DE102014226838A1 - Oxazolidinon- und Isocyanurat-vernetzte Matrix für faserverstärktes Material - Google Patents

Oxazolidinon- und Isocyanurat-vernetzte Matrix für faserverstärktes Material Download PDF

Info

Publication number
DE102014226838A1
DE102014226838A1 DE102014226838.9A DE102014226838A DE102014226838A1 DE 102014226838 A1 DE102014226838 A1 DE 102014226838A1 DE 102014226838 A DE102014226838 A DE 102014226838A DE 102014226838 A1 DE102014226838 A1 DE 102014226838A1
Authority
DE
Germany
Prior art keywords
hours
reaction mixture
substituted
unsubstituted
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102014226838.9A
Other languages
English (en)
Inventor
Christian Holtgrewe
Harald Küster
Claudia Mai
Thomas Bachon
Andreas Ferencz
Olaf Lammerschop
Rainer Schönfeld
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=55025062&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=DE102014226838(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Priority to DE102014226838.9A priority Critical patent/DE102014226838A1/de
Priority to EP15816757.7A priority patent/EP3237476A1/de
Priority to MX2017008270A priority patent/MX2017008270A/es
Priority to KR1020177019505A priority patent/KR102515686B1/ko
Priority to PCT/EP2015/080470 priority patent/WO2016102359A1/de
Priority to CN201580070023.2A priority patent/CN107108844A/zh
Priority to BR112017013232-0A priority patent/BR112017013232A2/pt
Priority to CA2971532A priority patent/CA2971532A1/en
Priority to JP2017551006A priority patent/JP6857131B2/ja
Publication of DE102014226838A1 publication Critical patent/DE102014226838A1/de
Priority to US15/622,750 priority patent/US10689476B2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • C08G18/7671Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/003Polymeric products of isocyanates or isothiocyanates with epoxy compounds having no active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/166Catalysts not provided for in the groups C08G18/18 - C08G18/26
    • C08G18/168Organic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • C08G18/20Heterocyclic amines; Salts thereof
    • C08G18/2009Heterocyclic amines; Salts thereof containing one heterocyclic ring
    • C08G18/2018Heterocyclic amines; Salts thereof containing one heterocyclic ring having one nitrogen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • C08G18/20Heterocyclic amines; Salts thereof
    • C08G18/2009Heterocyclic amines; Salts thereof containing one heterocyclic ring
    • C08G18/2027Heterocyclic amines; Salts thereof containing one heterocyclic ring having two nitrogen atoms in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/227Catalysts containing metal compounds of antimony, bismuth or arsenic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7621Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring being toluene diisocyanate including isomer mixtures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/48Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating the reinforcements in the closed mould, e.g. resin transfer moulding [RTM], e.g. by vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2063/00Use of EP, i.e. epoxy resins or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0005Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
    • B29K2105/0014Catalysts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • C08J2363/02Polyglycidyl ethers of bis-phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung einer gehärteten Zusammensetzung, die mindestens einen Oxazolidinonring und mindestens einen Isocyanuratring aufweist und durch diese vernetzt ist, ausgehend von einem flüssigen Reaktionsgemisch, das umfasst: (a) mindestens ein flüssiges, aromatisches Epoxidharz; (b) mindestens ein flüssiges, aromatisches Polyisocyanat; und (c) eine Katalysator-Zusammensetzung; wobei das mindestens eine Epoxidharz bezogen auf das mindestens eine Polyisocyanat in Mengen eingesetzt wird, dass das molare Äquivalentverhältnis von Epoxidgruppen zu Isocyanatgruppen mindestens 0,4, beträgt; und Härten des Reaktionsgemisches, um eine gehärtete Polymerzusammensetzung, die mindestens einen Oxazolidinonring und mindestens einen Isocyanuratring umfasst, zu erhalten, sowie die mittels dieser Verfahren erhältlichen, gehärteten Zusammensetzungen.

