DE102015015108A1 - Flüssigkristallines Medium - Google Patents

Flüssigkristallines Medium Download PDF

Info

Publication number
DE102015015108A1
DE102015015108A1 DE102015015108.8A DE102015015108A DE102015015108A1 DE 102015015108 A1 DE102015015108 A1 DE 102015015108A1 DE 102015015108 A DE102015015108 A DE 102015015108A DE 102015015108 A1 DE102015015108 A1 DE 102015015108A1
Authority
DE
Germany
Prior art keywords
diyl
compounds
atoms
independently
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102015015108.8A
Other languages
English (en)
Inventor
Melanie Klasen-Memmer
Volker Reiffenrath
Axel Jansen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Patent GmbH
Original Assignee
Merck Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent GmbH filed Critical Merck Patent GmbH
Publication of DE102015015108A1 publication Critical patent/DE102015015108A1/de
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/78Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems condensed with rings other than six-membered or with ring systems containing such rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/32Non-steroidal liquid crystal compounds containing condensed ring systems, i.e. fused, bridged or spiro ring systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3491Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having sulfur as hetero atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • C09K2019/121Compounds containing phenylene-1,4-diyl (-Ph-)
    • C09K2019/123Ph-Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3027Compounds comprising 1,4-cyclohexylene and 2,3-difluoro-1,4-phenylene

Abstract

Die vorliegende Erfindung betrifft flüssigkristalline Medien enthaltend Dihydro-4H-Cyclopenta[b]thiophen-Derivate und Flüssigkristallanzeigen enthaltend diese FK-Medien. Ein weiterer Gegenstand sind Dihydro-4H-Cyclopenta[b]thiophen-Verbindungen, welche in diesen FK-Medien eingesetzt werden können.

