilweise niedrige Ausbeute in Bezug auf den genutzten Mikroorganismus in Verbindung mit inhibierenden Effekten bei steigenden Pyruvat-Konzentrationen stellt besondere Ansprüche an die Produkt-Aufarbeitung. Der Prozess mit Escherichia coli YYC202 ermöglicht verbesserte Produktausbeuten benötigt jedoch eine in-situ Abtrennung des Produktes sowie ein in zwei Stufen getrenntes Verfahren, da in der Wachstumsphase nur eine niedrigere Produktausbeute erreicht werden kann.
- Patent
WO2014/029761 - Die Aufgabe der Erfindung ist, ein Verfahren bereitzustellen, das eine Pyruvat-Produktion bei nahezu theoretischer Ausbeute von 2 mol Pyruvat pro mol Glucose in Verbindung mit einer vereinfachten Aufarbeitung und ohne Notwendigkeit instabiler Cofaktoren zulässt.
- Die Figuren zeigen eine Übersicht über den chemo-enzymatischen Prozess, Einzelansicht der jeweiligen Schritte mit verwendeten (Bio-)Katalysatoren sowie experimentelle Ergebnisse des erfindungsgemäßen Verfahrens.
- Es zeigt:
-
1 : Übersicht über den Prozess und die darin enthaltenen Schritte. Exemplarisch ist hierbei Pyruvat als Produkt aufgeführt. -
2 : Erster katalysierter Schritt ausgehend von dem Beispielsubstrat Glucose. Oxidation der terminalen Aldehydfunktion an Position C1. -
3 : Zweiter Schritt in der Prozessabfolge katalysiert durch eine Dehydratase ist die Abspaltung von Wasser und der Generierung einer α-keto Säure. -
4 : Im dritten Schritt erfolgt die Spaltung des Moleküls zwischen dem dritten und vierten Kohlenstoffatomunter Bildung von Pyruvat und Glyceraldehyd. -
5 : Oxidation von Glyceraldehyd zu Glycerat. -
6 : Unter Einsatz einer Dehydratase erfolgt die Umsetzung von Glycerat zu Pyruvat unter Wasserabspaltung. -
7 : Oxidation von Glyceraldehyd durch einen heterogenen Katalysator. -
8 : Gleichzeitige Umsetzung von zwei Substraten am Beispiel von Glucose und Glyceraldehyd mit einem heterogenen Katalysator. -
9 : Oxidation von Glucose in unterschiedlichen -Konzentrationen mittels eines heterogenen Katalysators. -
10 : Oxidation von Glyceraldehyd durch eine Xanthin Oxidase. -
1 zeigt einen möglichen Gesamtprozess für die Herstellung von Pyruvat ausgehend von Glucose. - Gold-Katalysator: z. B. 0,5% Gold auf Al2O3 (A. Mirescu, U. Prüße, (2007), A new environmental friendly method for the preparation of sugar acids via catalytic oxidation on gold catalysts, Appl. Catal., B, 70, 644–652
- DHAD: Dihydroxysäure-Dehydratase aus Sulfolobus sulfataricus (J. M. Carsten, J. M., A. Schmidt, V. Sieber, (2015). Characterization of recombinantly expressed dihydroxy-acid dehydratase from Sulfobus solfataricus-A key enzyme for the conversion of carbohydrates into chemicals. J Biotechnol 211, 31–41)
- KDGA: Keto-deoxy-Glukonat-Aldolase aus Sulfolobus acidocaldarius (S. Wolterink-van Loo, A. van Eerde, M. A. Siemerink, J. Akerboom, B. W. Dijkstra, J. van der Oost., (2007) Biochemical and structural exploration of the catalytic capacity of Sulfolobus KDG aldolases. Biochem. J. 403: 421–430.)