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung einer gehärteten Zusammensetzung, die mindestens einen Oxazolidinonring und mindestens einen Isocyanuratring aufweist und durch diese vernetzt ist, ausgehend von einem Reaktionsgemisch, das mindestens ein Epoxid, mindestens ein Isocyanat und einen Katalysator enthält, sowie die dadurch erhältliche, gehärtete Zusammensetzung.
  • Kommerziell verfügbare Harzsysteme, die hohe Glasübergangstemperaturen aufweisen, sind zwar für die Herstellung von Formteilen geeignet, die den bei der elektrophoretischen Abscheidung (Tauchlackierung) auftretenden, hohen Temperaturen widerstehen können, sind aber aufgrund von geringen Stabilitäten bei der Lagerung und langen Härtungszyklen nachteilig.
  • Die internationale Patentveröffentlichung WO 2008/147641 beschreibt feste Harzsysteme auf Polyepoxid- und Polyisocyanat-Basis, die bei der Härtung Oxazolidinon- und Isocyanuratringe ausbilden. Diese Harzsysteme haben allerdings den Nachteil, dass sie bei den häufig verwendeten RTM-Verfahren, die flüssige Harzsysteme erfordern nicht einsetzbar sind.
  • Da derartige Formteile, insbesondere Kohlenstofffaserverstärkte Kunststoffteile, im Automobilbau eingesetzt werden, besteht Bedarf an Polymersystemen, die die bekannten Nachteile überwinden aber dennoch die erforderlichen mechanischen Eigenschaften aufweisen.
  • Die vorliegende Erfindung basiert auf der Erkenntnis der Erfinder, dass bei Verwendung von bei Raumtemperatur stabilen Polyepoxid- bzw. Polyisocyanat-Monomeren mit niedriger Viskosität in bestimmten Verhältnissen in kurzen Härtungszyklen Oxazolidinon- und Isocyanurat-vernetzte Kunststoffe hergestellt werden können, die hohe Glasübergangstemperaturen aufweisen und daher in Fertigungsverfahren, in denen diese Kunststoffe hohen Temperaturen ausgesetzt sind, eingesetzt werden können. Die so erhältlichen Kunststoffe zeigen ferner vorteilhafte mechanische Eigenschaften, insbesondere hohe Schlagzähigkeiten, die für den Einsatz im Automobilbau geeignet sind. Des Weiteren können Leistung und Eigenschaften der so erhältlichen Polymere durch Kontrolle der Härtungsbedingungen und Art der Katalysatorsysteme über einen weiten Bereich variiert werden. Schließlich sind solche Systeme auch dahingehend vorteilhaft, als dass sie bei Raumtemperatur stabil bleiben und daher nicht gekühlt gelagert werden müssen.
  • Es wurde nun überraschenderweise gefunden, dass Reaktionsgemische, die mindestens ein flüssiges, aromatisches Epoxidharz, mindestens ein flüssiges, aromatisches Polyisocyanat, und eine geeignete Katalysator-Zusammensetzung umfassen, bei der Aushärtung Oxazolidinon- und Isocyanurat-vernetzte Polymerzusammensetzungen ergeben, die eine hohe Glasübergangstemperatur und eine hohe mechanische Beständigkeit aufweisen und daher für die Herstellung von Automobilteilen, insbesondere faserverstärkten Kunststoffformteilen besonders geeignet sind.
  • Die vorliegende Erfindung betrifft daher in einem ersten Aspekt ein Verfahren zur Herstellung einer gehärteten Polymerzusammensetzung, die mindestens einen Oxazolidinonring und mindestens einen Isocyanuratring umfasst, wobei das Verfahren die Schritte umfasst:
    • (1) Bereitstellen eines flüssigen Reaktionsgemisches umfassend (a) mindestens ein flüssiges, aromatisches Epoxidharz; (b) mindestens ein flüssiges, aromatisches Polyisocyanat; und (c) eine Katalysator-Zusammensetzung; wobei das mindestens eine Epoxidharz bezogen auf das mindestens eine Polyisocyanat in Mengen eingesetzt wird, dass das molare Äquivalentverhältnis von Epoxidgruppen zu Isocyanatgruppen mindestens 0,4, insbesondere mindestens 0,7, bevorzugter mindestens 1, noch bevorzugter 1:1 beträgt; und;
    • (2) Härten des Reaktionsgemisches, um eine gehärtete Polymerzusammensetzung, die mindestens einen Oxazolidinonring und mindestens einen Isocyanuratring umfasst, zu erhalten.
  • Die vorliegende Erfindung betrifft in einem weiteren Aspekt eine gehärtete Zusammensetzung die mittels der hierin beschriebenen Verfahren erhältlich ist.
  • „Mindestens ein“, wie hierin verwendet, bezieht sich auf 1 oder mehr, beispielsweise 1, 2, 3, 4, 5, 6, 7, 8, 9 oder mehr. Im Zusammenhang mit Bestandteilen der hierin beschriebenen Katalysator-Zusammensetzungen bezieht sich diese Angabe nicht auf die absolute Menge an Molekülen sondern auf die Art des Bestandteils. „Mindestens ein Epoxidharz“ bedeutet daher beispielsweise ein oder mehrere verschiedene Epoxidharze, d.h. eine oder mehrere verschiedene Arten von Epoxidharzen. Zusammen mit Mengenangaben beziehen sich die Mengenangaben auf die Gesamtmenge der entsprechend bezeichneten Art von Bestandteil, wie bereits oben definiert.
  • „Flüssig“, wie hierin verwendet, bezeichnet bei Raumtemperatur (20°C) und Normaldruck (1013 mbar) fließfähige Zusammensetzungen.
  • Die Viskosität der hierin beschriebenen flüssigen Zusammensetzung ist insbesondere niedrig genug, damit die Zusammensetzung pumpbar ist und beispielsweise Fasermaterialien, wie sie für faserverstärkte Kunststoffteile verwendet werden, benetzen und imprägnieren zu können. In verschiedenen Ausführungsformen hat das Reaktionsgemisch bei einer Temperatur von 120°C eine Viskosität von < 100 mPas. Zur Bestimmung der Viskosität wird die Harzmischung bei Raumtemperatur mit einem geeigneten Mischer hergestellt und auf einem Platte/Platte Rheometer in Oszillation die Viskosität bei steigender Temperatur mit einer Heizrate von 50 K/min bestimmt.
  • Das Epoxidharz kann Epoxidgruppen-haltige Monomere, Präpolymere und Polymere sowie Gemische der vorgenannten umfassen und wird im Folgenden auch als Epoxid bzw. Epoxidgruppen-haltiges Harz bezeichnet. Geeignete Epoxidgruppen-haltige Harze sind insbesondere Harze mit 1 bis 10, bevorzugt 2 bis 10 Epoxidgruppen pro Molekül. „Epoxidgruppen“, wie hierin verwendet, bezieht sich auf 1,2-Epoxidgruppen (Oxirane).
  • Die hierin verwendbaren Epoxidharze können variieren und schließen konventionelle und kommerziell erhältlich Epoxidharze, die jeweils individuell oder in Kombination von zwei oder mehr verschiedenen Epoxidharzen eingesetzt werden können, ein. Bei der Auswahl der Epoxidharze spielen nicht nur die Eigenschaften des Endprodukts, sondern auch die Eigenschaften des Epoxidharzes, wie zum Beispiel die Viskosität und andere Eigenschaften, die die Verarbeitbarkeit beeinflussen, eine Rolle.
  • Das Epoxidgruppen-haltige Harz ist eine flüssige, aromatische Epoxidverbindung. Beispiele für geeignete Harze schließen ein, ohne darauf beschränkt zu sein, (Poly)Glycidylether, die üblicherweise durch Umsetzung von Epichlorhydrin oder Epibromhydrin mit Polyphenolen in Gegenwart von Alkali erhalten werden oder auch (Poly)Glycidylether von Phenol-Formaldehyd-Novolak-Harzen, alkylsubstituierte Phenol-Formaldehydharze (Epoxy-Novolak-Harze), Phenol-Hydroxybenzaldehyd-Harze, Cresol-Hydroxybenzaldehyd-Harze, Dicyclopentadien-Phenol-Harze und Dicyclopentadien-substituierte Phenol-Harze. Für diesen Zweck geeignete Polyphenole sind beispielsweise Resorcin, Brenzkatechin, Hydrochinon, Bisphenol A (2,2-Bis(4-hydroxyphenyl)propan), Bisphenol F (Bis(4-hydroxyphenyl)methan), 1,1-Bis(4-hydroxyphenyl)isobutan, 4,4-Dihydroxybenzophenon, 1,1-Bis(4-hydroxyphenyl)ethan und 1,5-Hydroxynaphthalin. Ebenfalls geeignet sind Diglycidylether von ethoxyliertem Resorcin (DGER), Diglcydidylether von Resorcin, Brenzkatechin, Hydrochinon, Bisphenol, Bisphenol A, Bisphenol AP (1,1-Bis(4-hydroxyphenyl)-1-Phenylethan), Bisphenol F, Bisphenol K, Bisphenol S, und Tetramethylbiphenol.
  • Weitere geeignete Epoxidharze sind im Stand der Technik bekannt und können beispielsweise Lee H. & Neville, K., Handbook of Epoxy Resins, McGraw-Hill Book Company, Neuauflage von 1982 entnommen werden.
  • Besonders bevorzugte Epoxidgruppen-haltige Verbindungen sind aromatische Glycidylether, insbesondere Diglycidylether, ganz besonders bevorzugt solche auf Basis von aromatischen Glycidylether-Monomeren. Beispiele dafür sind, ohne Einschränkung, Di- oder Polyglycidylether von polyhydrischen Phenolen, die durch Umsetzen eines polyhydrischen Phenols mit einem Überschuss an Chlorhydrin, wie z.B. Epichlorohydrin, erhalten werden können. Solche polyhydrischen Phenole schließen Resorcinol, Bis(4-hydroxyphenyl)methan (Bisphenol F), 2,2-bis(4-Hydroxyphenyl)propan (Bisphenol A), 2,2-bis(4'-Hydroxy-3',5'-dibromophenyl)propan, 1,1,2,2-tetrakis(4'-Hydroxyphenyl)ethan oder Kondensate von Phenolen mit Formaldehyd, die unter sauren Bedingungen erhalten werden, wie Phenolnovolake und Cresolnovolake, ein.
  • Diglycidylether von Bisphenol A sind beispielsweise als DER 331 (flüssiges Bisphenol A Epoxidharz) und DER 332 (Diglycidylether von Bisphenol A) von Dow Chemical Company, Midland, Michigan erhältlich. Obwohl nicht speziell erwähnt, können auch andere Epoxidharze, die unter den Handelsnamen DER und DEN von Dow Chemical Company erhältlich sind, verwendet werden.
  • Das Polyisocyanat enthält zwei oder mehr Isocyanatgruppen und schließt jedes bekannte und für den erfindungsgemäßen Zweck geeignete Isocyanat ein und wird im Folgenden auch teilweise als Isocyanat bzw. Isocyanatgruppen-haltiges Harz bezeichnet.
  • Als Polyisocyanate in der Polyisocyanatkomponente sind Isocyanate mit zwei oder mehr Isocyanatgruppen geeignet. Vorzugsweise enthalten die Polyisocyanate 2 bis 10, vorzugsweise 2 bis 5, bevorzugt 2 bis 4, insbesondere genau 2 Isocyanatgruppen pro Molekül. Die Verwendung von Isocyanaten mit einer Funktionalität von mehr als zwei, kann unter Umständen vorteilhaft sein, da derartige Polyisocyanate als Vernetzer geeignet sind.
  • Als das mindestens eine Polyisocyanat der Polyisocyanatkomponente wird ein aromatisches Polyisocyanat eingesetzt werden. In einem aromatischen Polyisocyanat sind die NCO-Gruppen an aromatischen Kohlenstoffatomen gebunden. Beispiele für geeignete aromatische Polyisocyanate sind 1,5-Naphthylendiisocyanat, 2,4‘-, 2,2‘- oder 4,4‘-Diphenylmethandiisocyanat (MDI), Xylylendiisocyanat (XDI), m- und p-Tetramethylxylylendiisocyanat (TMXDI), 2,4- oder 2,6-Toluylendiisocyanat (TDI), Di- und Tetraalkyldiphenyl-methandiisocyanat, 3,3’-Dimethyl-diphenyl-4,4’-diisocyanat (TODI) 1,3-Phenylendiisocyanat, 1,4-Phenylendiisocyanat, 4,4‘-Dibenzyldiisocyanat.
  • Die Polyisocyanatkomponente kann auch Anteile von niedermolekularen Prepolymeren enthalten, beispielsweise Umsetzungsprodukte von MDI oder TDI mit niedermolekularen Diolen oder Triolen wie z.B. Ethylenglykol, Diethyenglykol, Propylenglykol, Dipropylenglykol, Triethylenglykol, Glyzerin oder Trimethylolpropan. Diese Prepolymere können durch Umsetzung eines Überschusses von monomerem Polyisocyanat in Gegenwart von Diolen der Triolen hergestellt werden. Dabei liegt das zahlenmittlere Molekulargewicht der Diole und Triole im Allgemeinen unterhalb von 1000 g/mol. Gegebenenfalls kann das Umsetzungsprodukt durch Destillation von monomeren aromatischen Isocyanaten befreit werden.
  • Vorzugsweise weist das mindestens eine Polyisocyanat einen NCO-Gehalt von mehr als 25 Gew.-%, weiter bevorzugt mehr als 28 Gew.-%, besonders bevorzugt mehr als 30 Gew.-%, insbesondere bevorzugt von 30 bis 50 Gew.-%, bezogen auf das mindestens eine Polyisocyanat, auf. Der Massenanteil bezieht sich bei Verwendung nur eines Polyisocyanats auf die eingesetzte Menge dieses Polyisocyanats, bei Verwendung einer Mischung von Polyisocyanaten dagegen auf die eingesetzte Menge der Mischung dieser Polyisocyanate.
  • Vorzugsweise hat das mindestens eine Polyisocyanat eine Viskosität von weniger als 80 mPas, insbesondere von 30 bis 60 mPas (DIN ISO 2555, Brookfield-Viskosimeter RVT, Spindel Nr. 3, 25°C; 50 UpM).
  • Es ist insbesondere bevorzugt, dass das mindestens eine Polyisocyanat ein zahlenmittleres Molekulargewicht von weniger als 1500 g/mol, besonders bevorzugt weniger als 1000 g/mol aufweist.
  • Besonders geeignete Isocyanatgruppen-haltige Harze sind Methylendiphenyldiisocyanat (MDI), Toluol-2,4-diisocyanat (TDI),, polymeres Diphenylmethandiisocyanat (PMDI), und Mischungen der vorgenannten. Diese Polyisocyanate sind beispielsweise unter dem Markennamen Desmodur von Bayer AG (DE) und Desmodur® N3300 im Handel erhältlich.
  • Besonders bevorzugt sind aromatische Polyisocyanat-Monomere, insbesondere aromatische Diisocyanate wie MDI und TDI.
  • Es ist generell bevorzugt, dass sowohl die eingesetzten Epoxide als auch die eingesetzten Isocyanate Monomere sind, insbesondere bei Standardbedingungen (20°C, 1013mbar) flüssige, niedrigviskose Monomere. Diese sind insbesondere deshalb vorteilhaft, weil sie im Vergleich mit anderen, höhermolekulen Epoxidharzen deutlich stabiler, insbesondere lagerstabiler sind, und nicht gekühlt gelagert werden müssen.
  • In verschiedenen Ausführungsformen der Erfindung kann das Reaktionsgemisch mehrere verschiedene Epoxidgruppen-haltige Verbindungen und/oder mehrere verschiedene Isocyanatgruppen-haltige Verbindungen enthalten.
