DE102014112299A1 - Sensor - Google Patents

Sensor Download PDF

Info

Publication number
DE102014112299A1
DE102014112299A1 DE102014112299.2A DE102014112299A DE102014112299A1 DE 102014112299 A1 DE102014112299 A1 DE 102014112299A1 DE 102014112299 A DE102014112299 A DE 102014112299A DE 102014112299 A1 DE102014112299 A1 DE 102014112299A1
Authority
DE
Germany
Prior art keywords
power line
sensor
magnetic core
sensitive element
magnetically sensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102014112299.2A
Other languages
English (en)
Inventor
Fabian Beck
Taro Breuer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Electronics AG
Original Assignee
Epcos AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epcos AG filed Critical Epcos AG
Priority to DE102014112299.2A priority Critical patent/DE102014112299A1/de
Priority to PCT/EP2015/068591 priority patent/WO2016030197A1/de
Publication of DE102014112299A1 publication Critical patent/DE102014112299A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/202Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using Hall-effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/207Constructional details independent of the type of device used

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

Die vorliegende Erfindung betrifft einen Sensor (1), der eine Stromleitung (2), wobei der Sensor (1) dazu ausgestaltet ist, eine Stromstärke eines durch die Stromleitung (2) fließenden Stroms zu messen, ein erstes magnetsensitives Element (8), und einen magnetischen Kern (3), der die Stromleitung (2) zumindest teilweise umschließt und der einen ersten Spalt (5) aufweist, aufweist, wobei das erste magnetsensitive Element (8) in dem ersten Spalt (5) des magnetischen Kerns (3) angeordnet ist, und wobei die Stromleitung (2) und der magnetische Kern (3) eine Induktivität ausbilden und mit einem Kondensator (11) zu einer Filterschaltung verschaltet sind.

