BE1026805B1 - Lagekompensierte Strommesseinrichtung - Google Patents

Lagekompensierte Strommesseinrichtung Download PDF

Info

Publication number
BE1026805B1
BE1026805B1 BE20185829A BE201805829A BE1026805B1 BE 1026805 B1 BE1026805 B1 BE 1026805B1 BE 20185829 A BE20185829 A BE 20185829A BE 201805829 A BE201805829 A BE 201805829A BE 1026805 B1 BE1026805 B1 BE 1026805B1
Authority
BE
Belgium
Prior art keywords
housing
current
sensor
electrical conductor
probe ring
Prior art date
Application number
BE20185829A
Other languages
English (en)
Other versions
BE1026805A1 (de
Inventor
Tobias Stadtfelder
Original Assignee
Phoenix Contact Gmbh & Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Phoenix Contact Gmbh & Co filed Critical Phoenix Contact Gmbh & Co
Priority to BE20185829A priority Critical patent/BE1026805B1/de
Priority to PCT/EP2019/081807 priority patent/WO2020109084A1/de
Priority to CN201980078339.4A priority patent/CN113167819A/zh
Priority to DE112019004249.1T priority patent/DE112019004249A5/de
Priority to US17/295,795 priority patent/US11885833B2/en
Publication of BE1026805A1 publication Critical patent/BE1026805A1/de
Application granted granted Critical
Publication of BE1026805B1 publication Critical patent/BE1026805B1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/202Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using Hall-effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/205Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using magneto-resistance devices, e.g. field plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/207Constructional details independent of the type of device used
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/32Compensating for temperature change

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

Es wird ein Strommessumformer vorgestellt zur Messung einer Stromstärke in einem durch den Strommessumformer hindurch erstreckbaren elektrischen Leiter, umfassend ein Gehäuse mit einem Gehäusebasisabschnitt und zumindest ein mit dem Gehäusebasisabschnitt kuppelbares Gehäusegegenstück, wobei der Gehäusebasisabschnitt mit dem Gehäusegegenstück in einem geschlossenen Zustand miteinander gekuppelt ist und eine zentrale Durchgangsöffnung gebildet wird und wobei der elektrische Leiter in der zentralen Durchgangsöffnung zwischen dem Gehäusebasisabschnitt und dem Gehäusegegenstück anordenbar ist, so dass sich der elektrische Leiter durch das Gehäuse hindurch erstreckt, wobei der Gehäusebasisabschnitt einen ersten Teil und das Gehäusegegenstück einen zweiten Teil eines Sondenringes umfasst, so dass sich im geschlossenen Zustand des Gehäuses ein um den Leiter geschlossener Sondenring bildet, wenn der Leiter in den Strommessumformer eingesetzt ist, und mit zumindest zwei Sensoren zur gleichzeitigen Messung der Stromstärke des elektrischen Leiters und zur Erzeugung eines ersten und zweiten Sensorsignals, und ferner mit einer Auswertungseinrichtung in dem Strommessumformer hergerichtet zur zeitgleichen Auswertung des ersten und zweiten Sensorsignals und zur Ausgabe eines korrigierten Ausgabesignals.

Description

Lagekompensierte Strommesseinrichtung
Beschreibung
Gebiet der Erfindung
Die Erfindung betrifft eine lagekompensierte Strommesseinrichtung zur Messung einer Stromstärke, die durch einen elektrischen Leiter fließt.
Hintergrund der Erfindung
Strommessumformer sind in der Literatur in verschiedenen Ausführungen beschrieben. Sie dienen dazu, die Stromstärke, die durch einen elektrischen Leiter fließt bzw. die dort herrscht, zu erfassen und ein nutzbares Signal auszugeben, welches die Stromstärke widerspiegelt. Es gibt Strommessumformer mit invasiven Strommessmitteln, wie beispielsweise eine Nadel, die in den Leiter eingedrückt wird. Es sind auch berührungsfreie Strommessumformer bekannt, die die Stromstärke des elektrischen Leiters berührungslos abfühlen. Solche bekannten Strommessumformer können einen Sondenring aufweisen, der um den elektrischen Leiter geschlossen ist, so sich dass der elektrische Leiter durch den Sondenring des Strommessumformers hindurch erstreckt.
Der berührungsfreie Strommessumformer erlaubt eine elektrische Trennung bzw. eine Potentialtrennung zwischen dem elektrischen Leiter einerseits und dem Strommessumformer andererseits. Hierdurch wird ein Schutz des Strommessumformers vor der bisweilen hohen Stromstärke bzw. Spannung des elektrischen Leiters erreicht.