  • Das Gewichtsverhältnis des mindestens einen Epoxidharzes und des mindestens einen Polyisocyanats kann variiert werden und hängt von den jeweils verwendeten Verbindungen und deren chemischen und physikalischen Eigenschaften sowie von den gewünschten physikalischen und chemischen Eigenschaften der gehärteten Zusammensetzung ab. Generell wird das Epoxid in solchen Mengen eingesetzt, dass das molare Äquivalentverhältnis von Epoxid- zu Isocyanatgruppen mindestens 0,4, insbesondere mindestens 0,7, bevorzugter mindestens 1 beträgt. „Molares Äquivalentverhältnis“ bezieht sich hierbei auf das molare Verhältnis zwischen Epoxidgruppen und Isocyanatgruppen. Das molare Äquivalentverhältnis wird dabei als Quotient von Epoxidgrupen zu Isocyanatgruppen gebildet, wobei eine doppelte Anzahl von Epoxidgrupen zu Isocyanatgruppen einem molare Äquivalentverhältnis von 2 entsprechen. Ein molares Äquivalentverhältnis von mindestens 0,4 bedeutet daher beispielsweise, dass auf 1 Mol Epoxidgruppen maximal 2,5 Mol Isocyanatgruppen kommen. Bevorzugt ist das molare Äquivalentverhältnis von Epoxid- zu Isocyanatgruppen zwischen 0,4 und 5, insbesondere zwischen 0,5 und 3, bevorzugter zwischen 0,7 und 2, noch bevorzugter zwischen 0,9 und 1,5. Die Erfinder haben herausgefunden, dass sich durch die Verwendung solcher Mengenverhältnisse besonders vorteilhafte Eigenschaften hinsichtlich der Glasübergangstemperatur, des Elastizitätsmoduls und der Schlagzähigkeit ergeben.
  • Als weiteren Bestandteil umfasst das Reaktionsgemisch eine Katalysator-Zusammensetzung. In verschiedenen Ausführungsformen umfasst die Katalysatorzusammensetzung keine Härter, d.h. Verbindungen, die eine Epoxid-Polyadditionsreaktion eingehen, wie beispielsweise Dicyandiamid, DDS (Diaminodiphenylsulfon) und ähnliche Verbindungen, sondern nur Verbindungen, die die Polymerisation von Polyisocyanat und Epoxid katalysieren. Das Reaktionsgemisch ist daher in bevorzugten Ausführungsformen frei von Dicyandiamid oder DDS, bevorzugt insgesamt frei von Härtern wie Dicyandiamid oder DDS.
  • „Frei von“, wie in diesem Zusammenhang verwendet, bedeutet, dass die Menge des entsprechenden Stoffs in dem Reaktionsgemisch weniger als 0,05 Gew.-%, vorzugsweise weniger als 0,01 Gew.-%, noch bevorzugter weniger als 0,001 Gew.-%, bezogen auf das Gesamtgewicht des Reaktionsgemischs beträgt.
  • Die Katalysator-Zusammensetzung kann einen oder mehrere Katalysatoren enthalten. In verschiedenen Ausführungsformen ist sie zur Bildung von Oxazolidinon- und Isocyanuratringen aus den angegebenen Bestandteilen geeignet.
  • Die Katalysatorzusammensetzung kann in verschiedenen Ausführungsformen mindestens eine Stickstoff-haltige Base enthalten.
  • In bevorzugten Ausführungsformen ist die Base eine ionische Verbindung der Formel (I).
    Figure DE102014226838A1_0001
    Formel (I)
  • R1 und R3 in Formel (I) sind jeweils unabhängig voneinander ausgewählt aus der Gruppe, die aus substituiertem oder unsubstituiertem, linearem oder verzweigtem Alkyl mit 1 bis 20 Kohlenstoffatomen, substituiertem oder unsubstituiertem, linearem oder verzweigtem Alkenyl mit 3 bis 20 Kohlenstoffatomen und substituiertem oder unsubstituiertem Aryl mit 5 bis 20 Kohlenstoffatomen besteht. Vorzugsweise werden R1 und R3 aus der Gruppe bestehend aus substituiertem oder unsubstituiertem, linearem oder verzweigtem Alkyl mit 1 bis 10 Kohlenstoffatomen und substituiertem oder unsubstituiertem Aryl mit 5 bis 10 Kohlenstoffatomen gewählt.
  • Die Reste R4 und R5 sind jeweils unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Wasserstoff, substituiertem oder unsubstituiertem, linearem oder verzweigtem Alkyl mit 1 bis 20 Kohlenstoffatomen, substituiertem oder unsubstituiertem, linearem oder verzweigtem Alkenyl mit 3 bis 20 Kohlenstoffatomen, substituiertem oder unsubstituiertem, linearem oder verzweigtem Alkoxy mit 1 bis 20 Kohlenstoffatomen und substituiertem oder unsubstituiertem Aryl mit 5 bis 10 Kohlenstoffatomen. Vorzugsweise sind R4 und R5 in Formel (I) Wasserstoff.
  • In verschiedenen Ausführungsformen können (i) R1 und R5 und/oder R3 und R4 oder (ii) R4 und R5 gemeinsam mit den Kohlenstoff- oder Stickstoffatomen, an die sie gebunden sind, einen 5–6 gliedrigen substituierten oder unsubstituierten Cycloalkyl-, Cycloheteroalkyl, Aryl- oder Heteroarylring, wobei der Cycloheteroalkyl- oder Heteroarylring 1 bis 3 Heteroatome ausgewählt aus O, N und S, enthält, bilden. In bestimmten Ausführungsformen können daher sowohl R1 und R5 als auch R3 und R4 miteinander kombinieren, um einen Ring zu bilden. Es ist allerdings bevorzugt, dass R4 und R5 miteinander kombinieren, insbesondere um einen 6-gliedrigen Arylring zu bilden, so dass die resultierende Verbindung ein Benzimidazolium oder ein Benzimidazolidinium ist.
  • Das Anion X der Formel (I) kann jedes bekannte und für den erfindungsgemäßen Zweck geeignete Anion sein und kann lediglich zum Ladungsausgleich des Kations der ionischen Verbindung der Formel (I) dienen. Es kann vorteilhaft sein, wenn das Anion keine chelatisierende Eigenschaften aufweist. In einer bevorzugten Ausführungsform wird X ausgewählt aus der Gruppe bestehend aus Dicyandiamid-anion, F, Cl, Br, I, OH, HSO3 , SO3 2–, SO4 2–, NO2 , NO3 , PO4 3–, BF4 , PF6 , ClO4 , Acetat, Citrat, Formiat, Glutarat, Lactat, Malat, Malonat, Oxalat, Pyruvat, Tartrat, Cyanocyanamid (Dieses Anion ist in der Erfindungsmeldung enthalten, bitte prüfen = Cyanamid?), SCN und P(OEt)2O2 . In einer besonders bevorzugten Ausführungsform ist X ausgewählt aus der Gruppe bestehend aus Cl, Br, I, SO4 2–, NO2 , NO3 , PO4 3–, BF4 , SbF6 PF6 , ClO4 , Acetat, Cyanocyanamid (siehe oben), SCN und P(OEt)2O2 .
  • „-----“ steht für eine Einfach- oder Doppelbindung, insbesondere eine Doppelbindung.
  • Der Index n ist 1, 2 oder 3.
  • In den hierin beschriebenen Katalysator-Zusammensetzungen können mehrere verschiedene ionische Verbindungen der Formel (I) enthalten sein.
  • „Alkyl“, wie hierin verwendet, bezieht sich auf lineare oder verzweigte Alkylgruppen, wie beispielsweise Methyl, Ethyl, n-Propyl und iso-Propyl. Die Alkylreste können substituiert oder unsubstituiert sein, sind aber vorzugsweise unsubstituiert. Wenn sie substituiert sind, werden die Substituenten insbesondere ausgewählt aus der Gruppe bestehend aus C6-10 Aryl, -OR, -NRR‘, wobei R und R‘ jeweils unabhängig H oder unsubstituiertes C1-10 Alkyl sein können.
  • „Alkenyl“, wie hierin verwendet, bezieht sich auf lineare oder verzweigte Alkenylgruppen, die mindestens eine C=C Doppelbindung enthalten, wie beispielsweise Ethenyl, n-Propenyl, iso-Propenyl und n-Butenyl. Die Alkenylreste können substituiert oder unsubstituiert sein, sind aber vorzugsweise unsubstituiert. Wenn sie substituiert sind, werden die Substituenten insbesondere ausgewählt aus der Gruppe bestehend aus C6-10 Aryl, -OR, -NRR‘, wobei R und R‘ jeweils unabhängig H oder unsubstituiertes C1-10 Alkyl sein können.
  • „Aryl“, wie hierin verwendet, bezieht sich auf aromatische Gruppen, die mindestens einen aromatischen Ring, aber auch mehrere kondensierte Ringe aufweisen können, wie beispielsweise Phenyl, Naphthyl, Anthracenyl und dergleichen. Die Arylreste können substituiert oder unsubstituiert sein. Wenn sie substituiert sind, werden die Substituenten ausgewählt aus der Gruppe bestehend aus C1-10 Alkyl, C2-10 Alkenyl, -OR, -NRR‘, wobei R und R‘ jeweils unabhängig H oder unsubstituiertes C1-10 Alkyl sein können.
  • In verschiedenen Ausführungsformen der Erfindung ist die Verbindung der Formel (I) eine 1,3-substituierte Imidazoliumverbindung, d.h. R2, R4 und R5 sind Wasserstoff. Dabei sind die Substituenten R1 und R3 vorzugsweise ausgewählt aus unsubstituierten C1-4-Alkylresten, insbesondere Methyl und Ethyl, d.h. die Verbindungen sind beispielsweise 1-Ethyl-3-Methyl-Imidazoliumverbindungen, oder aus unsubstituiertem oder substituiertem C6-Arylresten, insbesondere Phenyl substituiert mit einem oder mehreren C1-4 Alkylsubstituenten, wie beispielsweise 2,6-Diisopropylphenyl.
  • Das Anion kann dabei insbesondere Acetat, Chlorid, Thiocyanat, Diethylphosphat oder Dicayanamid sein.
  • In verschiedenen Ausführungsformen wird die Verbindung der Formel (I) ausgewählt aus 1-Ethyl-3-Methyl-1H-Imidazoliumacetat, 1-Ethyl-3-Methyl-1H-Imidazoliumthiocyanat, 1-Ethyl-3-Methyl-1H-Imidazoliumcyanocyanamid, 1-Ethyl-3-Methyl-1H-Imidazoliumdiethylphosphat und 1,3-bis(2,6-Diisopropylphenyl)-1H-Imidazolidiniumchlorid.
  • In verschiedenen anderen Ausführungsformen ist die als Katalysator eingesetzte Base eine nichtionische, Stickstoff-haltige Base, die mindestens ein tertiäres Stickstoffatom und/oder ein Imin-Stickstoffatom enthält.
  • Der Begriff „tertiär“, wie hierin verwendet, gibt an, dass an das Stickstoffatom, das in der mindestens einen Base enthalten ist, drei organische Reste kovalent über Einfachbindungen gebunden sind.
  • Alternativ kann die mindestens eine Base ein Imin-Stickstoffatom enthalten. Der Begriff „Imine“, wie hierhin verwendet, bezieht sich auf die bekannte Stoffklasse, und gibt an, dass das Stickstoffatom eine kovalente Doppelbindung zu einem organischen Rest und eine kovalente Einfachbindung zu einem weiteren organischen Rest aufweist. Imine sind Schiff‘sche Basen.
  • Die Katalysator-Zusammensetzung kann, in verschiedenen Ausführungsformen, mehrere der vorstehend beschriebenen nichtionische Basen enthalten, beispielsweise eine Base mit einem Imin-Stickstoff und eine Base mit einem tertiären Stickstoffatom. Die nichtionische Base kann auch sowohl ein tertiäres Amin als auch ein Imin sein, indem sie sowohl ein tertiäres Stickstoffatom als auch ein Imin-Stickstoff enthält.
  • In verschiedenen Ausführungsformen ist die mindestens eine nichtionische Base ein tertiäres Amin der (II) NR6R7R8 und/oder ein Imin der Formel (III) N(=R9)R10.
  • Die Reste R6 bis R8 und R10 werden jeweils unabhängig voneinander ausgewählt aus der Gruppe bestehend aus substituiertem oder unsubstituiertem, linearem oder verzweigtem Alkyl mit 1 bis 20 Kohlenstoffatomen, substituiertem oder unsubstituiertem, linearem oder verzweigtem Alkenyl mit 3 bis 20 Kohlenstoffatomen und substituiertem oder unsubstituiertem Aryl mit 5 bis 20 Kohlenstoffatomen, oder mindestens zwei von R6 bis R8 bilden gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen 5- bis 10-gliedrigen, heteroalicyclischen Ring oder Heteroaryl-Ring, der optional ein oder mehrere weitere Stickstoffatome, insbesondere 1 weiteres Stickstoffatom, enthält.
  • R9 ist ein substituiertes oder unsubstituiertes, lineares oder verzweigtes Alkylenyl mit 3 bis 20 Kohlenstoffatomen oder R9 und R10 bilden gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen 5- bis 10-gliedrigen, heteroalicyclischen Ring oder Heteroaryl-Ring, der optional weitere Stickstoffatome enthält..
  • „Alkylenyl“, wie hierin verwendet, bezieht sich auf einen Alkylrest, der über eine Doppelbindung an das Stickstoffatom gebunden ist. Falls substituiert, sind die Substituenten wie oben für Alkylreste beschrieben definiert.
  • In verschiedenen Ausführungsformen der Erfindung sind die tertiären Aminbasen bzw. die Iminbasen, cyclische Verbindungen, die mindestens zwei Stickstoffatome enthalten, d.h. mindestens zwei der Reste R6 bis R10 kombinieren miteinander um mit dem Stickstoffatom an das sie gebunden sind, einen Ring zu bilden, und enthalten ferner ein weiteres Stickstoffatom in Form eines Restes -NRR‘, wobei das Stickstoffatom ein Ringatom ist und der Rest R oder R‘ an der Ringbildung beteiligt ist. Besonders bevorzugt sind Basen auf Basis von Imidazol oder Imidazolidin. In verschiedenen Ausführungsformen sind die Basen daher beispielsweise Imidazolderivate, wie beispielsweise 1-Alkyl-Imidazol oder 2,4-Dialkylimidazol.
  • In verschiedenen Ausführungsformen ist die mindestens eine nichtionische Base ausgewählt aus der Gruppe bestehend aus 1-Methylimidazol und 2,4-Ethylmethylimidazol.
  • In verschiedenen besonders bevorzugten Ausführungsformen umfasst die erfindungsgemäße Katalysator-Zusammensetzung mindestens eine Verbindung der Formel (I) und mindestens eine nichtionische Stickstoff-haltige Base, die bevorzugt ein tertiäres Stickstoffatom und/oder ein Imin-Stickstoff enthält, wobei beide jeweils wie vorstehend beschrieben definiert sind. In solchen Zusammensetzungen kann die erfindungsgemäß eingesetzte nichtionische Base vorzugsweise eine nichtionische, Stickstoff-haltige Base sein, die dazu in der Lage ist, die ionische Verbindung der Formel (I) in der 2-Position zu deprotonieren. D.h. die Base hat eine korrespondierende Säure mit einer Säurekonstante pKs die größer ist als die Säurekonstante des H-Atoms in Position 2 der Verbindung der Formel (I) (pKs (Base) > pKs (Verbindung Formel (I)). Der Unterschied in der Säurekonstante beträgt vorzugsweise mindestens 1. In verschiedenen Ausführungsformen hat die korrespondierende Säure der Base einen pKs Wert von 10 oder mehr, insbesondere 12–14 oder mehr. „Korrespondierende Säure“, wie in diesem Kontext verwendet, bezieht sich auf die protonierte Form der Base.
  • In verschiedenen Ausführungsformen enthält eine derartige Katalysator-Zusammensetzung ein 1-Ethyl-3-Methyl-1H-Imidazoliumsalz, insbesondere das Thiocyanat, als Verbindng der Formel (I) und 2,4-Ethylmethylimidazol als nichtionische Stickstoff-haltige Base.
  • Die Katalysatorzusammensetzung kann die mindestens eine ionischen Verbindung der Formel (I) und die mindestens eine nichtionische Base beispielsweise in einem Gewichtsverhältnis von 10:1 bis 1:10, vorzugsweise 3:1 bis 1:3 und besonders bevorzugt von 1,1:1 bis 1:1,1 enthalten.
  • In einer bevorzugten Ausführungsform werden, bezogen auf die Gesamtmenge des Epoxids (a) und des Isocyanats (b), 0,01 bis 10 Gew.%, vorzugsweise 0,1 bis 5 Gew.%, bevorzugt 1 Gew.% der Katalysator-Zusammensetzung (c) verwendet.