-
7 zeigt experimentell gewonnene Ergebnisse bei der Umsetzung von D/L-Glyceraldehyd unter Verwendung eines Edelmetallkatalysators, hier im spezifischen Beispiel eines Goldkatalysators. Es wurde eine Katalysatormenge von 1:160 (Gold:Substrat,) bei einer Substratkonzentration von 25 mM, eingesetzt. Die Bedingungen während der Durchführung waren pH 7, T = 50°C, O2-Durchfluss 20 ml/min. -
8 zeigt experimentell gewonnene Ergebnisse bei der gleichzeitigen Umsetzung von Glucose und D/L-Glyceraldehyd durch den Goldkatalysator. Es wurde eine Katalysatormenge von 1:160 (Gold:Substrat), bei einer Substratkonzentration von 25 mM für jedes Substrat, eingesetzt. Die Bedingungen während der Durchführung waren pH 7, T = 50°C, O2-Durchfluss 20 ml/min. -
9 zeigt experimentell gewonnene Ergebnisse bei der Umsetzung von Glucose durch den Goldkatalysator. Es wurde eine Katalysatormenge von 1:734 (Gold:Substrat), bei unterschiedlichen Substratkonzentration von 500 und 1000 mM für das Substrat, eingesetzt. Die Bedingungen während der Durchführung waren pH 7, T = 50°C, O2-Durchfluss 20 ml/min. -
10 zeigt experimentell gewonnene Ergebnisse bei der Umsetzung von D/L-Glyceraldehyd durch eine Xanthin Oxidase. Es wurde eine Katalysatormenge von 1 U/50 μmol Glyceraldehyd eingesetzt. Bei einer Pufferkonzentration von 50 mM Kaliumphosphatpuffer und einem pH-Wert von 7,5 erfolgte bei einer Temperatur von 35 C ein Umsatz von 15 mM innerhalb von 24 h. - Folgenden soll die Erfindung beispielhaft beschrieben werden.
- Beispiel 1: Zur Bereitstellung der Biokatalysatoren wurden die Gene für die Dihydroxysäure-Dehydratase und die Keto-deoxygluconat Aldolase synthetisch hergestellt und für die Expression in Escherichia coli BL21 (DE3) codonoptimiert. Jedes Gen wurde in ein Derivat des Expressionsplasmids pET28a(+), mit den zusätzlichen Schnittstellen BsaI und BfuAI, integriert. Die Enzymproduktion erfolgte mittels Autoinduktions-Medium nach F. W. Studier (F. W. Studier, (2005), Protein production by auto-induction in high-density shaking cultures, Protein Expr Purif, 41, 207–234) bei 37°C für 24 h in Schüttelkolben bei 180 rpm. Im Anschluss daran wurden die Zellen durch Zentrifugation vom Medium getrennt und in 100 mM HEPES-Puffer pH 7,35 resuspendiert. Ein Gramm Zellmasse wurde in 10 ml Puffer resuspendiert und anschließend durch Ultraschall aufgeschlossen. Die Abtrennung von E. coli spezifischen Enzymen erfolgte mit einem anschließenden Inkubationsschritt bei 80°C für 30 min. Im Anschluss erfolgte ein weiterer Zentrifugationsschritt zur Abtrennung von präzipitierten Proteinen und Zelltrümmern. Im Anschluss wurde der Überstand mittels FPLC-System und dem Einsatz einer Größenausschlusssäule (HiPrep Desalting 26/10) von verbliebenen Zellmetaboliten unter Verwendung eines 100 mM HEPES-Puffer pH 7,35 gereinigt. Im Anschluss erfolgte die Konzentrationsbestimmung mittels Bradford-Nachweis.
- Beispiel 2: Der Prozess verwendet einen heterogenen Edelmetallkatalysator (0,5% Gold auf Al2O3). Der Gesamtprozess wurde mit einem Volumen von 30 ml an einem Titrator durchgeführt. Es erfolgte eine konstante Begasung mit einem Sauerstoff-haltigen Gas mit einer Rate von 20 ml min–1. Der pH-Wert wurde durch das Zudosieren von NaOH konstant auf pH 7 gehalten. Für die gesamte Prozesslaufzeit wurde bei 50°C gearbeitet. Die Ausgangskonzentration von Glucose betrug 25 mM und es wurden jeweils 20 Units der Keto-deoxygluconat Aldolase und der Dihydroxysäure-Dehydratase eingesetzt. Der heterogene Edelmetallkatalysator wurde im Verhältnis 1:160 (mg/ml Gold: mg/ml Substrat verwendet. Eine räumliche Trennung zwischen Biokatalysatoren und chemischen Katalysator erfolgte durch die Verwendung eines Dialyseschlauches, welcher die Biokatalysatoren enthielt. Der Prozess wurde für 1470 min durchgeführt. Es konnte eine Ausbeute an Pyruvat von 5,28% erzielt werden.