Bekannte Strommessumformer können ein Gehäuse aufweisen, welches sich geschlossen um den elektrischen Leiter erstreckt. Im Inneren des Gehäuses ist dann ein Aufnahmeraum zur Aufnahme des elektrischen Leiters gebildet. In dem Gehäuse ist ein Sondenring, mit welchem das den Leiter umgebende Magnetfeld fokussiert wird. In dem Sondenring kann eine Sonde eingebracht sein, mittels welcher schließlich der elektrische Strom des Leiters gemessen wird. Beispiele für die vorgenannten bekannten Ausführungen finden sich z.B. in der US 2015/0212117 A1, oder der DE 10 2007 035 184 A1, oder der US 2013/0342188 A1, oder der DE 10 2014 119 276 A1.
Aus der DE 10 2007 035 184 A1 ist bekannt, mehrere Magnetfeldsensoren einzusetzen, um äußere Störfelder zu kompensieren.
Jedoch lassen sich mit dem vorgezeigten Ausführungen Fehler, die in der Anordnung selbst begründet sind, nicht oder nur unzureichend beheben. So ist zwar beispielsweise bekannt, wie
BE2018/5829
z.B. in der vorgenannten DE 10 2007 035 184 A1, Positionierhilfen einzusetzen, die Fehljustagen vermeiden helfen. Ein einmal fehljustierter Sondenring misst allerdings dennoch fehlerhaft und der Fachmann wird eine solche fehlerhafte Messung nicht ohne Weiteres erkennen.
Weiter sind die bekannten Aufbauten daran begrenzt, dass der zu messende elektrische Leiter exakt mittig im Inneren des Sondenringes angeordnet sein muss, damit keine fehlerhafte Messung zu Stande kommt. Hierzu werden bekannte Sondenringe am zu messenden Kabel beispielsweise vergossen. Die zuvor genannte DE 10 2007 035 184 A1 setzt hierfür Klemmbacken ein, die den Leiter möglichst in der Mitte der Anordnung halten sollen. Werden die Klemmbacken allerdings vergessen, oder nicht korrekt eingesetzt, oder altern diese, so wird sich abermals eine fehlerhafte Messung einstellen und der Fachmann wird den daraus resultierenden Fehler im niedrigen Prozent-Bereich nicht so leicht dem fehlerhaften Aufbau zuordnen können. Es wird aber heutzutage als erforderlich erachtet, einen möglichst geringen Messfehler bei der Messung von Stromstärken eines elektrischen Leiters zu erzielen, möglichst sogar einen Messfehler von unter 1 % des Messwertes oder weniger.
Allgemeine Beschreibung der Erfindung
Die Erfinder haben erkannt, dass zur Erzielung der gewünschten niedrigen Fehlerrate eines Strommessumformers auch diese Fehler kompensierbar sein müssen, die von dem Aufbau des Strommessumformers selbst ausgehen. Dabei haben die Erfinder auch erkannt, dass bereits Abweichungen in Größen von Mikrometern im Aufbau des Sondenringes Messfehler im ProzentBereich erzeugen können.
Die vorliegende Erfindung ermöglicht es daher, aufbauinhärente Fehler zu kompensieren. Ein solcher selbstkompensierender Strommessumformer bietet eine bequeme Basis für eine Strommessung, da der Strommessumformer gemäß der vorliegenden Erfindung Fehljustagen selbsttätig kompensieren kann. So ermöglicht die vorliegende Erfindung einen bequemeren und zügigen Einbau, und erhöht gleichzeitig die Fehlertoleranz und die Standfestigkeit für einen Strommessumformer.
Da die vorliegende Erfindung eines selbstkompensierenden Strommessumformers auch dazu führt, dass nicht mehr mehrere Geräte ausprobiert und langwierig eingestellt werden müssen, um eine akzeptable Messung zu erreichen mit besonders niedrigen Fehlerwerten, ist der vorliegende selbstkompensierende Strommessumformer insgesamt sogar besonders kostengünstig, und qualitativ hochwertig.
BE2018/5829
Die Erfindung vermag es daher, die in der Beschreibung im Verhältnis zu bekannten Aufbauten genannten Nachteile zu überwinden.
Der erfindungsgemäße Strommessumformer zur Messung einer Stromstärke in einem durch den Strommessumformer hindurch erstreckbaren elektrischen Leiter umfasst ein Gehäuse mit einem Gehäusebasisabschnitt und zumindest ein mit dem Gehäusebasisabschnitt kuppelbares Gehäusegegenstück. Die Aufteilung des Gehäuses in Basisabschnitt und Gegenstück erlaubt die einfache Montage an einem Leiter, insbesondere also die nachträgliche Montage an einem Leiter, der bereits mit seinen beiden Enden elektrisch verdrahtet ist, ohne den Leiter abzunehmen oder zu durchtrennen.