Description

  • Die vorliegende Erfindung betrifft einen Sensor. Insbesondere kann es sich dabei um einen Sensor zur Messung einer Stromstärke eines durch eine Stromleitung fließenden Stroms handeln.
  • Die Messung einer Stromstärke ist in verschiedensten Anwendungen erforderlich. Beispielsweise wird bei einem Elektrofahrzeug eine Hochspannung, die von einer Batterie geliefert wird, in eine geringere Spannung, beispielsweise 12 V, in einem entsprechenden DC-DC Wandler umgewandelt. Der Sensor kann dabei zur Messung der Stromstärke eines von dem DC-DC Wandler ausgegebenen Stroms eingesetzt werden.
  • Ein Sensor zur Messung einer Stromstärke wird beispielsweise in US 8,080,994 B2 beschrieben.
  • Ferner sind Filterelemente bekannt, die mit einer Stromleitung verschaltet werden können, um eine elektromagnetische Verträglichkeit (EMV, englisch: electromagnetic compatibility = EMC) zu erhöhen. Solche Filterschaltungen sind beispielsweise aus US 2013/0154766 A1 bekannt.
  • Eine Aufgabe der vorliegenden Erfindung ist es nunmehr, einen verbesserten Sensor anzugeben, der beispielsweise neben der Messung einer Stromstärke eine zusätzliche weitere Funktion erfüllt.
  • Diese Aufgabe wird durch einen Sensor gemäß dem vorliegenden Anspruch 1 gelöst.
  • Es wird ein Sensor vorgeschlagen, der eine Stromleitung, ein erstes magnetsensitives Element und einen magnetischen Kern aufweist. Der Sensor ist dazu ausgestaltet, eine Stromstärke eines durch die Stromleitung fließenden Stroms zu messen. Der magnetische Kern umschließt die Stromleitung zumindest teilweise und weist einen ersten Spalt auf. Das erste magnetsensitive Element ist in dem ersten Spalt des magnetischen Kerns angeordnet. Die Stromleitung und der magnetische Kern bilden ferner eine Induktivität aus und sind mit einem Kondensator zu einer Filterschaltung verschaltet.
  • Der Sensor erfüllt somit neben seiner eigentlichen Funktion, nämlich der Messung der durch die Stromleitung fließenden Stromstärke, eine zweite Funktion, und zwar die Bildung der Filterschaltung. Diese Filterschaltung kann beispielsweise zur Erhöhung der elektromagnetischen Verträglichkeit beitragen. Es ist somit nicht nötig, die Filterschaltung durch vollkommen separate Elemente zu realisieren. Die Integration der Filterschaltung und des Sensors ermöglicht es vielmehr, diese durch eine einzige funktionelle Einheit zu realisieren und auf diese Weise den Platzbedarf für Sensor und Filterschaltung zu reduzieren. Beispielsweise bei der Anwendung des Sensors in einem Elektrofahrzeug ist der Platzbedarf von großer Bedeutung und eine Reduzierung des benötigten Platzes stellt einen wesentlichen Vorteil dar.
  • Das magnetsensitive Element kann ein Element sein, das empfindlich für eine vorliegende magnetische Feldstärke ist. Dementsprechend kann das magnetsensitive Element zur Messung der magnetischen Feldstärke geeignet sein. Fließt durch die Stromleitung ein Strom, so wird dadurch ein magnetisches Feld, das die Stromleitung umgibt, induziert. Der Sensor kann über die Vermessung dieses magnetischen Feldes die Stromstärke ermitteln.
  • Der magnetische Kern kann aus einem ferromagnetischen Material bestehen. Insbesondere kann der magnetische Kern dazu ausgelegt sein, den Verlauf des sich um die Stromleitung bildenden magnetischen Feldes derart zu beeinflussen, dass am Ort des magnetsensitiven Elementes eine besonders hohe magnetische Feldstärke vorliegt. Auf diese Weise trägt der magnetische Kern dazu bei, die Messgenauigkeit deutlich zu erhöhen.
  • Der magnetische Kern kann ferner zu einer elektromagnetischen Abschirmung des ersten magnetsensitiven Elements gegen störende elektromagnetische Felder beitragen. Insbesondere kann der magnetische Kern verhindern, dass die Messung des ersten magnetsensitiven Elements durch störende elektromagnetische Felder verfälscht wird.
  • Die Filterschaltung kann beispielsweise einen LC-Filter aufweisen, wobei das L-Glied durch die Induktivität, die von der Stromleitung und dem magnetischen Kern ausgebildet wird, gebildet wird und das C-Glied durch den Kondensator gebildet wird. Das LC-Filter kann dazu ausgelegt sein, Oberwellenanteile eines durch die Stromleitung fließenden Gleichstroms auszufiltern.