Description

  • Gegenstand der vorliegenden Erfindung ist ein Medium enthaltend eine oder mehrere Verbindungen der Formel I
    Figure DE102015015108A1_0001
    worin die einzelnen Reste folgende Bedeutung besitzen:
    Ra und Rb H, F, Cl, Br, -CN, -SCN, -NCS, SF5 oder geradkettiges oder verzweigtes Alkyl mit 1 bis 12 C-Atomen, worin auch eine oder mehrere nicht benachbarte CH2-Gruppen jeweils unabhängig voneinander durch -CH=CH-, -C≡C-, -O-, -CO-, -CO-O-, -O-CO-, -O-CO-O- so ersetzt sein können, dass O-Atome nicht direkt miteinander verknüpft sind, und worin auch ein oder mehrere H-Atome durch F, Cl oder Br ersetzt sein können,
    Aa, Ab und Ac jeweils unabhängig voneinander Phenylen-1,4-diyl, oder Naphtylen-2,6-diyl worin auch eine oder mehrere CH-Gruppen durch N ersetzt sein können und ein oder mehrere H-Atome durch Halogen, CN, CH3, CHF2, CH2F, OCH3, OCHF2 oder OCF3 ersetzt sein können, Cyclohexan-1,4-diyl, worin auch eine oder zwei nicht benachbarte CH2-Gruppen unabhängig voneinander durch O und/oder S ersetzt sein können, und ein oder mehrere H-Atome durch F ersetzt sein können, Cyclohexen-1,4-diyl, Bicyclo[1.1.1]pentan-1,3-diyl, Bicyclo[2.2.2]octan-1,4-diyl, Spiro[3.3]heptan-2,6-diyl, Tetrahydropyran-2,5-diyl, oder 1,3-Dioxan-2,5-diyl,
    Za, Zb und Zc jeweils unabhängig voneinander -CF2O-, -OCF2-, -CH2O-, -OCH2-, -CO-O-, -O-CO-, -C2H4- -C2F4-, -CF2CH2-, -CH2CF2-, -CFHCFH-, -CFHCH2-, -CH2CFH-, -CF2CFH-, -CFHCF2-, -CH=CH-, -CF=CH-, -CH=CF-, -CF=CF-, -C≡C- oder eine Einfachbindung,
    La und Lb jeweils unabhängig voneinander H, Halogen, CF3 oder CN, vorzugsweise H, Cl oder F bedeutet, und
    m, n und p jeweils unabhängig voneinander 0, 1, 2 oder 3.
  • Derartige Medien sind insbesondere für elektrooptische Anzeigen mit einer Aktivmatrix-Adressierung basierend auf dem ECB-Effekt sowie für IPS-Anzeigen (In plane switching) oder FFS-Anzeigen (Fringe Field Switching) zu verwenden.
  • Das Prinzip der elektrisch kontrollierten Doppelbrechung, der ECB-Effekt (electrically controlled birefringence) oder auch DAP-Effekt (Deformation aufgerichteter Phasen) wurde erstmals 1971 beschrieben (M. F. Schieckel und K. Fahrenschon, "Deformation of nematic liquid crystals with vertical orientation in electrical fields", Appl. Phys. Lett. 19 (1971), 3912). Es folgten Arbeiten von J. F. Kahn (Appl. Phys. Lett. 20 (1972), 1193) und G. Labrunie und J. Robert (J. Appl. Phys. 44 (1973), 4869).
  • Die Arbeiten von J. Robert und F. Clerc (SID 80 Digest Techn. Papers (1980), 30), J. Duchene (Displays 7 (1986), 3) und H. Schad (SID 82 Digest Techn. Papers (1982), 244) haben gezeigt, dass flüssigkristalline Phasen hohe Werte für das Verhältnis der elastischen Konstanten K3/K1, hohe Werte für die optische Anisotropie Δn und Werte für die dielektrische Anisotropie von Δε ≤ –0,5 aufweisen müssen, um für hochinformative Anzeigeelemente basierend auf dem ECB-Effekt eingesetzt werden zu können. Auf dem ECB-Effekt basierende elektrooptische Anzeigeelemente weisen eine homeotrope Randorientierung auf (VA-Technologie = Vertical Aligned). Auch bei Anzeigen, die den sogenannten IPS- oder FFS-Effekt verwenden, können dielektrisch negative Flüssigkristallmedien zum Einsatz kommen.
  • Anzeigen, die den ECB-Effekt verwenden, haben sich als sogenannte VAN-(Vertically Aligned Nematic)Anzeigen beispielsweise in den Bauformen MVA (Multi-Domain Vertical Alignment, z. B.: Yoshide, H. et al., Vortrag 3.1: "MVA LCD for Notebook or Mobile PCs...", SID 2004 International Symposium, Digest of Technical Papers, XXXV, Buch I, S. 6 bis 9 und Liu, C. T. et al., Vortrag 15.1: "A 46-inch TFT-LCD HDTV Technnology...", SID 2004 International Symposium, Digest of Technical Papers, XXXV, Buch II, S. 750 bis 753), PVA (Patterned Vertical Alignment, z. B.: Kim, Sang Soo, Vortrag 15.4: "Super PVA Sets New State-of-the-Art for LCD-TV", SID 2004 International Symposium, Digest of Technical Papers, XXXV, Buch II, S. 760 bis 763), ASV-(Advanced Super View, z. B.: Shigeta, Mitzuhiro und Fukuoka, Hirofumi, Vortrag 15.2: "Development of High Quality LCDTV", SID 2004 International Symposium, Digest of Technical Papers, XXXV, Buch II, S. 754 bis 757) Anzeigen, neben IPS (In Plane Switching) (z. B.: Yeo, S. D., Vortrag 15.3: "A LC Display for the TV Application", SID 2004 International Symposium, Digest of Technical Papers, XXXV, Buch II, S. 758 & 759) den lange bekannten TN-(Twisted Nematic)Anzeigen, als eine der drei zur Zeit wichtigsten neueren Typen von Flüssigkristallanzeigen, insbesondere für Fernsehanwendungen, etabliert. In allgemeiner Form werden die Technologien z. B. in Souk, Jun, SIDSeminar 2004, Seminar M-6: "Recent Advances in LCD Technology", Seminar Lecture Notes, M-6/1 bis M-6/26 und Miller, Ian, SIDSeminar 2004, Seminar M-7: "LCD-Television", Seminar Lecture Notes, M-7/1 bis M-7/32, verglichen. Obwohl die Schaltzeiten moderner ECB-Anzeigen durch Ansteuerungsmethoden mit Übersteuerung (overdrive) bereits deutlich verbessert wurden, z. B.: Kim, Hyeon Kyeong et al., Vortrag 9.1: "A 57-in. Wide UXGA TFT-LCD for HDTV Application", SID 2004 International Symposium, Digest of Technical Papers, XXXV, Buch I, S. 106 bis 109, ist die Erzielung von videotauglichen Schaltzeiten, insbesondere beim Schalten von Graustufen, immer noch ein noch nicht zufriedenstellend gelöstes Problem.
  • Für die technische Anwendung dieses Effektes in elektrooptischen Anzeigeelementen werden FK-Phasen benötigt, die einer Vielzahl von Anforderungen genügen müssen. Besonders wichtig sind hier die chemische Beständigkeit gegenüber Feuchtigkeit, Luft und physikalischen Einflüssen wie Wärme, Strahlung im infraroten, sichtbaren und ultravioletten Bereich und elektrische Gleich- und Wechselfelder.
  • Ferner wird von technisch verwendbaren FK-Phasen eine flüssigkristalline Mesophase in einem geeigneten Temperaturbereich und eine niedrige Viskosität gefordert.
  • In keiner der bisher bekannten Reihen von Verbindungen mit flüssigkristalliner Mesophase gibt es eine Einzelverbindung, die allen diesen Erfordernissen entspricht. Es werden daher in der Regel Mischungen von zwei bis 25, vorzugsweise drei bis 18, Verbindungen hergestellt, um als FK-Phasen verwendbare Substanzen zu erhalten. Optimale Phasen konnten jedoch auf diese Weise nicht leicht hergestellt werden, da bisher keine Flüssigkristallmaterialien mit deutlich negativer dielektrischer Anisotropie und ausreichender Langzeitstabilität zur Verfügung standen.
  • Matrix-Flüssigkristallanzeigen (MFK-Anzeigen) sind bekannt. Als nichtlineare Elemente zur individuellen Schaltung der einzelnen Bildpunkte können beispielsweise aktive Elemente (d. h. Transistoren) verwendet werden. Man spricht dann von einer ”aktiven Matrix”, wobei man zwei Typen unterscheiden kann:
    • 1. MOS(Metal Oxide Semiconductor)-Transistoren auf Silizium-Wafer als Substrat.
    • 2. Dünnfilm-Transistoren (TFT) auf einer Glasplatte als Substrat.
  • Bei Typ 1 wird als elektrooptischer Effekt üblicherweise die dynamische Streuung oder der Guest-Host-Effekt verwendet. Die Verwendung von einkristallinem Silizium als Substratmaterial beschränkt die Displaygröße, da auch die modulartige Zusammensetzung verschiedener Teildisplays an den Stößen zu Problemen führt.
  • Bei dem aussichtsreicheren Typ 2, welcher bevorzugt ist, wird als elektrooptischer Effekt üblicherweise der TN-Effekt verwendet.
  • Man unterscheidet zwei Technologien: TFT's aus Verbindungshalbleitern wie z. B. CdSe oder TFT's auf der Basis von polykristallinem oder amorphem Silizium. An letzterer Technologie wird weltweit mit großer Intensität gearbeitet.
  • Die TFT-Matrix ist auf der Innenseite der einen Glasplatte der Anzeige aufgebracht, während die andere Glasplatte auf der Innenseite die transparente Gegenelektrode trägt. Im Vergleich zu der Größe der Bildpunkt-Elektrode ist der TFT sehr klein und stört das Bild praktisch nicht. Diese Technologie kann auch für voll farbtaugliche Bilddarstellungen erweitert werden, wobei ein Mosaik von roten, grünen und blauen Filtern derart angeordnet ist, dass je ein Filterelement einem schaltbaren Bildelement gegenüber liegt.
  • Der Begriff MFK-Anzeigen umfasst hier jedes Matrix-Display mit integrierten nichtlinearen Elementen, d. h. neben der aktiven Matrix auch Anzeigen mit passiven Elementen wie Varistoren oder Dioden (MIM = Metall-Isolator-Metall).
  • Derartige MFK-Anzeigen eignen sich insbesondere für TV-Anwendungen (z. B. Taschenfernseher) oder für hochinformative Displays in Automobil- oder Flugzeugbau. Neben Problemen hinsichtlich der Winkelabhängigkeit des Kontrastes und der Schaltzeiten resultieren bei MFK-Anzeigen Schwierigkeiten bedingt durch einen nicht ausreichend hohen spezifischen Widerstand der Flüssigkristallmischungen [TOGASHI, S., SEKIGUCHI, K., TANABE, H., YAMAMOTO, E., SORIMACHI, K., TAJIMA, E., WATANABE, H., SHIMIZU, H., Proc. Eurodisplay 84, Sept. 1984: A 210–288 Matrix LCD Controlled by Double Stage Diode Rings, p. 141 ff, Paris; STROMER, M., Proc. Eurodisplay 84, Sept. 1984: Design of Thin Film Transistors for Matrix Adressing of Television Liquid Crystal Displays, p. 145 ff, Paris]. Mit abnehmendem Widerstand verschlechtert sich der Kontrast einer MFK-Anzeige. Da der spezifische Widerstand der Flüssig-kristallmischung durch Wechselwirkung mit den inneren Oberflächen der Anzeige im allgemeinen über die Lebenszeit einer MFK-Anzeige abnimmt, ist ein hoher (Anfangs)-Widerstand sehr wichtig für Anzeigen die akzeptable Widerstandswerte über eine lange Betriebsdauer aufweisen müssen.
  • Es besteht somit immer noch ein großer Bedarf nach MFK-Anzeigen mit sehr hohem spezifischen Widerstand bei gleichzeitig großem Arbeitstemperaturbereich, kurzen Schaltzeiten und niedriger Schwellenspannung, mit deren Hilfe verschiedene Graustufen erzeugt werden können.
  • Der Nachteil der häufig verwendeten MFK-TN-Anzeigen beruht in ihrem vergleichsweise niedrigen Kontrast, der relativ hohen Blickwinkelabhängigkeit und der Schwierigkeit in diesen Anzeigen Graustufen zu erzeugen.
  • Wesentlich bessere Blickwinkelabhängigkeiten weisen VA-, IPS und FFS-Displays auf und werden daher hauptsächlich für Fernseher und Monitore verwendet. Hier besteht jedoch weiterhin der Bedarf die Schaltzeiten zu verbessern, insbesondere im Hinblick auf die Verwendung für Fernseher mit ”Frame Rates” (Bildwechselfrequenz/Wiederholraten) von mehr als 60 Hz. Dabei dürfen allerdings die Eigenschaften, wie beispielsweise die Tieftemperatur-stabilität nicht verschlechtert werden.
  • Der Erfindung liegt die Aufgabe zugrunde, Flüssigkristall-Mischungen, insbesondere für Monitor- und TV-Anwendungen, welche auf dem ECB- oder auf dem IPS- oder FFS-Effekt beruhen, bereitzustellen, die die oben angegebenen Nachteile nicht oder nur in geringerem Maße aufweisen. Insbesondere muss für Monitore und Fernseher gewährleistet sein, dass diese auch bei extrem hohen und extrem niedrigen Temperaturen arbeiten und gleichzeitig niedrige Schaltzeiten aufweisen und gleichzeitig ein verbessertes Reliability-Verhalten, insbesondere kein oder ein deutlich verringertes Image-Sticking nach langen Laufzeiten aufweisen.
  • Überraschenderweise ist es möglich die Rotationsviskositäten und damit die Schaltzeiten zu verbessern, wenn man polare Verbindungen der allgemeinen Formel I in Flüssigkristallmischungen verwendet, insbesondere in LC-Mischungen mit negativer dielektrischer Anisotropie, vorzugsweise für VA-Displays.
  • Gegenstand der Erfindung ist somit ein flüssigkristallines Medium, welches mindestens eine Verbindung der Formel I enthält.
  • Verbindungen der Formel I sind ebenfalls Gegenstand der vorliegenden Erfindung. Bevorzugt sind solche Verbindungen, die auch für die übrigen Ausführungsformen der Erfindung als bevorzugt angegeben sind.
  • Ein weiterer Gegenstand der Erfindung ist die Verwendung der Verbindungen der Formel I in FK-Medien. Die Verwendung der Verbindungen der Formel I in FK-Medien führen zu Medien mit besonders hohem Klärpunkt, geringer Rotationsviskosität, breiter nematischer Phase, hoher Doppelbrechung, hohen elastischen Konstanten sowie guter Tieftemperaturstabilität.
  • Ein weiterer Gegenstand der Erfindung ist die Verwendung der erfindungsgemäßen Medien in elektrooptischen Vorrichtungen, insbesondere in elektrooptischen Anzeigen, besonders bevorzugt in einer VA-Anzeige.
  • Einige bevorzugte Ausführungsformen der erfindungsgemäßen Medien werden im Folgenden genannt.
  • Bevorzugt sind Medien enthaltend die Verbindungen der Formel I, worin Aa ein Cyclohexan-1,4-diyl, worin auch eine oder zwei nicht benachbarte CH2-Gruppen unabhängig voneinander durch O und/oder S ersetzt sein können, und ein oder mehrere H-Atome durch F ersetzt sein können, bedeutet, besonders bevorzugt Cyclohexan-1,4-diyl.
  • Weiter bevorzugt sind Medien enthaltend die Verbindungen der Formel I, worin Ab Phenylen-1,4-diyl, oder Naphtylen-2,6-diyl, welches jeweils ein oder mehrfach durch F substituiert sein kann, insbesondere bevorzugt sind Medien enthaltend die Verbindungen der Formel I, worin
    Figure DE102015015108A1_0002
    bedeutet und ganz besonders bevorzugt, worin
    Figure DE102015015108A1_0003
    bedeutet.
  • Bevorzugt sind Medien enthaltend die Verbindungen der Formel I, worin Ac Phenylen-1,4-diyl, oder Naphtylen-2,6-diyl, welches jeweils ein oder mehrfach durch F substituiert sein kann, ferner Cyclohexan-1,4-diyl, Cyclohexen-1,4-diyl Tetrahydropyran-2,5-diyl, oder 1,3-Dioxan-2,5-diyl bedeutet.
  • Ferner bevorzugt sind Medien enthaltend die Verbindungen der Formel I, worin m, n und l jeweils unabhängig von einander 0, 1 oder 2, besonders bevorzugt jeweils unabhängig voneinander 0 oder 1 bedeuten.
  • Gleichermaßen bevorzugt sind Medien enthaltend die Verbindungen der Formel I, worin m 0 bedeutet, also der Dihydro-4H-Cyclopenta[b]thiophenring ein endständiger Ring ist, und worin n 0, 1 oder 2, vorzugsweise 1 oder 2, und ganz besonders bevorzugt 1 bedeutet, insbesondere worin l zudem 0, 1 oder 2, vorzugsweise 0 oder 1, und ganz besonders bevorzugt 0 bedeutet.
  • In einer weiteren Ausführungsform sind Medien enthaltend die Verbindungen der Formel I bevorzugt, in denen Za, und Zc jeweils unabhängig voneinander -CF2O-, -OCF2-, -CH2O-, -OCH2-, -CO-O-, -O-CO-, -C2H4- -C2F4-, -CF2CH2-, -CH2CF2-, -CFHCFH-, -CFHCH2-, -CH2CFH-, -CF2CFH-, -CFHCF2-, -CH=CH-, -CF=CH-, -CH=CF-, -CF=CF-, -C≡C- oder eine Einfachbindungbedeuten und Zb eine Einfachbindung bedeutet, vorzugsweise Za, und Zc jeweils unabhängig voneinander -CH2O-, -OCH2-, -C2H4- oder eine Einfachbindung bedeuten und Zb eine Einfachbindung bedeutet, ganz besonders bevorzugt Zc -CH2O-, -OCH2-, -C2H4- oder eine Einfachbindung bedeutet und Za, und Zb eine Einfachbindung bedeuten.
  • In gleichem Maße bevorzugt sind Medien enthaltend die Verbindungen der Formel I, worin Za, Zb und Zc jeweils unabhängig voneinander -CF2O-, -OCF2-, -CH2O-, -OCH2-, -CH2-CH2- oder eine Einfachbindung, insbesondere bevorzugt worin Za, Zb und Zc jeweils eine Einfachbindung, bedeuten.
  • Ferner bevorzugt sind Medien enthaltend die Verbindungen der Formel I, worin Ra und Rb jeweils unabhängig voneinander H, F, Cl, Br, -CN, -SCN, -NCS, SF5, oder optional durch Halogen, insbesondere durch F, substituiertes Alkyl, Alkenyl oder Alkinyl mit 1 bis 8, vorzugsweise 1 bis 5 C-Atomen bedeuten.
  • Besonders bevorzugte Reste Ra und Rb in Formel I bedeuten H, Halogen, oder optional durch Halogen, insbesondere durch F, substituiertes Alkyl, Alkenyl, Alkinyl oder Alkoxy mit 1 bis 12, vorzugsweise 1 bis 8 C-Atomen, besonders bevorzugt H, F, Alkyl, Alkenyl oder Alkinyl mit 1 bis 5 C-Atomen.
  • Bevorzugt ist wenigstens ein Rest kein H, besonders bevorzugt sind beide Reste Ra und Rb nicht H. Ganz besonders bevorzugt ist Ra gleich Alkyl wobei Rb H, Alkyl Alkoxy, optional durch Halogen, insbesondere durch F, substituiertes Alkyl, Alkenyl oder Alkinyl mit 1 bis 8, vorzugsweise 1 bis 5 C-Atomen oder Fluor bedeutet.
  • Ganz besonders bevorzugt ist Ra Alkyl und Rb Alkoxy. Ra, Rb bedeuten jeweils unabhängig voneinander besonders bevorzugt unverzweigtes Alkyl mit 1-5 C-Atomen. Falls Ra und Rb substituiertes oder unsubstituiertes Alkyl, Alkoxy, Alkenyl, Alkenyloxy oder Alkinyl bedeuten, beträgt die Gesamtzahl der C-Atome in beiden Gruppen Ra und Rb vorzugsweise weniger als 10.
  • Bevorzugte Alkylgruppen sind beispielsweise Methyl, Ethyl, n-Propyl, n-Butyl, n-Pentyl, n-Hexyl, n-Heptyl und n-Octyl.
  • Bevorzugte Alkenylgruppen sind beispielsweise Ethenyl, Propenyl, Butenyl und Pentenyl.
  • Bevorzugte Alkinylgruppen sind beispielsweise Ethinyl, Propinyl, Butinyl, Pentinyl, Hexinyl, Heptinyl und Octinyl.
  • Bevorzugte Alkoxygruppen sind beispielsweise Methoxy, Ethoxy, n-Propoxy, n-Butoxy, n-Pentoxy, n-Hexoxy, n-Heptoxy, n-Octoxy.
  • Halogen bedeutet vorzugsweise F oder Cl.
  • Besonders bevorzugte Verbindungen der Formel I sind ausgewählt aus folgenden Unterformeln
    Figure DE102015015108A1_0004
    Figure DE102015015108A1_0005
    worin Ra und Rb jeweils unabhängig voneinander eine der unter Formel I angebenen Bedeutung haben, bevorzugt Alkyl, Alkenyl, Alkinyl oder Alkoxy, vorzugsweise mit 1 bis 8 C-Atomen bedeuten, oder besonders bevorzugt Alkyl oder Alkoxy, vorzugsweise mit 1 bis 5 C-Atomen bedeuten.
  • Besonders bevorzugt sind die Verbindungen der Formeln I1 und I6.
  • Die Verwendung der Verbindungen der Formel I in FK-Medien führen zu Medien mit besonders hohem Klärpunkt, geringer Rotationsviskosität, breiter nematischer Phase, hoher Doppelbrechung, hohen elastischen Konstanten sowie guter Tieftemperaturstabilität.
  • Die einzelnen Verbindungen der oben genannten Formeln und deren Unterformeln, die in den erfindungsgemäßen Medien verwendet werden können, können nach an sich bekannten Methoden dargestellt werden, wie sie in der Literatur (z. B. in den Standardwerken wie Houben-Weyl, Methoden der Organischen Chemie, Georg-Thieme-Verlag, Stuttgart) beschrieben sind, und zwar unter Reaktionsbedingungen, die für die genannten Umsetzungen bekannt und geeignet sind. Dabei kann man auch von an sich bekannten, hier nicht näher erwähnten Varianten Gebrauch machen.
  • Ein bevorzugter Syntheseweg zur Darstellung der Verbindungen der Formel I ist im Folgenden exemplarisch aufgezeigt:
    Figure DE102015015108A1_0006
  • Ausgehend von 3-Hydroxymethylthiophen (1) wird mit Bromwasserstoff in das entsprechende 3-Brommethylthiophen (2) überführt (a). Durch Zugabe von Lithiumdiisopropylamid und anschließender Zugabe eines entsprechenden Carbonsäurederivats (3) wird das entsprechende 3-Thiophenpropionsäurederivat (4) gebildet (b), wobei anschließend durch Zugabe von Thionylchlorid und Aluminium(III)chlorid der Cyclopenta[b]thiophenonring (5) geschlossen wird (c). Durch Reduktion der Carbonylgruppe mit Lithiumaluminiumhydrid und Aluminium(III)chlorid wird das Cyclopenta[b]thiophenderivat (6) erhalten (d). Anschließend wird konsekutiv mit n-Butyllithium lithiiert und Trimethylborat zugegeben wobei abschließend hydrolysiert wird und die entsprechende Borsäure des Cyclopenta[b]thiophen (7) erhalten wird (e). Durch abschließende Suzuki-Kupplung (f) können die Verbindungen der Formel I (9) erhalten werden.