  • „Bereitstellen“, wie hierhin verwendet, bezieht sich auf das Mischen der Bestandteile des Reaktionsgemisches in beliebiger Reihenfolge. Es kann beispielsweise vorteilhaft sein, zunächst zwei oder mehr Bestandteile zusammenzugeben und gegebenenfalls zu einem heterogenen oder homogenen Gemisch zu mischen, bevor die restlichen Bestandteile hinzuzugeben werden. So kann beispielsweise zunächst die mindestens eine Epoxidgruppen-enthaltende Verbindung und die Katalysator-Zusammensetzung kombiniert und gemischt und anschließend, beispielsweise kurz vor dem Härten, die mindestens eine Isocyanatgruppen-enthaltende Verbindung zugegeben und in die anderen bereits durchmischten Bestandteile eingemischt werden. Zwischen den verschiedenen Kombinations- und Mischschritten kann es vorteilhaft sein, das Reaktionsgemisch auf Raumtemperatur abzukühlen.
  • Generell können die einzelnen Bestandteile des Reaktionsgemischs als solche oder als Lösung in einem Lösungsmittel, wie beispielsweise einem organischen Lösungsmittel oder einem Gemisch organischer Lösungsmittel, eingesetzt werden. Hierzu ist jedes bekannte und für den erfindungsgemäßen Zweck geeignete Lösungsmittel einsetzbar. So kann das Lösungsmittel beispielsweise ein hochsiedendes organisches Lösungsmittel sein. Das Lösungsmittel kann ausgewählt sein aus der Gruppe bestehend aus Petroleum, Benzen, Toluen, Xylen, Ethylbenzen und Mischungen davon. Da die Epoxid- und Isocyanatverbindungen vorzugsweise aus flüssigen, niedrigviskosen Monomeren ausgewählt werden, kann in verschiedenen Ausführungsformen die Katalysator-Zusammensetzung als Lösung, wie vorstehend beschrieben, eingesetzt werden.
  • In verschiedenen Ausführungsformen umfasst das Reaktionsgemisch neben dem Epoxid (a), dem Isocyanat (b) und der Katalysator-Zusammensetzung (c) zusätzliche Bestandteile, wie sie im Stand der Technik als solche bekannt und üblich sind.
  • Beispielsweise können als weitere Bestandteile beispielsweise ein modifiziertes Harz eingesetzt werden, das den nach der Härtung erhältlichen Zusammensetzungen eine verbesserte Schlagfestigkeit und Niedertemperatureigenschaften verleiht. Modifizierte Epoxidgruppen-haltige Harze dieser Art sind im Stand der Technik bekannt und umfassen Reaktionsprodukte von Epoxidharzen mit einer Epoxid-Funktionalität von mehr als 1 mit Carboxy-funktionellen Kautschuken, Dimerfettsäuren oder sogenannte Kern/Schale-Polymeren (core/shell-polymers), deren Kerne eine Glasübergangstemperatur von unter –30 °C aufweisen. Das Epoxidgruppen-haltige Harz wird in diesem Fall vorzugsweise in einem stöchiometrischen Überschuss eingesetzt und erzeugt ein epoxidfunktionelles Reaktionsprodukt. Der Überschuss an Epoxidgruppen-enthaltendem Harz kann auch weit über dem stöchiometrischen Überschuss liegen. Eine Epoxid-Funktionalität von größer als 1 bedeutet, dass die Verbindungen mehr als 1, vorzugsweise mindestens 2, 1,2-Epoxidgruppen pro Molekül enthalten. Es sind solche modifizierten Epoxidgruppen-haltigen Harze vorteilhaft, die ein Epoxidäquivalentgewicht zwischen 150 und 4000 aufweisen. Epoxidgruppen-haltige Harze können auch insbesondere mit einem Copolymer eines 1,3-Diens oder einem ethylenisch ungesättigtem Co-Monomer und/oder mit Kern/Schale-Partikeln (CSR core-shell-rubber) modifiziert sein. Diese modifizierten Harze werden zusätzlich zu dem Epoxidharz (a) und dem Isocyanat (b) eingesetzt.
  • Alternativ oder zusätzlich zu den vorstehend genannten können auch andere Zähigkeitsvermittler („toughener“), wie beispielsweise Polyole, insbesondere Polyalkylenglykole, wie Polypropylenglykol, oder Flüssigkautschuke (liquid rubbers) eingesetzt werden. Vorzugsweise enthalten die Zusammensetzungen ein Zähigkeitsvermittler, bevorzugt wie einen wie vorher beschrieben. Bei zusätzlichen Einsatz eines Zähigkeitsvermittlers erhöht sich der K1c Wert erheblich, wobei überraschender Weise sich der Tg-Wert nicht oder nur gering verändert.
  • Das hierin beschriebenen Reaktionsgemisch kann mit weiteren Bestandteilen, wie zum Beispiel den vorstehend beschriebenen Zähigkeitsvermittlern, in Form einer Klebstoffzusammensetzung oder eines Injektionsharzes kombiniert werden.
  • Derartige Klebstoffzusammensetzungen bzw. Injektionsharze können eine Vielzahl anderer Komponenten enthalten, von denen alle dem Fachmann auf dem Gebiet bekannt sind, einschließlich, aber nicht beschränkt auf häufig verwendete Hilfsstoffe und Additive, wie zum Beispiel Füllstoffe, Weichmacher, reaktive und/oder nichtreaktive Verdünnungsmittel, Fließmittel, Kopplungsmittel (z.B. Silane), Haftvermittler, Netzmittel, Haftmittel, Flammschutzmittel, Netzmittel, Thixotropiermittel und/oder rheologische Hilfsstoffe (z.B. pyrogene Kieselsäure), Alterungs- und/oder Korrosionsinhibitoren, Stabilisatoren und/oder Farbstoffe. Je nach Anforderung an den Klebstoff bzw. das Injektionsharz und seine Anwendung und im Hinblick auf die Produktion, Flexibilität, Festigkeit und Verklebung mit Substraten, werden die Hilfs- und Zusatzstoffe in unterschiedlichen Mengen in die Zusammensetzung eingearbeitet.
  • In verschiedenen Ausführungsformen der Erfindung, wird das Reaktionsgemisch je nach gewünschter Verwendung auf ein Substrat aufgetragen, beispielsweise bei Verwendung als Klebstoff, oder in ein Formwerkzeug eingefüllt, bei der Verwendung als Formmasse zur Herstellung von Kunststoffteilen. In bevorzugten Ausführungsformen ist das Verfahren ein Spritzpress(RTM)-Verfahren und die Reaktionsmischung ein reaktives Injektionsharz. „Reaktiv“, wie in diesem Zusammenhang verwendet, bezieht sich auf die Tatsache, dass das Injektionsharz chemisch vernetzbar ist. Bei dem RTM-Verfahren kann das Bereitstellen des Reaktionsgemischs, d.h. Schritt (1) des beschriebenen Verfahrens, das Einfüllen, insbesondere Einspritzen (Injektion), des Injektionsharzes in ein Formwerkzeug umfasse. Bei der Herstellung von faserverstärkten Kunststoffteilen, wofür die beschriebenen Verfahren und Reaktionsgemische besonders geeignet sind, können vor dem Einspritzen in das Formwerkzeug in dieses Fasern oder Faserhalbzeuge (Prewovens/Preform) eingelegt werden. Als Fasern und/oder Faserhalbzeuge können die im Stand der Technik für diese Anwendung bekannten Materialien, insbesondere Kohlenstofffasern verwendet werden.
  • Die Erfindung betrifft ferner die im Zusammenhang mit den Verfahren beschriebenen Reaktionsgemische, d.h. Harzzusammensetzungen, die mindestens ein Epoxidgruppen-enthaltendes Harz (a), ein Polyisocyanat (b) sowie eine Katalysator-Zusammensetzung (c), jeweils wie oben definiert, enthalten.
  • In verschiedenen Ausführungsformen sind derartige Harzzusammensetzungen Klebstoffzusammensetzungen oder Injektionsharze sein. Die Injektionsharze sind vorzugsweise pumpbar und insbesondere für das Spritzpressen (RTM-Verfahren) geeignet. In verschiedenen Ausführungsformen hat der Reaktionsgemisch daher bei einer Temperatur von 120°C, d.h. einer typischen Infusionstemperatur, eine Viskosität von < 100 mPas. Zur Bestimmung der Viskosität wird die Harzmischung bei Raumtemperatur mit einem geeigneten Mischer hergestellt und auf einem Platte/Platte Rheometer in Oszillation die Viskosität bei steigender Temperatur mit einer Heizrate von 50 K/min bestimmt.
  • Die Erfindung betrifft in einer Ausführungsform daher auch die mittels der erfindungsgemäßen Harzsysteme im RTM-Verfahren erhältlichen Formteile. Die RTM-Verfahren, in denen die beschriebenen Harzsysteme (Polymerzusammensetzungen) eingesetzt werden können, sind als solche im Stand der Technik bekannt und können von dem Fachmann ohne Weiteres derart angepasst werden, dass das erfindungsgemäße Reaktionsgemisch eingesetzt werden kann.
  • Die Öffnungszeiten der Harzzusammensetzungen (Reaktionsgemisch), wie hierin beschrieben, sind vorzugsweise größer als 90 Sekunden und liegen besonders bevorzugt im Bereich von 2 bis 5 Minuten, insbesondere bei ungefähr 3 Minuten. „Ungefähr“, wie hierin im Zusammenhang mit einem Zahlenwert verwendet, bedeutet der Zahlenwert ±10%.
  • Je nach Art der eingesetzten Epoxide und Isoyanate sowie abhängig von der Katalysator-Zusammensetzung und der Verwendung der gehärteten Zusammensetzung kann die Reaktionsmischung in Schritt (2) des erfindungsgemäßen Verfahrens bei unterschiedlichen Reaktionstemperaturen gehärtet werden. So kann die Härtungstemperatur zwischen 10 °C und 230 °C legen. Generell kann die Härtung bei erhöhter Temperatur, d.h. > 25 °C, erfolgen. Vorzugsweise werden die Harze zwischen 50 °C und 190 °C und bevorzugt zwischen 90 °C und 150 °C gehärtet. Die Dauer der Härtung hängt ebenfalls von den zu härtenden Harzen und der Katalysator-Zusammensetzung ab und kann zwischen 0,01 Stunden bis 10 Stunden liegen. Vorzugsweise dauert der Härtungszyklus wenige Minuten, d.h. insbesondere 1 bis 5 Minuten. Die Härtung kann ein- oder auch mehrstufig erfolgen.
  • Während der Härtung reagiert das Epoxidgruppen-enthaltende Harz mit dem Isocyanat in Anwesenheit des Katalysators unter Bildung mindestens eines Oxazolidinons, das die Harze miteinander vernetzt und der gehärteten Zusammensetzung unter anderem ihre vorteilhaften physikalischen Eigenschaften verleiht. Das bei der Härtung gebildete mindestens eine Oxazolidinon kann eines von 1,2-Oxazolidin-3-on, 1,2-Oxazolidin-4-on, 1,2-Oxazolidin-5-on, 1,3-Oxazolidin-2-on, 1,3-Oxazolidin-4-on, oder 1,3-Oxazolidin-5-on sein. So kann die gehärtete Zusammensetzung auch mehrere, verschiedene der vorgenannten Oxazolidinonisomere enthalten.
  • Ferner reagieren die Isocynanatgruppen untereinander in Anwesenheit der hierin beschriebenen Katalysator-Zusammensetzung unter Bildung mindestens eines Isocyanurats, das die Harze miteinander vernetzt und ebenfalls zu den vorteilhaften Eigenschaften der gehärteten Zusammensetzung beiträgt.
  • Die mittels der hierin beschriebenen Katalysatorsysteme und Verfahren gehärteten Harze haben vorzugsweise einen kritischen Spannungsintensitätsfaktor K1c von > 0,5, vorzugsweise mindestens 0,6. Die Glasübergangstemperatur der ausgehärteten Harze liegt, in verschiedenen Ausführungsformen, im Bereich von mehr als 100, insbesondere mehr als 150 °C, typischerweise im Bereich bis 200°C. Der Elastizitätsmodul der ausgehärteten Harze liegt vorzugsweise bei mindestens 2500, vorzugsweise mindestens 3000 N/mm2, typischerweise im Bereich von 2500 bis 5000 N/mm2.
  • Des Weiteren betrifft die vorliegende Erfindung die gehärtete Zusammensetzung, die nach dem hierin beschriebenen Verfahren erhältlich ist. Diese kann, abhängig von dem Verfahren, als Formteil, insbesondere als faserverstärktes Kunststoffformteil vorliegen. Derartige Formteile werden vorzugsweise im Automobilbau eingesetzt.
  • So eignen sich die gehärteten Polymerzusammensetzung besonders als Matrixharz für Faserverbundwerkstoffe. Dabei können diese in verschiedenen Anwendungsverfahren eingesetzt werden, beispielsweise im Resin-Transfer-Moulding-Verfahren (RTM-Verfahren) oder im Infusionsverfahren.
  • Als Faserbestandteile der Faserverbundwerkstoffe sind bekannte hochfeste Faserwerkstoffe geeignet. Diese können beispielsweise aus Glasfasern; synthetischen Fasern, wie Polyesterfasern, Polyethylenfasern, Polypropylenfasern, Polyamidfasern, Polyimidfasern oder Aramidfasern; Kohlenstofffasern; Borfasern; oxidischen oder nicht oxidischen Keramikfasern, wie Aluminiumoxid/Siliciumdioxidfasern, Siliciumcarbidfasern; Metallfasern, beispielsweise aus Stahl oder Aluminium; oder aus Naturfasern, wie Flachs, Hanf oder Jute bestehen. Diese Fasern können in Form von Matten, Geweben, Gewirken, Gelegen, Vliesen oder Rovings eingebracht werden. Es können auch zwei oder mehr dieser Fasermaterialien als Gemisch verwendet werden. Es können Kurzschnittfasern ausgewählt werden, bevorzugt werden jedoch synthetische Langfasern eingesetzt, insbesondere Gewebe und Gelege. Solche hochfesten Fasern, Gelege, Gewebe und Rovings sind dem Fachmann bekannt.
  • Insbesondere soll der Faserverbundwerkstoff Fasern in einem Volumenanteil von mehr als 40 Vol.-%, bevorzugt mehr als 50 Vol.-%, insbesondere bevorzugt zwischen 50 und 70 Vol.-% bezogen auf den gesamten Faserverbundwerkstoff enthalten, um besonders gute mechanische Eigenschaften zu erzielen. Im Falle von Kohlefasern wird der Volumenanteil gemäß der Norm DIN EN 2564:1998-08 bestimmt, im Falle von Glasfasern gemäß der Norm DIN EN ISO 1172:1998-12.
  • Ein solcher Faserverbundwerkstoff eignet sich insbesondere als Automobilbauteil. Solche Faserverbundwerkstoffe weisen gegenüber Stahl mehrere Vorteile auf, so sind sie leichter, zeichnen sich durch eine verbesserte Crash-Resistenz aus und sind außerdem langlebiger.
  • Es ist im Übrigen selbstverständlich, dass alle Ausführungsformen, die oben im Zusammenhang mit den erfindungsgemäßen Verfahren offenbart wurden, auch genauso in den beschriebenen Harzsystemen und gehärteten Zusammensetzungen anwendbar sind und umgekehrt.
  • Beispiele
  • DER331 (Dow Chemical, flüssiges Epoxidharz aus Epichlorhydrin und Bisphenol A) und eine Katalysator-Zusammensetzung wurden für 30s bei 2000 U/min im Vakuum im Speedmixer gemischt. Nach Abkühlen dieses Gemischs auf RT, wurde Methylendiphenyldiisocyanat (MDI) hinzugegeben und ebenfalls für 30s bei 2000 U/min im Vakuum mittels Speedmixer eingemischt. Die Reaktionsmischung wurde in eine aufrecht stehende Form eingefüllt und bei RT geliert. Danach wurde die Mischung in zwei Stufen (1h bei 90°C und 1h bei 150°C) gehärtet. Nach dem Abkühlen werden die für die mechanischen Tests benötigten Prüfkörper aus der so erhaltenen Platte gefräst. Tabelle 1: Bestandteile der Reaktionsgemische
    Figure DE102014226838A1_0002
    Tabelle 2: Physikalische Eigenschaften
    Figure DE102014226838A1_0003
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • WO 2008/147641 [0003]
  • Zitierte Nicht-Patentliteratur
    • DIN ISO 2555 [0023]
    • Norm DIN EN 2564:1998-08 [0081]
    • Norm DIN EN ISO 1172:1998-12 [0081]