Der Gehäusebasisabschnitt des erfindungsgemäßen Strommessumformers ist mit dem Gehäusegegenstück in einem geschlossenen Zustand miteinander gekuppelt und bildet mit diesem eine zentrale Durchgangsöffnung, wobei der elektrische Leiter in der zentralen Durchgangsöffnung zwischen dem Gehäusebasisabschnitt und dem Gehäusegegenstück anordenbar ist, so dass sich der elektrische Leiter durch das Gehäuse hindurch erstreckt. Der Gehäusebasisabschnitt umfasst ferner einen ersten Teil eines Sondenringes, das Gehäusegegenstück einen zweiten Teil des Sondenringes, so dass sich im geschlossenen Zustand des Gehäuses ein um den Leiter geschlossener Sondenring bildet, wenn der Leiter in den Strommessumformer eingesetzt ist.
Der erfindungsgemäße Strommessumformer umfasst zumindest zwei Sensoren zur gleichzeitigen Messung der Stromstärke des elektrischen Leiters und zur Erzeugung eines ersten und zweiten Sensorsignals. Mit anderen Worten sind in dem Strommessumformer zwei Sensoren angeordnet, welche gleichzeitig und unabhängig voneinander den Strom des elektrischen Leiters messen und einen jeweiligen Messwert bereitstellen.
Der Strommessumformer verfügt ferner über eine Auswertungseinrichtung in dem Strommessumformer, die hergerichtet ist zur zeitgleichen Auswertung des ersten und zweiten Sensorsignals und zur Ausgabe eines korrigierten Ausgabesignals. Es ist also eine Auswertungseinrichtung in dem Strommessumformer angeordnet, die zumindest einen ersten Eingang zum Einlesen des ersten Sensorsignals und einen zweiten Eingang zum Einlesen des zweiten Sensorsignals aufweist und die ferner einen Ausgang aufweist zur Abgabe eines korrigierten Ausgabesignals, welches sich beispielsweise aus dem ersten Sensorsignal und dem zweiten Sensorsignal berechnet. Die zeitgleiche Auswertung kann je nach Rechenleistung der Auswertungseinrichtung einen Kurzzeitspeicher und eine sequentielle Abarbeitung der
BE2018/5829
Rechenoperatoren beinhalten, oder eine tatsächliche parallele Abarbeitung der beiden Sensorsignale.
Der erfindungsgemäße Strommessumformer berücksichtigt also zumindest zwei verschiedene Sensorsignale, die insbesondere an unterschiedlichen Orten des Sondenrings angeordnet sind, beispielsweise an gegenüberliegenden Orten, so dass der elektrische Leiter zwischen dem ersten Sensor und dem zweiten Sensor angeordnet ist. Die zumindest zwei verschiedenen Sensorsignale, d.h. die Anzahl der Sensorsignale, wird von der Auswertungseinrichtung eingelesen und verarbeitet.
In einem Beispiel führt die Auswertungseinrichtung eine Mittelwertbildung der Anzahl der Sensorsignale durch, indem die Anzahl der Sensorsignale betragsmäßig addiert und die Summe durch die Anzahl der Sensorsignale geteilt wird. Auch eine Subtraktion der Sensorsignale voneinander kann zum korrigierten Ausgabesignal führen.
Die Auswertungseinrichtung kann in dem Gehäusegegenstück beherbergt sein. Wenn der Gehäusebasisabschnitt zur Befestigung des Strommessumformers an einem Träger, wie einer Befestigungsschiene, ausgebildet ist, so gewährleistet die Anordnung der
Auswertungseinrichtung in dem Gehäusegegenstück eine Dämpfung bzw. teilweise Entkopplung von dem Träger.
Die Auswertungseinrichtung kann einen Mikrocontroller umfassen zum Durchführen der Berechnungen, die mit den Sensorsignalen durchgeführt wird.
Der Strommessumformer kann hergerichtet sein, sowohl Gleichspannungssignale als auch Wechselspannungssignale zu verarbeiten. Diese besondere Funktion wird erst dadurch ermöglicht, dass die Auswertungseinrichtung die Sensorsignale verarbeitet, beispielsweise durch die Mittelwertbildung. Die vorliegende erfindungsgemäße Ausgestaltung des
Strommessumformers vermag die Verarbeitung - wenn es notwendig sein sollte die gleichzeitige Verarbeitung - von Gleichspannungs- und Wechselspannungssignalen.
Die Auswertungseinrichtung kann das erste Sensorsignal und das zweite Sensorsignal gleichzeitig aufnehmen und bevorzugt so verarbeiten, dass ein Signalausgleich zwischen dem ersten Sensorsignal und dem zweiten Sensorsignal durchgeführt wird. Ein solcher Signalausgleich kann die angesprochene Mittelwertbildung sein.