- Beispiel 3: Der Prozess besteht aus fünf Enzymen, Glucose Oxidase (kommerzielles Präparat Sigma-Aldrich Bestellnummer G2133), Xanthine Oxidase (kommerzielles Präparat Sigma-Aldrich Bestellnummer X4500), Katalase (kommerzielles Präparat Sigma-Aldrich Bestellnummer 60635), Keto-deoxygluconat Aldolase und Dihydroxysäure-Dehydratase. Der Gesamtprozess wurde mit einem Volumen von 30 ml an einem Titrator durchgeführt. Es erfolgte eine konstante Begasung mit einem sauerstoff-haltigen Gas mit einer Rate von 20 ml min–1. Der pH-Wert wurde durch das Zudosieren von NaOH konstant auf pH 7 gehalten. Für die gesamte Prozesslaufzeit wurde bei 40°C gearbeitet. Die Ausgangskonzentration von Glucose betrug 25 mM und es wurden jeweils 20 Units von jedem Enzym eingesetzt. Um eine bessere Stabilität der Biokatalysatoren während des Prozesses durch die Begasung zu gewährleisten, erfolgte eine räumliche Trennung durch die Verwendung eines Dialyseschlauches, welcher die Biokatalysatoren enthielt. Der Prozess wurde für 1400 min durchgeführt. Es konnte eine Ausbeute an Pyruvat von 4,93% erzielt werden.
- Beispiel 4: Der Prozess besteht aus den Enzymen Glucose Oxidase, Katalase und Dihydroxysäure-Dehydratase. Der Gesamtprozess wurde mit einem Volumen von 30 ml an einem Titrator durchgeführt. Es erfolgte eine konstante Begasung mit einem Sauerstoffhaltigen Gas mit einer Rate von 20 ml min–1. Der pH-Wert wurde durch das Zudosieren von NaOH konstant auf pH 7 gehalten. Für die gesamte Prozesslaufzeit wurde bei 50°C gearbeitet. Die Ausgangskonzentration von Glucose betrug 25 mM und es wurden 20 Units des Enzyms eingesetzt. Um eine bessere Stabilität des Biokatalysators während des Prozesses durch die Begasung zu gewährleisten, erfolgte eine räumliche Trennung durch die Verwendung eines Dialyseschlauches, welcher den Biokatalysator enthielt. Der Prozess wurde für 1200 min durchgeführt. Es konnte eine Ausbeute an 2-keto-3-deoxy-D-Gluconat von 95,4% erzielt werden.
- Beispiel 5: Der Prozess besteht aus einem heterogenen Edelmetallkatalysator, mit 0,5% Gold auf Al2O3) und der Dihydroxysäure-Dehydratase. Der Gesamtprozess wurde mit einem Volumen von 30 ml an einem Titrator durchgeführt. Es erfolgte eine konstante Begasung mit einem Sauerstoff-haltigen Gas mit einer Rate von 20 ml min–1. Der pH-Wert wurde durch das Zudosieren von NaOH konstant auf pH 7 gehalten. Für die gesamte Prozesslaufzeit wurde bei 50°C gearbeitet. Die Ausgangskonzentration von Glucose betrug 25 mM und es wurden 20 Units des Enzyms eingesetzt. Um eine bessere Stabilität des Biokatalysators während des Prozesses durch die Begasung zu gewährleisten erfolgte eine räumliche Trennung durch die Verwendung einer Cross-Flow Filtrationseinheit, wodurch der Biokatalysator zurückgehalten wurde. Der Prozess wurde für 1200 min durchgeführt. Es konnte eine Ausbeute an 2-keto-3-deoxy-D-Gluconat von 96,8% erzielt werden. Dihydroxysäure-Dehydratase (DHAD) aus Sulfolobus sulfataricus Accession: WP 009990927.1 Nukleinsäuresequenz codierend für DHAD aus Sulfolobus sulfataricus optimiert für die Expression in Escherichia coli Ketodeoxy-Gluconat Aldolase aus Sulfolobus acidocaldarius Accession: WP 011277145.1 Nukleinsäuresequenz codierend für KDGA aus Sulfolobus sacidocaldarius optimiert für die Expression in Escherichia coli
- ZITATE ENTHALTEN IN DER BESCHREIBUNG
- Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
- Zitierte Patentliteratur
-
- JP 5619854 [0005]
- US 4242525 [0005]