Claims (13)

  1. Verfahren zur Herstellung einer gehärteten Polymerzusammensetzung, die mindestens einen Oxazolidinonring und mindestens einen Isocyanuratring umfasst, wobei das Verfahren die Schritte umfasst: (1) Bereitstellen eines flüssigen Reaktionsgemisches umfassend (a) mindestens ein flüssiges, aromatisches Epoxidharz; (b) mindestens ein flüssiges, aromatisches Polyisocyanat; und (c) eine Katalysator-Zusammensetzung; wobei das mindestens eine Epoxidharz bezogen auf das mindestens eine Polyisocyanat in Mengen eingesetzt wird, dass das molare Äquivalentverhältnis von Epoxidgruppen zu Isocyanatgruppen mindestens 0,4, insbesondere mindestens 0,7, bevorzugter mindestens 1, noch bevorzugter 1 beträgt; und (2) Härten des Reaktionsgemisches, um eine gehärtete Polymerzusammensetzung, die mindestens einen Oxazolidinonring und mindestens einen Isocyanuratring umfasst, zu erhalten.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das mindestens eine Epoxidharz ein Glycidylether, insbesondere ein aromatischer Diglycidylether ist, besonders bevorzugt ein Bisphenol Diglycidylether.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das mindestens eine Polyisocyanat ein Methylendiphenyldiisocyanat (MDI) ist.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Katalysator-Zusammensetzung mindestens eine Stickstoff-haltige Base enthält.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass Base eine ionische Verbindung der Formel (I) ist
    Figure DE102014226838A1_0004
    Formel (I) wobei R1 und R3 jeweils unabhängig voneinander ausgewählt sind aus der Gruppe, die aus substituiertem oder unsubstituiertem, linearem oder verzweigtem Alkyl mit 1 bis 20 Kohlenstoffatomen, substituiertem oder unsubstituiertem, linearem oder verzweigtem Alkenyl mit 3 bis 20 Kohlenstoffatomen und substituiertem oder unsubstituiertem Aryl mit 5 bis 20 Kohlenstoffatomen besteht; R4 und R5 jeweils unabhängig voneinander ausgewählt sind aus der Gruppe bestehend aus Wasserstoff, substituiertem oder unsubstituiertem, linearem oder verzweigtem Alkyl mit 1 bis 20 Kohlenstoffatomen, substituiertem oder unsubstituiertem, linearem oder verzweigtem Alkenyl mit 3 bis 20 Kohlenstoffatomen, substituiertem oder unsubstituiertem, linearem oder verzweigtem Alkoxy mit 1 bis 20 Kohlenstoffatomen und substituiertem oder unsubstituiertem Aryl mit 5 bis 10 Kohlenstoffatomen; oder R1 und R5 und/oder R3 und R4 oder R4 und R5 gemeinsam mit den Kohlenstoff- oder Stickstoffatomen, an die sie gebunden sind, einen 5–6 gliedrigen substituierten oder unsubstituierten Cycloalkyl-, Cycloheteroalkyl, Aryl- oder Heteroarylring, wobei der Cycloheteroalkyl- oder Heteroarylring 1 bis 3 Heteroatome ausgewählt aus O, N und S, enthält, bilden; das Anion X ein beliebiges Anion ist; „-----“ für eine Einfach- oder Doppelbindung, insbesondere eine Doppelbindung steht; und n ist 1, 2 oder 3 ist.
  6. Verfahren nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass die Katalysator-Zusammensetzung mindestens eine nichtionische Base enthält, die mindestens ein tertiäres Stickstoffatom und/oder ein Imin-Stickstoffatom umfasst, insbesondere ein Imidazol oder Imidazolidin ist.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass bezogen auf das Gesamtgewicht des Reaktionsgemisches 0,01 bis 10 Gew.%, vorzugsweise 0,05 bis 5 Gew.%, besonders bevorzugt 0,1 bis 2 Gew.% der Katalysator-Zusammensetzung nach eingesetzt werden.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass (a) das Reaktionsgemisch frei von Epoxidhärtern, die eine Polyadditionsreaktion katalysieren, ist; (b) das Reaktionsgemisch bei einer Temperatur von 120°C eine Viskosität von < 100 mPas aufweist; (c) die gehärtete Polymerzusammensetzung ein Elastizitätsmodul von mehr als 2500, vorzugsweise mehr als 3000 N/mm2 aufweist; und/oder (d) die gehärtete Polymerzusammensetzung eine Glasübergangstemperatur von mehr als 100, insbesondere mehr als 150 °C aufweist.
  9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass (a) das Reaktionsgemisch in Schritt (2) bei einer Temperatur zwischen 10 °C und 230 °C, vorzugsweise zwischen 50 °C und 190 °C und bevorzugt zwischen 90 °C und 150 °C für 0,01 Stunden bis 10 Stunden, vorzugsweise für 0,1 Stunden bis 5 Stunden bevorzugt für 1 Stunde gehärtet wird; oder (b) das Reaktionsgemisch in Schritt (2) zunächst bei einer Temperatur zwischen 50 °C und 130 °C, vorzugsweise 70 °C und 110 °C und bevorzugt bei 90 °C für 0,1 Stunden bis 3 Stunden, vorzugsweise für 0,5 Stunden bis 2 Stunden, bevorzugt für 1 Stunde und anschließend bei einer Temperatur zwischen 110 °C und 190 °C, vorzugsweise 130 °C und 170 °C und bevorzugt bei 150 °C für 0,1 Stunden bis 3 Stunden, vorzugsweise für 0,5 Stunden bis 2 Stunden, bevorzugt für 1 Stunde gehärtet wird.
  10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das Verfahren ein Spritzpress(RTM)-Verfahren und die Reaktionsmischung ein reaktives Injektionsharz ist.
  11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass Schritt (1) das Einspritzen des Injektionsharzes in ein Formwerkzeug, in das Fasern oder Faserhalbzeuge (Prewovens/Preform) eingelegt sind, umfasst.
  12. Gehärtete Polymerzusammensetzung erhältlich nach einem Verfahren der Ansprüche 1 bis 11.
  13. Gehärtete Polymerzusammensetzung nach Anspruch 12, dadurch gekennzeichnet, dass die gehärtete Polymerzusammensetzung ein Formteil, insbesondere ein faserverstärktes Formteil ist.
DE102014226838.9A 2014-12-22 2014-12-22 Oxazolidinon- und Isocyanurat-vernetzte Matrix für faserverstärktes Material Withdrawn DE102014226838A1 (de)