  • Die im obigen Schema aufgeführten Parameter haben jeweils die unter Formel I angegebene Bedeutung.
  • Die erfindungsgemäßen Medien enthalten vorzugsweise ein, zwei, drei, vier oder mehr, vorzugsweise ein, zwei oder drei Verbindungen der Formel I.
  • Die Verbindungen der Formel I werden vorzugsweise im flüssigkristallinen Medium in Mengen von ≥ 1, vorzugsweise ≥ 5 Gew.%, bezogen auf das Gesamtgemisch, eingesetzt. Insbesondere bevorzugt sind flüssigkristalline Medien, die 2–15 Gew.% einer oder mehrerer Verbindungen der Formel I enthalten.
  • Im Folgenden werden bevorzugte Ausführungsformen für das erfindungsgemäße flüssigkristalline Medium angeführt:
    • a) Flüssigkristallines Medium, welches zusätzlich eine oder mehrere Verbindungen ausgewählt aus der Gruppe der Verbindungen der Formeln IIA, IIB und IIC enthält,
      Figure DE102015015108A1_0007
      worin R2A, R2B und R2C jeweils unabhängig voneinander H, einen unsubstituierten, einen einfach durch CN oder CF3 oder mindestens einfach durch Halogen substituierten Alkylrest mit bis zu 15 C-Atomen, wobei in diesen Resten auch eine oder mehrere CH2-Gruppen durch -O-, -S-,
      Figure DE102015015108A1_0008
      -C≡C-, -CF2O-, -OCF2-, -OC-O- oder -O-CO- so ersetzt sein können, dass O-Atome nicht direkt miteinander verknüpft sind, A2 jeweils unabhängig voneinander, in jeder Erscheinung, ein Cyclohexan-1,4-diyl, worin auch eine oder zwei nicht benachbarte CH2-Gruppen unabhängig voneinander durch O und/oder S ersetzt sein können, und ein oder mehrere H-Atome durch F ersetzt sein können, Cyclohexen-1,4-diyl, Bicyclo[1.1.1]pentan-1,3-diyl, Bicyclo[2.2.2]octan-1,4-diyl, Spiro[3.3]heptan-2,6-diyl, Tetrahydropyran-2,5-diyl, oder 1,3-Dioxan-2,5-diyl, L1-4 jeweils unabhängig voneinander F, Cl, CF3 oder CHF2, Z2 und Z2' jeweils unabhängig voneinander Einfachbindung, -CH2CH2-, -CH=CH-, -CF2O-, -OCF2-, -CH2O-, -OCH2-, -COO-, -OCO-, -C2F4-, -CF=CF-, -CH=CHCH2O-, p 1 oder 2, q 1 oder 2, und v 1 bis 6 bedeuten.
  • In den Verbindungen der Formeln IIA und IIB können Z2 gleiche oder unterschiedliche Bedeutungen haben. In den Verbindungen der Formel IIB können Z2 und Z2' gleiche oder verschiedene Bedeutungen aufweisen.
  • In den Verbindungen der Formeln IIA, IIB und IIC bedeuten R2A, R2B und R2C jeweils vorzugsweise Alkyl mit 1-6 C-Atomen, insbesondere CH3, C2H5, n-C3H7, n-C4H9, n-C5H11.
  • In den Verbindungen der Formeln IIA und IIB bedeuten L1, L2, L3 und L4 vorzugsweise L1 = L2 = F und L3 = L4 = F, ferner L1 = F und L2 = Cl, L1 = Cl und L2 = F, L3 = F und L4 = Cl, L3 = Cl und L4 = F. Z2 und Z2' bedeuten in den Formeln IIA und IIB vorzugsweise jeweils unabhängig voneinander eine Einfachbindung, ferner eine -C2H4-Brücke. Sofern in der Formel IIB Z2 = -C2H4- ist, ist Z2' vorzugsweise eine Einfachbindung bzw. falls Z2' = -C2H4- bedeutet, ist Z2 vorzugsweise eine Einfachbindung. In den Verbindungen der Formeln IIA und IIB bedeutet (O)CvH2v+1 vorzugsweise OCvH2v+1, ferner CvH2v+1. In den Verbindungen der Formel IIC bedeutet (O)CvH2v+1 vorzugsweise CvH2v+1. In den Verbindungen der Formel IIC bedeuten L3 und L4 vorzugsweise jeweils F.
  • Bevorzugte Verbindungen der Formeln IIA, IIB und IIC werden nachfolgend genannt:
    Figure DE102015015108A1_0009
    Figure DE102015015108A1_0010
    Figure DE102015015108A1_0011
    Figure DE102015015108A1_0012
    Figure DE102015015108A1_0013
    Figure DE102015015108A1_0014
    Figure DE102015015108A1_0015
    Figure DE102015015108A1_0016
    Figure DE102015015108A1_0017
    Figure DE102015015108A1_0018
    Figure DE102015015108A1_0019
    Figure DE102015015108A1_0020
    Figure DE102015015108A1_0021
    Figure DE102015015108A1_0022
    Figure DE102015015108A1_0023
    Figure DE102015015108A1_0024
    worin Alkenyl, Alkyl und Alkyl* jeweils unabhängig voneinander einen geradkettigen Alkylrest mit 1-6 C-Atomen bedeuten und p 1 oder 2 ist.
  • Besonders bevorzugte erfindungsgemäße Mischungen enthalten eine oder mehrere Verbindungen der Formeln IIA-2, IIA-8, IIA-14, IIA-29, IIA-35, IIB-2, IIB-12 und IIC-1.
  • Bevorzugte Mischungen enthalten 2–20 Gew.% einer oder mehrerer Verbindungen der Formeln IIA und/oder IIB in einer Gesamtmenge von bis zu 60 Gew.%.
  • Besonders bevorzugte erfindungsgemäße Medien enthalten mindestens eine Verbindung der Formel IIC-1,
    Figure DE102015015108A1_0025
    worin Alkyl und Alkyl*' die oben angegebenen Bedeutungen haben, vorzugsweise in Mengen von 0 bis > 3 Gew.%, insbesondere 0 bis > 5 Gew.% und besonders bevorzugt von 0–25 Gew.% einer oder mehrerer Verbindungen der Formeln IIC in einer Gesamtkonzentration von bis zu 50 Gew.%
    • b) Flüssigkristallines Medium, welches zusätzlich eine oder mehrere Verbindungen der Formel III
      Figure DE102015015108A1_0026
      enthält, worin R31 und R32 jeweils unabhängig voneinander einen geradkettigen Alkyl-, Alkoxyalkyl- oder Alkoxyrest mit bis zu 12 C-Atomen,
      Figure DE102015015108A1_0027
      Z3 Einfachbindung, -CH2CH2-, -CH=CH-, -CF2O-, -OCF2-, -CH2O-, -OCH2-, -COO-, -OCO-, -C2F4-, -C4H8-, -CF=CF- bedeuten.
  • Bevorzugte Verbindungen der Formel III werden nachfolgend genannt,
    Figure DE102015015108A1_0028
    Figure DE102015015108A1_0029
    worin
    Alkyl und
    Alkyl* jeweils unabhängig voneinander einen geradkettigen Alkylrest mit 1-6 C-Atomen
    bedeuten.
  • Vorzugsweise enthält das erfindungsgemäße Medium mindestens eine Verbindung der Formel IIIa und/oder Formel IIIb.
  • Der Anteil an Verbindungen der Formel III im Gesamtgemisch beträgt vorzugsweise bis zu 5 Gew.%.
    • c) Flüssigkristallines Medium enthaltend zusätzlich eine Verbindung der Formel C
      Figure DE102015015108A1_0030
      worin R41 und R42 geradkettiges oder verzweigtes Alkyl mit 1 bis 12 C-Atomen bedeuten, worin auch eine oder mehrere nicht benachbarte CH2-Gruppen jeweils unabhängig voneinander durch -CH=CH-, -C≡C-, -O-, -CO-, -CO-O-, -O-CO-, -O-CO-O- so ersetzt sein können, dass O-Atome nicht direkt miteinander verknüpft sind, und worin auch ein oder mehrere H-Atome durch F, Cl oder Br ersetzt sein können,
  • Bevorzugte Verbindungen der Formel C sind ausgewählt aus den folgenden Formeln
    Figure DE102015015108A1_0031
    worin Alkenyl, Alkyl und Alkyl* jeweils unabhängig voneinander einen geradkettigen Alkylrest mit 1-6 C-Atomen bedeuten vorzugsweise in Gesamtmengen von bis zu 75 Gew.%, insbesondere von bis zu 60 Gew.%.
  • Besonders bevorzugt sind erfindungsgemäße Mischungen enthaltend die Verbindung
    Figure DE102015015108A1_0032
    vorzugsweise in jeweiligen Mengen von ≥ 5 Gew.%, insbesondere von ≥ 10 Gew.%.
  • Weiterhin bevorzugt sind erfindungsgemäße Mischungen enthaltend die Verbindung
    Figure DE102015015108A1_0033
    • d) Flüssigkristallines Medium, welches zusätzlich eine oder mehrere Vierkernverbindungen der Formeln,
      Figure DE102015015108A1_0034
      Figure DE102015015108A1_0035
      worin R7-10 jeweils unabhängig voneinander eine der in Anspruch 10 für R2A angegebenen Bedeutung haben, und w und x jeweils unabhängig voneinander 1 bis 6, bedeuten, enthält.
  • Insbesondere bevorzugt sind Mischungen enthaltend mindestens eine Verbindung der Formel V-9.
    • e) Flüssigkristallines Medium, welches zusätzlich eine oder mehrere Verbindungen der Formeln Y-1 bis Y-6,
      Figure DE102015015108A1_0036
      Figure DE102015015108A1_0037
      enthält, worin R14-R19 jeweils unabhängig voneinander einen Alkyl- oder Alkoxyrest mit 1-6 C-Atomen bedeuten; z und m bedeuten jeweils unabhängig voneinander 1-6; x bedeutet 0, 1, 2 oder 3.
  • Insbesondere bevorzugt enthält das erfindungsgemäße Medium eine oder mehrere Verbindungen der Formel Y-1 bis Y-6, vorzugsweise in Mengen von ≥ 5 Gew.%.
    • f) Flüssigkristallines Medium enthaltend zusätzlich ein oder mehrere fluorierte Terphenyle der Formeln T-1 bis T-21,
      Figure DE102015015108A1_0038
      Figure DE102015015108A1_0039
      Figure DE102015015108A1_0040
      worin R geradkettiger Alkyl- oder Alkoxyrest mit 1-7 C-Atomen bedeutet, und m = 0, 1, 2, 3, 4, 5 oder 6 und n 0, 1, 2, 3 oder 4 bedeuten, enthält.
  • Vorzugsweise bedeutet R Methyl, Ethyl, Propyl, Butyl, Pentyl, Hexyl Methoxy, Ethoxy, Propoxy, Butoxy, Pentoxy.
  • Das erfindungsgemäße Medium enthält die Terphenyle der Formeln T-1 bis T-21 vorzugsweise in Mengen von 2–30 Gew.%, insbesondere von 5-20 Gew.%.
  • Besonders bevorzugt sind Verbindungen der Formeln T-1, T-2, T-20 und T-21. In diesen Verbindungen bedeutet R vorzugsweise Alkyl, ferner Alkoxy jeweils mit 1-5 C-Atomen. In den Verbindungen der Formel T-20 bedeutet R vorzugsweise Alkyl oder Alkenyl, insbesondere Alkyl. In der Verbindung der Formel T-21 bedeutet R vorzugsweise Alkyl.
  • Vorzugsweise werden die Terphenyle in den erfindungsgemäßen Mischungen eingesetzt, wenn der Δn-Wert der Mischung ≥ 0,1 sein soll. Bevorzugte Mischungen enthalten 2–20 Gew.% einer oder mehrerer Terphenyl-Verbindungen ausgewählt aus der Gruppe der Verbindungen T-1 bis T-21 in einer Gesamtmenge von bis zu 50 Gew.%.
    • g) Flüssigkristallines Medium enthaltend zusätzlich ein oder mehrere Biphenyle der Formeln B-1 bis B-3,
      Figure DE102015015108A1_0041
      worin Alkyl und Alkyl* jeweils unabhängig voneinander einen geradkettigen Alkylrest mit 1-6 C-Atomen, bevorzugt mit 3-5 C-Atomen, und Alkenyl und Alkenyl* jeweils unabhängig voneinander einen geradkettigen Alkenylrest mit 2-6 C-Atomen bedeuten.
  • Der Anteil der Biphenyle der Formeln B-1 bis B-3 in der Gesamtmischung beträgt vorzugsweise mindestens 3 Gew.%, insbesondere ≥ 5 Gew.%.
  • Von den Verbindungen der Formeln B-1 bis B-3 sind die Verbindungen der Formel B-2 insbesondere bevorzugt.
  • Besonders bevorzugte Biphenyle sind
    Figure DE102015015108A1_0042
    worin Alkyl* einen Alkylrest mit 1-6 C-Atomen bedeutet. Insbesondere bevorzugt enthält das erfindungsgemäße Medium eine oder mehrere Verbindungen der Formeln B-1a und/oder B-2c.
    • h) Flüssigkristallines Medium enthaltend mindestens eine Verbindung der Formeln Z-1 bis Z-7,
      Figure DE102015015108A1_0043
      Figure DE102015015108A1_0044
      worin R und Alkyl die oben angegebenen Bedeutungen haben.
    • i) Flüssigkristallines Medium enthaltend mindestens eine Verbindung der Formeln O-1 bis O-17,
      Figure DE102015015108A1_0045
      Figure DE102015015108A1_0046
      Figure DE102015015108A1_0047
      worin R1 und R2 die für R2A angegebenen Bedeutungen haben. Vorzugsweise bedeuten R1 und R2 jeweils unabhängig voneinander geradkettiges Alkyl.
  • Bevorzugte Medien enthalten eine oder mehrere Verbindungen der Formeln O-1, O-3, O-4, O-5, O-9, O-13, O-14, O-15, O-16 und/oder O-17.
  • Erfindungsgemäße Mischungen enthalten ganz besonders bevorzugt eine oder mehrere Verbindung(en) der Formel O-9, O-15, O-16 und/oder O-17, inbesondere in Mengen von 5–30%.
  • Besonders bevorzugt enthält das erfindungsgemäße Medium die Dreikern-Verbindungen der Formel O-15 in Kombination mit einer oder mehreren Zweikern-Verbindungen der Formeln O-16.
  • Vorzugsweise beträgt der Gesamtanteil der Verbindungen der Formel O-15 in Kombination mit einer oder mehreren Verbindungen ausgewählt aus den Zweikern-Verbindungen der Formeln O-16 5–40%, ganz besonders bevorzugt 15–35%.
    • j) Bevorzugte erfindungsgemäße flüssigkristalline Medien enthalten eine oder mehrere Substanzen, die eine Tetrahydronaphthyl- oder Naphthyl-Einheit aufweisen, wie z. B. die Verbindungen der Formeln N-1 bis N-5,
      Figure DE102015015108A1_0048
      worin R1N und R2N jeweils unabhängig voneinander die für R2A angegebenen Bedeutungen haben, vorzugsweise geradkettiges Alkyl, geradkettiges Alkoxy oder geradkettiges Alkenyl bedeuten, und Z1 und Z2 jeweils unabhängig voneinander -C2H4-, -CH=CH-, -(CH2)4-, -(CH2)3O-, -O(CH2)3-, -CH=CHCH2CH2-, -CH2CH2CH=CH-, -CH2O-, -OCH2-, -COO-, -OCO-, -C2F4-, -CF=CF-, -CF=CH-, -CH=CF-, -CF2O-, -OCF2-, -CH2- oder eine Einfachbindung bedeuten.
    • k) Bevorzugte Mischungen enthalten eine oder mehrere Verbindungen ausgewählt aus der Gruppe der Difluordibenzochroman-Verbindungen der Formel BC, Chromane der Formeln CR, fluorierte Phenanthrene der Formeln PH-1 und PH-2, fluorierte Dibenzofurane der Formeln BF,
      Figure DE102015015108A1_0049
      worin RB1, RB2, RCR1, RCR2 R1, R2 jeweils unabhängig voneinander die Bedeutung von R2A aufweisen. c ist 0, 1 oder 2.
  • Die erfindungsgemäßen Mischungen enthalten die Verbindungen der Formeln BC, CR, PH-1, PH-2 und/oder BF vorzugsweise in Mengen von 3 bis 20 Gew.%, insbesondere in Mengen von 3 bis 15 Gew.%.
  • Besonders bevorzugte Verbindungen der Formeln BC und CR sind die Verbindungen BC-1 bis BC-7 und CR-1 bis CR-5,
    Figure DE102015015108A1_0050
    Figure DE102015015108A1_0051
    worin
    Alkyl und Alkyl* jeweils unabhängig voneinander einen geradkettigen Alkylrest mit 1-6 C-Atomen, und
    Alkenyl und
    Alkenyl* jeweils unabhängig voneinander einen geradkettigen Alkenylrest mit 2-6 C-Atomen,
    bedeuten.
  • Ganz besonders bevorzugt sind Mischungen enthaltend eine, zwei oder drei Verbindungen der Formel BC-2.
    • l) Bevorzugte Mischungen enthalten eine oder mehrere Indan-Verbindungen der Formeln In,
      Figure DE102015015108A1_0052
      worin R11, R12, R13 jeweils unabhängig voneinander einen geradkettigen Alkyl-, Alkoxy-, Alkoxyalkyl- oder Alkenylrest mit 1-6 C-Atomen, R12 und R13 zusätzlich Halogen, vorzugsweise F,
      Figure DE102015015108A1_0053
      i 0, 1 oder 2 bedeuten.
  • Bevorzugte Verbindungen der Formel In sind die nachfolgend genannten Verbindungen der Formeln In-1 bis In-16,
    Figure DE102015015108A1_0054
    Figure DE102015015108A1_0055
    Figure DE102015015108A1_0056
  • Besonders bevorzugt sind die Verbindungen der Formeln In-1, In-2, In-3 und In-4.
  • Die Verbindungen der Formeln In und der Unterformeln In-1 bis In-16 werden vorzugsweise in Konzentrationen ≥ 5 Gew.%, insbesondere 5–30 Gew.% und ganz besonders bevorzugt 5–25 Gew.% in den erfindungsgemäßen Mischungen eingesetzt.
    • m) Das Medium enthält zusätzlich eine oder mehrere Verbindungen der Formel EY,
      Figure DE102015015108A1_0057
      worin R1, R1*, L1 und L2 die in Formel I angegebenen Bedeutungen haben. In den Verbindungen der Formel EY bedeuten R1 und R1* vorzugsweise Alkoxy mit ≥ 2 C-Atomen und L1 = L2 = F. Besonders bevorzugt sind die Verbindungen der Formel
      Figure DE102015015108A1_0058
      Figure DE102015015108A1_0059
      Figure DE102015015108A1_0060
      Figure DE102015015108A1_0061
  • Die Verbindung(en) der Formel EY werden vorzugsweise in Mengen von 3–15 Gew.% bezogen auf die Gesamtmischung eingesetzt.
  • Besonders bevorzugte Mischungskonzepte werden nachfolgend genannt: (Die verwendeten Acronyme sind in Tabelle A erklärt. n und m bedeuten hier jeweils unabhängig voneinander 1–6.)
  • Die erfindungsgemäßen Mischungen enthalten vorzugsweise
    • – eine oder mehrere Verbindungen der Formel I, worin La = Lb = F und Ra = Alkyl und Rb = Alkoxy bedeuten,
    • – CPY-n(V)-Om, insbesondere CPY-2-O2, CPY-3-O2 und/oder CPY-5-O2, vorzugsweise in Konzentrationen > 2%, insbesondere 10–60%, bezogen auf die Gesamtmischung,
    und/oder
    • – CY-n(V)-Om, vorzugsweise CY-3-O2, CY-3-O4, CY-5-O2 und/oder CY-5-O4, vorzugsweise in Konzentrationen > 5%, insbesondere 15–50%, bezogen auf die Gesamtmischung,
    und/oder
    • – CCY-n(V)-Om, vorzugsweise CCY-2-O2, CCY-3-O1, CCY-3-O2, CCY-3-O3, CCY-4-O2 und/oder CCY-5-O2, vorzugsweise in Konzentrationen > 5%, insbesondere 10–30%, bezogen auf die Gesamtmischung,
    und/oder
    • – CLY-n(V)-Om, vorzugsweise CLY-2-O4, CLY-3-O2 und/oder CLY-3-O3, vorzugsweise in Konzentrationen > 5%, insbesondere 10–30%, bezogen auf die Gesamtmischung,
    und/oder
    • – CCOY-n(V)-Om, vorzugsweise CCOY-3-O2, CCOY-2-O2 und/oder CCOY-5-O2, vorzugsweise in Konzentrationen > 5%, insbesondere 10–30%, bezogen auf die Gesamtmischung,
    und/oder
    • – CEY-n(V)-Om, vorzugsweise CEY-2-O4, CEY-3-O2 und/oder CEY-3-O3, vorzugsweise in Konzentrationen > 5%, insbesondere 10–30%, bezogen auf die Gesamtmischung,
    und/oder
    COY-n(V)-Om, vorzugsweise COY-3-O2 und/oder COY-5-O2, vorzugsweise in Konzentrationen > 5%, insbesondere 10–30%, bezogen auf die Gesamtmischung,
    und/oder
    • – LY-n(V)-Om, vorzugsweise LY-3-O2, LY-3-O4, LY-5-O2 und/oder LY-5-O4, vorzugsweise in Konzentrationen > 5%, insbesondere 15–50%, bezogen auf die Gesamtmischung,
    und/oder
    • – PY-n(V)-Om, vorzugsweise PY-3-O2, PY-3-O4, PY-5-O2, PY-1-O4, PY-4-O2 und/oder PY-5-O4, vorzugsweise in Konzentrationen > 5%, insbesondere 15–50%, bezogen auf die Gesamtmischung,
    und/oder
    • – LPY-n(V)-Om, vorzugsweise LPY-3-O2, LPY-3-O4, LPY-5-O2 und/oder LPY-5-O4, vorzugsweise in Konzentrationen > 5%, insbesondere 15–50%, bezogen auf die Gesamtmischung,
    und/oder
    • – CK-n-F, vorzugsweise CK-3-F, CK-4-F und/oder CK-5-F, vorzugsweise > 5%, insbesondere 5–25%, bezogen auf die Gesamtmischung
    und/oder
    • – PYP-n(V)-m, vorzugsweise PYP-2-2 und/oder PYP-2-3, vorzugsweise in Konzentrationen > 5%, insbesondere 15–50%, bezogen auf die Gesamtmischung,
    und/oder
    • – PPY-n(V)-m, vorzugsweise PPY-3-2, PPY-3-4, PPY-5-2 und/oder PPY-5-4, vorzugsweise in Konzentrationen > 5%, insbesondere 15–50%, bezogen auf die Gesamtmischung: Ein weiterer Gegenstand der Erfindung ist eine FK-Anzeige mit einer Aktivmatrix-Adressierung basierend auf dem ECB-, VA-, PS-VA, IPS-, PS-IPS, FFS- oder PS-FFS-Effekt, dadurch gekennzeichnet, dass sie als Dielektrikum ein erfindungsgemäßes flüssigkristallines Medium enthält.
  • Das erfindungsgemäße flüssigkristalline Medium weist bevorzugt eine nematische Phase von ≤ –20°C bis ≥ 70°C, besonders bevorzugt von ≤ –30 °C bis ≥ 80°C, ganz besonders bevorzugt von ≤ –40 °C bis ≥ 90°C auf.
  • Hierbei bedeutet der Begriff ”eine nematische Phase aufweisen” einerseits, dass bei tiefen Temperaturen bei der entsprechenden Temperatur keine smektische Phase und keine Kristallisation beobachtet wird und andererseits, dass beim Aufheizen aus der nematischen Phase noch keine Klärung auftritt. Die Untersuchung bei tiefen Temperaturen wird in einem Fließviskosimeter bei der entsprechenden Temperatur durchgeführt sowie durch Lagerung in Testzellen einer der elektrooptischen Anwendung entsprechenden Schichtdicke für mindestens 100 Stunden überprüft. Wenn die Lagerstabilität bei einer Temperatur von –20°C in einer entsprechenden Testzelle 1.000 h oder mehr beträgt, wird das Medium als bei dieser Temperatur stabil bezeichnet. Bei Temperaturen von –30°C bzw. –40°C betragen die entsprechenden Zeiten 500 h bzw. 250 h. Bei hohen Temperaturen wird der Klärpunkt nach üblichen Methoden in Kapillaren gemessen.
  • Vorzugsweise weist die Flüssigkristallmischung einen nematischen Phasenbereich von mindestens 60 K und eine Fließviskosität ν20 von maximal 30 mm2·s–1 bei 20°C auf.
