DE102015213645B4 - Verfahren zur Herstellung einer Dispersion von gekapseltem Farbstoff - Google Patents

Verfahren zur Herstellung einer Dispersion von gekapseltem Farbstoff Download PDF

Info

Publication number
DE102015213645B4
DE102015213645B4 DE102015213645.0A DE102015213645A DE102015213645B4 DE 102015213645 B4 DE102015213645 B4 DE 102015213645B4 DE 102015213645 A DE102015213645 A DE 102015213645A DE 102015213645 B4 DE102015213645 B4 DE 102015213645B4
Authority
DE
Germany
Prior art keywords
dispersion
dye
prepolymer
aqueous dispersion
encapsulated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
DE102015213645.0A
Other languages
English (en)
Other versions
DE102015213645A1 (de
Inventor
Jeffrey H. Banning
Jian Yao
Kelley A. Moore
Jule W. Thomas jun.
Michael B. Meinhardt
Paul C. Lucas
Jesus Gonzalez jun.
Gabriel Iftime
Bo Wu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xerox Corp
Original Assignee
Xerox Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xerox Corp filed Critical Xerox Corp
Publication of DE102015213645A1 publication Critical patent/DE102015213645A1/de
Application granted granted Critical
Publication of DE102015213645B4 publication Critical patent/DE102015213645B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/328Inkjet printing inks characterised by colouring agents characterised by dyes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0838Manufacture of polymers in the presence of non-reactive compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/102Printing inks based on artificial resins containing macromolecular compounds obtained by reactions other than those only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/38Inkjet printing inks characterised by non-macromolecular additives other than solvents, pigments or dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/50Sympathetic, colour changing or similar inks

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Verfahren zur Herstellung einer Dispersion von gekapseltem Farbstoff, umfassend:Herstellen eines Urethan-Präpolymers;Umsetzen des Urethan-Präpolymers mit einem neutralisierenden Agens;Zugabe einer wässrigen Dispersion zu dem neutralisierten Präpolymer, um eine wässrige Dispersion des neutralisierten Präpolymers zu bilden; undUmsetzen der wässrigen Dispersion des neutralisierten Präpolymers mit einem Kettenverlängerer ausgewählt aus der Gruppe bestehend aus Ethylendiamin, 1,2-Propandiamin, 1,6-Hexamethylendiamin, Piperazin, 2,5-Dimethylpiperazin, Isophorondiamin, 4,4'-Dicyclohexylmethandiamin, 3,3'-Dimethyl-4,4'-dicyclohexylmethandiamin, 1,4-Cyclohexandiamin, N-Hydroxymethylaminoethylamin, N-Hydroxyethylaminoethylamin, N-Hydroxypropylaminopropylamin, N-Ethylaminoethylamin, N-Methylaminopropylamin, Diethylentriamin, Dipropylentriamin und Triethylentetramin, wodurch eine Dispersion von gekapseltem Farbstoff hergestellt wird;wobei das Verfahren weiterhin einen Schritt der Zugabe eines Farbstoffs umfasst, welcher vor dem Umsetzen der wässrigen Dispersion des neutralisierten Präpolymers mit einem Kettenverlängerer erfolgt;wobei ein Schritt der Zugabe eines Farbstoffs nach Zugabe einer wässrigen Dispersion zu dem neutralisierten Präpolymer erfolgt, um eine wässrige Dispersion des neutralisierten Präpolymers zu bilden, und vor Umsetzen der wässrigen Dispersion des neutralisierten Präpolymers mit einem Kettenverlängerer;wobei die Polyurethan-Dispersion das Reaktionsprodukt aus Folgendem ist:(a) einem Urethan-Präpolymer, wobei das Urethan-Präpolymer das katalysierte Reaktionsprodukt aus Folgendem ist:(i) einem Polyol;(ii) einem Polyisocyanat; und(iii) einem internen Tensid;(b) einem neutralisierenden Agens; und(c) einem Kettenverlängerer ausgewählt aus der Gruppe bestehend aus Ethylendiamin, 1,2-Propandiamin, 1,6-Hexamethylendiamin, Piperazin, 2,5-Dimethylpiperazin, Isophorondiamin, 4,4'-Dicyclohexylmethandiamin, 3,3'-Dimethyl-4,4'-dicyclohexylmethandiamin, 1,4-Cyclohexandiamin, N-Hydroxymethylaminoethylamin, N-Hydroxyethylaminoethylamin, N-Hydroxypropylaminopropylamin, N-Ethylaminoethylamin, N-Methylaminopropylamin, Diethylentriamin, Dipropylentriamin und Triethylentetramin; undeinem Farbstoff, der aus der Gruppe ausgewählt ist, die aus Fluoreszenzfarbstoff, fotochromem Farbstoff und Mischungen davon besteht, wobei der Farbstoff nicht mit dem Polyisocyanat reaktiv ist,wobei die Dispersion von gekapseltem Farbstoff eine mittlere Dispersionspartikelgröße von 50 nm bis 100 nm aufweist,wobei das stöchiometrisch molare Äquivalenzverhältnis von internem Tensid zu Polyol 0,5 bis 2,0 und das stöchiometrisch molare Äquivalenzverhältnis von NCO-Gruppen zu OH-Gruppen insgesamt in dem Präpolymer 1,0 bis 3,0 beträgt,wobei die Menge des neutralisierenden Agens 50% bis 110% der Menge internen Tensids beträgt,wobei die Menge Wasser in der wässrigen Dispersion von 20 bis 80% basierend auf dem Gesamtgewicht der wässrigen Dispersion beträgt,wobei der Gehalt des Farbstoffs in einem Bereich von 0,1 bis 30% bezogen auf das Gewicht der Dispersion von gekapseltem Farbstoff beträgt,wobei die Dispersion von gekapseltem Farbstoff eine Viskosität von 2 bis 150 mPa · s bei Raumtemperatur und eine Oberflächenspannung von 0,015 bis 0,065 N/m bei Raumtemperatur aufweist, undwobei der Farbstoff in der Polyurethan-Dispersion verkapselt ist.