Der Strommessumformer bildet daher bevorzugt eine selbständige Lagekompensation aus dergestalt, dass das erste und zweite Sensorsignal bezüglich einer Lage des elektrischen Leiters in dem Strommessumformer korrigiert wird. Mit anderen Worten ist der Strommessumformer so
BE2018/5829 hergerichtet, dass auch bei einer fehlerhaften Lage des elektrischen Leiters ein kompensiertes Signal mit einer niedrigen Fehlerabweichung ausgegeben wird und daher eine fehlerhafte Lage selbständig kompensiert wird. Eine manuelle Justage oder Neumontage und aufwändige Fehlersuche kann daher in besonders vorteilhafter Weise entfallen.
Dies erlaubt auch, dass Einbauabweichungen beim Einbau des Strommessumformers an den elektrischen Leiter mittels Signalausgleich zwischen dem ersten Sensorsignal und dem zweiten Sensorsignal kompensiert werden können.
Die Auswertungseinrichtung kann hergerichtet sein, den Signalausgleich zwischen den zumindest zwei Sensorsignalen mittels Mittelwertbildung über die Sensorsignale herzustellen. Der Gehäusebasisabschnitt und das Gehäusegegenstück können in einer vorteilhaften Weiterbildung zueinander paarbare Rastmittel aufweisen zur Verrastung des Gehäusegegenstücks an dem Gehäusebasisabschnitt.
In einer bevorzugten Ausgestaltung weisen der Gehäusebasisabschnitt und das Gehäusegegenstück jeweils erste und zweite Sondenring-Stirnflächen auf. Die SondenringStirnflächen des Gehäusebasisabschnitts und des Gehäusegegenstücks kommen dabei im geschlossenen Zustand des Gehäuses aufeinander zu liegen.
Die jeweils ersten und zweiten Sondenring-Stirnflächen können im geschlossenen Zustand des Gehäuses eine gemeinsame Stirnebene bilden, bei welcher die Sondenring-Stirnflächen des Gehäusebasisabschnitts sowie des Gehäusegegenstücks auf den gegenüberliegenden Seiten des elektrischen Leiters und in einer gemeinsamen, den elektrischen Leiter durchdringenden Ebene angeordnet sind. Bevorzugt schneidet diese Stirnebene den elektrischen Leiter insbesondere mittig.
In einer bevorzugten Weiterbildung ist der erste Sensor an der ersten Sondenring-Stirnfläche und der zweite Sensor an der zweiten Sondenring-Stirnfläche angeordnet.
Der Sondenring kann an den Sondenring-Stirnflächen einen ersten und zweiten SensorAufnahmebereich bilden zur Aufnahme der Sensoren an den Sondenring-Stirnflächen.
In einer bevorzugten Weiterbildung ist der erste und zweite Sensor-Aufnahmebereich jeweils hergerichtet zur Aufnahme von zumindest zwei Sensoren pro Sondenring-Stirnfläche.
So kann ein dritter Sensor umfasst sein, welcher benachbart zu dem ersten Sensor angeordnet ist, sowie ein vierter Sensor, welcher benachbart zu dem zweiten Sensor angeordnet ist. Dabei kann insbesondere der erste und dritte Sensor in dem ersten Aufnahmebereich im Sondenring angeordnet sein, und insbesondere der zweite und vierte Sensor in einem zweiten
BE2018/5829
Aufnahmebereich im Sondenring. Die Auswertungseinrichtung kann die Sensorsignale der
Mehrzahl an Sensoren erfassen und auswerten, um eine Lagekompensation der Lage des elektrischen Leiters zu berechnen. Mit anderen Worten berechnet die Auswertungseinrichtung die Lagekompensation anhand aller Sensorsignale, die im Sondenring angeordnet sind.
Die Sensoren sind in einer bevorzugten Weiterbildung als magnetoresistive Sensoren oder als Hallsensoren ausgebildet.
Der Gehäusebasisabschnitt kann Befestigungsmittel umfassen zur Befestigung des Strommessumformers an einer Montageschiene oder an einer Wandung.
Das Gehäusegegenstück kann ferner elektrische Verbinder aufweisen zur Ausgabe des korrigierten Ausgabesignals.
Zumindest ein mit der Auswertungseinrichtung verbundener Temperatursensor ist in einer bevorzugten Weiterbildung zur Temperaturkompensation des ersten und zweiten Sensorsignals umfasst. So kann die Auswertungseinrichtung also weitere Eingabesignale wie das
Temperatursignal und/oder ein zusätzlich angeschlossenes Spannungssignal auswerten, um das korrigierte Ausgabesignal noch hinsichtlich weiterer äußerer Einflüsse zu korrigieren und/oder Leistungs- bzw. Energiewerte bereitzustellen.
Erfindungsgemäß ist auch die Verwendung eines vorgenannten Strommessumformers zur werkzeugfreien Anbringung an einen an beiden Anschlussseiten angeschlossenen elektrischen Leiter zum lagekompensierten Messen des in dem elektrischen Leiter fließenden Stroms.