Priority Applications (10)

Application Number Priority Date Filing Date Title
DE102014226838.9A DE102014226838A1 (de) 2014-12-22 2014-12-22 Oxazolidinon- und Isocyanurat-vernetzte Matrix für faserverstärktes Material
JP2017551006A JP6857131B2 (ja) 2014-12-22 2015-12-18 繊維強化材料用オキサゾリジノンおよびイソシアヌレート架橋マトリックス
PCT/EP2015/080470 WO2016102359A1 (de) 2014-12-22 2015-12-18 Oxazolidinon- und isocyanurat-vernetzte matrix für faserverstärktes material
MX2017008270A MX2017008270A (es) 2014-12-22 2015-12-18 Matriz reticulada con oxazolidinona e isocianurato para material reforzado con fibra.
KR1020177019505A KR102515686B1 (ko) 2014-12-22 2015-12-18 섬유 강화 재료용 옥사졸리디논- 및 이소시아누레이트-가교 매트릭스
EP15816757.7A EP3237476A1 (de) 2014-12-22 2015-12-18 Oxazolidinon- und isocyanurat-vernetzte matrix für faserverstärktes material
CN201580070023.2A CN107108844A (zh) 2014-12-22 2015-12-18 纤维增强材料用的噁唑烷酮和异氰脲酸酯交联的基质
BR112017013232-0A BR112017013232A2 (pt) 2014-12-22 2015-12-18 matriz reticulada de oxazolidinona e isocianurato para material reforçado com fibra
CA2971532A CA2971532A1 (en) 2014-12-22 2015-12-18 Oxazolidinone- and isocyanurate-crosslinked matrix for fiber-reinforced material
US15/622,750 US10689476B2 (en) 2014-12-22 2017-06-14 Oxazolidinone- and isocyanurate-crosslinked matrix for fiber-reinforced material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102014226838.9A DE102014226838A1 (de) 2014-12-22 2014-12-22 Oxazolidinon- und Isocyanurat-vernetzte Matrix für faserverstärktes Material