  • Ferner kann die Filterschaltung zur Unterdrückung von Wechselstromanteilen eines durch die Stromleitung fließenden Stroms geeignet sein. Bei den Wechselstromanteilen kann es sich insbesondere um Oberwellen handeln, die beispielsweise durch eine Transformation einer Hochspannung in eine geringere Spannung in einem entsprechenden Wandler entstehen. Somit kann durch eine Verschaltung des Sensors mit dem Wandler eine elektromagnetische Verträglichkeit erhöht werden, da die Wechselstromanteile herausgefiltert werden.
  • Die Filterschaltung kann dazu ausgestaltet sein, sowohl Wechselstromanteile mit einer geringen Frequenz als auch Wechselstromanteile mit einer hohen Frequenz auszufiltern.
  • Ferner kann die Filterschaltung weitere Induktivitäten und/oder weitere Kondensatoren aufweisen. Dementsprechend kann die Filterschaltung beispielsweise ein LCL- oder ein LCLCL-Filter aufweisen. Auch die weiteren Induktivitäten können dabei durch die Stromleitung und weitere magnetische Kerne gebildet werden, die die Stromleitung derart umschließen, dass ein Luftspalt zwischen dem jeweiligen magnetischen Kern und der Stromleitung verbleibt.
  • Ferner kann der magnetische Kern einen zweiten Spalt aufweisen und ein zweites magnetsensitives Element kann in dem zweiten Spalt angeordnet sein. Auch das zweite magnetsensitive Element kann zur Messung der magnetischen Feldstärke eines Magnetfeldes geeignet sein, das durch einen durch die Stromleitung fließenden Stroms induziert wird. Durch die Verwendung des ersten und des zweiten magnetsensitiven Elementes kann eine Messgenauigkeit erhöht werden. Insbesondere ermöglicht es das zweite magnetsensitive Element, differentielle Messungen vorzunehmen.
  • Bei dem zweiten Spalt des magnetischen Kerns handelt es sich um ein optionales Merkmal, das für die Funktionsweise des Sensors nicht zwingend erforderlich ist. Allerdings kann die Messgenauigkeit erhöht werden, wenn ein zweites magnetsensitives Element in dem zweiten Spalt angeordnet wird.
  • Das erste magnetsensitive Element kann einen Hall-Sensor aufweisen. Auch das zweite magnetsensitive Element kann einen Hall-Sensor aufweisen. Hall-Sensoren stellen eine einfache und zuverlässige Möglichkeit zur Vermessung von magnetischen Feldstärken dar.
  • Das erste magnetsensitive Element kann mit einer Auswerteeinheit verschaltet sein, die dazu ausgestaltet ist, aus einer von dem ersten magnetsensitiven Element gemessenen magnetischen Feldstärke die Stromstärke des durch die Stromleitung fließenden Stroms zu berechnen. Analog kann auch das zweite magnetsensitive Element mit einer Auswerteeinheit verschaltet sein, die ebenfalls dazu ausgestaltet ist, aus der von dem zweiten magnetsensitiven Element gemessenen magnetischen Feldstärke die Stromstärke zu berechnen. Insbesondere können die jeweiligen magnetsensitiven Elemente und die jeweilige Auswerteeinheit auf einem gemeinsamen Chip angeordnet sein. Dadurch kann der Platzbedarf reduziert werden.
  • Das erste magnetsensitive Element kann seine Messdaten analog oder digital ausgeben. Ist das erste magnetsensitive Element mit der ersten Auswerteeinheit verschaltet, so kann die erste Auswerteeinheit einen Ausgabeanschluss aufweisen, an dem die von der ersten Auswerteeinheit ermittelten Messdaten entweder digital oder analog ausgegeben werden können. Gleiches gilt auch für das zweite magnetsensitive Element und die zweite Auswerteeinheit.
  • Die Stromleitung kann derart in dem magnetischen Kern angeordnet sein, dass zwischen der Stromleitung und dem magnetischen Kern eine Luftschicht angeordnet ist. Dementsprechend können sich Stromleitung und der magnetische Kern nicht berühren. Insbesondere kann die Luftschicht die Stromleitung auf jeder Seite der Stromleitung von dem magnetischen Kern trennen.
  • Durch das genaue Design der Stromleitung und des magnetischen Kerns kann die Dicke der Luftschicht festgelegt werden. Die von dem magnetischen Kern und der Stromleitung ausgebildete Induktivität hängt von der Dicke der Luftschicht ab. Die Dicke der Luftschicht kann nunmehr derart gewählt werden, dass sich eine gewünschte Induktivität ergibt.
  • Der Sensor kann zumindest einen weiteren magnetischen Kern aufweisen, der die Stromleitung zumindest teilweise umschließt. Dabei können dieser weitere magnetische Kern und die Stromleitung eine zweite Induktivität ausbilden, die ebenfalls einen Teil der Filterschaltung bildet. Die zweite Induktivität kann ein L-Glied der Filterschaltung sein.
  • Gemäß einem weiteren Aspekt der vorliegenden Erfindung betrifft diese eine Schaltungsanordnung, die einen Wandler zur Umwandlung elektrischer Spannungen und den oben beschriebenen Sensor aufweist.