  • Die Werte der Doppelbrechung Δn in der Flüssigkristallmischung liegen in der Regel zwischen 0,07 und 0,16, vorzugsweise zwischen 0,08 und 0,12.
  • Die erfindungsgemäße Flüssigkristallmischung weist ein Δε von –0,5 bis –8,0, insbesondere von –2,5 bis –6,0 auf, wobei Δε die dielektrische Anisotropie bedeutet. Die Rotationsviskosität γ1 bei 20°C ist vorzugsweise ≤ 165 mPa·s, insbesondere ≤ 140 mPa·s; weiter bevorzugt ≤ 120 mPa·s.
  • Die erfindungsgemäßen Flüssigkristallmedien weisen relativ kleine Werte für die Schwellenspannung (V0) auf. Vorzugsweise sind sie im Bereich von 1,7 V bis 3,0 V, besonders bevorzugt ≤ 2,7 V und ganz besonders bevorzugt ≤ 2,5 V.
  • Der Begriff ”Schwellenspannung” bezieht sich für die vorliegende Erfindung auf die kapazitive Schwelle (V0), auch Freedericksz-Schwelle genannt, sofern nicht explizit anders angegeben.
  • Außerdem weisen die erfindungsgemäßen Flüssigkristallmedien hohe Werte für die Voltage Holding Ratio in Flüssigkristallzellen auf.
  • In der Regel zeigen dabei Flüssigkristallmedien mit einer geringen Ansteuerspannung bzw. Schwellenspannung eine geringere Voltage Holding Ratio als solche mit einer größeren Ansteuerspannung bzw. Schwellenspannung und umgekehrt.
  • Für die vorliegende Erfindung bedeuten die Begriffe ”dielektrisch positive Verbindungen” solche Verbindungen mit einem Δε > 1,5, ”dielektrisch neutrale Verbindungen” solche mit –1,5 ≤ Δε ≤ 1,5 und ”dielektrisch negative” Verbindungen solche mit Δε < –1,5. Hierbei wird die dielektrische Anisotropie der Verbindungen bestimmt, indem 10% der Verbindungen in einem flüssigkristallinen Host gelöst werden und von der resultierenden Mischung die Kapazität in mindestens jeweils einer Testzelle mit 20 μm Schichtdicke mit homeotroper und mit homogener Oberflächenorientierung bei 1 kHz bestimmt wird. Die Messspannung beträgt typischerweise 0,5 V bis 1,0 V, sie ist jedoch stets niedriger als die kapazitive Schwelle der jeweiligen untersuchten Flüssigkristallmischung.
  • Alle angegebenen Werte für Temperaturen für die vorliegende Erfindung sind in °C.
  • Die erfindungsgemäßen Mischungen sind für alle VA-TFT-Anwendungen geeignet, wie z. B. VAN, MVA, (S)-PVA, ASV, PSA (polymer sustained VA) und PS-VA (polymer stabilized VA). Weiterhin sind sie für IPS (In plane switching) und FFS (Fringe field switching) mit negativem Δε geeignet.
  • Die nematischen Flüssigkristallmischungen in den erfindungsgemäßen Anzeigen enthalten in der Regel zwei Komponenten A und B, die ihrerseits aus einer oder mehreren Einzelverbindungen bestehen.
  • Die Komponente A weist eine deutlich negative dielektrische Anisotropie auf und verleiht der nematischen Phase eine dielektrische Anisotropie von ≤ –0,5. Sie enthält bevorzugt neben einer oder mehreren Verbindungen der Formel I, die Verbindungen der Formeln IIA, IIB und/oder IIC, ferner Verbindungen der Formeln III.
  • Der Anteil der Komponente A liegt vorzugsweise zwischen 45 und 100%, insbesondere zwischen 60 und 100%.
  • Für Komponente A wird vorzugsweise eine (oder mehrere) Einzelverbindungen) gewählt, die einen Wert von Δε ≤ –0,8 haben. Dieser Wert muss umso negativer sein, je kleiner der Anteil A an der Gesamtmischung ist.
  • Die Komponente B weist eine ausgeprägte Nematogenität und eine Fließviskosität von nicht mehr als 30 mm2·s–1, vorzugsweise nicht mehr als 25 mm2·s–1, bei 20°C auf.
  • Besonders bevorzugte Einzelverbindungen der Komponente B sind extrem niedrig viskose nematische Flüssigkristalle mit einer Fließviskosität von nicht mehr als 18, vorzugsweise nicht mehr als 12 mm2·s–1, bei 20°C.
  • Komponente B ist monotrop oder enantiotrop nematisch, weist keine smektischen Phasen auf und kann in Flüssigkristallmischungen das Auftreten von smektischen Phasen bis zu sehr tiefen Temperaturen verhindern. Versetzt man beispielsweise eine smektische Flüssigkristallmischung mit jeweils verschiedenen Materialien mit hoher Nematogenität, so kann durch den erzielten Grad der Unterdrückung smektischer Phasen die Nematogenität dieser Materialien verglichen werden.
  • Optional kann die Mischung auch eine Komponente C enthalten, wobei es sich um Verbindungen mit einer dielektrischen Anisotropie von Δε ≥ 1,5 handelt. Diese sogenannten positiven Verbindungen sind in der Regel in einer Mischung mit negativer dielektrischer Anisotropie in Mengen von ≤ 20 Gew.% bezogen auf die Gesamtmischung enthalten.
  • Dem Fachmann sind aus der Literatur eine Vielzahl geeigneter Materialien bekannt. Besonders bevorzugt sind Verbindungen der Formel III.
  • Daneben können diese Flüssigkristallphasen auch mehr als 18 Komponenten, vorzugsweise 18 bis 25 Komponenten, enthalten.
  • Vorzugsweise enthalten die Phasen neben einer oder mehreren Verbindungen der Formel I, 4 bis 15, insbesondere 5 bis 12, und besonders bevorzugt < 10, Verbindungen der Formeln IIA, IIB und/oder IIC und optional III.
  • Neben Verbindungen der Formeln I und den Verbindungen der Formeln IIA, IIB und/oder IIC und optional III können auch noch andere Bestandteile zugegen sein, z. B. in einer Menge von bis zu 45% der Gesamtmischung, vorzugsweise jedoch bis zu 35%, insbesondere bis zu 10%.
  • Die anderen Bestandteile werden vorzugsweise ausgewählt aus den nematischen oder nematogenen Substanzen, insbesondere den bekannten Substanzen, aus den Klassen der Azoxybenzole, Benzylidenaniline, Biphenyle, Terphenyle, Phenyl- oder Cyclohexylbenzoate, Cyclohexan-carbonsäurephenyl- oder -cyclohexylester, Phenylcyclohexane, Cyclohexylbiphenyle, Cyclohexylcyclohexane, Cyclohexylnaphthaline, 1,4-Bis-cyclohexylbiphenyle oder Cylohexylpyrimidine, Phenyl- oder Cyclohexyldioxane, gegebenenfalls halogenierten Stilbenen, Benzylphenylether, Tolane und substituierten Zimtsäureestern.
  • Die wichtigsten als Bestandteile derartiger Flüssigkristallphasen in Frage kommenden Verbindungen lassen sich durch die Formel IV charakterisieren, R20-L-G-E-R21 IV worin L und E je ein carbo- oder heterocyclisches Ringsystem aus der aus 1,4-disubstituierten Benzol- und Cyclohexanringen, 4,4'-disubstituierten Biphenyl-, Phenylcyclohexan- und Cyclohexylcyclohexansystemen, 2,5-disubstituierten Pyrimidin- und 1,3-Dioxanringen, 2,6-disubstituierten Naphthalin, Di- und Tetrahydronaphthalin, Chinazolin und Tetrahydrochinazolin gebildeten Gruppe,
    G -CH=CH- -N(O)=N-
    -CH=CQ- -CH=N(O)-
    -C≡C- -CH2-CH2-
    -CO-O- -CH2-O-
    -CO-S- -CH2-S-
    -CH=N- -COO-Phe-COO-
    -CF2O- -CF=CF-
    -OCF2- -OCH2-
    -(CH2)4- -(CH2)3O-
    oder eine C-C-Einfachbindung, Q Halogen, vorzugsweise Chlor oder -CN, und R20 und R21 jeweils Alkyl, Alkenyl, Alkoxy, Alkoxyalkyl oder Alkoxycarbonyloxy mit bis zu 18, vorzugsweise bis zu 8 Kohlenstoffatomen, oder einer dieser Reste auch CN, NC, NO2, NCS, CF3, SF5, OCF3, F, Cl oder Br bedeuten.
  • Bei den meisten dieser Verbindungen sind R20 und R21 voneinander verschieden, wobei einer dieser Reste meist eine Alkyl- oder Alkoxygruppe ist. Auch andere Varianten der vorgesehenen Substituenten sind gebräuchlich. Viele solcher Substanzen oder auch Gemische davon sind im Handel erhältlich. Alle diese Substanzen sind nach literaturbekannten Methoden herstellbar.
  • Es versteht sich für den Fachmann von selbst, dass die erfindungsgemäße VA-, IPS- oder FFS-Mischung auch Verbindungen enthalten kann, worin beispielsweise H, N, O, Cl, F durch die entsprechenden Isotope ersetzt sind.
  • Den erfindungsgemäßen Mischungen können weiterhin polymerisierbare Verbindungen, sogenannte reaktive Mesogene (RMs), beispielsweise wie in U.S. 6,861,107 offenbart, in Konzentrationen von bevorzugt 0,12–5 Gew.%, besonders bevorzugt 0,2–2% bezogen auf die Mischung, zugesetzt werden. Optional können diese Mischungen auch einen Initiator enthalten, wie beispielsweise in der U.S 6,781,665 beschrieben. Der Initiator, z. B. Irganox-1076 der Fa. BASF, wird vorzugsweise der Mischung enthaltend polymerisierbare Verbindungen in Mengen von 0–1% zugesetzt. Derartige Mischungen können für sogenannte Polymer Stabilized VA-Modes (PS-VA) oder PSA (Polymer sustained VA), bei denen eine Polymerisierung der reaktiven Mesogene in der flüssigkristallinen Mischung erfolgen soll, verwendet werden. Voraussetzung hierfür ist, dass die Flüssigkristallmischung selbst keine polymerisierbaren Komponenten enthält.
  • In einer bevorzugten Ausführungsform der Erfindung sind die polymerisierbaren Verbindungen ausgewählt aus den Verbindungen der Formel M Rc-A1-(Z1-A2)m1-Rd M worin die einzelnen Reste folgende Bedeutung haben:
    Rc und Rd jeweils unabhängig voneinander P, P-Sp-, H, Halogen, SF5, NO2, eine Kohlenstoffgruppe oder Kohlenwasserstoffgruppe, wobei mindestens einer der Reste Rc und Rd eine Gruppe P oder P-Sp- bedeutet oder enthält,
    P bei jedem Auftreten gleich oder verschieden eine polymerisierbare Gruppe,
    Sp bei jedem Auftreten gleich oder verschieden eine Abstandsgruppe oder eine Einfachbindung,
    A1 und A2 jeweils unabhängig voneinander eine aromatische, heteroaromatische, alicyclische oder heterocyclische Gruppe, vorzugsweise mit 4 bis 25 Ringatomen, welche auch anellierte Ringe enthalten kann, und welche auch durch L ein- oder mehrfach substituiert sein kann,
    L P-Sp-, H, OH, CH2OH, Halogen, SF5, NO2, eine Kohlenstoffgruppe oder Kohlenwasserstoffgruppe,
    Z1 bei jedem Auftreten gleich oder verschieden -O-, -S-, -CO-, -CO-O-, -OCO-, -O-CO-O-, -OCH2-, -CH2O-, -SCH2-, -CH2S-, -CF2O-, -OCF2-, -CF2S-, -SCF2-, -(CH2)n1-, -CF2CH2-, -CH2CF2-, -(CF2)n1-, -CH=CH-, -CF=CF-, -C≡C-, -CH=CH-COO-, -OCO-CH=CH-, CR0R00 oder eine Einfachbindung,
    R0 und R00 jeweils unabhängig voneinander H oder Alkyl mit 1 bis 12 C-Atomen,
    m1 0, 1, 2, 3 oder 4,
    n1 1, 2, 3 oder 4.
  • Besonders bevorzugte Verbindungen der Formel M sind solche, worin
    Rc und Rd jeweils unabhängig voneinander P, P-Sp-, H, F, Cl, Br, I, -CN, -NO2, -NCO, -NCS, -OCN, -SCN, SF5 oder geradkettiges oder verzweigtes Alkyl mit 1 bis 25 C-Atomen, worin auch eine oder mehrere nicht benachbarte CH2-Gruppen jeweils unabhängig voneinander durch -C(R0)=C(R00)-, -C≡C-, -N(R00)-, -O-, -S-, -CO-, -CO-O-, -O-CO-, -O-CO-O- so ersetzt sein können, dass O- und/oder S-Atome nicht direkt miteinander verknüpft sind, und worin auch ein oder mehrere H-Atome durch F, Cl, Br, I, CN, P oder P-Sp- ersetzt sein können, wobei mindestens einer der Reste Ra und Rb eine Gruppe P oder P-Sp- bedeutet oder enthält,
    A1 und A2 jeweils unabhängig voneinander 1,4-Phenylen, Naphthalin-1,4-diyl, Naphthalin-2,6-diyl, Phenanthren-2,7-diyl, Anthracen-2,7-diyl, Fluoren-2,7-diyl, 2-Oxo-2H-chromen-3,6-diyl, 2-Oxo-2H-Chromen-3,7-diyl, 4-Oxo-4H-chromen-2,6-diyl, 4-Oxo-4H-chromen-3,6-diyl, 4-Oxo-4H-chromen-3,7-diyl (Trivialname Cumarin bzw. Flavon), wobei in diesen Gruppen auch eine oder mehrere CH-Gruppen durch N ersetzt sein können, Cyclohexan-1,4-diyl, worin auch eine oder mehrere nicht-benachbarte CH2-Gruppen durch O und/oder S ersetzt sein können, 1,4-Cyclohexenylen, Bicyclo[1.1.1]pentan-1,3-diyl, Bicyclo[2.2.2]octan-1,4-diyl, Spiro[3.3]heptan-2,6-diyl, Piperidin-1,4-diyl, Decahydronaphthalin-2,6-diyl, 1,2,3,4-Tetrahydronaphthalin-2,6-diyl, Indan-2,5-diyl oder Octahydro-4,7-methano-indan-2,5-diyl, wobei alle diese Gruppen unsubstituiert oder durch L ein- oder mehrfach substituiert sein können, L P, P-Sp-, OH, CH2OH, F, Cl, Br, I, -CN, -NO2, -NCO, -NCS, -OCN, -SCN, -C(=O)N(Rx)2, -C(=O)Y1, -C(=O)Rx, -N(Rx)2, optional substituiertes Silyl, optional substituiertes Aryl mit 6 bis 20 C Atomen, oder geradkettiges oder verzweigtes Alkyl, Alkoxy, Alkylcarbonyl, Alkoxycarbonyl, Alkylcarbonlyoxy oder Alkoxycarbonyloxy mit 1 bis 25 C-Atomen, worin auch ein oder mehrere H-Atome durch F, Cl, P oder P-Sp- ersetzt sein können,
    P eine polymerisierbare Gruppe,
    Y1 Halogen,
    Rx P, P-Sp-, H, Halogen, geradkettiges, verzweigtes oder cyclisches Alkyl mit 1 bis 25 C-Atomen, worin auch eine oder mehrere nicht benachbarte CH2-Gruppen durch -O-, -S-, -CO-, -CO-O-, -O-CO-, -O-CO-O- so ersetzt sein können, dass O- und/oder S-Atome nicht direkt miteinander verknüpft sind, und worin auch ein oder mehrere H-Atome durch F, Cl, P oder P-Sp- ersetzt sein können, eine optional substituierte Aryl- oder Aryloxygruppe mit 6 bis 40 C-Atomen, oder eine optional substituierte Heteroaryl- oder Heteroaryloxygruppe mit 2 bis 40 C-Atomen,
    bedeuten.
  • Weitere bevorzugte Verbindungen der Formel M sind solche ausgewählt aus einer oder mehreren der folgenden Untergruppen:
    • – m1 ist 2 oder 3,
    • – m1 ist 2,
    • – Rc und Rd bedeuten gleiche oder verschiedene Gruppen P-Sp-,
    • – Rc und Rd bedeuten gleiche oder verschiedene Gruppen P-Sp-, worin ein oder mehrere Gruppen Sp eine Einfachbindung bedeuten,
    • – m ist 2 oder 3 und Rc und Rd bedeuten gleiche Gruppen P-Sp-,
    • – einer der Reste Rc und Rd bedeutet P-Sp- und der andere bedeutet eine unpolymerisierbare Gruppe, vorzugsweise geradkettiges oder verzweigtes Alkyl mit 1 bis 25 C-Atomen, worin auch eine oder mehrere nicht benachbarte CH2-Gruppen jeweils unabhängig voneinander durch -C(R00)=C(R000)-, -C≡C-, -N(R00)-, -O-, -S-, -CO-, -CO-O-, -O-CO- oder -O-CO-O- so ersetzt sein können, dass O- und/oder S-Atome nicht direkt miteinander verknüpft sind, und worin auch ein oder mehrere H-Atome durch F, Cl, Br, I oder CN ersetzt sein können,
    • – eine oder mehrere Gruppen Sp bedeuten eine Einfachbindung,
    • – eine oder mehrere Gruppen Sp bedeuten -(CH2)p1-, -(CH2)p1-O-, -(CH2)p1-OCO- oder -(CH2)p1-OCOO-, worin p1 eine ganze Zahl von 1 bis 12 und r1 eine ganze Zahl von 1 bis 8 bedeuten,
    • – L bedeutet und/oder enthält keine polymerisierbare Gruppe,
    • – A1 und A2 bedeuten unabhängig voneinander 1,4-Phenylen oder Naphthalin-2,6-diyl, wobei in diesen Gruppen auch eine oder mehrere CH-Gruppen durch N ersetzt sein können, und welche auch ein- oder mehrfach fluoriert sein können,
    • – Z1 ist ausgewählt aus der Gruppe bestehend aus -O-, -CO-O-, -OCO-, -OCH2-, -CH2O-, -CF2O-, -OCF2-, -CH2CH2-, -CH=CH-, -CF=CF-, -CH=CF-, -CF=CH-, -C≡C- und einer Einfachbindung,
    • – L ist eine unpolymerisierbare Gruppe, vorzugsweise ausgewählt aus der Gruppe bestehend aus F, Cl, -CN, geradkettigem und verzweigtem Alkyl mit 1 bis 25 C-Atomen, worin auch eine oder mehrere nicht benachbarte CH2-Gruppen jeweils unabhängig voneinander durch -C(R00)=C(R000)-, -C≡C-, -N(R00)-, -O-, -S-, -CO-, -CO-O-, -O-CO- oder -O-CO-O- so ersetzt sein können, dass O- und/oder S-Atome nicht direkt miteinander verknüpft sind, und worin auch ein oder mehrere H-Atome durch F, Cl, Br, I oder CN ersetzt sein können.
  • Geeignete und bevorzugte Comonomere für die Herstellung von erfindungsgemäßen Mischungen für PS-VA-, PS-IPS und PS-FFS-Anwendungen sind beispielsweise ausgewählt aus den folgenden Formeln:
    Figure DE102015015108A1_0062
    Figure DE102015015108A1_0063
    Figure DE102015015108A1_0064
    Figure DE102015015108A1_0065
    Figure DE102015015108A1_0066
    Figure DE102015015108A1_0067
    worin die einzelnen Reste folgende Bedeutung besitzen:
    P1, P2 und P3 jeweils unabhängig voneinander eine polymerisierbare Gruppe, vorzugsweise mit einer der vor- und nachstehend für P angegebenen Bedeutungen, besonders bevorzugt eine Acrylat-, Methacrylat-, Fluoracrylat-, Oxetan-, Vinyloxy- oder Epoxygruppe,
    Sp1, Sp2 und Sp3 jeweils unabhängig voneinander eine Einfachbindung oder eine Abstandsgruppe, vorzugsweise mit einer der vor- und nachstehend für Spa angegebenen Bedeutungen, und besonders bevorzugt -(CH2)p1-, -(CH2)p1-O-, -(CH2)p1-CO-O- oder -(CH2)p1-O-CO-O-, worin p1 eine ganze Zahl von 1 bis 12 ist, und wobei in den letztgenannten Gruppen die Verknüpfung zur benachbarten Ring über das O-Atom erfolgt,
    wobei auch einer oder mehrere der Reste P1-Sp1-, P2-Sp2- und P3-Sp3- einen Rest Raa bedeuten können, mit der Maßgabe dass mindestens einer der vorhandenen Reste P1-Sp1-, P2-Sp2- und P3-Sp3- nicht Raa bedeutet,
    Raa H, F, Cl, CN oder geradkettiges oder verzweigtes Alkyl mit 1 bis 25 C-Atomen, worin auch eine oder mehrere nicht benachbarte CH2-Gruppen jeweils unabhängig voneinander durch C(R0)=C(R00)-, -C≡C-, -N(R0)-, -O-, -S-, -CO-, -CO-O-, -O-CO-, -O-CO-O- so ersetzt sein können, dass O- und/oder S-Atome nicht direkt miteinander verknüpft sind, und worin auch ein oder mehrere H-Atome durch F, Cl, CN oder P1-Sp1- ersetzt sein können, besonders bevorzugt geradkettiges oder verzweigtes, optional ein- oder mehrfach fluoriertes, Alkyl, Alkoxy, Alkenyl, Alkinyl, Alkylcarbonyl, Alkoxycarbonyl, oder Alkylcarbonyloxy mit 1 bis 12 C-Atomen (wobei die Alkenyl- und Alkinylreste mindestens zwei und die verzweigten Reste mindestens drei C-Atome aufweisen),
    R0, R00 jeweils unabhängig voneinander und bei jedem Auftreten gleich oder verschieden H oder Alkyl mit 1 bis 12 C-Atomen,
    Ry und Rz jeweils unabhängig voneinander H, F, CH3 oder CF3,
    X1, X2 und X3 jeweils unabhängig voneinander -CO-O-, -O-CO- oder eine Einfachbindung,
    Z1 -O-, -CO-, -C(RyRz)-, oder -CF2CF2-,
    Z2 und Z3 jeweils unabhängig voneinander -CO-O-, -O-CO-, -CH2O-, -OCH2-, -CF2O-, -OCF2-, oder -(CH2)n-, wobei n 2, 3 oder 4 ist,
    L bei jedem Auftreten gleich oder verschieden F, Cl, CN, SCN, SF5 oder geradkettiges oder verzweigtes, optional ein- oder mehrfach fluoriertes, Alkyl, Alkoxy, Alkenyl, Alkinyl, Alkylcarbonyl, Alkoxycarbonyl, Alkylcarbonyloxy oder Alkoxycarbonyloxy mit 1 bis 12 C-Atomen, vorzugsweise F,
    L' und L'' jeweils unabhängig voneinander H, F oder Cl,
    r 0, 1, 2, 3 oder 4,
    s 0, 1, 2 oder 3,
    t 0, 1 oder 2,
    x 0 oder 1.
  • In den Verbindungen der Formeln M1 bis M34 bedeutet
    Figure DE102015015108A1_0068
    worin L, bei jedem Auftreten gleich oder verschieden, eine der vorstehenden Bedeutungen hat und vorzugsweise F, Cl, CN, NO2, CH3, C2H5, C(CH3)3, CH(CH3)2, CH2CH(CH3)C2H5, OCH3, OC2H5, COCH3, COC2H5, COOCH3, COOC2H5, CF3, OCF3, OCHF2, OC2F5 oder P-Sp-, besonders bevorzugt F, Cl, CN, CH3, C2H5, OCH3, COCH3, OCF3 oder P-Sp-, ganz besonders bevorzugt F, Cl, CH3, OCH3, COCH3 oder OCF3, insbesondere F oder CH3 bedeutet.
  • In einer weiteren bevorzugten Ausführungsform der Erfindung sind die polymerisierbaren Verbindungen chirale oder optisch aktive Verbindungen ausgewählt aus Formel II* (chirale RMs): (R*-(A1-Z1)m)k-Q II* worin A1, Z1 und m bei jedem Auftreten gleich oder verschieden eine der in Formel M angegebenen Bedeutungen besitzen,
    R* bei jedem Auftreten gleich oder verschieden eine der für Ra in Formel M angegebenen Bedeutungen besitzt, wobei R* chiral oder achiral sein kann,
    Q eine k-valente chirale Gruppe bedeutet, welche optional ein- oder mehrfach mit L wie in Formel M definiert substituiert ist,
    k 1, 2, 3, 4, 5 oder 6 ist,
    wobei die Verbindungen mindestens einen Rest R* oder L enthalten, der eine Gruppe P oder P-Sp- wie oben definiert bedeutet oder enthält.
  • Besonders bevorzugte Verbindungen der Formel II* enthalten eine monovalente Gruppe Q der Formel III*
    Figure DE102015015108A1_0069
    worin L und r bei jedem Auftreten gleich oder verschieden die oben angegebene Bedeutung besitzen,