BE2018/5829
Kurzbeschreibung der Figuren
Es zeigen:
Fig. 1 Eine erste Ausführungsform des Strommessumformers,
Fig. 2 eine weitere Ausführungsform des Strommessumformers,
Fig. 3 noch eine Ausführungsform des Strommessumformers mit versetzt eingebrachtem elektrischen Leiter,
Fig. 4 eine Ausführungsform des Strommessumformers mit fehlerhaft eingebautem
Sensor,
Fig. 5 eine Ausführungsform des Strommessumformers in geöffnetem Zustand,
Fig. 6 die Ausführungsform des Strommessumformers wie Fig. 5 in geschlossenem
Zustand.
Detaillierte Beschreibung der Erfindung
Bezug nehmend auf Fig. 1 ist eine erste Ausführung eines Strommessumformers 10 mit darin eingeführtem elektrischen Leiter 50 gezeigt. Der Strommessumformer 10 weist einen Gehäusebasisabschnitt 12 auf mit einem ersten Teil 16 des Sondenrings 15 auf. Der in dem elektrischen Leiter 50 fließende Strom I_primär induziert einen magnetischen Feldfluss 52 im Sondenring 15.
Ein Gehäusegegenstück 14 umfasst einen zweiten Teil 18 des Sondenrings 15. Er umfasst ferner eine Auswertungseinrichtung 20, mittels welcher die Sensorsignale der Feldsensoren 62, 64, 66 und 68 ausgewertet und kompensiert werden können. In diesem Beispiel sind zueinander paarbare Befestigungsmittel 32, 34 vorgesehen, um den Sondenring 15 zu schließen und das Gehäuse 11 in den geschlossenen Zustand zu überführen.
Die Feldsensoren 62, 64 sind in einem ersten Aufnahmebereich 38 nebeneinander angeordnet.
Die Feldsensoren 66, 68 sind in einem zweiten Aufnahmebereich 39 nebeneinander angeordnet.
Im Falle eines perfekten Aufbaus, bei welchem sowohl das Gehäuse 11 insgesamt fehlerfrei zusammengebaut ist als auch der elektrische Leiter 50 perfekt mittig eingesetzt wurde, wird jeder Feldsensor 62, 64, 66, 68 denselben Feldfluss 52 in dem Sondenring 15 erfahren und somit identische Messergebnisse Out 1.1, Out 2.1, Out 1.2, Out 2.2 liefern. In dieser Ausführungsform der Fig. 1 sind die jeweils in einem Aufnahmebereich 38, 39 gemeinsam angeordneten Feldsensoren 62, 64 bzw. 66, 68 jeweils gleichgerichtet eingebaut. Das gemessene Magnetfeld
BE2018/5829 ist daher bei fehlerfreiem Einbau des Strommessumformers 10 nicht nur betragsmäßig gleich, sondern auch richtungsmäßig gleich. Die Richtung des Feldflusses gibt dabei der mit 52 bezeichnete Pfeil an.
Der Strommessumformer kann Wechsel- und Gleichströme beispielsweise bis 600 A messen, ohne in die Sättigung zu geraten. Gerade bei Wechselströmen kommt es durch die Frequenz des Primärstromes dabei ggf. zu Ummagnetisierungen im Kernmaterial des Sondenrings 15. Die hierdurch entstehenden Kräfte können den Sondenring 15 in Schwingung bzw. Vibration versetzen, so dass ggf. die Höhe der Aufnahmebereiche 38, 39 schwankt. Die Höhe der Aufnahmebereiche 38, 39 hat aber herkömmlicherweise einen erheblichen Einfluss auf das erhaltene Sondensignal. Bereits bei einer Änderung von wenigen Mikrometern ändert sich der am Sensor zu erfassende magnetische Fluss im einstelligen Prozentbereich. Die Korrekturberechnung durch die Auswertungseinrichtung 20 vermag auch diese Störungen zu unterdrücken und auch bei hohen Wechselströmen beispielsweise zwischen 400 bis 600 Ampere mit geringeren Fehlerraten zu arbeiten, d.h. eine Fehlertoleranz von unter 1% des Messwertes zu erzielen.
Die Verwendung von Sensorpaaren 62, 68 und 64, 66 kann noch für eine weitere Ergänzung der Erfindung eingesetzt werden. Wenn sich die Sensoren der jeweiligen Paare, also beispielsweise die Sensoren 62, 68 und die Sensoren 64, 66 unterscheiden, so können zusätzlich verschiedene Messbereiche erfasst werden. Bei Über- bzw. Unterschreiten eines Messbereichs des Sensors 62 kann dann auf den Messbereich des Sensors 64 umgeschaltet werden etc.