Description

  • EINFÜHRUNG
  • Polyurethan-Dispersionen sind als Träger in wässrigen Tintenstrahl-Tinten, z.B. in der US A, und wässrigen Schreibtinten, z.B. in der US 5,637,638 A , eingesetzt worden. Die in diesen Patenten beschriebenen Dispersionen setzen reaktive Polymerfarbmittel ein, die durch kovalente Bindung in das Polyurethan-Rückgrat des Moleküls eingebaut sind, und wirken als die Farbquelle der endgültigen Tinte.
  • Tinten mit Fluoreszenz- oder fotochromen Farbstoffen (gelegentlich als optisch variable Tinten bezeichnet) werden typischerweise verwendet, um latente Bilder als Sicherheitsmerkmal bereitzustellen. Fluoreszenz- und fotochrome Farbstoffe sind vorzugsweise farblos oder im Wesentlichen farblos, so dass das resultierende Bild bei Tageslicht unsichtbar oder im Wesentlichen unsichtbar ist. Bei Bestrahlung mit Ultraviolettstrahlung erzeugen Fluoreszenzfarbstoffe sichtbare Fluoreszenz (verschiedener Farben), so dass das Bild sichtbar wird. Gleichermaßen sind fotochrome Farbstoffe in ihrem Normalzustand farblos und werden bei Exposition mit aktivierender Strahlung, wie Ultraviolettstrahlung, farbig. Die Farbbildung umfasst im Allgemeinen einen Ringschluss oder eine Ringöffnung des fotochromen Farbstoffmoleküls unter Bildung konjugierter Doppelbindungen. Fluoreszenz- und fotochrome Farbstoffe werden intensiv für Tinten- und Beschichtungsanwendung gesucht. Das Kapseln oder Einbauen von Fluoreszenz- oder fotochromen Farbstoffen in einen Latex, hergestellt in einer Emulsionspolymerisation, ist kein einfaches Unternehmen. Dies liegt daran, dass die Fluoreszenz- und fotochromen Farbstoffe während einer Emulsionspolymerisation folgende Anforderungen erfüllen müssen: (1) Löslichkeit in den in der Emulsionspolymerisation verwendeten Monomeren, (2) Einfang in einer Monomermicelle, während die Polymerisation in der Micelle abläuft und (3) Stabilität gegenüber freien Radikalen der Polymerisationsumgebung. Viele organische Fluoreszenz- und fotochromen Farbstoffe sind in solchen Umgebungen nicht stabil und ihre Farben werden anschließend zerstört. Selbst wenn der gekapselte Fluoreszenz- und/oder fotochrome Farbstoff den gesamten Polymerisationsprozess überlebt, ist er typischerweise nicht gegenüber freien Radikalen der Umgebung am Ende des Prozesses stabil, wenn alle überschüssigen Monomere unter oxidativen oder reduktiven Bedingungen zerstört werden. Die Kapselung eines Fluoreszenz- und/oder fotochromen Farbstoffs in eine Polyurethan-Dispersion umgeht alle diese Probleme.
  • Es ist wichtig, dass die Tintenzusammensetzungen, die die Farbstoffdispersionen umfassen, stabil bleiben, nicht nur bei Lagerung, sondern auch über wiederholte Tintenstrahlzyklen. Daher besteht ein Bedarf an einem Verfahren zum Kapseln von fotochromen und/oder Fluoreszenzfarbstoffen in den Latex und an dem Bereitstellen einer hochstabilen Farbstoff-Polyurethan-Dispersion, die für Tintenstrahl-Anwendungen verwendet werden kann.
  • US 2011/0269901 A1 offenbart ein ionisch geladenes, verkapseltes Farbmittel-Nanopartikel, das einen Farbmittel-Nanopartikel-Kern und eine ionisch geladene Verkapselungsschicht umfasst, die chemisch an eine Oberfläche des Farbmittel-Nanopartikel-Kerns gebunden ist, wobei die ionisch geladene Verkapselungsschicht ein polymerisiertes oder vernetztes, ionisch geladenes Polyurethanmonomer enthält.
  • US 2012/0321863 A1 betrifft ein Verfahren zur Herstellung einer Dispersion von vergekapselten, festen Teilchen in einem flüssigen Medium, umfassend das Zerkleinern einer Zusammensetzung, umfassend einen Farbstoff, ein flüssiges Medium und ein Polyurethandispergiermittel mit einer Säurezahl von 0,55 bis 2 mmol/g Dispergiermittel, wobei die Zusammensetzung 5 bis 40 Gew.-Teile Polyurethandispergiermittel pro 100g Feststoff umfasst, und vernetzendes Polyurethandispergiermittels in Gegenwart des Feststoffs und des flüssigen Mediums, um die Feststoffteilchen einzukapseln, wobei das Polyurethandispergiermittel weniger als 10 Gew.-% Wiederholungseinheiten aus polymerem Alkohol enthält, wobei jeder polymere Alkohol ein zahlenmittleres Molekulargewicht von mehr als 500 Dalton aufweist.
  • US 2014/0011941 A1 offenbart ein Verfahren zur Herstellung eines verkapselten Pigments, umfassend die Schritte des Dispergierens eines Pigments unter Verwendung eines polymeren Dispergiermittels in einem wässrigen Träger, wobei das polymere Dispergiermittel ausgewählt ist aus der Gruppe bestehend aus acrylischem Dispergiermittel, umfassend Acryl- und Acrylatmonomere, und ein Polyurethandispergiermittel und Mischungen davon, und wobei das polymere Dispergiermittel ein zahlenmittleres Molekulargewicht von 2.000 bis 9.500 Dalton aufweist, gefolgt von der Zugabe von mindestens einem Verkapselungsmonomer und mindestens einer wässrigen Polyurethandispersion zu dem wässrigen Träger, um eine erste dispergierte Pigment/Verkapselungsmonomer/Polyurethandispersion/wässrige Mischung zu bilden, und wobei das Verkapselungsmonomer aus Acrylatmonomeren besteht, gefolgt von Dispergieren des Verkapselungsmonomers/wässrigen Gemisches, um eine zweite dispergierte Pigment/Verkapselungsmonomer/wässrige Polyurethandispersion/wässrige Mischung zu bilden, und Polymerisieren des Verkapselungsmonomers.
  • Figurenliste
    • 1 zeigt eine Wasser-in-ÖI-Dispersion einer Mischung aus Wasser und einem neutralisierten Präpolymer, enthaltend einen sichtbaren Farbstoff gemäß bestimmter Ausführungsformen der vorliegenden Offenbarung.
    • 2 zeigt eine Öl-in-wässriger Dispersion einer Mischung aus Wasser und einem neutralisierten Präpolymer, enthaltend einem sichtbaren Farbstoff nach Hochgeschwindigkeitszentrifugation gemäß bestimmter Ausführungsformen der vorliegenden Offenbarung.
    • 3 zeigt eine Vergrößerungsansicht eines einzelnen Dispersionspartikels eines sichtbaren Farbstoffs in Wasser gemäß bestimmter Ausführungsformen der vorliegenden Offenbarung.
    • 4 zeigt eine Vergrößerungsansicht eines einzelnen Dispersionspartikels eines sichtbaren Farbstoffs nach Zugabe einer Kettenverlängerer-Dispersion gemäß bestimmter Ausführungsformen der vorliegenden Offenbarung.
  • KURZFASSUNG DER ERFINDUNG
  • Die Offenbarung stellt ein Verfahren zur Herstellung einer Dispersion von gekapseltem Farbstoff zur Verfügung, umfassend:
    • Herstellen eines Urethan-Präpolymers;
    • Umsetzen des Urethan-Präpolymers mit einem neutralisierenden Agens;
    • Zugabe einer wässrigen Dispersion zu dem neutralisierten Präpolymer, um eine wässrige Dispersion des neutralisierten Präpolymers zu bilden; und
    • Umsetzen der wässrigen Dispersion des neutralisierten Präpolymers mit einem Kettenverlängerer ausgewählt aus der Gruppe bestehend aus Ethylendiamin, 1,2-Propandiamin, 1,6-Hexamethylendiamin, Piperazin, 2,5-Dimethylpiperazin, Isophorondiamin, 4,4'-Dicyclohexylmethandiamin, 3,3'-Dimethyl-4,4'-dicyclohexylmethandiamin, 1,4-Cyclohexandiamin, N-Hydroxymethylaminoethylamin, N-Hydroxyethylaminoethylamin, N-Hydroxypropylaminopropylamin, N-Ethylaminoethylamin, N-Methylaminopropylamin, Diethylentriamin, Dipropylentriamin und Triethylentetramin, wodurch eine Dispersion von gekapseltem Farbstoff hergestellt wird;
    • wobei das Verfahren weiterhin einen Schritt der Zugabe eines Farbstoffs umfasst, welcher vor dem Umsetzen der wässrigen Dispersion des neutralisierten Präpolymers mit einem Kettenverlängerer erfolgt;
    • wobei ein Schritt der Zugabe eines Farbstoffs nach Zugabe einer wässrigen Dispersion zu dem neutralisierten Präpolymer erfolgt, um eine wässrige Dispersion des neutralisierten Präpolymers zu bilden, und vor Umsetzen der wässrigen Dispersion des neutralisierten Präpolymers mit einem Kettenverlängerer;
    • wobei die Polyurethan-Dispersion das Reaktionsprodukt aus Folgendem ist:
      1. (a) einem Urethan-Präpolymer, wobei das Urethan-Präpolymer das katalysierte Reaktionsprodukt aus Folgendem ist:
        • (i) einem Polyol;
        • (ii) einem Polyisocyanat; und
        • (iii) einem internen Tensid;
      2. (b) einem neutralisierenden Agens; und