- DE 19756584 [0005]
- US 5538875 A [0006]
- DE 10129711 [0007]
- DE 10220234 [0007]
- WO 2014/029761 [0010]
- Zitierte Nicht-Patentliteratur
-
- K. Matsubara, R. Kohling, B. Schonenberger, T. Kouril, D. Esser, C. Grasen, B. Siebers, R. Wohlgemuth; (2014): One-step synthesis of 2-keto-3-deoxy-D-gluconate by biocatalytic dehydration of D-gluconate. J Biotechnol., 191, 69–77 [0003]
- Hayashi, H.; Shigemoto, N.; Sugiyama, S.; Masaoka, N.; Saitoh, K.; (1993): X-ray photoelectron spectra for the oxidation state of TeO2-MoO3 catalyst in the vapor-phase selective oxidation of ethyl lactate to pyruvate. Catal. Let., 19, 273–277 [0005]
- Mamoru, A.; (2002): Catalytic activity of iron phosphate doped with a small amount of molybdenum in the oxidative dehydrogenation of lactic acid to pyruvic acid. Appl. Catal., A, 234. 235–243 [0005]
- DiCosimo, R; Eisenberg, A.; Seip, J. E.; Gavagan, J. E.; Payne, M. S.; Anton, D. L.; (1997): Pyruvic acid production using methylotrophic yeast transformants as catalyst. J. Mol. Cat. B: Enzymatic Volumen 2, 223–232 [0006]
- Burdick, B. A.; Schaeffer, J. R.; (1987): Co-immobilized coupled enzyme systems on nylon mesh capable of gluconic and pyruvic acid production. Biotechnol. Lett. 9: 253–258 [0006]
- Simon, H.; Schinschel, C.; (1993): Preparation of pyruvate from (R)-lactate with Proteus species. J. Biotechnol. 31: 191–203 [0006]
- Yonehara, T.; Miyata, R.; (1994): Fermentative production of pyruvate from gucose by Torulopsis glabrata. J. Ferm. Bioeng. 78: 155–159 [0007]
- Yokota, A.; (1989): Pyruvic acid production by lipoic acid auxotrophs of Enterobacter aerogenes. Agric. Biol. Chem. 53: 705–711 [0007]
- Yokota, A.; Shimizu, H.; Terasawa, Y.; Takaoka, N.; Tomita, F.; (1994a): Pyruvic acid production by lipoic acid auxotroph of Escherichia coli W1485. Appl. Micorbiol. Biotechnol. 41: 638–643 [0007]
- Yokota, A.; Shimizu, H.; Terasawa, Y.; Takaoka, N.; Tomita, F.; (1994a): Pyruvic acid production by an F1-ATPase-defective mutant of Escherichia coli W14851ip2. Biosci. Biotechnol. Biochem. 58: 2164–2167 [0007]
- Zelic, B.; Gerharz, T.; Bott, M.; Vasic-Racki, D.; Wandrey, C.; Takors, R.; (2003): Fed-Batch Process for pyruvate production by recombinant Escherichia coli YYC202 strain. Eng. Life Sci. 7: 299–305 [0007]
- A. Mirescu, U. Prüße, (2007), A new environmental friendly method for the preparation of sugar acids via catalytic oxidation on gold catalysts, Appl. Catal., B, 70, 644–652 [0024]
- J. M. Carsten, J. M., A. Schmidt, V. Sieber, (2015). Characterization of recombinantly expressed dihydroxy-acid dehydratase from Sulfobus solfataricus-A key enzyme for the conversion of carbohydrates into chemicals. J Biotechnol 211, 31–41 [0024]
- S. Wolterink-van Loo, A. van Eerde, M. A. Siemerink, J. Akerboom, B. W. Dijkstra, J. van der Oost., (2007) Biochemical and structural exploration of the catalytic capacity of Sulfolobus KDG aldolases. Biochem. J. 403: 421–430 [0024]
- F. W. Studier, (2005), Protein production by auto-induction in high-density shaking cultures, Protein Expr Purif, 41, 207–234 [0030]
Claims (4)
- Verfahren zur Herstellung von α-Keto-Säuren auf Basis von Aldosen, dadurch gekennzeichnet, dass mindestens zwei katalytische Reaktionen a) O2-abhängige Oxidation durch einen Edelmetallkatalysator (chemischer Katalysator) oder eine Oxidase (Biokatalysator) sowie, b) eine Dehydratisierung durch eine Dehydratase (Biokatalysator), in einer Reaktionseinheit mit einander verknüpft werden.