Aufgrund der hohen zu erfassenden Ströme wird bevorzugt gewickeltes Siliziumeisen als Kernmaterial des Sondenrings 15 eingesetzt. Der Kern wird nach dem Wickelprozess beispielsweise in zwei gleich große Hälften geteilt. Um den magnetischen Fluss durch die Sensoren 62, 64, 66, 68 zu begrenzen, kann die Höhe des Aufnahmebereichs 38, 39 beispielsweise auf 2,2 Millimeter eingestellt werden. Dadurch kann beispielsweise eingestellt werden, dass die Messbereiche der Sensorelemente auch bei dem anvisierten Strom von 600 Ampere AC nicht überschritten wird. Dies erlaubt beispielsweise den Einsatz von Sensoren mit einem Messbereich bis 200 mT.
Bezug nehmend auf Fig. 2 ist ein Strommessumformer 10 gezeigt, bei welchem das Gehäuse 11 nicht korrekt zusammengesteckt bzw. verbunden wurde. Vielmehr wurde der Strommessumformer 10 mit einem Einbaufehler 42 zusammengesteckt, wobei der Einbaufehler 42, d.h. die gezeigte radiale Verschiebung zwischen Gehäusebasisabschnitt 12 und
BE2018/5829
Gehäusegegenstück 14, zur Erhöhung des Verständnisses überdeutlicht wurde. Die an dem Gehäusebasisabschnitt 12 angeordneten Befestigungsmittel 36, die in eine nicht dargestellte Öffnung im Gehäusegegenstück 14 einzuführen sind, wurden in diesem Beispiel nicht korrekt eingeführt, sondern laufen neben dem Gehäusegegenstück 14 entlang.
In der in Fig. 2 gezeigten Ausführungsform messen die Feldsensoren 62, 64, 66 und 68 betragsmäßig unterschiedliche Feldstärken. Die Sensorsignale der Feldsensoren 62, 64, 66, 68 werden nun aber an die Auswertungseinrichtung 20 weitergeleitet und kompensiert.
Beispielsweise vermag die Auswertungseinrichtung 20 vermittels eines Mikrocontrollers 22 Signalumformungen oder Signalberechnungen anzustellen. Beispielsweise verfügt die Auswertungseinrichtung 20 über einen Analog-Digital-Converter (ADC) 24. Die ankommenden Analogsignale der Feldsensoren 62, 64, 66, 68 werden dann in der Auswertungseinrichtung 20 in Digitalsignale gewandelt, so dass digitale Rechenoperationen an den Signalen durchgeführt werden können. Beispielsweise vermag die Auswertungseinrichtung 20, aus den digitalen Sensorsignalen der Feldsensoren 62, 64, 66, 68 einen Mittelwert aus der Mehrzahl der Sensorsignale zu bilden. Der Mittelwert wird dann einen deutlich geringeren Fehler aufweisen als der einzelne Messwert. Eine solche Mittelwertbildung durch die Auswertungseinrichtung 20 kann auch beispielsweise über einen längeren Zeitraum durchgeführt werden, so dass auch zeitliche Schwankungen eliminiert werden können. So können im Falle eines Gleichstromflusses des elektrischen Leiters 50 z.B. auch äußere elektrische oder magnetische Wechselfelder auf einfache Weise zusätzlich kompensiert werden.
Bezug nehmend auf Fig. 3 ist eine Ausführungsform des Strommessumformers 10 dargestellt, bei welcher der elektrische Leiter 50 außermittig angeordnet ist. Obzwar sich prinzipiell an der Feldflussrichtung 52 keine Änderung ergibt, wird sich der Betrag der induzierten Feldstärke an den Feldsensoren 62, 64 von derjenigen unterscheiden, welche die Feldsensoren 66, 68 messen. Mit anderen Worten wird in dem ersten Aufnahmebereich 38 eine unterschiedliche magnetische Feldstärke im Vergleich zu dem zweiten Aufnahmebereich 39 herrschen.
Die Sensordaten werden von der Auswertungseinrichtung 20 verarbeitet, beispielsweise mittels ADC 24 in digitale Daten umgewandelt und beispielsweise ein Mittelwert aus den Sensordaten gebildet. Der von der Auswertungseinrichtung 20 gebildete Mittelwert, d.h. das Ausgabesignal der Auswertungseinrichtung 20, stellt ein lagekompensiertes Signal dar, wobei die relative Lage des elektrischen Leiters 50 im Strommessumformer 10 hinsichtlich der erhaltenen Stromstärke kompensiert ist. Hierdurch kann ein aufwändiges Justieren des Strommessumformers 10
BE2018/5829 entfallen bzw. eine Lageveränderung des elektrischen Leiters 50 im Strommessumformer 10 kann kompensiert werden, ohne dass eine Neukalibrierung oder eine Neuausrichtung des Strommessumformers 10 zu erfolgen hätte.