      3. (c) einem Kettenverlängerer ausgewählt aus der Gruppe bestehend aus Ethylendiamin, 1,2-Propandiamin, 1,6-Hexamethylendiamin, Piperazin, 2,5-Dimethylpiperazin, Isophorondiamin, 4,4'-Dicyclohexylmethandiamin, 3,3'-Dimethyl-4,4'-dicyclohexylmethandiamin, 1,4-Cyclohexandiamin, N-Hydroxymethylaminoethylamin, N-Hydroxyethylaminoethylamin, N-Hydroxypropylaminopropylamin, N-Ethylaminoethylamin, N-Methylaminopropylamin, Diethylentriamin, Dipropylentriamin und Triethylentetramin; und
    • einem Farbstoff, der aus der Gruppe ausgewählt ist, die aus Fluoreszenzfarbstoff, fotochromem Farbstoff und Mischungen davon besteht, wobei der Farbstoff nicht mit dem Polyisocyanat reaktiv ist,
    • wobei die Dispersion von gekapseltem Farbstoff eine mittlere Dispersionspartikelgröße von 50 nm bis 100 nm aufweist,
    • wobei das stöchiometrisch molare Äquivalenzverhältnis von internem Tensid zu Polyol 0,5 bis 2,0 und das stöchiometrisch molare Äquivalenzverhältnis von NCO-Gruppen zu OH-Gruppen insgesamt in dem Präpolymer 1,0 bis 3,0 beträgt,
    • wobei die Menge des neutralisierenden Agens 50% bis 110% der Menge internen Tensids beträgt,
    • wobei die Menge Wasser in der wässrigen Dispersion von 20 bis 80% basierend auf dem Gesamtgewicht der wässrigen Dispersion beträgt,
    • wobei der Gehalt des Farbstoffs in einem Bereich von 0,1 bis 30% bezogen auf das Gewicht der Dispersion von gekapseltem Farbstoff beträgt,
    • wobei die Dispersion von gekapseltem Farbstoff eine Viskosität von 2 bis 150 mPa . s bei Raumtemperatur und eine Oberflächenspannung von 0,015 bis 0,065 N/m bei Raumtemperatur aufweist, und
    • wobei der Farbstoff in der Polyurethan-Dispersion verkapselt ist.
  • AUSFÜHRLICHE BESCHREIBUNG
  • Der Begriff „Dispersion“, wie hier verwendet, bedeutet ein Zweiphasensystem, wobei eine Phase aus fein verteilten Partikeln (oft in kolloidalem Größenbereich) besteht, die über eine Bulk-Substanz verteilt sind, wobei die Partikel die dispergierte oder interne Phase und die Bulk-Substanz die kontinuierliche oder externe Phase ist. Das Bulk-System ist oft ein wässriges System.
  • Der Begriff „PUD“, wie hier verwendet, bedeutet die hier beschriebenen Polyurethan-Dispersionen.
  • Der Begriff „DMPA“, wie hier verwendet, bedeutet Dimethylolpropionsäure.
  • Die Offenbarung stellt ein Verfahren zur Herstellung einer Dispersion von gekapseltem Farbstoff zur Verfügung, umfassend:
    • Herstellen eines Urethan-Präpolymers;
    • Umsetzen des Urethan-Präpolymers mit einem neutralisierenden Agens;
    • Zugabe einer wässrigen Dispersion zu dem neutralisierten Präpolymer, um eine wässrige Dispersion des neutralisierten Präpolymers zu bilden; und
    • Umsetzen der wässrigen Dispersion des neutralisierten Präpolymers mit einem Kettenverlängerer ausgewählt aus der Gruppe bestehend aus Ethylendiamin, 1,2-Propandiamin, 1,6-Hexamethylendiamin, Piperazin, 2,5-Dimethylpiperazin, Isophorondiamin, 4,4'-Dicyclohexylmethandiamin, 3,3'-Dimethyl-4,4'-dicyclohexylmethandiamin, 1,4-Cyclohexandiamin, N-Hydroxymethylaminoethylamin, N-Hydroxyethylaminoethylamin, N-Hydroxypropylaminopropylamin, N-Ethylaminoethylamin, N-Methylaminopropylamin, Diethylentriamin, Dipropylentriamin und Triethylentetramin, wodurch eine Dispersion von gekapseltem Farbstoff hergestellt wird;
    • wobei das Verfahren weiterhin einen Schritt der Zugabe eines Farbstoffs umfasst, welcher vor dem Umsetzen der wässrigen Dispersion des neutralisierten Präpolymers mit einem Kettenverlängerer erfolgt;
    • wobei ein Schritt der Zugabe eines Farbstoffs nach Zugabe einer wässrigen Dispersion zu dem neutralisierten Präpolymer erfolgt, um eine wässrige Dispersion des neutralisierten Präpolymers zu bilden, und vor Umsetzen der wässrigen Dispersion des neutralisierten Präpolymers mit einem Kettenverlängerer;
    • wobei die Polyurethan-Dispersion das Reaktionsprodukt aus Folgendem ist:
      1. (a) einem Urethan-Präpolymer, wobei das Urethan-Präpolymer das katalysierte Reaktionsprodukt aus Folgendem ist:
        • (i) einem Polyol;
        • (ii) einem Polyisocyanat; und
        • (iii) einem internen Tensid;
      2. (b) einem neutralisierenden Agens; und
      3. (c) einem Kettenverlängerer ausgewählt aus der Gruppe bestehend aus Ethylendiamin, 1,2-Propandiamin, 1,6-Hexamethylendiamin, Piperazin, 2,5-Dimethylpiperazin, Isophorondiamin, 4,4'-Dicyclohexylmethandiamin, 3,3'-Dimethyl-4,4'-dicyclohexylmethandiamin, 1,4-Cyclohexandiamin, N-Hydroxymethylaminoethylamin, N-Hydroxyethylaminoethylamin, N-Hydroxypropylaminopropylamin, N-Ethylaminoethylamin, N-Methylaminopropylamin, Diethylentriamin, Dipropylentriamin und Triethylentetramin; und
    • einem Farbstoff, der aus der Gruppe ausgewählt ist, die aus Fluoreszenzfarbstoff, fotochromem Farbstoff und Mischungen davon besteht, wobei der Farbstoff nicht mit dem Polyisocyanat reaktiv ist,
    • wobei die Dispersion von gekapseltem Farbstoff eine mittlere Dispersionspartikelgröße von 50 nm bis 100 nm aufweist,
    • wobei das stöchiometrisch molare Äquivalenzverhältnis von internem Tensid zu Polyol 0,5 bis 2,0 und das stöchiometrisch molare Äquivalenzverhältnis von NCO-Gruppen zu OH-Gruppen insgesamt in dem Präpolymer 1,0 bis 3,0 beträgt,
    • wobei die Menge des neutralisierenden Agens 50% bis 110% der Menge internen Tensids beträgt,
    • wobei die Menge Wasser in der wässrigen Dispersion von 20 bis 80% basierend auf dem Gesamtgewicht der wässrigen Dispersion beträgt,
    • wobei der Gehalt des Farbstoffs in einem Bereich von 0,1 bis 30% bezogen auf das Gewicht der Dispersion von gekapseltem Farbstoff beträgt,
    • wobei die Dispersion von gekapseltem Farbstoff eine Viskosität von 2 bis 150 mPa . s bei Raumtemperatur und eine Oberflächenspannung von 0,015 bis 0,065 N/m bei Raumtemperatur aufweist, und
    • wobei der Farbstoff in der Polyurethan-Dispersion verkapselt ist
  • Die Reaktion zur Bildung der Polyurethan-Dispersion der vorliegenden Offenbarung ist keine Reaktion mit freien Radikalen.
  • Bei Herstellung der Dispersion von gekapseltem Farbstoff der vorliegenden Offenbarung kann der Farbstoff in die Polyurethan-Dispersion durch Zugabe des Farbstoffs während der Bildung der Polyurethan-Dispersion, wie z.B. vor Zugabe des neutralisierenden Agens, eingebaut oder gekapselt werden.
  • Die Herstellung der Dispersion von gekapseltem Fluoreszenz- und/oder fotochromem Farbstoff erfordert, dass zuerst ein viskoses Präpolymer gebildet und dann der Fluoreszenz- und/oder fotochrome Farbstoff nach Bildung des Präpolymers zugegeben wird. Die Fluoreszenz- oder fotochromen Farbstoffe der Offenbarung sind nicht mit Wasser mischbar. Wenn solche Farbstoffe zu den Polyurethan-Dispersionen nach deren Herstellung gegeben werden, würden die Farbstoffe einfach auf dem Wasserteil des Latex „floatieren“. In der vorliegenden Offenbarung werden die Farbstoffe zu dem Präpolymer oder den Komponenten, die umgesetzt werden, um das Präpolymer (d.h. Polyisocyanat, Polyol und internes Tensid) herzustellen, zugeben, da die Farbstoffe in diesen organischen Stoffen löslich sind.
  • In bestimmten Ausführungsformen kann die Dispersion von gekapseltem Farbstoff mit einem Prozess hergestellt werden, umfassend das Herstellen eines Urethan-Präpolymers; Umsetzen des Urethan-Präpolymers mit einem neutralisierenden Agens; Zugabe von Wasser zu dem neutralisierten Präpolymer, um eine wässrige Dispersion des neutralisierten Präpolymers zu bilden; und Umsetzen der wässrigen Dispersion des neutralisierten Präpolymers mit einem Kettenverlängerer, wodurch eine Dispersion von gekapseltem Farbstoff hergestellt wird, wobei der Schritt des Herstellens eines Urethan-Präpolymers die Zugabe eines Fluoreszenz- oder fotochromen Farbstoffs zu dem Reaktionsgemisch umfasst. Der Farbstoff kann z.B. zu der Mischung von Polyol, Polyisocyanat und internem Tensid in Gegenwart eines Katalysators gegeben werden.
  • In bestimmten Ausführungsformen kann die Dispersion von gekapseltem Farbstoff durch einen Prozess hergestellt werden, umfassend das Herstellen eines Urethan-Präpolymers; Zugabe eines Farbstoffs zu dem Urethan-Präpolymer; Umsetzen des Urethan-Präpolymers mit einem neutralisierenden Agens, um ein neutralisiertes Präpolymer zu bilden; Zugabe von Wasser zu dem neutralisierten Präpolymer, um eine wässrige Dispersion des neutralisierten Präpolymers zu bilden; und Umsetzen der wässrigen Dispersion des neutralisierten Präpolymers mit einem Kettenverlängerer, wodurch eine Dispersion von gekapseltem Farbstoff hergestellt wird.