  • Bei dem Wandler kann es sich insbesondere um einen Wandler handeln, der dazu ausgestaltet ist, eine Hochspannung in eine Niedrigspannung umzuwandeln. Solche Wandler werden beispielsweise in Elektrofahrzeugen zur Umwandlung einer von einer Batterie gelieferten Hochspannung eingesetzt. Der oben beschriebene Sensor kann dabei sowohl zur Messung der von dem Wandler ausgegebenen Stromspannung eingesetzt werden, als auch zur Unterdrückung von Oberwellen, die bei der Spannungswandlung entstehen.
  • Insbesondere kann der Sensor dabei mit einem Ausgang des Wandlers verschaltet sein. Der Sensor ermöglicht es dabei, zum einen die Stromstärke des vom Wandler ausgegebenen Stroms zu messen als auch mittels der Filterschaltung Wechselstromanteile in dem vom Wandler ausgegebenen Strom auszufiltern.
  • Bei dem Wandler kann es sich insbesondere um einen DC-DC Wandler handeln.
  • Im Folgenden wird die Erfindung anhand von Figuren und Ausführungsbeispielen näher erläutert.
  • 1 zeigt einen Querschnitt durch einen Sensor gemäß einem ersten Ausführungsbeispiel.
  • 2 zeigt einen Sensor in einer perspektivischen Seitenansicht.
  • 3 zeigt einen Querschnitt durch einen Sensor gemäß einem zweiten Ausführungsbeispiel.
  • 1 zeigt einen Querschnitt durch einen Sensor 1. Der Sensor 1 ist dazu ausgestaltet, eine Stromstärke eines durch eine Stromleitung 2 fließenden Stroms zu messen. Die Stromleitung 2 ist dabei Bestandteil des Sensors.
  • Der Sensor 1 weist ferner einen magnetischen Kern 3 auf. Der magnetische Kern 3 weist ein magnetisches Material, insbesondere ein ferromagnetischen Material, auf. Insbesondere kann der magnetische Kern 3 aus dem magnetischen Material, bzw. dem ferromagnetischen Material, bestehen. Der magnetische Kern 3 umschließt die Stromleitung 2 zumindest teilweise.
  • Der magnetische Kern 3 weist zwei C-förmige Teile auf, die die Stromleitung 2 derart umschließen, dass sie sich nicht berühren, sondern ein erster Spalt 5 und ein zweiter Spalt 9 zwischen ihnen ausgebildet werden.
  • In dem in 1 gezeigten Ausführungsbeispiel weist die Stromleitung 2 einen rechtwinkligen Querschnitt auf. Der magnetische Kern 3 hat einen im Wesentlichen viereckigen Querschnitt, wobei ein innerer, ebenfalls viereckiger, Bereich des magnetischen Kerns 3 ausgeschnitten ist. In diesem ausgeschnittenen Bereich ist die Stromleitung 2 angeordnet. Ferner sind zwei dünne Streifen ausgeschnitten, die den ersten Spalt 5 und den zweiten Spalt 9 ausbilden.
  • Alternativ können die Stromleitung 2 und der magnetische Kern 3 einen beliebigen andersförmigen Querschnitt aufweisen. Beispielsweise könnte die Stromleitung 2 einen runden Querschnitt aufweisen und der magnetische Kern 3 könnte einen O-förmigen Querschnitt aufweisen.
  • Insbesondere ist die Stromleitung 2 derart angeordnet, dass zwischen der Stromleitung 2 und dem magnetischen Kern 3 eine Luftschicht 4 verbleibt. Insbesondere ist die Luftschicht 4 auf jeder Seite der Stromleitung 2 angeordnet, so dass die Luftschicht 4 die Stromleitung 2 von der jeweiligen Innenseite 7 des magnetischen Kerns 3 trennt. Dementsprechend berühren sich der magnetische Kern 3 und die Stromleitung 2 nicht unmittelbar.
  • Ferner weist der magnetische Kern 3 den ersten Spalt 5 auf. Der erste Spalt 5 erstreckt sich durch den magnetischen Kern 3. Insbesondere verbindet der erste Spalt 5 eine Außenseite 6 des magnetischen Kerns 3 mit einer Innenseite 7 des magnetischen Kerns 3. In dem ersten Spalt 5 ist ein erstes magnetsensitives Element 8 angeordnet.
  • Ferner weist der magnetische Kern 3 in dem in 1 gezeigten Ausführungsbeispiel den zweiten Spalt 9 auf. Der zweite Spalt 9 ist an einer anderen Stelle als der erste Spalt 8 angeordnet.
  • Ändert sich nun ein durch die Stromleitung 2 fließender Gleichstrom oder weist ein durch die Stromleitung 2 fließender Gleichstrom Wechselstromanteile auf, wird in beiden Fällen ein magnetisches Feld induziert, das die Stromleitung 2 umgibt. Durch den magnetischen Kern 3 wird das magnetische Feld eingefangen und geformt. Insbesondere ist der magnetische Kern 3 dazu ausgestaltet, das magnetische Feld zu dem ersten magnetsensitiven Element 8 hinzuleiten. Dementsprechend sorgt der magnetische Kern 3 dafür, dass am Ort des ersten magnetsensitiven Elementes 8 eine besonders hohe Feldstärke vorliegt.