Publications (1)

Publication Number Publication Date
DE102014226838A1 true DE102014226838A1 (de) 2016-06-23

Family

ID=55025062

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102014226838.9A Withdrawn DE102014226838A1 (de) 2014-12-22 2014-12-22 Oxazolidinon- und Isocyanurat-vernetzte Matrix für faserverstärktes Material

Country Status (10)

Country Link
US (1) US10689476B2 (de)
EP (1) EP3237476A1 (de)
JP (1) JP6857131B2 (de)
KR (1) KR102515686B1 (de)
CN (1) CN107108844A (de)
BR (1) BR112017013232A2 (de)
CA (1) CA2971532A1 (de)
DE (1) DE102014226838A1 (de)
MX (1) MX2017008270A (de)
WO (1) WO2016102359A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018149844A1 (de) 2017-02-16 2018-08-23 Basf Se Polyoxazolidone und deren herstellung
WO2019063391A1 (de) 2017-09-29 2019-04-04 Basf Se Thermoplastische polyoxazolidone aus diisocyanten und diglycidylether von 2-phenyl-1,3-propandiol-derivaten
WO2020016276A1 (de) 2018-07-18 2020-01-23 Basf Se Bulkpolymerisierung von polyoxazolidon
EP3964536A1 (de) 2021-02-23 2022-03-09 Basf Se Polyoxazolidinon zwischenprodukt enthaltend ein antioxidans

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2909123T3 (es) * 2016-06-20 2022-05-05 Henkel Ag & Co Kgaa Composición curada con alta resistencia al impacto y estabilidad frente a la temperatura, que se basa en una resina epoxídica y un poliisocianato
WO2020123640A1 (en) 2018-12-11 2020-06-18 Sodano Henry A Polyisocyanurate based polymers and fiber reinforced composites
US11702499B2 (en) 2018-12-11 2023-07-18 Trimer Technologies Llc Polyisocyanurate based polymers and fiber reinforced composites
EP3763792A1 (de) * 2019-07-11 2021-01-13 Covestro Deutschland AG Verfahren zur herstellung von isocyanuraten aus uretdionen
US20220396696A1 (en) * 2019-11-18 2022-12-15 Toray Industries, Inc. Method for forming fiber-reinforced composite material and epoxy resin composition for use therein