  • In bestimmten Ausführungsformen kann die Dispersion von gekapseltem Farbstoff durch einen Prozess hergestellt werden, umfassend das Herstellen eines Polyurethan-Präpolymers; Umsetzen des Urethan-Präpolymers mit einem neutralisierenden Agens, um ein neutralisiertes Präpolymer zu bilden; Zugabe eines Farbstoffs zu dem neutralisierten Präpolymer; Zugabe von Wasser zu dem neutralisierten Präpolymer, um eine wässrige Dispersion des neutralisierten Präpolymers zu bilden; und Umsetzen der wässrigen Dispersion des neutralisierten Präpolymers mit einem Kettenverlängerer, wodurch eine Dispersion von gekapseltem Farbstoff hergestellt wird.
  • Das Urethan-Präpolymer kann durch Umsetzen eines Polyols, eines Polyisocyanats und eines internen Tensids in Gegenwart eines Katalysators hergestellt werden.
  • Das interne Tensid kann in einem organischen Lösungsmittel, wie NMP, DMF oder anderen polaren, aprotischen Lösungsmitteln, vor Zugabe zu dem Polyol und dem Polyisocyanat gelöst werden.
  • Das stöchiometrisch molare Äquivalenzverhältnis von internem Tensid zu Polyol beträgt 0,5 bis 2, 0, 0,75 bis 1,75 oder 1 bis 1,5, das stöchiometrisch molare Äquivalenzverhältnis von NCO-Gruppen zu OH-Gruppen insgesamt in dem Präpolymer beträgt 1,0 bis 3,0, 1,25 bis 2,5 oder 1,5 bis 2,0. Es ist erwünscht, ein hohes Verhältnis von internem Tensid zu Polyol und ein niedriges Verhältnis von NCO-Gruppen zu OH-Gruppen zu haben. Typischerweise wird die Urethan-Präpolymer-Reaktion bei 70 °C bis 100 °C für 1 bis 5 Stunden ausgeführt, bis der theoretische Isocyanat-Gehalt, der z.B. mittels des Di-n-butylamin-Titrationsverfahrens bestimmt werden kann, erreicht ist, um ein Urethan-Präpolymer (Isocyanat-terminiert), enthaltend ein internes Tensid darin, zu bilden.
  • Das Urethan-Präpolymer (Isocyanat-terminiertes Präpolymer mit einem internen Tensid darin) kann mit einem neutralisierenden Agens, wie Trialkylamin, z.B. Triethylamin, neutralisiert werden. Die Menge des verwendeten neutralisierenden Agens kann von der Menge des in dem Urethan-Präpolymer vorhandenen internen Tensids abhängig sein und weist 50% bis 110% oder 90% bis 105% der Menge internen Tensids auf. Dieser Neutralisierungsschritt ermöglicht durch Neutralisieren der funktionellen Gruppen des Urethan-Präpolymers, dass das Urethan-Präpolymer dispersibel bleibt. In einer Ausführungsform können die Carboxylsäure-Stellen an den internen Tensiden neutralisiert werden, wodurch ein Salz gebildet wird, wie -C02-HN+R3, wobei R eine niedrigere Alkylgruppe ist.
  • Das neutralisierte Präpolymer besitzt typischerweise ein Massemittel der Molekularmasse (MW) von 5.000 bis 10.000, von 1.000 bis 20.000 oder von 3.000 bis 15.000.
  • Wasser 1, z.B. deionisiertes (DI) Wasser, kann zu dem neutralisierten Präpolymer 3 gegeben werden, welches Farbstoff 2 enthält, der während der Bildung des Präpolymers oder nach Bildung des Präpolymers aber vor Zugabe des neutralisierenden Agens zugegeben werden kann. Die Menge Wasser in der wässrigen Dispersion beruht auf dem gewünschten Prozentsatz der Feststoffe in der endgültigen Polyurethan-Dispersion, welches eine Menge von 20 bis 80 oder von 35 bis 60% basierend auf dem Gesamtgewicht der wässrigen Dispersion sein kann. Die wässrige Dispersion startet üblich als „Wasser-in-ÖI“-Dispersion in dem Moment, in dem Wasser unter Dispersionsbedingungen zugegeben wird. 1 zeigt eine „Wasser-in-ÖI“-Dispersion, wenn Wasser zuerst zu dem neutralisierten Präpolymer gegeben wird. Während des Dispersionsprozesses kann die Mischung (d.h. Wasser und das neutralisierte Präpolymer 3) bei hoher Geschwindigkeit (z.B. 5.000 bis 10.000 UPM) zentrifugiert und die „Wasser-in-ÖI“-Dispersion kann zu einer „ÖI-in-Wasser“-Dispersion gewandelt werden. Die Dispersion kann durch Rotation einer Klinge, wie einer Dispersionsklinge 4, bewirkt werden. Die Wirkung des Einsatzes einer Dispersionsklinge mit hoher Geschwindigkeit überträgt Energie in das System eher zum Dispergieren als zum Mischen. An diesem Punkt kann die Partikelgröße der endgültigen Dispersion von gekapseltem Farbstoff bestimmt werden. 2 zeigt eine „ÖI-in-Wasser“-Dispersion, wobei das neutralisierte Präpolymer 3 in dem Wasser suspendiert ist. In einem Tröpfchen des neutralisierten Präpolymers 3 sind die Enden (d.h. freie -NCO-Grupen) des neutralisierten Präpolymers auf der Innenseite des Tröpfchens. In einer Ausführungsform der Offenbarung zeigt 3 eine Vergrößerungsansicht eines einzelnen Dispersionspartikels in Wasser, wo DPMA als internes Tensid eingesetzt ist.
  • Ein Kettenverlängerer wird dann zugegeben, um das Massenmittel der Molekularmasse der Polyurethan-Dispersion unter Verwenden einer Menge zu erhöhen, die stöchiometrisch äquivalent zu 60 bis 100% der Menge des Präpolymers oder 85 bis 95% der Menge des Präpolymers ist. Das Massenmittel der Molekularmasse des eingesetzten Polyols und des bestimmten verwendeten Kettenverlängerers kann die Adhäsion der Tinte auf dem aufnehmenden Endsubstrat beeinflussen.
  • Der Kettenverlängerer kann in die Partikel der Dispersion diffundieren oder einwandern und mit den freien, endständigen Isocyanat-Gruppen des neutralisierten Präpolymers reagieren und somit das Massenmittel des Polyurethan-Polymers erweitern und in dem Prozess Harnstoffe bilden. In einer Ausführungsform der Offenbarung zeigt 4 eine Vergrößerungsansicht eines einzelnen Dispersionspartikels nach Zugabe eines Kettenverlängerers, z.B. Ethylendiamin in Wasser, wobei DMPA als das interne Tensid eingesetzt ist.
  • Der erfindungsgemäße Kettenverlängerer ist ausgewählt aus der Gruppe bestehend aus Ethylendiamin, 1,2-Propandiamin, 1,6-Hexamethylendiamin, Piperazin, 2,5-Dimethylpiperazin, Isophorondiamin, 4,4'-Dicyclohexylmethandiamin, 3,3'-Dimethyl-4,4'-dicyclohexylmethandiamin, 1,4-Cyclohexandiamin, N-Hydroxymethylaminoethylamin, N-Hydroxyethylaminoethylamin, N-Hydroxypropylaminopropylamin, N-Ethylaminoethylamin, N-Methylaminopropylamin, Diethylentriamin, Dipropylentriamin und Triethylentetramin. In einer Ausführungsform umfasst der Kettenverlängerer Ethylendiamin.
  • Es können beliebige geeignete Mengen von Präpolymer, neutralisierendem Agens, Wasser und Kettenverlängerer zu dem Urethan-Präpolymer gegeben werden, solange eine stabile Polyurethan-Dispersion gebildet wird.
  • Als Rühr-/Dispersionsvorrichtung zum Dispergieren von Pigmenten können z.B. verschiedene bekannte Dispergierer verwendet werden, wie Hochgeschwindigkeits-Schlagscheibe, Ultraschall-Homogenisator, Hochdruck-Homogenisator, Farbmischer, Kugelmühle, Walzenmühle, Sandmühle, Sandmahlwerk, Dyno-Mühle, Dispergierapparat, SC-Mühle, Nanomizer oder Ähnliches.
  • Die Dispersion von gekapseltem Farbstoff und Polyurethan wird dann mit einem wässrigen Medium, mindestens einem Befeuchtungsmittel und optional mindestens einem Weichmacher kombiniert.
  • Die Dispersion von gekapseltem Farbstoff der vorliegenden Offenbarung weist eine mittlere Dispersionspartikelgröße (d.h. Partikeldurchmesser) von 50 nm bis 100 nm auf. Dieser Größenbereich erlaubt, dass die Partikel und die resultierende Tinte, in der sie dispergiert sind, Probleme mit Absetzen, Stabilität/Dispersion überwinden. Der mittlere Partikeldurchmesser kann mittels verschiedener Verfahren gemessen werden, z.B. kann er unter Verwendung eines Partikelanalysators UPA 150, hergestellt von Nikkiso Co., Ltd., gemessen werden.
  • Die Dispersion von gekapseltem Fluoreszenz- und fotochromem Farbstoff der vorliegenden Offenbarung weist eine Viskosität von 2 · 10-3 bis 0,15 Pa · s (2 bis 150 cps), von 0,01 bis 0,1 Pa · s (10 bis 100 cps) oder von 0,02 bis 0,08 Pa · s (20 bis 80 cps) bei Raumtemperatur auf. Die Dispersion von gekapseltem Farbstoff der vorliegenden Offenbarung weist eine Oberflächenspannung von 0,015 bis 0,065 N/m (15 bis 65 dyn/cm), von 0,025 bis 0,06 N/m (25 bis 60 dyn/cm) oder von 0,035 bis 0,055 N/m (35 bis 55 dyn/cm) bei Raumtemperatur auf.
  • Der Gehalt des Farbstoffs der Dispersion von gekapseltem Farbstoff der vorliegenden Offenbarung liegt in einem Bereich von 0,1 bis 30%, von 1,0 bis 15% oder von 2,0 bis 5,0% bezogen auf das Gewicht der Dispersion von gekapseltem Farbstoff.