Bezug nehmend auf Fig. 4 ist noch eine weitere Ausführung eines Strommessumformers 10 gezeigt, wobei der Sensor 62 eine Deslokation aufweist, hier ein verdrehter Einbau (die Verdrehung ist zur Erhöhung der Klarheit überzeichnet dargestellt). Da Sensoren, wie z.B. HallSensoren, den magnetischen Fluss detektieren, der senkrecht durch den Sensor fließt, wird hierbei der von dem Sensor 62 gemessene Wert kleiner ausfallen als der an dem Sensor 66 gemessene Wert. Die Auswertungseinrichtung 20 führt eine Mittelwertbildung der Sensorsignale 62, 66 durch, so dass der erhaltene Messfehler deutlich verkleinert wird.
Die gemeinsame Leiterplatte für die Auswertungseinrichtung 20 kann beispielsweise auch ein Netzteil und die Ausgabeschnittstelle 26 verdrahten. Diese wird beispielsweise parallel zur zweiten Kernhälfte 18 in das Gehäusegegenstück 14 eingesetzt. Die Sensoren werden beispielsweise im 90°-Winkel zur Leiterplatte elektrisch kontaktiert. Durch die Positionierung der insbesondere vier Hall-Sensoren können positionsbedingte Abweichungen erfasst werden, indem auch die Ausgangssignale des jeweiligen Sensorpaars miteinander verglichen und verrechnet werden. Gleichzeitig wird die Schaltung auch robuster gegenüber äußeren Magnetfeldern, die in einen der beiden Luftspalte bzw. Aufnahmebereich 38, 39 einkoppeln können.
Fig. 5 zeigt eine Ausführung eines Strommessumformers 10 in einem geöffneten Zustand.
Gleiche Bezugszeichen benennen die zu vorigen Ausführungsformen der Erfindung beschriebenen Merkmale.
Der in Fig. 5 gezeigte Gehäusebasisabschnitt 12 ist an einer Montageschiene 70 mittels Klammern 72 befestigt. Die Auswertungseinrichtung 20 ist in dem Gehäusegegenstück 14 angeordnet. Die Auswertungseinrichtung 20 gibt das lagekompensierte Ausgangssignal über die Ausgabeschnittstelle 26 aus. Der Gehäusebasisabschnitt 12 ist mit dem Gehäusegegenstück 14 mittels der Rastmittel 33, 35 koppelbar. Der Strommessumformer 10 kann ferner über eine Stromversorgung 28 mit einer Stromquelle zur Versorgung der Elektronik des Strommessumformers 10 mit elektrischer Leistung verfügen.
Bezug nehmend auf Fig. 6 ist die in Fig. 5 gezeigte Ausführung des Strommessumformers 10 in geschlossenem Zustand dargestellt. Der Sondenring 15 umschließt im geschlossenen Zustand des Gehäuses 11 den elektrischen Leiter 50 vollumfänglich. Das lagekompensierte Ausgabesignal kann an der Ausgabeschnittstelle 26 abgegriffen werden.
BE2018/5829
Es ist dem Fachmann ersichtlich, dass die vorstehend beschriebenen Ausführungsformen beispielhaft zu verstehen sind und die Erfindung nicht auf diese beschränkt ist, sondern in vielfältiger Weise variiert werden kann, ohne den Schutzbereich der Ansprüche zu verlassen. Ferner ist ersichtlich, dass die Merkmale unabhängig davon, ob sie in der Beschreibung, den
Ansprüchen, den Figuren oder anderweitig offenbart sind, auch einzeln wesentliche Bestandteile der Erfindung definieren, selbst wenn sie zusammen mit anderen Merkmalen gemeinsam beschrieben sind. In allen Figuren stellen gleiche Bezugszeichen gleiche Gegenstände dar, so dass Beschreibungen von Gegenständen, die ggf. nur in einer oder jedenfalls nicht hinsichtlich aller Figuren erwähnt sind, auch auf diese Figuren übertragen werden können, hinsichtlich welchen der Gegenstand in der Beschreibung nicht explizit beschrieben ist.