  • Das erste magnetsensitive Element 8 ist dazu ausgestaltet, die magnetische Flussdichte an seinem Ort zu messen. Beispielsweise kann das erste magnetsensitive Element 8 einen Hall-Sensor aufweisen. Ferner ist das erste magnetsensitive Element 8 mit einer ersten Auswerteeinheit 10 verschaltet. Insbesondere können das erste magnetsensitive Element 8 und die erste Auswerteeinheit 10 auf einem gemeinsamen Chip angeordnet sein. Die erste Auswerteeinheit 10 ist nunmehr dazu ausgestaltet, auf Basis der von dem ersten magnetsensitiven Element 8 gemessenen magnetischen Feldstärke die in der Stromleitung 2 vorliegende Stromstärke zu berechnen.
  • 2 zeigt eine seitliche Ansicht des in 1 im Querschnitt dargestellten Sensors 1. In 2 ist dargestellt, dass die Stromleitung 2 ferner mit einem Kondensator 11 verschaltet ist. Ein erster Anschluss 12 des Kondensators 11 ist elektrisch mit der Stromleitung 2 kontaktiert. Ferner weist der Kondensator 11 einen zweiten Anschluss 13 auf. Der zweite Anschluss 13 des Kondensators 11 kann beispielsweise mit einem Referenzpotential (nicht gezeigt) verbunden sein. Bei dem Referenzpotential kann es sich beispielsweise um ein Gehäuse handeln, an dem ein Massepotential vorliegt. Alternativ kann der Kondensator 11 mit einer weiteren Stromleitung oder mit einem weiteren Kondensator verbunden sein.
  • Der magnetische Kern 3 und die Stromleitung 2 bilden eine Induktivität. Aufgrund der Luftschicht 4, die zwischen dem magnetischen Kern 3 und der Stromleitung 2 angeordnet ist, bildet sich die Induktivität. Zusammen mit der Kapazität des Kondensators 11 bildet diese Induktivität ein LC-Filter. Das LC-Filter bildet hier eine Filterschaltung zur elektromagnetischen Verträglichkeit aus. Insbesondere kann das Filter Wechselstromanteile eines durch die Stromleitung 2 fließenden Stroms unterdrücken. Beispielsweise kann im Wesentlichen ein Gleichstrom durch die Stromleitung 2 fließen, der jedoch Oberwellen mit einem Wechselstromanteil aufweist. Das LC-Filter ist dazu ausgestaltet, diese Oberwellen auszufiltern.
  • In 2 ist ferner ein zweiter optionaler magnetischer Kern 14 dargestellt. Der zweite magnetische Kern 14 ist baugleich zu dem ersten magnetischen Kern 3 und umschließt ebenfalls die Stromleitung 2 zumindest teilweise. In dem zweiten magnetischen Kern 14 ist jedoch kein magnetsensitives Element angeordnet.
  • Auch zwischen dem zweiten magnetischen Kern 14 und der Stromleitung 2 ist eine Luftschicht angeordnet, die dafür sorgt, dass der zweite magnetische Kern 14 und die Stromleitung 2 ebenfalls eine Induktivität ausbilden. Die beiden Induktivitäten und die Kapazität des Kondensators 11 bilden in dem in 2 gezeigten Ausführungsbeispiel ein LCL-Filter aus, das zur elektromagnetischen Verträglichkeit beiträgt. Ferner können weitere Induktivitäten und/oder weitere Kondensatoren vorgesehen sein, die weitere L- oder C-Glieder einer Filterschaltung ausbilden.
  • 3 zeigt ein zweites Ausführungsbeispiel des Sensors 1. Der in 3 gezeigte Sensor 1 unterscheidet sich von dem in 1 gezeigten Sensor 1 lediglich dahingehend, dass in dem zweiten Spalt 9 des magnetischen Kerns 3 ein zweites magnetsensitives Element 15 angeordnet ist. Das zweite magnetsensitive Element 15 ist ebenfalls zur Messung der magnetischen Feldstärke eines durch die Stromleitung 2 fließenden Stroms ausgelegt. Das zweite magnetsensitive Element 15 ist auf einem Chip angeordnet, auf dem eine zweite Auswerteeinheit 16 angeordnet ist. Die zweite Auswerteeinheit 16 berechnet wiederum aus den Messdaten des zweiten magnetsensitiven Elementes 15 die Stromstärke des durch die Stromleitung 2 fließenden Stroms.
  • Durch die Verwendung zweier magnetsensitiver Elemente 8, 15 kann die Messgenauigkeit erhöht werden. Darüber hinaus ermöglicht es die Verwendung zweier magnetsensitiver Elemente 8, 15, eine differentielle Messung vorzunehmen.
  • Bezugszeichenliste
  • 1
    Sensor
    2
    Stromleitung
    3
    magnetischer Kern
    4
    Luftschicht
    5
    erster Spalt
    6
    Außenseite des magnetischen Kerns
    7
    Innenseite des magnetischen Kerns
    8
    erste magnetsensitive Element
    9
    zweiter Spalt
    10
    erste Auswerteeinheit
    11
    Kondensator
    12
    erster Anschluss
    13
    zweiter Anschluss
    14
    zweiter magnetischer Kern
    15
    zweite magnetsensitive Element
    16
    zweite Auswerteeinheit
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • US 8080994 B2 [0003]
    • US 2013/0154766 A1 [0004]