  • Die Fluoreszenz- und fotochromen Farbstoffe der vorliegenden Offenbarung sind unreaktiv gegenüber jeglichem Reagens oder Vorläufer oder beidem des Urethan-Präpolymers (d.h. dem Polyol, dem Polyisocyanat und dem internen Tensid). Insbesondere enthalten die Farbstoffe keine nicht-phenolischen Hydroxylgruppen oder aliphatische primäre oder sekundäre Amine, wohl aber können sie eine phenolische Hydroxylgruppe und/oder ein tertiäres Amin enthalten, bei dem einer der Substituenten ein aromatischer Ring ist.
  • Die in der vorliegenden Offenbarung verwendeten Farbstoffe können Fluoreszenzfarbstoffe und/oder fotochrome Farbstoffe oder Mischungen davon enthalten.
  • Geeignete Fluoreszenzfarbstoffe umfassen organische und anorganische Farbstoffe, die in organischen Lösungsmitteln und auch Wasser sowie in anderen Lösungsmittelsystemen löslich sind. Bestimmte Beispiele umfassen, ohne hierauf beschränkt zu sein, Zink- oder Cadmium-basierte Quantenpunkte und Nanokristalle, Stilben-Derivate, fluoreszierende Aufheller, 2,5-Bis(5-tert-butyl-benzoxazol-2-yl) thiophen, 4,4'-Bis(2-benzoxazolyl)stilben, 4,4'-Diamino-2,2'-stilbendisulfonsäure, Fluorescent Brightener 28, Tinopal UNPA-GX, 2-(2-Hydroxyphenyl)benzothiazol, Tris [1-phenylisoquinolinato C2,N] iridium (III), Tris[2-phenyl pyridinato C2, N] iridium (III) und Tris [2-(4,6-difluorphenyl) 1pyridinato C2,N] iridium (III) xanthen-Derivative, Cyanin-Derivative, Naphthalen-Derivative, Coumarin-Derivative, Oxadiazol-Derivate, Pyren-Derivate, Oxazin-Derivate, Acridin-Derivate, Arylmethin-Derivate, Tetrapyrrol-Derivate. Geeignete fotochrome Farbstoffe finden sich sowohl in organischen Verbindungen, wie Aniline, Disulfoxide, Hydrazone, Osazone, Semicarbazone, Stilben-Derivate, o-Nitrobenzyl-Derivate, Spiro-Verbindungen [Spiropyran- und Spirooxazin-Verbindungen] und Ähnliche; und in anorganischen Verbindungen, wie Metalloxide; Erdalkalimetallsulfide; Titanate; Quecksilber-Verbindungen; Kupfer-Verbindungen; Mineralien; Übergangsmetallverbindungen, wie Carbonyls und Ähnliches. Bestimmte Beispiele für fotochrome Farbstoffe umfassen 1-(2-Hydroxyethyl)-3,3-dimethylindolino-6'-nitrobenzopyrylospiran, 1,3,3-Trimethylindolinobenzopyrylospiran, 1,3,3-Trimethylindolino-6'-nitrobenzopyrylospiran, 1,3,3-Trimethylindolino-6'-brombenzopyrylospiran, 1,3,3-Trimethylindolino-8'-methoxybenzopyrylospiran, 1,3,3-Trimethylindolino-β-naphthopyrylospiran, 1,3,3-Trimethylindolinonaphthospirooxazin, Diarylethene, Spiropyrane, Spiroperimidine und Viologene und Azobenzol.
  • Der Begriff „Polyol“, wie hier verwendet, soll Materialien umfassen, die zwei oder mehr Hydroxylgruppen enthalten, z.B. Diole, Triole, Tetraole etc. Das Massenmittel des Polyols kann 60 bis 10.000x, 500 bis 5.000 oder 1.000 bis 2.000 betragen. Polyole zur Verwendung in der Polyurethan-Polymerisation der vorliegenden Offenbarung können ausgewählt werden, um die Löslichkeit eines bestimmten Fluoreszenz- oder fotochromen Farbstoffs zu verbessern. Nicht beschränkende Beispiele für Polyole umfassen Diole, Triole, Polyetherpolyole, Polyacrylatpolyole, Polyesterpolyole, Polycarbonatpolyole und Kombinationen davon. Geeignete Polyetherpolyole umfassen, ohne hierauf beschränkt zu sein, Polytetramethylenetherglycol (PTMEG), Polyethylenpropylenglycol, Polyoxypropylenglycol und Mischungen davon. Die Kohlenwasserstoffkette kann gesättigte und ungesättigte Bindungen und substituierte oder unsubstituierte aromatische und zyklische Gruppen aufweisen. Geeignete Polyacrylatpolyole umfassen, ohne hierauf beschränkt zu sein, Glycerin-1,3-diglycerolatdiacrylat. Geeignete Polyesterpolyole umfassen, ohne hierauf beschränkt zu sein, Polyethylenadipatglycol, Polybutylenadipatglycol, Polyethylenpropylenadipatglycol, o-Phthalat-1,6-hexandiol, Poly(hexamethylenadipat)glycol und Mischungen davon. Geeignete Polycarbonatpolyole umfassen, ohne hierauf beschränkt zu sein, Poly(poly-THF-carbonat)diol.
  • Der Begriff „Polyisocyanat“, wie hier verwendet, soll Materialien umfassen, die zwei oder mehr Isocyanat-Gruppen enthalten. Das Massenmittel der Molekularmasse des Polyisocyanats kann 140 bis 1.000, 168 bis 262 oder 222 bis 680 betragen. Geeignete Polyisocyanate umfassen Diisocyanate, Triisocyanate, Copolymere eines Diisocyanats, Copolymere eines Triisocyanats, Polyisocyanate (mit mehr als drei funktionellen Isocyanat-Gruppen) und Ähnliche sowie Mischungen davon. Beispiele für Diisocyanate umfassen Isophorondiisocyanat (IPDI), Toluoldiisocyanat (TDI), Diphenylmethan-4,4'-diisocyanat (MDI), hydrogeniertes Diphenylmethan-4,4'-diisocyanat (H12MDI); Tetramethylxylendiisocyanat (TMXDI); Hexamethylen-1,6-diisocyanat (HDI), Hexamethylen-1,6-diisocyanat, Napthylen-1,5-diisocyanat, 3,3'-Dimethoxy-4,4'-biphenyldiisocyanat, 3,3'-Dimethyl-4,4'-bimethyl-4,4'-biphenyldiisocyanat, Phenylendiisocyanat, 4,4'-Biphenyldiisocyanat, Trimethylhexamethylendiisocyanat, Tetramethylenxylendiisocyanat; 4,4'-Methylen-bis(2,6-diethylphenylisocyanat), 1,12-Diisocyanatododecan, 1,5-Diisocyanato-2-methylpentan, 1,4-Diisocyanatobutan, Dimere Diisocyanat und Cyclohexylendiisocyanat und deren Isomere, Uretidiondimere von HDI und Ähnliche sowie Mischungen davon. Beispiele für Triisocyanate oder ihre Äquivalente umfassen das Trimethylolpropantrimer von TDI und Ähnliche, Isocyanurattrimere von TDI, HDI, IPDI und Ähnliche und Biurettrimere von TDI, HDI, IPDI und Ähnliche sowie Mischungen davon. Beispiele höherer Isocyanatfunktionen umfassen Copolymere von TDI/HDI und Ähnliche und MDI-Oligomere sowie Mischungen davon.
  • Geeignete interne Tenside umfassen sowohl anionische als auch kationische interne Tenside. Diese umfassen Sulfonatdiamine und -diole und Dihydroxycarboxylsäuren. In einer Ausführungsform ist das interne Tensid α,α-Dimethylolpropionsäure (DMPA).
  • In der Präpolymer-bildenden Reaktion kann ein beliebiger herkömmlicher Urethanbildender Katalysator verwendet werden. Geeignete Urethan-Reaktionskatalysatoren umfassen, ohne hierauf beschränkt zu sein, Dibutylzinndilaurat, Bismuth-trisneodecanoat, Cobaltbenzoat, Lithiumacetat, Zinnoctoat, Triethylamin und Ähnliche.
  • Die gekapselten Farbstoff-Dispersionen der vorliegenden Offenbarung können in Tintenstrahltinten verwendet werden. Die Tintenstrahltinten der vorliegenden Erfindung können durch Verdünnen der Dispersionen von gekapseltem Farbstoff der vorliegenden Erfindung mit Wasser oder einem wässrigen Lösungsmittel und ggf. Zugabe weiterer optionaler Additive dazu hergestellt werden, wie z.B. Befeuchtungsmittel, Weichmacher, Leitfähigkeitsagenzien, Entschäumer, Antioxidanzien, Korrosionsinhibitoren, Bakterizide, pH-Regulatoren.
  • Die Tintenstrahl-Tintenzusammensetzungen können ein Befeuchtungsmittel umfassen. Beispiele für Befeuchtungsmittel umfassen, ohne hierauf beschränkt zu sein, Alkohole, z.B. Glycole, wie 2,2'-Thiodiethanol, Glycerin, 1,3-Propandiol, 1,5-Pentandiol, Polyethylenglycol, Ethylenglycol, Diethylenglycol, Propylenglycol und Tetraethylenglycol; Pyrrolidone, wie 2-Pyrrolidon; N-Methyl-2-pyrrolidon; N-Methyl-2-oxazolidinon; und Monoalkohole, wie n-Propanol und Isopropanol. Das Befeuchtungsmittel kann in einer Menge von 2% bis 20% oder von 4% bis 10% bezogen auf die Masse der Tintenzusammensetzung vorliegen.
  • Die Tintenstrahl-Tintenzusammensetzungen können einen Weichmacher umfassen. Beispiele für Weichmacher umfassen, ohne hierauf beschränkt zu sein, aliphatische Polyole (wie 1,6-Hexandiol), Phthalatester (wie Dioctylphthalatester) und weitere Urethan-kompatible Weichmacher.
  • Die Tintenstrahl-Tintenzusammensetzungen können auch weitere Komponenten umfassen, um erwünschte Eigenschaften für Tintenstrahl-Druckanwendungen zu übertragen. Diese optionalen Komponenten umfassen Leitfähigkeitsmittel, Entschäumer, Antioxidanzien und Korrosionsinhibitoren, welche Tintenherstellung und Druckerleistung verbessern; Bakterizide, welche bakteriellen Angriff verhindern, der Tinten-Fertigungsausrüstung und Drucker beschädigt; und pH-Regulatoren, welche gewährleisten, dass die Komponenten der Tintenzusammensetzung über den Betriebsbereich der Wassergehalte sowie über die Lager- und Gebrauchszeit löslich bleibt.