- Ein Verfahren nach Anspruch 1, in dem die Katalysatoren im selben Reaktionsraum vorliegen oder durch eine sequentielle Anordnung voneinander getrennt sind und das satzweise oder kontinuierlich betrieben werden kann.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass weder Nicotinamidadenindinukleotid noch Nicotinamidadenindinukleotidphosphat in der oxidierten oder reduzierten Form als Reduktions/Oxidationssystem benötigt werden.
- Ein Verfahren nach Anspruch 1–3 in dem die umzuwandelnden Aldosen in situ erzeugt werden.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102016008326.3A DE102016008326A1 (de) | 2016-07-07 | 2016-07-07 | Chemo-enzymatische Katalyse zur Herstellung von Pyruvat und anderen α-Keto-Säuren |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102016008326.3A DE102016008326A1 (de) | 2016-07-07 | 2016-07-07 | Chemo-enzymatische Katalyse zur Herstellung von Pyruvat und anderen α-Keto-Säuren |
Publications (1)
Publication Number | Publication Date |
---|---|
DE102016008326A1 true DE102016008326A1 (de) | 2018-01-11 |
Family
ID=60676200
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE102016008326.3A Withdrawn DE102016008326A1 (de) | 2016-07-07 | 2016-07-07 | Chemo-enzymatische Katalyse zur Herstellung von Pyruvat und anderen α-Keto-Säuren |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE102016008326A1 (de) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4242525A (en) | 1978-04-17 | 1980-12-30 | Mitsui Toatsu Chemicals, Incorporated | Process for producing salts of pyruvic acid |
JPS5619854A (en) | 1979-07-25 | 1981-02-24 | Nec Corp | Fluorescent display tube |
US5538875A (en) | 1993-06-25 | 1996-07-23 | E. I. Du Pont De Nemours And Company | Process for the preparation of pyruvic acid using permeabilized transformants of H. polymorha and P. pastoris which express glycolate oxidase and catalase |
DE19756584A1 (de) | 1997-12-18 | 1999-10-07 | Sueddeutsche Kalkstickstoff | Verfahren zur Herstellung von Brenztraubensäureester |
DE10129711A1 (de) | 2001-06-22 | 2003-01-09 | Forschungszentrum Juelich Gmbh | Verfahren zur fermentativen Herstellung von Pyruvat |
DE10220234A1 (de) | 2002-05-06 | 2003-11-27 | Forschungszentrum Juelich Gmbh | Verfahren sowie Mikroorganismen zur mikrobiellen Herstellung von Pyruvat aus Kohlenhydraten sowie Alkoholen |
WO2014029761A2 (en) | 2012-08-20 | 2014-02-27 | Clariant Produkte (Deutschland) Gmbh | Cell-free and minimized metabolic reaction cascades for the production of chemicals |
-
2016
- 2016-07-07 DE DE102016008326.3A patent/DE102016008326A1/de not_active Withdrawn
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4242525A (en) | 1978-04-17 | 1980-12-30 | Mitsui Toatsu Chemicals, Incorporated | Process for producing salts of pyruvic acid |
JPS5619854A (en) | 1979-07-25 | 1981-02-24 | Nec Corp | Fluorescent display tube |
US5538875A (en) | 1993-06-25 | 1996-07-23 | E. I. Du Pont De Nemours And Company | Process for the preparation of pyruvic acid using permeabilized transformants of H. polymorha and P. pastoris which express glycolate oxidase and catalase |
DE19756584A1 (de) | 1997-12-18 | 1999-10-07 | Sueddeutsche Kalkstickstoff | Verfahren zur Herstellung von Brenztraubensäureester |