    A* und B* jeweils unabhängig voneinander anelliertes Benzol, Cyclohexan oder Cyclohexen,
    t bei jedem Auftreten gleich oder verschieden 0, 1 oder 2, und
    u bei jedem Auftreten gleich oder verschieden 0, 1 oder 2
    bedeutet. Besonders bevorzugt sind Gruppen der Formel III*, worin u 1 bedeutet.
  • Weitere bevorzugte Verbindungen der Formel II* enthalten eine monovalente Gruppe Q oder eine oder mehrere Gruppen R* der Formel IV*
    Figure DE102015015108A1_0070
    worin
    Q1 Alkylen oder Alkylenoxy mit 1 bis 9 C-Atomen oder eine Einfachbindung,
    Q2 optional fluoriertes Alkyl oder Alkoxy mit 1 bis 10 C-Atomen, worin auch eine oder zwei nicht benachbarte CH2-Gruppen durch -O-, -S-, -CH=CH-, -CO-, -OCO-, -COO-, -O-COO-, -S-CO-, -CO-S- oder -C≡C- so ersetzt sein können, dass O- und/oder S-Atome nicht direkt miteinander verknüpft sind,
    Q3 F, Cl, CN oder Alkyl oder Alkoxy wie für Q2 definiert, aber von Q2 verschieden
    bedeuten.
  • Bevorzugte Gruppen der Formel IV* sind beispielsweise 2-butyl (=1-methylpropyl), 2-methylbutyl, 2-methylpentyl, 3-methylpentyl, 2-ethylhexyl, 2-propylpentyl, insbesondere 2-methylbutyl, 2-methylbutoxy, 2-methylpentoxy, 3-methylpentoxy, 2-ethylhexoxy, 1-methylhexoxy, 2-octyloxy, 2-oxa-3-methylbutyl, 3-oxa-4-methylpentyl, 4-methylhexyl, 2-hexyl, 2-octyl, 2-nonyl, 2-decyl, 2-dodecyl, 6-methoxyoctoxy, 6-methyloctoxy, 6-methyloctanoyloxy, 5-methylheptyloxycarbonyl, 2-methylbutyryloxy, 3-methylvaleroyloxy, 4-methylhexanoyloxy, 2-chlorpropionyloxy, 2-chloro-3-methylbutyryloxy, 2-chloro-4-methylvaleryloxy, 2-chloro-3-methylvaleryloxy, 2-methyl-3-oxapentyl, 2-methyl-3-oxahexyl, 1-methoxypropyl-2-oxy, 1-ethoxypropyl-2-oxy, 1-propoxypropyl-2-oxy, 1-butoxypropyl-2-oxy, 2-fluorooctyloxy, 2-fluorodecyloxy, 1,1,1-trifluoro-2-octyloxy, 1,1,1-trifluoro-2-octyl, 2-fluoromethyloctyloxy.
  • Weitere bevorzugte Verbindungen der Formel II* enthalten eine bivalente Gruppe Q der Formel V*
    Figure DE102015015108A1_0071
    worin L, r, t, A* und B* die oben angegebene Bedeutung besitzen.
  • Weitere bevorzugte Verbindungen der Formel II* enthalten eine bivalente Gruppe Q ausgewählt aus folgenden Formeln
    Figure DE102015015108A1_0072
    worin Phe Phenyl bedeutet, welches optional durch L ein- oder mehrfach substituiert ist, und Rx F oder optional fluoriertes Alkyl mit 1 bis 4 C-Atomen bedeutet.
  • Geeignete chirale RMs sind beispielsweise in GB 2 314 839 A , US 6,511,719 , US 7,223,450 , WO 02/34739 A1 , US 7,041,345 , US 7,060,331 oder US 7,318,950 beschrieben. Geeignete RMs mit Binaphthylgruppen sind beispielsweise in US 6,818,261 , US 6,916,940 , US 7,318,950 und US 7,223,450 beschrieben.
  • Die vor- und nachstehend gezeigten chiralen Strukturelemente, sowie polymerisierbare und polymerisierte Verbindungen enthaltend solche chiralen Strukturelemente, können in optisch aktiver Form, also als reine Enantiomere oder als beliebige Mischung beider Enantiomere, oder auch als Racemat eingesetzt werden. Bevorzugt ist die Verwendung von Racematen. Die Verwendung der Racemate besitzt gegenüber der Verwendung von reinen Enantiomeren einige Vorteile, wie beispielsweise ein deutlich geringerer Syntheseaufwand und geringere Materialkosten.
  • Vorzugsweise sind die Verbindungen der Formel II* im FK-Medium als Racemat enthalten.
  • Besonders bevorzugte Verbindungen der Formel II* sind aus folgenden Unterformeln ausgewählt
    Figure DE102015015108A1_0073
    Figure DE102015015108A1_0074
    Figure DE102015015108A1_0075
    Figure DE102015015108A1_0076
    worin L, P, Sp, m, r und t die oben angegebene Bedeutung haben, Z bzw. A bei jedem Auftreten gleich oder verschieden eine der für Z1 bzw. A1 angegebenen Bedeutungen haben, und t1 bei jedem Auftreten gleich oder verschieden 0 oder 1 bedeutet.
  • Der Begriff ”Kohlenstoffgruppe” bedeutet eine ein- oder mehrbindige organische Gruppe enthaltend mindestens ein Kohlenstoffatom, wobei diese entweder keine weiteren Atome enthält (wie z. B. -C≡C-), oder gegebenenfalls ein oder mehrere weitere Atome wie beispielsweise N, O, S, P, Si, Se, As, Te oder Ge enthält (z. B. Carbonyl etc.). Der Begriff ”Kohlenwasserstoffgruppe” bedeutet eine Kohlenstoffgruppe, die zusätzlich ein oder mehrere H-Atome und gegebenenfalls ein oder mehrere Heteroatome wie beispielsweise N, O, S, P, Si, Se, As, Te oder Ge enthält.
  • ”Halogen” bedeutet F, Cl, Br oder I.
  • Eine Kohlenstoff- oder Kohlenwasserstoffgruppe kann eine gesättigte oder ungesättigte Gruppe sein. Ungesättigte Gruppen sind beispielsweise Aryl-, Alkenyl- oder Alkinylgruppen. Ein Kohlenstoff- oder Kohlenwasserstoffrest mit mehr als 3 C-Atomen kann geradkettig, verzweigt und/oder cyclisch sein, und kann auch Spiroverküpfungen oder kondensierte Ringe aufweisen.
  • Die Begriffe ”Alkyl”, ”Aryl”, ”Heteroaryl” etc. umfassen auch mehrbindige Gruppen, beispielsweise Alkylen, Arylen, Heteroarylen etc.
  • Der Begriff ”Aryl” bedeutet eine aromatische Kohlenstoffgruppe oder eine davon abgeleitete Gruppe. Der Begriff ”Heteroaryl” bedeutet ”Aryl” gemäß vorstehender Definition, enthaltend ein oder mehrere Heteroatome.
  • Bevorzugte Kohlenstoff- und Kohlenwasserstoffgruppen sind gegebenenfalls substituiertes Alkyl, Alkenyl, Alkinyl, Alkoxy, Alkylcarbonyl, Alkoxycarbonyl, Alkylcarbonyloxy und Alkoxycarbonyloxy mit 1 bis 40, vorzugsweise 1 bis 25, besonders bevorzugt 1 bis 18 C-Atomen, gegebenenfalls substituiertes Aryl oder Aryloxy mit 6 bis 40, vorzugsweise 6 bis 25 C-Atomen, oder gegebenenfalls substituiertes Alkylaryl, Arylalkyl, Alkylaryloxy, Arylalkyloxy, Arylcarbonyl, Aryloxycarbonyl, Arylcarbonyloxy und Aryloxycarbonyloxy mit 6 bis 40, vorzugsweise 6 bis 25 C-Atomen.
  • Weitere bevorzugte Kohlenstoff- und Kohlenwasserstoffgruppen sind C1-C40 Alkyl, C2-C40 Alkenyl, C2-C40 Alkinyl, C3-C40 Allyl, C4-C40 Alkyldienyl, C4-C40 Polyenyl, C6-C40 Aryl, C6-C40 Alkylaryl, C6-C40 Arylalkyl, C6-C40 Alkylaryloxy, C6-C40 Arylalkyloxy, C2-C40 Heteroaryl, C4-C40 Cycloalkyl, C4-C40 Cycloalkenyl, etc. Besonders bevorzugt sind C1-C22 Alkyl, C2-C22 Alkenyl, C2-C22 Alkinyl, C3-C22 Allyl, C4-C22 Alkyldienyl, C6-C12 Aryl, C6-C20 Arylalkyl und C2-C20 Heteroaryl.
  • Weitere bevorzugte Kohlenstoff- und Kohlenwasserstoffgruppen sind geradkettige, verzweigte oder cyclische Alkylreste mit 1 bis 40, vorzugsweise 1 bis 25 C-Atomen, welche unsubstituiert oder durch F, Cl, Br, I oder CN ein- oder mehrfach substituiert sind, und worin ein mehrere nicht benachbarte CH2-Gruppen jeweils unabhängig voneinander durch -C(Rx)=C(Rx)-, -C≡C-, -N(Rx)-, -O-, -S-, -CO-, -CO-O-, -O-CO-, -O-CO-O- so ersetzt sein können, dass O- und/oder S-Atome nicht direkt miteinander verknüpft sind.
  • Rx bedeutet vorzugsweise H, Halogen, eine geradkettige, verzweigte oder cyclische Alkylkette mit 1 bis 25 C-Atomen, in der auch ein oder mehrere nicht benachbarte C-Atome durch -O-, -S-, -CO-, -CO-O-, -O-CO-, -O-CO-O- ersetzt sein können, wobei auch ein oder mehrere H-Atome durch Fluor ersetzt sein können, eine optional substituierte Aryl- oder Aryloxygruppe mit 6 bis 40 C-Atomen, oder eine optional substituierte Heteroaryl- oder Heteroaryloxygruppe mit 2 bis 40 C-Atomen.
  • Bevorzugte Alkoxygruppen sind beispielsweise Methoxy, Ethoxy, 2-Methoxyethoxy, n-Propoxy, i-Propoxy, n-Butoxy, i-Butoxy, s-Butoxy, t-Butoxy, 2-Methylbutoxy, n-Pentoxy, n-Hexoxy, n-Heptoxy, n-Octoxy, n-Nonoxy, n-Decoxy, n-Undecoxy, n-Dodecoxy, etc.
  • Bevorzugte Alkylgruppen sind beispielsweise Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, Isobutyl, s-Butyl, t-Butyl, 2-Methylbutyl, n-Pentyl, s-Pentyl, Cyclopentyl, n-Hexyl, Cyclohexyl, 2-Ethylhexyl, n-Heptyl, Cycloheptyl, n-Octyl, Cyclooctyl, n-Nonyl, n-Decyl, n-Undecyl, n-Dodecyl, Dodecanyl, Trifluoromethyl, Perfluoro-n-butyl, 2,2,2-Trifluoroethyl, Perfluorooctyl, Perfluorohexyl, etc.
  • Bevorzugte Alkenylgruppen sind beispielsweise Ethenyl, Propenyl, Butenyl, Pentenyl, Cyclopentenyl, Hexenyl, Cyclohexenyl, Heptenyl, Cycloheptenyl, Octenyl, Cyclooctenyl, etc.
  • Bevorzugte Alkinylgruppen sind beispielsweise Ethinyl, Propinyl, Butinyl, Pentinyl, Hexinyl, Octinyl, etc.
  • Bevorzugte Alkoxygruppen sind beispielsweise Methoxy, Ethoxy, 2-Methoxyethoxy, n-Propoxy, i-Propoxy, n-Butoxy, i-Butoxy, s-Butoxy, t-Butoxy, 2-Methylbutoxy, n-Pentoxy, n-Hexoxy, n-Heptoxy, n-Octoxy, n-Nonoxy, n-Decoxy, n-Undecoxy, n-Dodecoxy, etc.
  • Bevorzugte Aminogruppen sind beispielsweise Dimethylamino, Methylamino, Methylphenylamino, Phenylamino, etc. Aryl- und Heteroarylgruppen können einkernig oder mehrkernig sein, d. h. sie können einen Ring (wie z. B. Phenyl) oder zwei oder mehr Ringe aufweisen, welche auch anelliert (wie z. B. Naphthyl) oder kovalent verknüpft sein können (wie z. B. Biphenyl), oder eine Kombination von anellierten und verknüpften Ringen beinhalten. Heteroarylgruppen enthalten ein oder mehrere Heteroatome, vorzugsweise ausgewählt aus O, N, S und Se.
  • Besonders bevorzugt sind ein-, zwei- oder dreikernige Arylgruppen mit 6 bis 25 C-Atomen sowie ein-, zwei- oder dreikernige Heteroarylgruppen mit 2 bis 25 C-Atomen, welche optional anellierte Ringe enthalten und optional substituiert sind. Ferner bevorzugt sind 5-, 6- oder 7-gliedrige Aryl- und Heteroarylgruppen, worin auch eine oder mehrere CH-Gruppen durch N, S oder O so ersetzt sein können, dass O-Atome und/oder S-Atome nicht direkt miteinander verknüpft sind.
  • Bevorzugte Arylgruppen sind beispielsweise Phenyl, Biphenyl, Terphenyl, [1,1:3',1'']Terphenyl-2'-yl, Naphthyl, Anthracen, Binaphthyl, Phenanthren, Pyren, Dihydropyren, Chrysen, Perylen, Tetracen, Pentacen, Benzpyren, Fluoren, Inden, Indenofluoren, Spirobifluoren, etc.
  • Bevorzugte Heteroarylgruppen sind beispielsweise 5-gliedrige Ringe wie Pyrrol, Pyrazol, Imidazol, 1,2,3-Triazol, 1,2,4-Triazol, Tetrazol, Furan, Thiophen, Selenophen, Oxazol, Isoxazol, 1,2-Thiazol, 1,3-Thiazol, 1,2,3-Oxadiazol, 1,2,4-Oxadiazol, 1,2,5-Oxadiazol, 1,3,4-Oxadiazol, 1,2,3-Thiadiazol, 1,2,4-Thiadiazol, 1,2,5-Thiadiazol, 1,3,4-Thiadiazol, 6-gliedrige Ringe wie Pyridin, Pyridazin, Pyrimidin, Pyrazin, 1,3,5-Triazin, 1,2,4-Triazin, 1,2,3-Triazin, 1,2,4,5-Tetrazin, 1,2,3,4-Tetrazin, 1,2,3,5-Tetrazin, oder kondensierte Gruppen wie Indol, Isoindol, Indolizin, Indazol, Benzimidazol, Benzotriazol, Purin, Naphthimidazol, Phenanthrimidazol, Pyridimidazol, Pyrazinimidazol, Chinoxalinimidazol, Benzoxazol, Naphthoxazol, Anthroxazol, Phenanthroxazol, Isoxazol, Benzothiazol, Benzofuran, Isobenzofuran, Dibenzofuran, Chinolin, Isochinolin, Pteridin, Benzo-5,6-chinolin, Benzo-6,7-chinolin, Benzo-7,8-chinolin, Benzoisochinolin, Acridin, Phenothiazin, Phenoxazin, Benzopyridazin, Benzopyrimidin, Chinoxalin, Phenazin, Naphthyridin, Azacarbazol, Benzocarbolin, Phenanthridin, Phenanthrolin, Thieno[2,3b]thiophen, Thieno[3,2b]thiophen, Dithienothiophen, Isobenzothiophen, Dibenzothiophen, Benzothiadiazothiophen, oder Kombinationen dieser Gruppen. Die Heteroarylgruppen können auch mit Alkyl, Alkoxy, Thioalkyl, Fluor, Fluoralkyl oder weiteren Aryl- oder Heteroarylgruppen substituiert sein.
  • Die (nicht-aromatischen) alicyclischen und heterocyclischen Gruppen umfassen sowohl gesättigte Ringe, d. h. solche die ausschließlich Einfachbindungen enthalten, als auch teilweise ungesättigte Ringe, d. h. solche die auch Mehrfachbindungen enthalten können. Heterocyclische Ringe enthalten ein oder mehrere Heteroatome, vorzugsweise ausgewählt aus Si, O, N, S und Se.
  • Die (nicht-aromatischen) alicyclischen und heterocyclischen Gruppen können einkernig sein, d. h. nur einen Ring enthalten (wie z. B. Cyclohexan), oder mehrkernig sein, d. h. mehrere Ringe enthalten (wie z. B. Decahydronaphthalin oder Bicyclooctan). Besonders bevorzugt sind gesättigte Gruppen. Ferner bevorzugt sind ein-, zwei- oder dreikernige Gruppen mit 3 bis 25 C-Atomen, welche optional anellierte Ringe enthalten und optional substituiert sind. Ferner bevorzugt sind 5-, 6-, 7- oder 8-gliedrige carbocyclische Gruppen worin auch ein oder mehrere C-Atome durch Si ersetzt sein können und/oder eine oder mehrere CH-Gruppen durch N ersetzt sein können und/oder eine oder mehrere nicht-benachbarte CH2-Gruppen durch -O- und/oder -S- ersetzt sein können.
  • Bevorzugte alicyclische und heterocyclische Gruppen sind beispielsweise 5-gliedrige Gruppen wie Cyclopentan, Tetrahydrofuran, Tetrahydrothiofuran, Pyrrolidin, 6-gliedrige Gruppen wie Cyclohexan, Silinan, Cyclohexen, Tetrahydropyran, Tetrahydrothiopyran, 1,3-Dioxan, 1,3-Dithian, Piperidin, 7-gliedrige Gruppen wie Cycloheptan, und anellierte Gruppen wie Tetahydronaphthalin, Decahydronaphthalin, Indan, Bicyclo[1.1.1]pentan-1,3-diyl, Bicyclo[2.2.2]octan-1,4-diyl, Spiro[3.3]heptan-2,6-diyl, Octahydro-4,7-methano-indan-2,5-diyl.
  • Bevorzugte Substituenten sind beispielsweise löslichkeitsfördernde Gruppen wie Alkyl oder Alkoxy, elektronenziehende Gruppen wie Fluor, Nitro oder Nitril, oder Substituenten zur Erhöhung der Glastemperatur (Tg) im Polymer, insbesondere voluminöse Gruppen wie z. B. t-Butyl oder gegebenenfalls substituierte Arylgruppen.
  • Bevorzugte Substituenten, vor- und nachstehend auch als ”L” bezeichnet, sind beispielsweise F, Cl, Br, I, -CN, -NO2, -NCO, -NCS, -OCN, -SCN, -C(=O)N(Rx)2, -C(=O)Y1, -C(=O)Rx, -N(Rx)2, worin Rx die oben angegebene Bedeutung hat und Y1 Halogen bedeutet, optional substituiertes Silyl oder Aryl mit 6 bis 40, vorzugsweise 6 bis 20 C Atomen, und geradkettiges oder verzweigtes Alkyl, Alkoxy, Alkylcarbonyl, Alkoxycarbonyl, Alkylcarbonyloxy oder Alkoxycarbonyloxy mit 1 bis 25 C-Atomen, worin ein oder mehrere H-Atome gegebenenfalls durch F oder Cl ersetzt sein können.
  • ”Substituiertes Silyl oder Aryl” bedeutet vorzugsweise durch Halogen, CN, R0, -OR0, -CO-R0, -CO-O-R0, -O-CO-R0 oder -O-CO-O-R0 substituiert, worin R0 die oben angegebene Bedeutung hat.
  • Besonders bevorzugte Substituenten L sind beispielsweise F, Cl, CN, NO2, CH3, C2H5, OCH3, OC2H5, COCH3, COC2H5, COOCH3, COOC2H5, CF3, OCF3, OCHF2, OC2F5, ferner Phenyl.
    Figure DE102015015108A1_0077
    worin L eine der oben angegebenen Bedeutungen hat.
  • Die polymerisierbare Gruppe P ist eine Gruppe, die für eine Polymerisationsreaktion, wie beispielsweise die radikalische oder ionische Kettenpolymerisation, Polyaddition oder Polykondensation, oder für eine polymeranaloge Umsetzung, beispielsweise die Addition oder Kondensation an eine Polymerhauptkette, geeignet ist. Besonders bevorzugt sind Gruppen für die Kettenpolymerisation, insbesondere solche enthaltend eine C=C-Doppelbindung oder -C≡C-Dreifachbindung, sowie zur Polymerisation unter Ringöffnung geeignete Gruppen wie beispielsweise Oxetan- oder Epoxygruppen
  • Bevorzugte Gruppen P sind ausgewählt aus CH2=CW1-COO-, CH2=CW1-CO-,
    Figure DE102015015108A1_0078
    CH2=CW2-(O)k3-, CW1=CH-CO-(O)k3-, CW1=CH-CO-NH-, CH2=CW1-CO-NH-, CH3-CH=CH-O-, (CH2=CH)2CH-OCO-, (CH2=CH-CH2)2CH-OCO-, (CH2=CH)2CH-O-, (CH2=CH-CH2)2N-, (CH2=CH-CH2)2N-CO-, HO-CW2W3-, HS-CW2W3-, HW2N-, HO-CW2W3-NH-, CH2=CW1-CO-NH-, CH2=CH-(COO)k1-Phe-(O)k2-, CH2=CH-(CO)k1-Phe-(O)k2-, Phe-CH=CH-, HOOC-, OCN-, und W4W5W6Si-, worin W1 H, F, Cl, CN, CF3, Phenyl oder Alkyl mit 1 bis 5 C-Atomen, insbesondere H, F, Cl oder CH3 bedeutet, W2 und W3 jeweils unabhängig voneinander H oder Alkyl mit 1 bis 5 C-Atomen, insbesondere H, Methyl, Ethyl oder n-Propyl bedeuten, W4, W5 und W6 jeweils unabhängig voneinander Cl, Oxaalkyl oder Oxacarbonylalkyl mit 1 bis 5 C-Atomen bedeuten, W7 und W8 jeweils unabhängig voneinander H, Cl oder Alkyl mit 1 bis 5 C-Atomen bedeuten, Phe 1,4-Phenylen bedeutet, welches optional mit einen oder mehreren, von P-Sp- verschiedenen, Resten L wie oben definiert substiuiert ist, k1, k2 und k3 jeweils unabhängig voneinander 0 oder 1 bedeuten, k3 vorzugsweise 1 bedeutet.
  • Besonders bevorzugte Gruppen P sind CH2=CW1-COO-, insbesondere CH2=CH-COO-, CH2=C(CH3)-COO- und CH2=CF-COO-, ferner CH2=CH-O-, (CH2=CH)2CH-OCO-, (CH2=CH)2CH-O-,
    Figure DE102015015108A1_0079
    und
    Figure DE102015015108A1_0080
  • Ganz besonders bevorzugte Gruppen P sind Vinyloxy, Acrylat, Methacrylat, Fluoracrylat, Chloracrylat, Oxetan und Epoxy, insbesondere Acrylat und Methacrylat.
  • Bevorzugte Abstandsgruppen Sp sind ausgewählt aus der Formel Sp'-X', so dass der Rest P-Sp- der Formel P-Sp'-X'- entspricht, wobei
    Sp' Alkylen mit 1 bis 20, vorzugsweise 1 bis 12 C-Atomen bedeutet, welches optional durch F, Cl, Br, I oder CN ein- oder mehrfach substituiert ist, und worin auch eine oder mehrere nicht benachbarte CH2-Gruppen jeweils unabhängig voneinander so durch -O-, -S-, -NH-, -NR0-, -SiR00R000-, -CO-, -COO-, -OCO-, -OCO-O-, -S-CO-, -CO-S-, -NR00-CO-O-, -O-CO-NR00-, -NR00-CO-NR00-, -CH=CH- oder -C≡C- ersetzt sein können, dass O- und/oder S-Atome nicht direkt miteinander verknüpft sind,
    X' -O-, -S-, -CO-, -COO-, -OCO-, -O-COO-, -CO-NR00-, -NR00-CO-, -NR00-CO-NR00-, -OCH2-, -CH2O-, -SCH2-, -CH2S-, -CF2O-, -OCF2-, -CF2S-, -SCF2-, -CF2CH2-, -CH2CF2-, -CF2CF2-, -CH=N-, -N=CH-, -N=N-, -CH=CR0-, -CY2=CY3-, -C≡C-, -CH=CH-COO-, -OCO-CH=CH- oder eine Einfachbindung bedeutet,
    R00 und R000 jeweils unabhängig voneinander H oder Alkyl mit 1 bis 12 C-Atomen bedeuten, und
    Y2 und Y3 jeweils unabhängig voneinander H, F, Cl oder CN bedeuten.
    X' ist vorzugsweise -O-, -S -CO-, -COO-, -OCO-, -O-COO-, -CO-NR0-, -NR0-CO-, -NR0-CO-NR0- oder eine Einfachbindung.
  • Typische Abstandsgruppen Sp' sind beispielsweise -(CH2)p1-, -(CH2CH2O)q1-CH2CH2-, -CH2CH2-S-CH2CH2-, -CH2CH2-NH-CH2CH2- oder -(SiR00R000-O)p1-, worin p1 eine ganze Zahl von 1 bis 12 ist, q1 eine ganze Zahl von 1 bis 3 ist, und R00 und R000 die oben angegebenen Bedeutungen besitzen.
  • Besonders bevorzugte Gruppen -X'-Sp'- sind -(CH2)p1-, -O-(CH2)p1-, -OCO-(CH2)p1-, -OCOO-(CH2)p1-.
  • Besonders bevorzugte Gruppen Sp' sind beispielsweise jeweils geradkettiges Ethylen, Propylen, Butylen, Pentylen, Hexylen, Heptylen, Octylen, Nonylen, Decylen, Undecylen, Dodecylen, Octadecylen, Ethylenoxyethylen, Methylenoxybutylen, Ethylenthioethylen, Ethylen-N-methyl-iminoethylen, 1-Methylalkylen, Ethenylen, Propenylen und Butenylen.
  • In einer weiteren bevorzugten Ausführungsform der Erfindung bedeutet P-Sp- einen Rest mit zwei oder mehreren polymerisierbaren Gruppen (multifunktionelle polymerisierbare Reste). Geeignete Reste dieses Typs, sowie diese enthaltende polymerisierbare Verbindungen und ihre Herstellung sind beispielsweise in US 7,060,200 B1 oder US 2006/0172090 A1 beschrieben. Besonders bevorzugt sind multifunktionelle polymerisierbare Reste P-Sp- ausgewählt aus folgenden Formeln -X-alkyl-CHP1-CH2-CH2P2 M*a -X-alkyl-C(CH2P1)(CH2P2)-CH2P3 M*b -X-alkyl-CHP1CHP2-CH2P3 M*c -X-alkyl-C(CH2P1)(CH2P2)-CaaH2aa+1 M*d -X-alkyl-CHP1-CH2P2 M*e -X-alkyl-CHP1P2 M*f -X-alkyl-CP1P2-CaaH2aa+1 M*g -X-alkyl-C(CH2P1)(CH2P2)-CH2OCH2-C(CH2P3)(CH2P4)CH2P5 M*h -X-alkyl-CH((CH2)aaP1)((CH2)bbP2) M*i -X-alkyl-CHP1CHP2-CaaH2aa+1 M*k -X'-alkyl-C(CH3)(CH2P1)(CH2P2) M*m worin