  • Die Tintenstrahl-Tintenzusammensetzungen der vorliegenden Offenbarung besitzen einen hohen Grad an Transparenz und Helligkeit. Die Tinten der vorliegenden Offenbarung können eine Oberflächenspannung im Bereich von 0,02 bis 0,07 N/m (20 dyn/cm bis 70 dyn/cm) oder im Bereich von 0,03 bis 0,05 N/m (30 dyn/cm bis 50 dyn/cm) aufweisen; eine Viskosität im Bereich von 1 . 10-3 bis 0,01 Pa . s (1,0 bis 10,0) oder von 1 . 10-3 bis 0,005 Pa · s (1,0 bis 5,0 Centipoise) bei Raumtemperatur.
  • Die Dispersionspartikel von gekapseltem Farbstoff bleiben in einem flüssigen Trägermedium in der Tinte mit einem pH-Wert von 4 bis 10 oder von 5 bis 9 oder von 6 bis 8 stabilisiert oder dispergiert.
  • BEISPIELE
  • Die folgenden Beispiele veranschaulichen die vorliegende Erfindung weiter. Alle Anteile und Prozentsätze sind massebezogen und alle Temperaturen in Grad Celsius, sofern dies nicht ausdrücklich anders angegeben ist.
  • Beispiel 1
  • Herstellung von neutralisiertem, gefärbtem Präpolymer
  • Zuvor gelöste DMPA/NMP-Lösung:
    • In eine 50 ml-Flasche mit einem teflonbeschichteten Magnetrührer wurden 9,75 g 2,2-Bis(hydroxymethyl)propionsäure (DMPA, MW = 134, verfügbar von Aldrich Chemical von Milwaukee, Wis.) und 15,6 g N-Methylpyrrolidon (NMP) gegeben. Die Mischung wurde unter Rühren auf 70 °C erhitzt, bis das DMPA vollständig gelöst war.
  • Präpolymer-Bildung
  • In einen 1 I-Kessel mit Trubore-Rührer und Teflon-Rührpaddel, Temperaturregler, 100 ml-Zugabetrichter für konstanten Druck und N2-Einlass wurde mit 72,76 g zuvor geschmolzenem Terathane@ 2000 (mittlere Mn = 2000 Poly(tetrahydrofuran), verfügbar von Simga-Aldrich) beladen. Der Kessel wurde mit einer Halterung gesichert, und das untere Drittel des Kessels wurde in ein 70 °C-Ölbad getaucht, und der Inhalt wurde für 15 Minuten gerührt. Die zuvor gelöste DMPA/NMP-Lösung wurde zu dem Kessel gegeben. Nach Rühren des Inhalts für 15 Minuten wurden 42,4 g Isopherondiisocyanat (IPDI, MW = 222, verfügbar von Huls America, Inc. von Piscataway, N.J.) tropfenweise durch einen Zugabetrichter über 30 Minuten zu dem Kessel gegeben. Es war leicht exothermes Verhalten zu beobachten. Die Reaktionsmischung wurde für weitere 3 Stunden und 45 Minuten unter Rühren bei 70 °C gehalten.
  • Beispiel 2
  • Neutralisation und Einbau des Farbstoffs in die Polyurethan-Dispersion
  • Zu der resultierenden Mischung wurde Folgendes gegeben:
    1. a) ein unter UV rot fluoreszierender farblosen Farbstoff:
      • Experiment 1: 1,9 g DFSB-C7 Clear Red [zu beziehen von Risk Reactor],
      • Experiment 2: 2,7 g DFSB-C7 Clear Red [zu beziehen von Risk Reactor],
    2. b) ein unter UV blau fluoreszierender farbloser Farbstoff: 1,0 g Fluorescent Brightener 28 [zu beziehen von der Aldrich Chemical Corp],
    3. c) ein unter UV blau fluoreszierender Farbstoff: 1 g 2,5-Bis(5-tert-butyl-2-benzoxaazolyl)thiophen [zu beziehen von der Aldrich Chemical Corp],
    4. d) ein unter UV blau fluoreszierender Farbstoff: 1 g 2-(2-Hydroxyphenyl)-benzothiazol [zu beziehen von der Aldrich Chemical Corp], oder
    5. e) ein fotochromer Farbstoff: 1 g 1,3,3-Trimethylindolino-6'-nitrobenzopyrylospiran [zu beziehen von der Aldrich Chemical Corp]
    und mehrere Minuten gerührt, gefolgt von Zugabe von 7,35 g Triethylamin (MW = 101) unter kontinuierlichem Rühren und Heizen bei 70 °C. Nach Rühren und Heizen für 15 Minuten war das neutralisierte Präpolymer bereit für die Dispersion. Der Kessel mit dem neutralisierten Präpolymer wurde zu dem Dispersionsapparat überführt, wobei die Dispersionsklinge 0,25 Inch unter der Oberfläche des neutralisierten Präpolymers positioniert wurde.
  • Zu den oben erhaltenen neutralisierten, gefärbten Präpolymeren wurden jeweils 245 ml kaltes (~5 °C) deionisiertes Wasser gegeben. Die resultierenden Mischungen wurden bei höchster Geschwindigkeit (7.500 UPM) mit einem IKA® Crushing Disperser für 15 Sekunden dispergiert. Zum Abschaben des an der Kesselwand abgelagerten undispergierten Präpolymers wurde ein langer Holz-Zungendrücker eingesetzt. Das undispergierte Präpolymer wurde auf den Boden der Klinge des IKA® Crushing Disperser gegeben und erneut für 10 Sekunden bei höchster UPM-Einstellung dispergiert. Es wurden wässrige Farbstoff-Dispersionen des neutralisierten Präpolymers erhalten.
  • Beispiel 3
  • Kettenverlängerung
  • Zu der wässrigen Farbstoff-Dispersion des in Beispiel 2 erhaltenen neutralisierten Präpolymers wurden jeweils tropfenweise über 5 Minuten eine Ethylendiamin-Lösung (4,9 g Ethylendiamin/10 g destilliertes Wasser) gegeben. Nach Rühren für 1 Stunde wurde die resultierende Mischung in ein 946 ml Glasgefäß (32 oz-Glasgefäß) überführt, verschlossen und für mindestens 72 Stunden gelagert. Nach Ablauf der 72 Stunden wurden vier verschiedene Dispersionen von gekapseltem Farbstoff erhalten. Das Aussehen der endgültigen Dispersionen von gekapseltem Farbstoff und PU sind in Tab. 1 zusammengefasst. Die mittlere Partikelgröße der Dispersionspartikel von gekapseltem Farbstoff und PU wurden an einem Zetasizer gemessen und die Ergebnisse sind ebenfalls in Tab. 1 zusammengefasst. Tabelle 1
    Farbstoff PUD-Partikel Größe [nm] Aussehen der Dispersion von gekapseltem Farbstoff und PU aus Beispiel 3
    a) DFSB-C7 Clear Red 47,7 Nahezu klare, farblose Lösung; etwas abgesetzter Feststoff (anscheinend nichtgekapselter UV-Fluoreszenzfarbstoff) nach 1 Woche
    b) Fluorescent Brightener 28 52,4 Nahezu klare, farblose Lösung
    c) 2,5-Bis(5-tert-butyl-2-enzoxaazolyl)thiophene 48,2 Nahezu klare, farblose Lösung; etwas abgesetzter Feststoff (anscheinend nichtgekapselter UV-Fluoreszenzfarbstoff) nach 1 Woche
    d) 2-(2-Hydroxyphenyl)-benzothiazol 46,2 Nahezu klare, farblose Lösung
    e) 1,3,3-Trimethylindolino-6'-nitrobenzopyrylospiran 49,1 Nahezu klare, farblose Lösung; etwas abgesetzter Feststoff (anscheinend nichtgekapselter UV-Fluoreszenzfarbstoff) nach 1 Woche
  • Beispiel 4
  • Analyse und Messungen
  • 20 g jeder der in Beispiel 3 erhaltenen Dispersionen von gekapseltem Farbstoff und PU wurden in eine 100 mm x 10 cm-Petrischale (Ober- oder Unterteil) gegeben und für 48 Stunden trocknen/koaleszieren lassen. Die Proben wurden für spätere Analysen aus den Petrischalen abgelöst. Urethanfilme wurden gebildet, und das Aussehen der Polyurethanfilme wurde beobachtet und in Tabelle 2 beschrieben. Tabelle 2
    Farbstoff Erscheinen der Polyurethanfilme aus Beispiel 4
    a) DFSB-C7 Clear Red Klare, farblose und transparente Scheibe, die bei Bestrahlung mit UV-Licht rot fluoresziert
    b) Fluorescent Brightener 28 Klare, farblose und transparente Scheibe (siehe 5a), die bei Bestrahlung mit UV-Licht blau fluoresziert (siehe 5b)
    c) 2,5-Bis(5-tert-butyl-2-enzoxaazolyl)thiophene Klare, farblose und transparente Scheibe, die bei Bestrahlung mit UV-Licht blau fluoresziert
    d) 2-(2-Hydroxyphenyl)-benzothiazol Klare, farblose und transparente Scheibe, die bei Bestrahlung mit UV-Licht grün fluoresziert
    e) 1,3,3-Trimethylindolino-6'-nitrobenzopyrylospiran Klare, leicht gelbliche und transparente Scheibe, die bei Bestrahlung mit UV-Licht zu Rot wechselt und kurz nach Entfernen des Lichts verschwindet; diese Farbänderung wurde viele Male wiederholt
  • Beispiel 5
  • Herstellung wässriger Tintenstrahltinten
  • Drei gesonderte 59 ml Gläser (2 oz-Gläser) wurden jeweils mit 10 g einer aus Beispiel 4 erhaltenen unterschiedlichen Dispersion von gekapseltem Farbstoff, sowie mit 2 g 0,1 M K2HPO4/KH2PO4-Puffer, pH 8, und 8 g DI-Wasser beladen. Der Inhalt wurde für 2 Minuten gerührt.
  • Die resultierenden Tinten wurden in vier gesonderte, leere Tintenpatronen gefüllt und auf einem EPSON WF-3540-Drucker ausgedruckt. Es wurde Xerox 4200-Papier verwendet, aber es war schwierig, die Bilder aufgrund der UV-Aufheller in dem Papier zu erkennen. Es wurden ausgefüllte Felder und Text mit der farblosen Fluoreszenz-/fotochromen Farbstoff enthaltenden Tinte auf Papier ohne UV-Aufheller, wie ein TESLIN Synthethic Printing Sheet (polyolefin) gedruckt, welches ein Produkt von PPG Industries ist und das es ermöglicht, die Farbstoffe bei Bestrahlung mit UV-Strahlung zu erkennen, wenn sie nicht durch andere Aufheller maskiert werden.