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2359386A1 (de) * 1972-11-29 1974-06-20 Hitachi Ltd Duroplast, duroplastkomposition und herstellungsverfahren dafuer
DE3323084A1 (de) * 1983-06-27 1985-01-10 Siemens AG, 1000 Berlin und 8000 München Verfahren zur herstellung von formstoffen
DE4130329A1 (de) * 1991-09-12 1993-03-18 Bayer Ag Waermehaertbare reaktionsharzgemische, ein verfahren zu ihrer herstellung und die verwendung zur herstellung von press-massen und formkoerpern
WO2008147641A1 (en) 2007-05-29 2008-12-04 Dow Global Technologies Inc. Isocyanate-epoxy formulations for improved cure control
US20110160327A1 (en) * 2007-09-11 2011-06-30 Dow Global Technologies Inc. Isocyanate modified epoxy resin for fusion bonded epoxy foam applications

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3635894A (en) * 1969-11-06 1972-01-18 Ppg Industries Inc Curable epoxy resin compositions containing organoimidazolium salt
JPS5634010B2 (de) * 1975-02-07 1981-08-07
FR2351139A1 (fr) 1976-05-14 1977-12-09 Hitachi Ltd Composition de resines polymerisable, thermodurcissable
DE3323122A1 (de) * 1983-06-27 1985-05-23 Siemens AG, 1000 Berlin und 8000 München Verfahren zur herstellung von reaktionsharzformstoffen
FR2549277B1 (fr) 1983-07-13 1985-10-25 Alsthom Atlantique Procede d'isolation par impregnation d'un bobinage electrique, et vernis sans solvant stabilise utilisable dans ce procede
GB8912952D0 (en) * 1989-06-06 1989-07-26 Dow Rheinmuenster Epoxy-terminated polyoxazolidones,process for the preparation thereof and electrical laminates made from the epoxy-terminated polyoxazolidones
FI902943A0 (fi) 1989-07-19 1990-06-12 Siemens Ag I hetta haerdbara reaktionshartsblandningar.
JPH03255122A (ja) 1990-03-02 1991-11-14 Nippon Paint Co Ltd 熱硬化性樹脂組成物ならびに熱硬化樹脂成形物
US5223598A (en) * 1990-07-30 1993-06-29 Teijin Limited Plural liquid pack type, heat-curable polyisocyanate-polyol-polyepoxy resin composition and process for producing a shaped resin article therefrom
US5138016A (en) 1990-12-18 1992-08-11 H. B. Fuller Company Isocyanurate-free oxazolidone compound made from epoxy and a hindered isocyanate compound and a novel catalyst for their production
IT1249056B (it) * 1991-05-22 1995-02-11 Donegani Guido Ist Catalizzatori liquidi per la polimerizzazione rapida di composizioni liquide a base di poliisocianati ed epossidi.
US5314983A (en) * 1992-11-09 1994-05-24 Enichem S.P.A. Process for curing polymerizable liquid compositions based on polyisocyanates and epoxides
CN1132867C (zh) 1997-03-27 2003-12-31 三菱丽阳株式会社 用于纤维增强塑料的环氧树脂组合物、预浸渍片和用其制备的管状模制品
GB9827367D0 (en) 1998-12-11 1999-02-03 Dow Deutschland Inc Adhesive resin composition
CA2636621C (en) 2006-02-21 2013-06-25 Huntsman International Llc Process for making a polyisocyanurate composite
EP1970420A1 (de) 2007-03-15 2008-09-17 Huntsman International Llc Klebstoffzusammensetzung auf Polyisocyanatbasis
BRPI0816499A2 (pt) 2007-10-05 2019-09-24 Dow Global Technologies Inc composição de resina epóxi de revestimento em pó e artigo
CN101910230A (zh) 2007-10-26 2010-12-08 陶氏环球技术公司 用于电层合体中的含有异氰脲酸酯的环氧树脂组合物
US20100311916A1 (en) 2009-06-08 2010-12-09 Ming Jen Tzou Electric circuit board composition and a method of preparing circuit board
WO2011059633A2 (en) * 2009-11-12 2011-05-19 Dow Global Technologies Llc Polyoxazolidone resins
US9150465B2 (en) 2010-09-21 2015-10-06 Uop Llc Integration of cyclic dehydrogenation process with FCC for dehydrogenation of refinery paraffins
DE102011007897A1 (de) 2011-04-12 2012-10-18 Henkel Ag & Co. Kgaa Schlagzähmodifizierte Klebstoffe
JP2013095772A (ja) * 2011-10-28 2013-05-20 Nippon Steel & Sumikin Chemical Co Ltd 芳香族系ポリイソシアネート化合物、ビスフェノール型エポキシ樹脂、イミダゾール化合物を含有する樹脂組成物およびそれを用いた高耐熱性イソシアヌレート化硬化物
JP6117360B2 (ja) * 2012-08-20 2017-04-19 コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag 繊維補強複合材料成分およびその製造
JP2016511780A (ja) * 2013-02-01 2016-04-21 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se プロパント

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2359386A1 (de) * 1972-11-29 1974-06-20 Hitachi Ltd Duroplast, duroplastkomposition und herstellungsverfahren dafuer
DE3323084A1 (de) * 1983-06-27 1985-01-10 Siemens AG, 1000 Berlin und 8000 München Verfahren zur herstellung von formstoffen
DE4130329A1 (de) * 1991-09-12 1993-03-18 Bayer Ag Waermehaertbare reaktionsharzgemische, ein verfahren zu ihrer herstellung und die verwendung zur herstellung von press-massen und formkoerpern
WO2008147641A1 (en) 2007-05-29 2008-12-04 Dow Global Technologies Inc. Isocyanate-epoxy formulations for improved cure control
US20110160327A1 (en) * 2007-09-11 2011-06-30 Dow Global Technologies Inc. Isocyanate modified epoxy resin for fusion bonded epoxy foam applications

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Norm DIN EN 2564:1998-08
Norm DIN EN ISO 1172:1998-12

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018149844A1 (de) 2017-02-16 2018-08-23 Basf Se Polyoxazolidone und deren herstellung
US11180603B2 (en) 2017-02-16 2021-11-23 Basf Se Polyoxazolidones and production thereof
WO2019063391A1 (de) 2017-09-29 2019-04-04 Basf Se Thermoplastische polyoxazolidone aus diisocyanten und diglycidylether von 2-phenyl-1,3-propandiol-derivaten
US11401365B2 (en) 2017-09-29 2022-08-02 Basf Se Thermoplastic polyoxazolidones from diisocyanates and diglycidyl ether of 2-phenyl- 1,3-propanediol derivaitives
WO2020016276A1 (de) 2018-07-18 2020-01-23 Basf Se Bulkpolymerisierung von polyoxazolidon
CN112424253A (zh) * 2018-07-18 2021-02-26 巴斯夫欧洲公司 聚噁唑烷酮的本体聚合
CN112424253B (zh) * 2018-07-18 2024-02-27 巴斯夫欧洲公司 聚噁唑烷酮的本体聚合
EP3964536A1 (de) 2021-02-23 2022-03-09 Basf Se Polyoxazolidinon zwischenprodukt enthaltend ein antioxidans

Also Published As

Publication number Publication date
US20180051119A1 (en) 2018-02-22
MX2017008270A (es) 2017-10-02
CA2971532A1 (en) 2016-06-30
EP3237476A1 (de) 2017-11-01
US10689476B2 (en) 2020-06-23
BR112017013232A2 (pt) 2018-01-09
JP2018501391A (ja) 2018-01-18
JP6857131B2 (ja) 2021-04-14
WO2016102359A1 (de) 2016-06-30
CN107108844A (zh) 2017-08-29
KR102515686B1 (ko) 2023-03-29
KR20170097119A (ko) 2017-08-25

Similar Documents

Publication Publication Date Title
DE102014226838A1 (de) Oxazolidinon- und Isocyanurat-vernetzte Matrix für faserverstärktes Material
EP3260481B1 (de) Gehärtete zusammensetzung mit hoher schlagfestigkeit und temperaturbeständigkeit, basierend auf einem epoxidharz und einem polyisocyanat
EP2678368B1 (de) Neue härter für epoxidharze
EP3033371B2 (de) Härtbare zusammensetzung enthaltend 2,5-bisaminomethylfuran
EP3237479A1 (de) Katalysator-zusammensetzung zur härtung von epoxidgruppen-haltigen harzen
WO2008152002A1 (de) Katalysator für die härtung von epoxiden
EP2158249B1 (de) Katalysator für die härtung von epoxiden
EP2948493A2 (de) 2,2&#39;,6,6&#39;-tetramethyl-4,4&#39;-methylenbis(cyclohexylamin) als härter für epoxidharze
WO2008152005A1 (de) Katalysator für die härtung von epoxiden
DE102011012079A1 (de) Neue Härter für Epoxidharze
EP3825115A1 (de) Peo-ppo-peo triblockcopolymere als additive für epoxid-anhydrid-systeme
DE2607663A1 (de) Haertbare epoxidharzmischungen
EP2818491A1 (de) Härtbare Zusammensetzung mit hoher Bruchzähigkeit

Legal Events

Date Code Title Description
R163 Identified publications notified
R005 Application deemed withdrawn due to failure to request examination