    alkyl eine Einfachbindung oder geradkettiges oder verzweigtes Alkylen mit 1 bis 12 C-Atomen bedeutet, worin eine oder mehrere nicht benachbarte CH2-Gruppen jeweils unabhängig voneinander durch -C(R00)=C(R000)-, -C≡C-, -N(R00)-, -O-, -S-, -CO-, -CO-O-, -O-CO-, -O-CO-O- so ersetzt sein können, dass O- und/oder S-Atome nicht direkt miteinander verknüpft sind, und worin auch ein oder mehrere H-Atome durch F, Cl oder CN ersetzt sein können, wobei R00 und R000 die oben angegebene Bedeutung haben,
    aa und bb jeweils unabhängig voneinander 0, 1, 2, 3, 4, 5 oder 6 bedeuten,
    X eine der für X' angegebenen Bedeutungen besitzt, und
    P1-5 jeweils unabhängig voneinander eine der für P angegebenen Bedeutungen besitzen.
  • Die polymerisierbaren Verbindungen und RMs können in Analogie zu dem Fachmann bekannten und in Standardwerken der organischen Chemie beschriebenen Verfahren, wie beispielsweise in Houben-Weyl, Methoden der organischen Chemie, Thieme-Verlag, Stuttgart, hergestellt werden. Weitere Syntheseverfahren finden sich in den vor- und nachstehend zitierten Dokumenten. Im einfachsten Fall erfolgt die Synthese solcher RMs zum Beispiel durch Veresterung oder Veretherung von 2,6-Dihydroxynaphthalin oder 4,4'-Dihydroxybiphenyl mit entsprechenden Säuren, Säurederivaten, oder halogenierten Verbindungen enthaltend eine Gruppe P, wie zum Beispiel (Meth)acrylsäurechlorid oder (Meth)acrylsäure, in Gegenwart von einem wasserentziehenden Reagens wie zum Beispiel DCC (Dicyclohexylcarbodiimid).
  • Die erfindungsgemäßen FK-Mischungen und FK-Medien eignen sich prinzipiell für jede Art von PS- oder PSA-Anzeige, insbesondere solche beruhend auf FK-Medien mit negativer dielektrischer Anisotropie, besonders bevorzugt für PSA-VA-, PSA-IPS- oder PS-FFS-Anzeigen. Der Fachmann kann jedoch, ohne erfinderisches Zutun, geeignete erfindungsgemäße FK-Mischungen und FK-Medien auch in anderen Anzeigen des PS- oder PSA-Typs einsetzen, die sich von den oben genannten Anzeigen beispielsweise durch ihren prinzipiellen Aufbau oder durch die Art, Anordnung oder Struktur der einzelnen verwendeten Komponenten, wie beispielsweise der Substrate, Orientierungsschichten, Elektroden, Ansteuerelemente, Hintergrundbeleuchtung, Polarisatoren, Farbfilter, ggf. vorhandenen Kompensationsfolien etc., unterscheiden.
  • Ganzs besonders geeignete polymerisierbare Verbindungen sind in Tabelle D gelistet.
  • Sofern die erfindungsgemäßen flüssigkristallinen Medien mindestens eine polymerisierbare Verbindung enthalten, ist sie in dem Medium in Mengen von 0,1 bis 10 Gew.%, bevorzugt 0,2 bis 4,0 Gew.%, besonders bevorzugt 0,2 bis 2,0 Gew.% enthalten.
  • Die erfindungsgemäßen Mischungen können weiterhin übliche Zusätze oder Additive enthalten, wie z. B. Stabilisatoren, Antioxidantien, UV-Absorber, Nanopartikel, Mikropartikel, etc. Geeignete und bevorzugte Additive für die erfindungsgemäßen Mischungen sind in Tabelle C gelistet.
  • Der Aufbau der erfindungsgemäßen Flüssigkristallanzeigen entspricht der üblichen Geometrie, wie sie z. B. in EP-OS 0 240 379 , beschrieben wird.
  • In der gesamten Patentanmeldung werden 1,4-Cyclohexylenringe und 1,4-Phenylenringe wie folgt dargestellt:
    Figure DE102015015108A1_0081
  • Alle hier beschriebenen Erfindungsvarianten können miteinander kombiniert werden, solange sich die jeweiligen Ausführungsformen nicht gegenseitig ausschließen. Insbesondere ist es ausgehend von der Lehre dieser Schrift im Rahmen des routinemäßigen Optimierens ein naheliegender Vorgang, gerade verschiedene hier beschriebene Varianten zu kombinieren, um zu einer konkreten besonders bevorzugten Ausführungsform zu gelangen.
  • Die in dieser Anmeldung angegebenen Parameterbereiche, soweit nicht anders angegeben, umfassen alle rationalen und ganzzahligen Zahlenwerte einschließlich der angegebenen Grenzwerte des Parameterbereichs sowie deren Fehlergrenzen. Die für jeweilige Bereiche und Eigenschaften angegebenen oberen und unteren Grenzwerte führen wiederum in Kombination miteinander zu zusätzlichen bevorzugten Bereichen.
  • In der gesamten Beschreibung und den Ansprüchen dieser Anmeldung sind die Worte ”umfassen” und ”enthalten” und Variationen dieser Wörter, wie beispielsweise ”umfassend” und ”umfasst” als ”einschließlich, aber nicht beschränkt auf” auszulegen und schließen andere Komponenten nicht aus. Das Wort ”umfassen” schließt auch den Begriff ”bestehend aus” mit ein, ist aber nicht darauf beschränkt.
  • Die folgenden Beispiele sollen die vorliegende Erfindung verdeutlichen und zeigen insbesondere das Ergebnis solcher exemplarischer Kombinationen der beschriebenen Erfindungsvarianten. Sie sind jedoch keinesfalls als limitierend zu betrachten, sondern sollen vielmehr zur Verallgemeinerung anregen.
  • Alle Verbindungen oder Komponenten, die in den Zubereitungen verwendet werden können, sind entweder bekannt und käuflich erhältlich oder können nach bekannten Methoden synthetisiert werden.
  • Die angegebenen Temperaturen gelten immer in °C. Es versteht sich weiterhin von selbst, dass sich sowohl in der Beschreibung als auch in den Beispielen die zugegebenen Mengen der Komponenten in den Zusammensetzungen immer zu insgesamt 100% addieren. Prozentangaben sind immer im gegebenen Zusammenhang zu sehen.
  • Vorzugsweise enthalten die erfindungsgemäßen Mischungen neben den Verbindungen der Formeln IIA und/oder IIB und/oder IIC, einer oder mehrerer Verbindungen der Formel I eine oder mehrere Verbindungen der nachfolgend genannten Verbindungen aus der Tabelle A.
  • Tabelle A
  • Folgende Abkürzungen werden verwendet:
    (n, m, m', z: jeweils unabhängig voneinander 1, 2, 3, 4, 5 oder 6; (O)CmH2m+1 bedeutet OCmH2m+1 oder CmH2m+1)
    Figure DE102015015108A1_0082
    Figure DE102015015108A1_0083
    Figure DE102015015108A1_0084
    Figure DE102015015108A1_0085
    Figure DE102015015108A1_0086
    Figure DE102015015108A1_0087
    Figure DE102015015108A1_0088
    Figure DE102015015108A1_0089
    Figure DE102015015108A1_0090
    Figure DE102015015108A1_0091
    Figure DE102015015108A1_0092
    Figure DE102015015108A1_0093
    Figure DE102015015108A1_0094
    Figure DE102015015108A1_0095
    Figure DE102015015108A1_0096
    Figure DE102015015108A1_0097
    Figure DE102015015108A1_0098
  • Die Herstellung der erfindungsgemäß verwendbaren Flüssigkristallmischungen erfolgt in an sich üblicher Weise. In der Regel wird die gewünschte Menge der in geringerer Menge verwendeten Komponenten in der den Hauptbestandteil ausmachenden Komponenten gelöst, zweckmäßig bei erhöhter Temperatur. Es ist auch möglich, Lösungen der Komponenten in einem organischen Lösungsmittel, z. B. in Aceton, Chloroform oder Methanol, zu mischen und das Lösungsmittel nach Durchmischung wieder zu entfernen, beispielsweise durch Destillation.
  • Mittels geeigneter Zusatzstoffe können die erfindungsgemäßen Flüssigkristallphasen derart modifiziert werden, dass sie in jeder bisher bekannt gewordenen Art von z. B. ECB-, VAN-, IPS-, GH- oder ASM-VA LCD-Anzeige einsetzbar sind.
  • Die Dielektrika können auch weitere, dem Fachmann bekannte und in der Literatur beschriebene Additive, wie z. B. UV-Absorber, Antioxidantien, Nanoteilchen, Radikalfänger, enthalten. Beispielsweise können 0–15% pleochroitische Farbstoffe, Stabilisatoren oder chirale Dotierstoffe zugesetzt werden. Geeignete Stabilisatoren für die erfindungsgemäßen Mischungen sind insbesondere solche die in Tabelle B gelistet sind.
  • Beispielsweise können 0–15% pleochroitische Farbstoffe zugesetzt werden, ferner Leitsalze, vorzugsweise Ethyldimethyldodecylammonium-4-hexoxybenzoat, Tetrabutylammoniumtetraphenylboranat oder Komplexsalze von Kronenethern (vgl. z. B. Haller et al., Mol. Cryst. Liq. Cryst., Band, Seiten 249–258 (1973)) zur Verbesserung der Leitfähigkeit oder Substanzen zur Veränderung der dielektrischen Anisotropie, der Viskosität und/oder der Orientierung der nematischen Phasen. Derartige Substanzen sind z. B. in den DE-OS 22 09 127 , 22 40 864 , 23 21 632 , 23 38 281 , 24 50 088 , 26 37 430 und 28 53 728 beschrieben.
  • In der Tabelle B werden mögliche Dotierstoffe angegeben, die den erfindungsgemäßen Mischungen zugesetzt werden können. Sofern die Mischungen einen Dotierstoff enthalten, wird er in Mengen von 0,01–4 Gew.%, vorzugsweise 0,1–1,0 Gew.%, eingesetzt. Tabelle B
    Figure DE102015015108A1_0099
    Figure DE102015015108A1_0100
    Figure DE102015015108A1_0101
  • Stabilisatoren, die beispielsweise den erfindungsgemäßen Mischungen in Mengen von bis zu 10 Gew.%, bezogen auf die gesamte Menge der Mischung, bevorzugt 0,01 bis 6 Gew.%, insbesondere 0,1 bis 3 Gew.%, zugesetzt werden können, werden nachfolgend in Tabelle C genannt. Bevorzugte Stabilisatoren sind insbesondere BHT-Derivate, z. B. 2,6-Di-tert-butyl-4-alkylphenole) und Tinuvin 770. Tabelle C
    Figure DE102015015108A1_0102
    Figure DE102015015108A1_0103
    Figure DE102015015108A1_0104
    Figure DE102015015108A1_0105
    Figure DE102015015108A1_0106
  • Geeignete polymerisierbare Verbindungen (reaktive Mesogene) für den Einsatz in den erfindungsgemäßen Mischungen, vorzugsweise für PSA-, PS-VA-, PS-IPS- oder PS-FFS-Anwendungen werden nachfolgend in Tabelle D genannt:
  • Tabelle D
  • In der Tabelle D sind Beispielverbindungen zusammengestellt, die in den erfindungsgemäßen Mischungen vorzugsweise als polymerisierbare Verbindungen (reaktive mesogene Verbindungen) zur Herstellung beispielsweise von PS-VA-, PS-IPS- oder PS-FFS-Mischungen verwendet werden können.
  • Figure DE102015015108A1_0107
  • Figure DE102015015108A1_0108
  • Figure DE102015015108A1_0109
  • Figure DE102015015108A1_0110
  • Figure DE102015015108A1_0111
  • Figure DE102015015108A1_0112
  • Figure DE102015015108A1_0113
  • Figure DE102015015108A1_0114
  • Figure DE102015015108A1_0115
  • Figure DE102015015108A1_0116
  • Figure DE102015015108A1_0117
  • Sofern die erfindungsgemäßen Mischungen eine oder mehrere mesogene Verbindungen enthalten, ist die mesogene Verbindung in einer bevorzugten Ausführungsform eine Verbindung ausgewählt aus der Tabelle D.
  • Die folgenden Beispiele sollen die Erfindung erläutern, ohne sie zu begrenzen. In den Beispielen bedeuten bedeuten: K: kristallin-fester Zustand, S: smektische Phase (der Index bezeichnet den Phasentyp), N: nematischer Zustand, Ch: cholesterische Phase, I: isotrope Phase, Tg: Glastemperatur. Die zwischen zwei Symbolen stehende Zahl gibt die Umwandlungstemperatur in Grad Celsius an.
  • Als Hostmischung zur Bestimmung der optischen Anisotropie Δn der Verbindungen der Formel I wird die Verkaufsmischung ZLI-4792 (Fa. Merck KGaA) verwendet. Für die Bestimmung der dielektrischen Anisotropie Δε wird die Verkaufsmischung ZLI-2857 verwendet. Aus der Änderung der Dielektrizitätskonstanten der Hostmischung nach Zugabe der zu untersuchenden Verbindung und Extrapolation auf 100% der eingesetzten Verbindung werden die physikalischen Daten der zu untersuchenden Verbindung erhalten. Die zu untersuchende Verbindung wird in Abhängigkeit der Löslichkeit in der Regel zu 10% in der Hostmischung gelöst.
  • Sofern nichts anderes angegeben ist, bedeuten Angaben von Teilen oder Prozent Gewichtsteile bzw. Gewichtsprozent.
  • Vor- und nachstehend bedeuten
  • Vo
    Schwellenspannung, kapazitiv [V] bei 20°C,
    Δn
    die optische Anisotropie gemessen bei 20°C und 589 nm,
    Δε
    die dielektrische Anisotropie bei 20°C und 1 kHz,
    Kp., T(N, I)
    Klärpunkt [°C],
    K11
    elastische Konstante, ”Splay”-Deformation bei 20°C, [pN],
    K33
    elastische Konstante, ”Bend”-Deformation bei 20°C, [pN],
    γ1
    Rotationsviskosität gemessen bei 20°C [mPa·s], bestimmt nach dem Rotationsverfahren in einem magnetischen Feld
    LTS
    Tieftemperaturstabilität [Low temperature stability] (nematische Phase)], bestimmt in Testzellen.
  • Alle Konzentrationen in dieser Anmeldung, soweit nicht explizit anders angegeben, beziehen sich auf die entsprechende Mischung oder Mischungskomponente. Alle physikalischen Eigenschaften werden nach "Merck Liquid Crystals, Physical Properties of Liquid Crystals", Status November 1997, Merck KGaA, Deutschland bestimmt und gelten für eine Temperatur von 20°C, sofern nicht explizit anders angegeben.
  • Beispiel 1
  • Die folgende Verbindung (9) wird durch die Schritte 1.1 bis 1.6 hergestellt.
    Figure DE102015015108A1_0118
    • Phasenübergang: K 87 N 88 I
    • Δε = –6,3
    • Δn = 0,184
    • γ1 = 124 mPa·s
    Schritt 1.1
    Figure DE102015015108A1_0119
  • Ausgehend von 3-Hydroxymethylthiophen (1) wird mit Bromwasserstoff in das entsprechende 3-Brommethylthiophen (2) überführt (a). Schritt 1.2
    Figure DE102015015108A1_0120
  • Durch Zugabe von Lithiumdiisopropylamid und anschließender Zugabe von Valeriansäure (3) wird das entsprechende 3-Thiophenpropionsäurederivat (4) gebildet (b). Schritt 1.3
    Figure DE102015015108A1_0121
  • Anschließend durch Zugabe von Thionylchlorid und Aluminium(III)chlorid der Cyclopenta[b]thiophenonring (5) geschlossen wird (c). Schritt 1.4
    Figure DE102015015108A1_0122
  • Durch Reduktion der Carbonylgruppe mit Lithiumaluminiumhydrid und Aluminium(III)chlorid wird das Cyclopenta[b]thiophenderivat (6) erhalten (d). Schritt 1.5
    Figure DE102015015108A1_0123
  • Anschließend wird konsekutiv mit n-Butyllithium lithiiert und Trimethylborat zugegeben wobei abschließend hydrolysiert wird und die entsprechende Borsäure des Cyclopenta[b]thiophenderivats (7) erhalten wird (e). Schritt 1.6
    Figure DE102015015108A1_0124
  • Durch abschließende Suzuki-Kupplung der Verbindungen (8) und (7) mit Bis(tricyclohexylphosphin)-palladium(II)-chlorid als Katalysator in THF wird die Verbindung (9) erhalten (f).
  • Die Reaktionszeiten der einzelnen Schritte ist, wie dem Fachmann bekannt, unter Anderem abhängig von der Durchmischung und der Ansatzgröße. Typischerweise, beträgt die Reaktionszeit 2 bis 100 Stunden, bevorzugt 3 bis 40 Stunden.
  • Das hergestellte Produkt bzw. dessen Zwischenprodukte werden auf verschiedene Weise isoliert, z. B. durch Extraktion oder Kristallisation aus einem geeignetem Lösungsmittel. Weitere geeignete Aufarbeitungsbedingungen sind abhängig von der Wahl der Aufreinigungsmethode des Zwischenprodukts und können vom Fachmann ohne weiteres angepasst werden. Geeignete Aufreinigungsmethoden umfassen dabei bevorzugt säulenchromatographische Aufreinigung, Kristallisation und Extraktion.
  • Analog dazu werden folgende Verbindungen hergestellt
    Figure DE102015015108A1_0125
  • Mischungsbeispiele
  • Vergleichsbeispiel CM1
  • Eine nematische FK-Mischung wird wie folgt formuliert
    CY-3-O2 15,00% Kp. + 76°C
    CY-5-O2 5,00% Δn 0,096
    CCY-3-O2 8,00% Δε – 3,1
    CLY-3-O2 9,00% K11 (20°C) 12,9 pN
    CPY-2-O2 8,00% K33 (20°C) 15,2 pN
    CPY-3-O2 8,00% V0 (20°C) 2,33 V
    PYP-2-3 4,50% γ1 (20°C) 87 mPas
    CC-3-V 40,50%
    CCP-V-1 2,00%
  • Beispiel M1
  • Eine erfindungsgemäße nematische FK-Mischung wird wie folgt formuliert
    CY-3-O2 12,00% Kp. + 78 °C
    CCY-3-O2 9,00% Δn 0,095
    CLY-3-O2 10,00% Δε – 2,9
    CPY-3-O2 10,00% K11 (20°C) 14,9 pN
    CC-3-V 47,00% K33 (20°C) 16,1 pN
    Verbindung (9) 12,00% V0 (20°C) 2,48 V
    γ1 (20°C) 72 mPas
  • M1 enthält nur 12% der Verbindung aus Beispiel 1 und weist gegenüber der Referenzmischung CM1 eine um ca. 17% verbesserte Rotationsviskosität sowie eine stark erhöhte elastische Konstante K33 auf, so dass der Schaltzeitparameter γ1/K33 um ca. 20% erniedrigt ist.
  • Beispiel M2
  • Zur Herstellung einer PS-VA-Mischung werden 99,8% der Mischung gemäß Beispiel M1 mit 0,2% der polymerisierbaren Verbindung
    Figure DE102015015108A1_0126
    versetzt.
  • Die PS-VA-Mischung wird in eine Zelle mit homeotroper Orientierung gefüllt. Nach Anlegen einer Spannung von 24 V wird mit einer Leistung von 100 mW/cm2 mit UV-Licht bestrahlt.
  • Weitere Kombinationen der Ausführungsformen und Varianten der Erfindung ergeben sich aus den folgenden Ansprüchen.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • US 6861107 [0115]
    • US 6781665 [0115]
    • GB 2314839 A [0127]
    • US 6511719 [0127]
    • US 7223450 [0127, 0127]
    • WO 02/34739 A1 [0127]
    • US 7041345 [0127]
    • US 7060331 [0127]
    • US 7318950 [0127, 0127]
    • US 6818261 [0127]
    • US 6916940 [0127]
    • US 7060200 B1 [0164]
    • US 2006/0172090 A1 [0164]
    • EP 0240379 [0170]
    • DE 2209127 A [0183]
    • DE 2240864 A [0183]
    • DE 2321632 A [0183]
    • DE 2338281 A [0183]
    • DE 2450088 A [0183]
    • DE 2637430 A [0183]
    • DE 2853728 A [0183]
  • Zitierte Nicht-Patentliteratur
    • M. F. Schieckel und K. Fahrenschon, ”Deformation of nematic liquid crystals with vertical orientation in electrical fields”, Appl. Phys. Lett. 19 (1971), 3912 [0003]
    • J. F. Kahn (Appl. Phys. Lett. 20 (1972), 1193) [0003]
    • G. Labrunie und J. Robert (J. Appl. Phys. 44 (1973), 4869) [0003]
    • J. Robert und F. Clerc (SID 80 Digest Techn. Papers (1980), 30) [0004]
    • J. Duchene (Displays 7 (1986), 3) [0004]
    • H. Schad (SID 82 Digest Techn. Papers (1982), 244) [0004]
    • Yoshide, H. et al., Vortrag 3.1: ”MVA LCD for Notebook or Mobile PCs...”, SID 2004 International Symposium, Digest of Technical Papers, XXXV, Buch I, S. 6 bis 9 [0005]
    • Liu, C. T. et al., Vortrag 15.1: ”A 46-inch TFT-LCD HDTV Technnology...”, SID 2004 International Symposium, Digest of Technical Papers, XXXV, Buch II, S. 750 bis 753 [0005]
    • Kim, Sang Soo, Vortrag 15.4: ”Super PVA Sets New State-of-the-Art for LCD-TV”, SID 2004 International Symposium, Digest of Technical Papers, XXXV, Buch II, S. 760 bis 763 [0005]
    • Shigeta, Mitzuhiro und Fukuoka, Hirofumi, Vortrag 15.2: ”Development of High Quality LCDTV”, SID 2004 International Symposium, Digest of Technical Papers, XXXV, Buch II, S. 754 bis 757 [0005]
    • Yeo, S. D., Vortrag 15.3: ”A LC Display for the TV Application”, SID 2004 International Symposium, Digest of Technical Papers, XXXV, Buch II, S. 758 & 759 [0005]
    • Souk, Jun, SIDSeminar 2004, Seminar M-6: ”Recent Advances in LCD Technology”, Seminar Lecture Notes, M-6/1 bis M-6/26 [0005]
    • Miller, Ian, SIDSeminar 2004, Seminar M-7: ”LCD-Television”, Seminar Lecture Notes, M-7/1 bis M-7/32 [0005]
    • Kim, Hyeon Kyeong et al., Vortrag 9.1: ”A 57-in. Wide UXGA TFT-LCD for HDTV Application”, SID 2004 International Symposium, Digest of Technical Papers, XXXV, Buch I, S. 106 bis 109 [0005]
    • TOGASHI, S., SEKIGUCHI, K., TANABE, H., YAMAMOTO, E., SORIMACHI, K., TAJIMA, E., WATANABE, H., SHIMIZU, H., Proc. Eurodisplay 84, Sept. 1984: A 210–288 Matrix LCD Controlled by Double Stage Diode Rings, p. 141 ff, Paris [0015]
    • STROMER, M., Proc. Eurodisplay 84, Sept. 1984: Design of Thin Film Transistors for Matrix Adressing of Television Liquid Crystal Displays, p. 145 ff, Paris [0015]
    • Houben-Weyl, Methoden der Organischen Chemie, Georg-Thieme-Verlag, Stuttgart [0045]
    • Houben-Weyl, Methoden der organischen Chemie, Thieme-Verlag, Stuttgart [0165]
    • Haller et al., Mol. Cryst. Liq. Cryst., Band, Seiten 249–258 (1973) [0183]
    • ”Merck Liquid Crystals, Physical Properties of Liquid Crystals”, Status November 1997, Merck KGaA, Deutschland [0193]