Claims (1)

  1. Verfahren zur Herstellung einer Dispersion von gekapseltem Farbstoff, umfassend: Herstellen eines Urethan-Präpolymers; Umsetzen des Urethan-Präpolymers mit einem neutralisierenden Agens; Zugabe einer wässrigen Dispersion zu dem neutralisierten Präpolymer, um eine wässrige Dispersion des neutralisierten Präpolymers zu bilden; und Umsetzen der wässrigen Dispersion des neutralisierten Präpolymers mit einem Kettenverlängerer ausgewählt aus der Gruppe bestehend aus Ethylendiamin, 1,2-Propandiamin, 1,6-Hexamethylendiamin, Piperazin, 2,5-Dimethylpiperazin, Isophorondiamin, 4,4'-Dicyclohexylmethandiamin, 3,3'-Dimethyl-4,4'-dicyclohexylmethandiamin, 1,4-Cyclohexandiamin, N-Hydroxymethylaminoethylamin, N-Hydroxyethylaminoethylamin, N-Hydroxypropylaminopropylamin, N-Ethylaminoethylamin, N-Methylaminopropylamin, Diethylentriamin, Dipropylentriamin und Triethylentetramin, wodurch eine Dispersion von gekapseltem Farbstoff hergestellt wird; wobei das Verfahren weiterhin einen Schritt der Zugabe eines Farbstoffs umfasst, welcher vor dem Umsetzen der wässrigen Dispersion des neutralisierten Präpolymers mit einem Kettenverlängerer erfolgt; wobei ein Schritt der Zugabe eines Farbstoffs nach Zugabe einer wässrigen Dispersion zu dem neutralisierten Präpolymer erfolgt, um eine wässrige Dispersion des neutralisierten Präpolymers zu bilden, und vor Umsetzen der wässrigen Dispersion des neutralisierten Präpolymers mit einem Kettenverlängerer; wobei die Polyurethan-Dispersion das Reaktionsprodukt aus Folgendem ist: (a) einem Urethan-Präpolymer, wobei das Urethan-Präpolymer das katalysierte Reaktionsprodukt aus Folgendem ist: (i) einem Polyol; (ii) einem Polyisocyanat; und (iii) einem internen Tensid; (b) einem neutralisierenden Agens; und (c) einem Kettenverlängerer ausgewählt aus der Gruppe bestehend aus Ethylendiamin, 1,2-Propandiamin, 1,6-Hexamethylendiamin, Piperazin, 2,5-Dimethylpiperazin, Isophorondiamin, 4,4'-Dicyclohexylmethandiamin, 3,3'-Dimethyl-4,4'-dicyclohexylmethandiamin, 1,4-Cyclohexandiamin, N-Hydroxymethylaminoethylamin, N-Hydroxyethylaminoethylamin, N-Hydroxypropylaminopropylamin, N-Ethylaminoethylamin, N-Methylaminopropylamin, Diethylentriamin, Dipropylentriamin und Triethylentetramin; und einem Farbstoff, der aus der Gruppe ausgewählt ist, die aus Fluoreszenzfarbstoff, fotochromem Farbstoff und Mischungen davon besteht, wobei der Farbstoff nicht mit dem Polyisocyanat reaktiv ist, wobei die Dispersion von gekapseltem Farbstoff eine mittlere Dispersionspartikelgröße von 50 nm bis 100 nm aufweist, wobei das stöchiometrisch molare Äquivalenzverhältnis von internem Tensid zu Polyol 0,5 bis 2,0 und das stöchiometrisch molare Äquivalenzverhältnis von NCO-Gruppen zu OH-Gruppen insgesamt in dem Präpolymer 1,0 bis 3,0 beträgt, wobei die Menge des neutralisierenden Agens 50% bis 110% der Menge internen Tensids beträgt, wobei die Menge Wasser in der wässrigen Dispersion von 20 bis 80% basierend auf dem Gesamtgewicht der wässrigen Dispersion beträgt, wobei der Gehalt des Farbstoffs in einem Bereich von 0,1 bis 30% bezogen auf das Gewicht der Dispersion von gekapseltem Farbstoff beträgt, wobei die Dispersion von gekapseltem Farbstoff eine Viskosität von 2 bis 150 mPa · s bei Raumtemperatur und eine Oberflächenspannung von 0,015 bis 0,065 N/m bei Raumtemperatur aufweist, und wobei der Farbstoff in der Polyurethan-Dispersion verkapselt ist.
DE102015213645.0A 2014-08-04 2015-07-20 Verfahren zur Herstellung einer Dispersion von gekapseltem Farbstoff Active DE102015213645B4 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/451,380 US9499708B2 (en) 2014-08-04 2014-08-04 Encapsulated fluorescent and photochromic dye polyurethane dispersion
US14/451,380 2014-08-04