Claims (10)

  1. Sensor (1), aufweisend: eine Stromleitung (2), wobei der Sensor (1) dazu ausgestaltet ist, eine Stromstärke eines durch die Stromleitung (2) fließenden Stroms zu messen, ein erstes magnetsensitives Element (8), und einen magnetischen Kern (3), der die Stromleitung (2) zumindest teilweise umschließt und der einen ersten Spalt (5) aufweist, wobei das erste magnetsensitive Element (8) in dem ersten Spalt (5) des magnetischen Kerns (3) angeordnet ist, und wobei die Stromleitung (2) und der magnetische Kern (3) eine Induktivität ausbilden und mit einem Kondensator (11) zu einer Filterschaltung verschaltet sind.
  2. Sensor (1) gemäß Anspruch 1, wobei die Filterschaltung zur Unterdrückung von Wechselstromanteilen eines durch die Stromleitung (2) fließenden Stroms geeignet ist.
  3. Sensor (1) gemäß einem der vorherigen Ansprüche, wobei die Filterschaltung weitere Induktivitäten und/oder weitere Kondensatoren aufweist.
  4. Sensor (1) gemäß einem der vorherigen Ansprüche, wobei der magnetische Kern (3) einen zweiten Spalt (9) aufweist und ein zweites magnetsensitives Element (15) in dem zweiten Spalt (9) angeordnet ist.
  5. Sensor (1) gemäß einem der vorherigen Ansprüche, wobei das erste magnetsensitive Element (8) einen Hall-Sensor (1) aufweist.
  6. Sensor (1) gemäß einem der vorherigen Ansprüche, wobei das erste magnetsensitive Element (8) mit einer Auswerteeinheit (10) verschaltet ist, die dazu ausgestaltet ist, aus einer von dem ersten magnetsensitiven Element (8) gemessenen magnetischen Feldstärke die Stromstärke des durch die Stromleitung (2) fließenden Stroms zu berechnen.
  7. Sensor (1) gemäß Anspruch 6, wobei das erste magnetsensitive Element (8) und die Auswerteeinheit (10) auf einem gemeinsamen Chip angeordnet sind.
  8. Sensor (1) gemäß einem der vorherigen Ansprüche, wobei die Stromleitung (2) derart in dem magnetischen Kern (3) angeordnet ist, dass zwischen der Stromleitung (2) und dem magnetischen Kern (3) eine Luftschicht (4) angeordnet ist.
  9. Sensor (1) gemäß einem der vorherigen Ansprüche, wobei der Sensor (1) einen weiteren magnetischen Kern (3) aufweist, der die Stromleitung (2) zumindest teilweise umschließt.
  10. Schaltungsanordnung, aufweisend einen Wandler zur Umwandlung elektrischer Spannungen und einen Sensor (1) gemäß einem der vorherigen Ansprüche.
DE102014112299.2A 2014-08-27 2014-08-27 Sensor Pending DE102014112299A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102014112299.2A DE102014112299A1 (de) 2014-08-27 2014-08-27 Sensor
PCT/EP2015/068591 WO2016030197A1 (de) 2014-08-27 2015-08-12 Sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102014112299.2A DE102014112299A1 (de) 2014-08-27 2014-08-27 Sensor