Claims (19)

  1. Medium enthaltend eine oder mehrere Verbindungen der Formel I
    Figure DE102015015108A1_0127
    worin die einzelnen Reste folgende Bedeutung besitzen: Ra und Rb H, F, Cl, Br, -CN, -SCN, -NCS, SF5 oder geradkettiges oder verzweigtes Alkyl mit 1 bis 12 C-Atomen, worin auch eine oder mehrere nicht benachbarte CH2-Gruppen jeweils unabhängig voneinander durch -CH=CH-, -C≡C-, -O-, -CO-, -CO-O-, -O-CO-, -O-CO-O- so ersetzt sein können, dass O-Atome nicht direkt miteinander verknüpft sind, und worin auch ein oder mehrere H-Atome durch F, Cl oder Br ersetzt sein können, Aa, Ab und Ac jeweils unabhängig voneinander Phenylen-1,4-diyl, oder Naphtylen-2,6-diyl worin auch eine oder mehrere CH-Gruppen durch N ersetzt sein können und ein oder mehrere H-Atome durch Halogen, CN, CH3, CHF2, CH2F, OCH3, OCHF2 oder OCF3 ersetzt sein können, Cyclohexan-1,4-diyl, worin auch eine oder zwei nicht benachbarte CH2-Gruppen unabhängig voneinander durch O und/oder S ersetzt sein können, und ein oder mehrere H-Atome durch F ersetzt sein können, Cyclohexen-1,4-diyl, Bicyclo[1.1.1]pentan-1,3-diyl, Bicyclo[2.2.2]octan-1,4-diyl, Spiro[3.3]heptan-2,6-diyl, Tetrahydropyran-2,5-diyl, oder 1,3-Dioxan-2,5-diyl, Za, Zb und Zc jeweils unabhängig voneinander -CF2O-, -OCF2-, -CH2O-, -OCH2-, -CO-O-, -O-CO-, -C2H4- -C2F4-, -CF2CH2-, -CH2CF2-, -CFHCFH-, -CFHCH2-, -CH2CFH, -CF2CFH-, -CFHCF2-, -CH=CH-, -CF=CH-, -CH=CF-, -CF=CF-, -C≡C- oder eine Einfachbindung, La und Lb jeweils unabhängig voneinander Halogen, CF3 oder CN, m, n und l jeweils unabhängig voneinander 0, 1, 2 oder 3.
  2. Medium nach Anspruch 1, dadurch gekennzeichnet, dass Aa in den Verbindungen der Formel I ein Cyclohexan-1,4-diyl bedeutet, worin auch eine oder zwei nicht benachbarte CH2-Gruppen unabhängig voneinander durch 0 und/oder S ersetzt sein können, und ein oder mehrere H-Atome durch F ersetzt sein können.
  3. Medium nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass in den Verbindungen der Formel I
    Figure DE102015015108A1_0128
    bedeutet.
  4. Medium nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass in den Verbindungen der Formel I, m, n und l 0 oder 1 bedeuten.
  5. Medium nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass in den Verbindungen der Formel I, Ac Phenylen-1,4-diyl, oder Naphtylen-2,6-diyl welches jeweils ein oder mehrfach durch F substituiert sein kann, ferner Cyclohexan-1,4-diyl, Cyclohexen-1,4-diyl Tetrahydropyran-2,5-diyl, oder 1,3-Dioxan-2,5-diyl bedeutet.
  6. Medium nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass in den Verbindungen der Formel I, Za, und Zc jeweils unabhängig voneinander -CF2O-, -OCF2-, -CH2O-, -OCH2-, -CO-O-, -O-CO-, -C2H4- -C2F4-, -CF2CH2-, -CH2CF2-, -CFHCFH-, -CFHCH2-, CH2CFH-, -CF2CFH-, -CFHCF2-, -CH=CH-, -CF=CH-, -CH=CF-, -CF=CF-, -C≡C- oder eine Einfachbindung und Zb eine Einfachbindung, bedeutet.
  7. Medium nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass in den Verbindungen der Formel I, Za, Zb und Zc eine Einfachbindung bedeuten.
  8. Medium nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass in den Verbindungen der Formel I, m, n und l gleich 0 ist
  9. Medium nach einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass es zusätzlich eine oder mehrere Verbindungen ausgewählt aus der Gruppe der Verbindungen der Formeln IIA, IIB und IIC enthält,
    Figure DE102015015108A1_0129
    Figure DE102015015108A1_0130
    worin R2A, R2B und R2C jeweils unabhängig voneinander H, einen unsubstituierten, einen einfach durch CN oder CF3 oder mindestens einfach durch Halogen substituierten Alkylrest mit bis zu 15 C-Atomen, wobei in diesen Resten auch eine oder mehrere CH2-Gruppen durch -O-, -S-,
    Figure DE102015015108A1_0131
    -C≡C-, -CF2O-, -OCF2-, -OC-O- oder -O-CO- so ersetzt sein können, dass O-Atome nicht direkt miteinander verknüpft sind, A2 jeweils unabhängig voneinander, in jeder Erscheinung, ein Cyclohexan-1,4-diyl, worin auch eine oder zwei nicht benachbarte CH2-Gruppen unabhängig voneinander durch O und/oder S ersetzt sein können, und ein oder mehrere H-Atome durch F ersetzt sein können, Cyclohexen-1,4-diyl, Bicyclo[1.1.1]pentan-1,3-diyl, Bicyclo[2.2.2]octan-1,4-diyl, Spiro[3.3]heptan-2,6-diyl, Tetrahydropyran-2,5-diyl, oder 1,3-Dioxan-2,5-diyl, L1-4 jeweils unabhängig voneinander F, Cl, CF3 oder CHF2, Z2 und Z2' jeweils unabhängig voneinander Einfachbindung, -CH2CH2-, -CH=CH-, -CF2O-, -OCF2-, -CH2O-, -OCH2-, -COO-, -OCO-, -C2F4-, -CF=CF-, -CH=CHCH2O-, p 1 oder 2, q 1 oder 2, und v 1 bis 6 bedeuten.
  10. Medium nach einem oder mehreren der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass es zusätzlich eine oder mehrere Verbindungen der Formel III
    Figure DE102015015108A1_0132
    enthält, worin R31 und R32 jeweils unabhängig voneinander einen geradkettigen Alkyl-, Alkoxyalkyl- oder Alkoxyrest mit bis zu 12 C-Atomen,
    Figure DE102015015108A1_0133
    Z3 Einfachbindung, -CH2CH2-, -CH=CH-, -CF2O-, -OCF2-, -CH2O-, -OCH2-, -COO-, -OCO-, -C2F4-, -C4H8-, -CF=CF- bedeuten.
  11. Medium nach einem oder mehreren der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass zusätzlich eine Verbindung der Formel C
    Figure DE102015015108A1_0134
    worin R41 und R42 geradkettiges oder verzweigtes Alkyl mit 1 bis 12 C-Atomen bedeuten, worin auch eine oder mehrere nicht benachbarte CH2-Gruppen jeweils unabhängig voneinander durch -CH=CH-, -C≡C-, -O-, -CO-, -CO-O-, -O-CO-, -O-CO-O- so ersetzt sein können, dass O-Atome nicht direkt miteinander verknüpft sind, und worin auch ein oder mehrere H-Atome durch F, Cl oder Br ersetzt sein können, enthält
  12. Medium nach einem oder mehreren der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass es zusätzlich eine oder mehrere Indan-Verbindungen der Formel In,
    Figure DE102015015108A1_0135
    enthält, worin R11, R12, R13 jeweils unabhängig voneinander einen geradkettigen Alkyl-, Alkoxy-, Alkoxyalkyl- oder Alkenylrest mit 1-6 C-Atomen, R12 und R13 zusätzlich Halogen, vorzugsweise F,
    Figure DE102015015108A1_0136
    i 0, 1 oder 2 bedeuten.
  13. Medium nach einem oder mehreren der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass es zusätzlich eine oder mehrere polymerisierbare Verbindungen ausgewählt aus den Verbindungen der Formel M Rc-A1-(Z1-A2)m1-Rd M enthält, worin die einzelnen Reste folgende Bedeutung haben: Rc und Rd jeweils unabhängig voneinander P, P-Sp-, H, Halogen, SF5, NO2, eine Kohlenstoffgruppe oder Kohlenwasserstoffgruppe, wobei mindestens einer der Reste Rc und Rd eine Gruppe P oder P-Sp- bedeutet oder enthält, P bei jedem Auftreten gleich oder verschieden eine polymerisierbare Gruppe, Sp bei jedem Auftreten gleich oder verschieden eine Abstandsgruppe oder eine Einfachbindung, A1 und A2 jeweils unabhängig voneinander eine aromatische, heteroaromatische, alicyclische oder heterocyclische Gruppe, vorzugsweise mit 4 bis 25 Ringatomen, welche auch anellierte Ringe enthalten kann, und welche auch durch L ein- oder mehrfach substituiert sein kann, L P-Sp-, H, OH, CH2OH, Halogen, SF5, NO2, eine Kohlenstoffgruppe oder Kohlenwasserstoffgruppe, Z1 bei jedem Auftreten gleich oder verschieden -O-, -S-, -CO-, -CO-O-, -OCO-, -O-CO-O-, -OCH2-, -CH2O-, -SCH2-, -CH2S-, -CF2O-, -OCF2-, -CF2S-, -SCF2-, -(CH2)n1-, -CF2CH2-, -CH2CF2-, -(CF2)n1-, -CH=CH-, -CF=CF-, -C≡C-, -CH=CH-COO-, -OCO-CH=CH-, CR0R00 oder eine Einfachbindung, R0 und R00 jeweils unabhängig voneinander H oder Alkyl mit 1 bis 12 C-Atomen, m1 0, 1, 2, 3 oder 4, n1 1, 2, 3 oder 4.
  14. Verfahren zur Herstellung eines Mediums nach einem oder mehreren der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass man mindestens eine Verbindung der Formel I mit mindestens einer weiteren flüssigkristallinen Verbindung mischt und gegebenenfalls ein oder mehrere Additive zusetzt.
  15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass man mindestens eine Verbindung der Formel I mit mindestens einer weiteren mesogenen Verbindung und mit mindestens einer polymerisierbaren Verbindung mischt und gegebenenfalls ein oder mehrere Additive zusetzt.
  16. Verwendung eines Mediums nach einem oder mehreren der Ansprüche 1 bis 13 in einer elektrooptischen Anzeige.
  17. Elektrooptische Anzeige enthaltend ein Medium nach einem oder mehreren der Ansprüche 1 bis 13.
  18. Elektrooptische Anzeige nach Anspruch 17, dadurch gekennzeichnet, dass sie auf auf dem ECB-, VA-, PS-VA, IPS-, PS-IPS, FFS- oder PS-FFS-Effekt basiert.
  19. Verbindungen der Formel I
    Figure DE102015015108A1_0137
    worin die einzelnen Parameter wie im Anspruch 1 definiert sind.
DE102015015108.8A 2014-12-17 2015-11-23 Flüssigkristallines Medium Pending DE102015015108A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014018888 2014-12-17
DE102014018888.4 2014-12-17