DE10129711A1 (de) | 2001-06-22 | 2003-01-09 | Forschungszentrum Juelich Gmbh | Verfahren zur fermentativen Herstellung von Pyruvat |
DE10220234A1 (de) | 2002-05-06 | 2003-11-27 | Forschungszentrum Juelich Gmbh | Verfahren sowie Mikroorganismen zur mikrobiellen Herstellung von Pyruvat aus Kohlenhydraten sowie Alkoholen |
WO2014029761A2 (en) | 2012-08-20 | 2014-02-27 | Clariant Produkte (Deutschland) Gmbh | Cell-free and minimized metabolic reaction cascades for the production of chemicals |
Non-Patent Citations (15)
Title |
---|
A. Mirescu, U. Prüße, (2007), A new environmental friendly method for the preparation of sugar acids via catalytic oxidation on gold catalysts, Appl. Catal., B, 70, 644–652 |
Burdick, B. A.; Schaeffer, J. R.; (1987): Co-immobilized coupled enzyme systems on nylon mesh capable of gluconic and pyruvic acid production. Biotechnol. Lett. 9: 253–258 |
DiCosimo, R; Eisenberg, A.; Seip, J. E.; Gavagan, J. E.; Payne, M. S.; Anton, D. L.; (1997): Pyruvic acid production using methylotrophic yeast transformants as catalyst. J. Mol. Cat. B: Enzymatic Volumen 2, 223–232 |
F. W. Studier, (2005), Protein production by auto-induction in high-density shaking cultures, Protein Expr Purif, 41, 207–234 |
Hayashi, H.; Shigemoto, N.; Sugiyama, S.; Masaoka, N.; Saitoh, K.; (1993): X-ray photoelectron spectra for the oxidation state of TeO2-MoO3 catalyst in the vapor-phase selective oxidation of ethyl lactate to pyruvate. Catal. Let., 19, 273–277 |
J. M. Carsten, J. M., A. Schmidt, V. Sieber, (2015). Characterization of recombinantly expressed dihydroxy-acid dehydratase from Sulfobus solfataricus-A key enzyme for the conversion of carbohydrates into chemicals. J Biotechnol 211, 31–41 |
K. Matsubara, R. Kohling, B. Schonenberger, T. Kouril, D. Esser, C. Grasen, B. Siebers, R. Wohlgemuth; (2014): One-step synthesis of 2-keto-3-deoxy-D-gluconate by biocatalytic dehydration of D-gluconate. J Biotechnol., 191, 69–77 |
Mamoru, A.; (2002): Catalytic activity of iron phosphate doped with a small amount of molybdenum in the oxidative dehydrogenation of lactic acid to pyruvic acid. Appl. Catal., A, 234. 235–243 |
S. Wolterink-van Loo, A. van Eerde, M. A. Siemerink, J. Akerboom, B. W. Dijkstra, J. van der Oost., (2007) Biochemical and structural exploration of the catalytic capacity of Sulfolobus KDG aldolases. Biochem. J. 403: 421–430 |
Simon, H.; Schinschel, C.; (1993): Preparation of pyruvate from (R)-lactate with Proteus species. J. Biotechnol. 31: 191–203 |
Yokota, A.; (1989): Pyruvic acid production by lipoic acid auxotrophs of Enterobacter aerogenes. Agric. Biol. Chem. 53: 705–711 |
Yokota, A.; Shimizu, H.; Terasawa, Y.; Takaoka, N.; Tomita, F.; (1994a): Pyruvic acid production by an F1-ATPase-defective mutant of Escherichia coli W14851ip2. Biosci. Biotechnol. Biochem. 58: 2164–2167 |
Yokota, A.; Shimizu, H.; Terasawa, Y.; Takaoka, N.; Tomita, F.; (1994a): Pyruvic acid production by lipoic acid auxotroph of Escherichia coli W1485. Appl. Micorbiol. Biotechnol. 41: 638–643 |
Yonehara, T.; Miyata, R.; (1994): Fermentative production of pyruvate from gucose by Torulopsis glabrata. J. Ferm. Bioeng. 78: 155–159 |