Publications (1)

Publication Number Publication Date
DE102014112299A1 true DE102014112299A1 (de) 2016-03-03

Family

ID=53835450

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102014112299.2A Pending DE102014112299A1 (de) 2014-08-27 2014-08-27 Sensor

Country Status (2)

Country Link
DE (1) DE102014112299A1 (de)
WO (1) WO2016030197A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020058410A1 (de) 2018-09-20 2020-03-26 Valeo Siemens Eautomotive Germany Gmbh Formteil zur aufnahme eines c-förmigen magnetfeldkonzentrationselements, magnetfeldkonzentrationsvorrichtung und stromrichter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1026805B1 (de) 2018-11-27 2020-06-30 Phoenix Contact Gmbh & Co Lagekompensierte Strommesseinrichtung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5982645A (en) * 1992-08-25 1999-11-09 Square D Company Power conversion and distribution system
US8080994B2 (en) 2006-05-12 2011-12-20 Allegro Microsystems, Inc. Integrated current sensor
US20130154766A1 (en) 2011-12-20 2013-06-20 Schaffner Emv Ag Feed through emc filter
US20140009143A1 (en) * 2012-07-06 2014-01-09 Senis Ag Magnetic Transducer And Current Transducer For Measuring An Electrical Current

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH343529A (de) * 1955-06-10 1959-12-31 Siemens Ag Elektrischer Messumformer für Wechselstromgrössen
US6429639B1 (en) * 1997-01-21 2002-08-06 International Rectifier Corporation Combined filter inductor and hall current sensor
DE10240239A1 (de) * 2002-08-31 2004-03-11 Robert Bosch Gmbh Hochgenauer Hall-Sensor mit mehreren Kontaktpaaren
JP4525554B2 (ja) * 2005-10-21 2010-08-18 株式会社デンソー 電流センサ
DE112012001304B4 (de) * 2012-11-08 2015-01-08 Mitsubishi Electric Corporation Rauschfilter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5982645A (en) * 1992-08-25 1999-11-09 Square D Company Power conversion and distribution system
US8080994B2 (en) 2006-05-12 2011-12-20 Allegro Microsystems, Inc. Integrated current sensor
US20130154766A1 (en) 2011-12-20 2013-06-20 Schaffner Emv Ag Feed through emc filter
US20140009143A1 (en) * 2012-07-06 2014-01-09 Senis Ag Magnetic Transducer And Current Transducer For Measuring An Electrical Current