Publications (1)

Publication Number Publication Date
DE102015015108A1 true DE102015015108A1 (de) 2016-06-23

Family

ID=56097907

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102015015108.8A Pending DE102015015108A1 (de) 2014-12-17 2015-11-23 Flüssigkristallines Medium

Country Status (1)

Country Link
DE (1) DE102015015108A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110372662A (zh) * 2019-08-07 2019-10-25 西安近代化学研究所 基于环戊烷并噻吩骨架的液晶化合物及其合成方法
CN110373211A (zh) * 2019-08-07 2019-10-25 西安近代化学研究所 一种含有环戊烷并噻吩类液晶分子的液晶组合物
CN110951493A (zh) * 2018-09-27 2020-04-03 默克专利股份有限公司 液晶介质
CN112262200A (zh) * 2018-06-11 2021-01-22 默克专利股份有限公司 液晶介质
CN113527242A (zh) * 2020-04-21 2021-10-22 江苏和成新材料有限公司 液晶化合物及其液晶组合物和液晶显示器件

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2209127A1 (de) 1972-02-26 1973-09-06 Merck Patent Gmbh Modifizierte nematische phasen
DE2338281A1 (de) 1972-08-03 1974-02-21 Ibm Verfahren zur gesteuerten veraenderung der elektrischen eigenschaften von nematischen fluessigkeiten und dotierungsmittel hierfuer
DE2240864A1 (de) 1972-08-19 1974-02-28 Merck Patent Gmbh Nematische ester und ihre verwendung zur beeinflussung der elektrooptischen eigenschaften nematischer phasen
DE2321632A1 (de) 1973-04-28 1974-11-21 Merck Patent Gmbh Modifizierte nematische gemische mit positiver dielektrischer anisotropie
DE2450088A1 (de) 1974-10-22 1976-04-29 Merck Patent Gmbh Biphenylester
DE2637430A1 (de) 1976-08-20 1978-02-23 Merck Patent Gmbh Fluessigkristallines dielektrikum
DE2853728A1 (de) 1978-12-13 1980-07-17 Merck Patent Gmbh Fluessigkristalline carbonsaeureester, verfahren zu ihrer herstellung, diese enthaltende dielektrika und elektrooptisches anzeigeelement
EP0240379A1 (de) 1986-02-28 1987-10-07 Commissariat A L'energie Atomique Doppelschicht-Flüssigkristallzelle mit elektrisch gesteuerter Doppelbrechung
GB2314839A (en) 1996-07-01 1998-01-14 Merck Patent Gmbh Chiral reactive mesogens
WO2002034739A1 (en) 2000-10-20 2002-05-02 Merck Patent Gmbh Chiral binaphthol derivatives
US6511719B2 (en) 1997-08-13 2003-01-28 Merck Patent Gesellschaft Chiral compounds
US6781665B2 (en) 2002-02-04 2004-08-24 Fujitsu Display Technologies Corporation Liquid crystal display and method of manufacturing the same
US6818261B2 (en) 2001-04-13 2004-11-16 Fuji Photo Film Co., Ltd. Liquid crystal composition, color filter and liquid crystal display device
US6861107B2 (en) 2002-07-06 2005-03-01 Merck Patent Gmbh Liquid-crystalline medium
US6916940B2 (en) 2000-10-20 2005-07-12 Merck Patent Gmbh Method for producing cyclic carboxylic orthoester fluorides and corresponding compounds
US7041345B2 (en) 2000-07-13 2006-05-09 Merck Patent Gmbh Chiral compounds III
US7060331B2 (en) 2000-07-13 2006-06-13 Merck Patent Gmbh Chiral compounds 1
US7060200B1 (en) 1999-09-03 2006-06-13 Merck Patent Gmbh Multireactive polymerizable mesogenic compounds
US20060172090A1 (en) 2005-01-28 2006-08-03 Ryushi Syundo Liquid crystal polyfunctional acrylate derivative and polymer thereof
US7223450B2 (en) 2001-05-21 2007-05-29 Merck Gmbh Chiral compounds
US7318950B2 (en) 2000-07-13 2008-01-15 Merck Gmbh Chiral compounds II

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2209127A1 (de) 1972-02-26 1973-09-06 Merck Patent Gmbh Modifizierte nematische phasen
DE2338281A1 (de) 1972-08-03 1974-02-21 Ibm Verfahren zur gesteuerten veraenderung der elektrischen eigenschaften von nematischen fluessigkeiten und dotierungsmittel hierfuer
DE2240864A1 (de) 1972-08-19 1974-02-28 Merck Patent Gmbh Nematische ester und ihre verwendung zur beeinflussung der elektrooptischen eigenschaften nematischer phasen
DE2321632A1 (de) 1973-04-28 1974-11-21 Merck Patent Gmbh Modifizierte nematische gemische mit positiver dielektrischer anisotropie
DE2450088A1 (de) 1974-10-22 1976-04-29 Merck Patent Gmbh Biphenylester
DE2637430A1 (de) 1976-08-20 1978-02-23 Merck Patent Gmbh Fluessigkristallines dielektrikum
DE2853728A1 (de) 1978-12-13 1980-07-17 Merck Patent Gmbh Fluessigkristalline carbonsaeureester, verfahren zu ihrer herstellung, diese enthaltende dielektrika und elektrooptisches anzeigeelement
EP0240379A1 (de) 1986-02-28 1987-10-07 Commissariat A L'energie Atomique Doppelschicht-Flüssigkristallzelle mit elektrisch gesteuerter Doppelbrechung
GB2314839A (en) 1996-07-01 1998-01-14 Merck Patent Gmbh Chiral reactive mesogens
US6511719B2 (en) 1997-08-13 2003-01-28 Merck Patent Gesellschaft Chiral compounds
US7060200B1 (en) 1999-09-03 2006-06-13 Merck Patent Gmbh Multireactive polymerizable mesogenic compounds
US7041345B2 (en) 2000-07-13 2006-05-09 Merck Patent Gmbh Chiral compounds III
US7060331B2 (en) 2000-07-13 2006-06-13 Merck Patent Gmbh Chiral compounds 1
US7318950B2 (en) 2000-07-13 2008-01-15 Merck Gmbh Chiral compounds II
WO2002034739A1 (en) 2000-10-20 2002-05-02 Merck Patent Gmbh Chiral binaphthol derivatives
US6916940B2 (en) 2000-10-20 2005-07-12 Merck Patent Gmbh Method for producing cyclic carboxylic orthoester fluorides and corresponding compounds
US6818261B2 (en) 2001-04-13 2004-11-16 Fuji Photo Film Co., Ltd. Liquid crystal composition, color filter and liquid crystal display device
US7223450B2 (en) 2001-05-21 2007-05-29 Merck Gmbh Chiral compounds
US6781665B2 (en) 2002-02-04 2004-08-24 Fujitsu Display Technologies Corporation Liquid crystal display and method of manufacturing the same
US6861107B2 (en) 2002-07-06 2005-03-01 Merck Patent Gmbh Liquid-crystalline medium
US20060172090A1 (en) 2005-01-28 2006-08-03 Ryushi Syundo Liquid crystal polyfunctional acrylate derivative and polymer thereof

Non-Patent Citations (19)

* Cited by examiner, † Cited by third party
Title
"Merck Liquid Crystals, Physical Properties of Liquid Crystals", Status November 1997, Merck KGaA, Deutschland
G. Labrunie und J. Robert (J. Appl. Phys. 44 (1973), 4869)
H. Schad (SID 82 Digest Techn. Papers (1982), 244)
Haller et al., Mol. Cryst. Liq. Cryst., Band, Seiten 249–258 (1973)
Houben-Weyl, Methoden der Organischen Chemie, Georg-Thieme-Verlag, Stuttgart
Houben-Weyl, Methoden der organischen Chemie, Thieme-Verlag, Stuttgart
J. Duchene (Displays 7 (1986), 3)
J. Robert und F. Clerc (SID 80 Digest Techn. Papers (1980), 30)
Kim, Hyeon Kyeong et al., Vortrag 9.1: "A 57-in. Wide UXGA TFT-LCD for HDTV Application", SID 2004 International Symposium, Digest of Technical Papers, XXXV, Buch I, S. 106 bis 109
Kim, Sang Soo, Vortrag 15.4: "Super PVA Sets New State-of-the-Art for LCD-TV", SID 2004 International Symposium, Digest of Technical Papers, XXXV, Buch II, S. 760 bis 763
Liu, C. T. et al., Vortrag 15.1: "A 46-inch TFT-LCD HDTV Technnology...", SID 2004 International Symposium, Digest of Technical Papers, XXXV, Buch II, S. 750 bis 753
M. F. Schieckel und K. Fahrenschon, "Deformation of nematic liquid crystals with vertical orientation in electrical fields", Appl. Phys. Lett. 19 (1971), 3912
Miller, Ian, SIDSeminar 2004, Seminar M-7: "LCD-Television", Seminar Lecture Notes, M-7/1 bis M-7/32
Shigeta, Mitzuhiro und Fukuoka, Hirofumi, Vortrag 15.2: "Development of High Quality LCDTV", SID 2004 International Symposium, Digest of Technical Papers, XXXV, Buch II, S. 754 bis 757
Souk, Jun, SIDSeminar 2004, Seminar M-6: "Recent Advances in LCD Technology", Seminar Lecture Notes, M-6/1 bis M-6/26
STROMER, M., Proc. Eurodisplay 84, Sept. 1984: Design of Thin Film Transistors for Matrix Adressing of Television Liquid Crystal Displays, p. 145 ff, Paris
TOGASHI, S., SEKIGUCHI, K., TANABE, H., YAMAMOTO, E., SORIMACHI, K., TAJIMA, E., WATANABE, H., SHIMIZU, H., Proc. Eurodisplay 84, Sept. 1984: A 210–288 Matrix LCD Controlled by Double Stage Diode Rings, p. 141 ff, Paris
Yeo, S. D., Vortrag 15.3: "A LC Display for the TV Application", SID 2004 International Symposium, Digest of Technical Papers, XXXV, Buch II, S. 758 & 759
Yoshide, H. et al., Vortrag 3.1: "MVA LCD for Notebook or Mobile PCs...", SID 2004 International Symposium, Digest of Technical Papers, XXXV, Buch I, S. 6 bis 9

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112262200A (zh) * 2018-06-11 2021-01-22 默克专利股份有限公司 液晶介质
CN110951493A (zh) * 2018-09-27 2020-04-03 默克专利股份有限公司 液晶介质
CN110372662A (zh) * 2019-08-07 2019-10-25 西安近代化学研究所 基于环戊烷并噻吩骨架的液晶化合物及其合成方法
CN110373211A (zh) * 2019-08-07 2019-10-25 西安近代化学研究所 一种含有环戊烷并噻吩类液晶分子的液晶组合物
CN110373211B (zh) * 2019-08-07 2021-12-21 西安近代化学研究所 一种含有环戊烷并噻吩类液晶分子的液晶组合物
CN110372662B (zh) * 2019-08-07 2021-12-21 西安近代化学研究所 基于环戊烷并噻吩骨架的液晶化合物及其合成方法
CN113527242A (zh) * 2020-04-21 2021-10-22 江苏和成新材料有限公司 液晶化合物及其液晶组合物和液晶显示器件
CN113527242B (zh) * 2020-04-21 2023-09-15 江苏和成新材料有限公司 液晶化合物及其液晶组合物和液晶显示器件

Similar Documents

Publication Publication Date Title
EP2990460B1 (de) Flüssigkristallines medium
EP2607451B1 (de) Flüssigkristallines Medium
EP2691490B1 (de) Flüssigkristallines medium
EP2243812B1 (de) Flüssigkristallanzeige
EP3224331B1 (de) Flüssigkristallines medium
EP2686402B1 (de) Flüssigkristallines medium
EP2181173B1 (de) Flüssigkristallanzeige
EP2361290B1 (de) Flüssigkristallanzeige
EP2542647B1 (de) Flüssigkristallines medium
EP2652088B1 (de) Flüssigkristallines medium
DE102008035890A1 (de) Flüssigkristallines Medium
DE102009022309A1 (de) Flüssigkristallanzeige
DE102015015108A1 (de) Flüssigkristallines Medium
WO2011160764A1 (de) Polymerisierbare verbindungen und ihre verwendung in flüssigkristallanzeigen
DE102017002925A1 (de) Flüssigkristallines Medium

Legal Events

Date Code Title Description
R012 Request for examination validly filed