Zelic, B.; Gerharz, T.; Bott, M.; Vasic-Racki, D.; Wandrey, C.; Takors, R.; (2003): Fed-Batch Process for pyruvate production by recombinant Escherichia coli YYC202 strain. Eng. Life Sci. 7: 299–305 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2427563A2 (de) | Verfahren zur fermentativen herstellung von (3-hydroxy)propionaldehyd in gegenwart von semicarbazid oder carbohydrazid | |
DE102006017760A1 (de) | Verfahren zur enzymatischen Herstellung von 2-Hydroxy-2-methylcarbonsäuren | |
EP2835425B1 (de) | Verwendung von BVMO (Baeyer-Villiger Monooxygenasen) und Fettsäuren | |
EP2602328A1 (de) | Verfahren zur Oxidation von Alkanen unter Verwendung einer AlkB Alkan 1-Monooxygenase | |
EP2609207B1 (de) | Ganzzell-biotransformation von fettsäuren zu den um ein kohlenstoffatom verkürzten fettaldehyden | |
EP0347374B1 (de) | Verfahren zur Herstellung von Hydroxysäuren | |
DE10129711B4 (de) | Verfahren zur fermentativen Herstellung von Pyruvat | |
AT503017A4 (de) | Verfahren zur enantioselektiven enzymatischen reduktion von hydroxyketoverbindungen | |
EP2954062B1 (de) | Verfahren zur herstellung von fructose | |
US20210324426A1 (en) | Whole-cell biocatalysis method for producing alpha, omega-dicarboxylic acids and use thereof | |
DE102004014280A1 (de) | Verfahren zur Herstellung von optisch aktiven Aminosäuren mittels eines Ganzzellkatalysators | |
DE102016008326A1 (de) | Chemo-enzymatische Katalyse zur Herstellung von Pyruvat und anderen α-Keto-Säuren | |
EP3592836B1 (de) | Verfahren zur bioreaktiven extraktion erzeugten sauerstoffs aus einem reaktionsraum, sowie verwendung von phototrophen mikroorganismen bei der gewinnung von wasserstoff | |
DE102006039189B4 (de) | Enantioselektive Darstellung von aliphatischen azyklischen Estern und Ketonen | |
DE10247147A1 (de) | Verfahren sowie Mikroorganismus zur Herstellung von D-Mannitol | |
EP1784495A2 (de) | Verfahren zur herstellung von primären alkoholen durch reduktion von aldehyden unter verwendung einer alkoholdehydrogenase bei gekoppelter cofaktor-regenerierung | |
EP1829974A1 (de) | Verfahren zur Herstellung von (S)-2-Butanol und 2-Butanon aus racemischem 2-Butanol unter Verwendung einer Alkoholdehydrogenase | |
DE102014212069B4 (de) | Verfahren zur Herstellung organischer Verbindungen | |
DE10220234B4 (de) | Verfahren sowie Mikroorganismen zur mikrobiellen Herstellung von Pyruvat aus Kohlenhydraten sowie Alkoholen | |
DE102013211075B9 (de) | Biotechnologisches Verfahren zur Herstellung von substituierten oder unsubstituierten Phenylessigsäuren und Ketonen mit Enzymen des mikrobiellen Styrolabbaus | |
EP2193194B1 (de) | Verfahren zur herstellung von 2-methyl-1,2-dihydroxypropan | |
DE102022119514A1 (de) | Genetisch veränderte Zellen von Methylorubrum zur fermentativen Produktion von Glycolsäure und Milchsäure aus Cx-Verbindungen | |
Pandey et al. | by the middle of 21st century, biomass will supply 30% of the global | |
KR20160123108A (ko) | 아세테이트 첨가를 통한 2,3-부탄다이올 생산 방법 | |
JP4898129B2 (ja) | 光学活性ビニルアルコール類の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R012 | Request for examination validly filed | ||
R005 | Application deemed withdrawn due to failure to request examination | ||
R409 | Internal rectification of the legal status completed |