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
In: Wikipedia, Die freie Enzyklopädie. Bearbeitungsstand: 21. Januar 2014, 11:29 Uhr URL: http://de.wikipedia.org/w/index.php?title=Ferritkern&oldid=126704512 [abgerufen am 08.05.2015] *
Sentron AG, a Melexis Company: CSA-1V, IMC-Hall® Current Sensor, Preliminary Rev. 005 Juni 2013; Melexis Microelectronic Systems . Sint Krispijnstraat z/n, B-8900 Ieper, Belgium - Firmenschrift *
Sentron AG, a Melexis Company: CSA-1V, IMC-Hall® Current Sensor, Preliminary Rev. 005 Juni 2013; Melexis Microelectronic Systems • Sint Krispijnstraat z/n, B-8900 Ieper, Belgium – Firmenschrift

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020058410A1 (de) 2018-09-20 2020-03-26 Valeo Siemens Eautomotive Germany Gmbh Formteil zur aufnahme eines c-förmigen magnetfeldkonzentrationselements, magnetfeldkonzentrationsvorrichtung und stromrichter

Also Published As

Publication number Publication date
WO2016030197A1 (de) 2016-03-03

Similar Documents

Publication Publication Date Title
DE102013108166B4 (de) Vorrichtung zum erfassen von wechselstromanteilen in einem gleichstromkreis und verwendung der vorrichtung
DE102017105839A1 (de) Aktives Filter
DE102013225645A1 (de) Stromsensor und Regelschaltung
DE102005028572B4 (de) Stromsensoranordung mit einem Magnetkern
DE102017213543B4 (de) Filteranordnung, Spannungswandler mit einer Filteranordnung
DE102007003830A1 (de) Vorrichtung zur Messung eines durch einen elektrischen Leiter fließenden elektrischen Stroms
DE102013106099A1 (de) Stromsensoranordnung
DE112015005689T5 (de) Stromfühler und Messvorrichtung
EP3335013A1 (de) Vorrichtung zum messen einer messgrösse
DE102007036674A1 (de) Anordnung zur Messung eines in einem elektrischen Leiter fließenden Stroms
DE102014112299A1 (de) Sensor
DE102013106100A1 (de) Stomsensoranordnung mit Messspulen
DE102018210466A1 (de) Stromstärkeerfassungsgerät und Messgerät
DE60021433T2 (de) Verfahren und Vorrichtung zur Steuerung der Gleichtaktimpedanzasymmetrie einer isolierten unsymmetrieschen Schaltung
DE102017215722A1 (de) Einrichtung zur Messung zeitlich veränderlicher Ströme
DE102018128469B4 (de) Magnetfeldsensor mit geringem Rauschen und hoher Bandbreite
DE102012202179A1 (de) Magnetfeldsensor und Verfahren zum Herstellen eines Magnetfeldsensors
DE102019124391B4 (de) Magnetfeldbasierter Stromsensor zur frequenzkompensierten Messung von Wechselströmen
DE102007027419A1 (de) Induktiver Messumformer für Weg oder Winkel
DE102019217083A1 (de) Überwachungsanordnung zur Erkennung von Zuleitungsfehlern für ein Steuergerät
DE202019102390U1 (de) Schaltzellenanordnung zur Reduktion des Funkstörspannungsspektrums einer elektronischen Kommutierungseinrichtung
DE102017123815A1 (de) Wechselrichter und verfahren zum betrieb eines wechselrichters
DE102017223322A1 (de) Transformatorkern und Transformator
EP3227640A1 (de) Induktive positionsbestimmung
DE102016109276A1 (de) Messvorrichtung und Messverfahren zum Messen eines elektrischen Stroms mit einer Rogowski-Spule

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R081 Change of applicant/patentee

Owner name: TDK ELECTRONICS AG, DE

Free format text: FORMER OWNER: EPCOS AG, 81669 MUENCHEN, DE

R082 Change of representative

Representative=s name: EPPING HERMANN FISCHER PATENTANWALTSGESELLSCHA, DE