Publications (2)

Publication Number Publication Date
DE102015213645A1 DE102015213645A1 (de) 2016-02-04
DE102015213645B4 true DE102015213645B4 (de) 2022-05-12

Family

ID=55079803

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102015213645.0A Active DE102015213645B4 (de) 2014-08-04 2015-07-20 Verfahren zur Herstellung einer Dispersion von gekapseltem Farbstoff

Country Status (4)

Country Link
US (1) US9499708B2 (de)
JP (1) JP2016035047A (de)
CA (1) CA2899057C (de)
DE (1) DE102015213645B4 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2929943T3 (es) * 2017-12-29 2022-12-05 Essilor Int Proceso de fabricación de una matriz polimérica absorbente de luz
EP4032959A4 (de) 2019-09-19 2023-10-25 DNP Fine Chemicals Co., Ltd. Dispersion, tintenzusammensetzung und bedruckter gegenstand
JP7399579B2 (ja) * 2020-05-14 2023-12-18 日本化薬株式会社 蛍光インク及びインクジェット記録方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5637638A (en) 1995-08-24 1997-06-10 Bic Corporation Erasable ink composition containing a waterborne polyurethane-urea derived from an aromatic amine dye monomer and marking instrument containing same
US20110269901A1 (en) 2010-04-30 2011-11-03 Doris Pik-Yiu Chun Method of forming ionically-charged, encapsulated colorant nanoparticles
US20120321863A1 (en) 2010-02-26 2012-12-20 O'donnell John Patrick Process for preparing encapsulated solid particles
US20140011941A1 (en) 2011-04-25 2014-01-09 E I Du Pont De Nemours And Company Method of preparing encapsulated pigment dispersions which include polyurethane dispersions

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5231135A (en) 1989-09-05 1993-07-27 Milliken Research Corporation Lightfast colored polymeric coatings and process for making same
US5621022A (en) 1992-11-25 1997-04-15 Tektronix, Inc. Use of polymeric dyes in hot melt ink jet inks
US5700851A (en) 1995-10-17 1997-12-23 Tektronix, Inc. Ink-jet ink composition containing a colored polyurethane dispersion
US6221137B1 (en) 1999-06-18 2001-04-24 Xerox Corporation Metal phthalocyanine colorants for phase change inks
FR2811322B1 (fr) * 2000-07-07 2002-10-18 Essilor Int Procede de preparation d'un latex de polyurethane photochromique et application a l'optique ophtalmique
DE10315175A1 (de) 2003-04-03 2004-10-14 Degussa Construction Chemicals Gmbh Elektrosterisch stabilisierte wässrige Polyurethan-Harze, Verfahren zu ihrer Herstellung und deren Verwendung
JP2009509005A (ja) 2005-09-15 2009-03-05 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 水性インクジェットインク
US20090169748A1 (en) * 2007-12-27 2009-07-02 House Gary L Inks for high speed durable inkjet printing
BR112012023996A2 (pt) * 2010-03-31 2016-08-02 Lubrizol Advanced Mat Inc composição aquosa de tinta para impressão a jato de tinta, e, imagem impressa por jato de tinta
WO2013009343A1 (en) * 2011-07-14 2013-01-17 E. I. Du Pont De Nemours And Company Ink jet ink comprising encapsulated pigment dispersions with minimal free polymer
US20140249248A1 (en) 2011-10-27 2014-09-04 E I Du Pont De Nemours And Company Inkjet ink comprising encapsulated pigment dispersions with two encapsulation steps
US9145502B2 (en) * 2013-03-26 2015-09-29 Eastman Kodak Company Aqueous ink jet ink compositions and uses

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5637638A (en) 1995-08-24 1997-06-10 Bic Corporation Erasable ink composition containing a waterborne polyurethane-urea derived from an aromatic amine dye monomer and marking instrument containing same
US20120321863A1 (en) 2010-02-26 2012-12-20 O'donnell John Patrick Process for preparing encapsulated solid particles
US20110269901A1 (en) 2010-04-30 2011-11-03 Doris Pik-Yiu Chun Method of forming ionically-charged, encapsulated colorant nanoparticles
US20140011941A1 (en) 2011-04-25 2014-01-09 E I Du Pont De Nemours And Company Method of preparing encapsulated pigment dispersions which include polyurethane dispersions

Also Published As

Publication number Publication date
US20160032124A1 (en) 2016-02-04
US9499708B2 (en) 2016-11-22
JP2016035047A (ja) 2016-03-17
DE102015213645A1 (de) 2016-02-04
CA2899057A1 (en) 2016-02-04
CA2899057C (en) 2018-02-20

Similar Documents

Publication Publication Date Title
US6034154A (en) Polymer fine particles for jet ink, process for producing the same, and jet ink comprising the same
DE102015214198B4 (de) Verfahren zur Herstellung einer verkapselten Pigmentdispersion
EP0315006B1 (de) Wässrige Lösungen oder Dispersionen von Polyurethanen, ein Verfahren zu ihrer Herstellung und ihre Verwendung als Beschichtungsmittel oder zur Herstellung von Beschichtungsmitteln
EP1362082B1 (de) Gefärbte wasserverteilbare polyurethane
DE2141807C2 (de) Selbstemulgierter wäßriger Polyurethanharnstoff- oder Polyharnstoff-Latex und dessen Verwendung zur Herstellung von Filmen
DE3613492A1 (de) Verfahren zur herstellung von waessrigen dispersionen von polyurethan-polyharnstoffen, die nach diesem verfahren erhaeltlichen dispersionen und ihre verwendung als oder zur herstellung von beschichtungsmitteln
DE2651505A1 (de) Kationische elektrolytstabile dispersionen
DE3151802A1 (de) Thermoplastisches polyurethanharz
DE102015213645B4 (de) Verfahren zur Herstellung einer Dispersion von gekapseltem Farbstoff
CN106543402B (zh) 一种可交联嵌段-接枝型高分子聚合物的制备方法
DE60217546T2 (de) Wässrige beschichtungszusammensetzungen die polyurethanacrylhybridpolymerdispersionen enthalten
DE69530998T2 (de) Löschbare tinte and markierstift enthaltend diese
DE102015213643B4 (de) Verfahren zur Herstellung einer Dispersion von gekapseltem, sichtbares Licht absorbierendem Farbstoff
US20160032117A1 (en) Pigmented polyurethane dispersion
JPH11228655A (ja) 水性印刷インキ用ポリウレタン系エマルジョン及びそれを用いた水性印刷インキ
JP2000154227A (ja) 水性ポリウレタン系分散剤
JP3922460B2 (ja) ジェットインク用ポリマー微粒子及びジェットインク
CN111116860A (zh) 一种水性聚氨酯分散剂及含其的水性色浆
US20040102542A1 (en) Coloured, water-dissipatable polyurethanes
JP2021165353A (ja) ポリウレタン樹脂水性分散体
DE102014012736A1 (de) Polymermaterialien auf der Basis von Polyurethanen, Epoxidharzen, polymeren Siloxanen oder Siliconen oder thermoplastischen Polymeren, Verfahren zu ihrer Herstellung und ihre Verwendung
DE2347677A1 (de) Lagerungsstabiler latex

Legal Events

Date Code Title Description
R082 Change of representative

Representative=s name: GRUENECKER PATENT- UND RECHTSANWAELTE PARTG MB, DE

R012 Request for examination validly filed
R016 Response to examination communication
R016 Response to examination communication
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final