BE2018/5829
Bezugszeichenliste:
10 Strommessumformer
11 Gehäuse
12 Gehäusebasisabschnitt
14 Gehäusegegenstück
15 Sondenring
16 erster Teil des Sondenrings
18 zweiter Teil des Sondenrings
20 Auswertungseinrichtung
22 Mikrocontroller
24 ADC-Analog-Digital-Wandler
26 Spannungseingang
28 Stromversorgung und Ausgabeschnittstelle
32, 33, 34, 35 paarbare Befestigungsmittel
36 Befestigungsmittel
38 erster Aufnahmebereich
39 zweiter Aufnahmebereich
42 Einbaufehler
50 elektrischer Leiter
52 magnetischer Feldfluss im Sondenring
62, 64, 66, 68 Sensor
70 Montageschiene
72 Befestigungsmittel bzw. Klammer

Claims (18)

  1. Patentansprüche:
    1. Strommessumformer (10) zur Messung einer Stromstärke in einem durch den Strommessumformer hindurch erstreckbaren elektrischen Leiter (50), umfassend ein Gehäuse (11) mit einem Gehäusebasisabschnitt (12) und zumindest ein mit dem Gehäusebasisabschnitt kuppelbares Gehäusegegenstück (14), wobei der Gehäusebasisabschnitt mit dem Gehäusegegenstück in einem geschlossenen Zustand miteinander gekuppelt ist und eine zentrale Durchgangsöffnung gebildet wird und wobei der elektrische Leiter in der zentralen Durchgangsöffnung zwischen dem Gehäusebasisabschnitt und dem Gehäusegegenstück anordenbar ist, so dass sich der elektrische Leiter durch das Gehäuse hindurch erstreckt, wobei der Gehäusebasisabschnitt einen ersten Teil (16) und das Gehäusegegenstück einen zweiten Teil (18) eines Sondenringes (15) umfasst, so dass sich im geschlossenen Zustand des Gehäuses ein um den Leiter geschlossener Sondenring bildet, wenn der Leiter in den Strommessumformer eingesetzt ist, zumindest zwei Sensoren (62, 64, 66, 68) zur gleichzeitigen Messung der Stromstärke des elektrischen Leiters und zur Erzeugung eines ersten und zweiten Sensorsignals, und eine Auswertungseinrichtung (20) in dem Strommessumformer hergerichtet zur zeitgleichen Auswertung des ersten und zweiten Sensorsignals und zur Ausgabe eines korrigierten Ausgabesignals.
  2. 2. Strommessumformer (10) nach dem vorstehenden Anspruch, wobei die Auswertungseinrichtung (20) in dem Gehäusegegenstück (14) beherbergt ist, und/oder wobei die Auswertungseinrichtung einen Mikrocontroller (22) umfasst und/oder wobei der Strommessumformer hergerichtet ist, sowohl Gleichspannungssignale als auch Wechselspannungssignale zu verarbeiten.
    BE2018/5829
  3. 3. Strommessumformer (10) nach einem der vorstehenden Ansprüche, wobei die Auswertungseinrichtung (20) das erste Sensorsignal und das zweite Sensorsignal gleichzeitig aufnimmt und so verarbeitet, dass ein Signalausgleich zwischen dem ersten Sensorsignal und dem zweiten Sensorsignal durchgeführt wird.
  4. 4. Strommessumformer (10) nach einem der vorstehenden Ansprüche mit einer selbständigen Lagekompensation dergestalt, dass das erste und zweite Sensorsignal bezüglich einer Lage des elektrischen Leiters (50) in dem Strommessumformer korrigierbar ist.
  5. 5. Strommessumformer (10) nach einem der vorstehenden Ansprüche, wobei Einbauabweichungen beim Einbau des Strommessumformers an den elektrischen Leiter (50) mittels Signalausgleich zwischen dem ersten Sensorsignal und dem zweiten Sensorsignal kompensiert werden.
  6. 6. Strommessumformer (10) nach dem vorstehenden Anspruch, wobei die Auswertungseinrichtung (20) hergerichtet ist, den Signalausgleich zwischen den zumindest zwei Sensorsignalen mittels Mittelwertbildung über die Sensorsignale herzustellen.
  7. 7. Strommessumformer (10) nach einem der vorstehenden Ansprüche, wobei der Gehäusebasisabschnitt (12) und das Gehäusegegenstück (14) zueinander paarbare Rastmittel (32, 33, 34, 35, 36) aufweisen zur Verrastung des Gehäusegegenstücks an dem Gehäusebasisabschnitt.
  8. 8. Strommessumformer (10) nach einem der vorstehenden Ansprüche, wobei der Gehäusebasisabschnitt (12) und das Gehäusegegenstück (14) jeweils erste und zweite Sondenring-Stirnflächen aufweisen, und wobei die Sondenring-Stirnflächen des Gehäusebasisabschnitts und des Gehäusegegenstücks im geschlossenen Zustand des Gehäuses aufeinander zu liegen kommen.
  9. 9. Strommessumformer (10) nach einem der vorstehenden Ansprüche, wobei die jeweils ersten und zweiten Sondenring-Stirnflächen im geschlossenen Zustand des Gehäuses eine gemeinsame Stirnebene bilden, bei welcher die Sondenring-Stirnflächen des
    BE2018/5829
    Gehäusebasisabschnitts sowie des Gehäusegegenstücks auf den gegenüberliegenden Seiten des elektrischen Leiters (50) und in einer gemeinsamen, den elektrischen Leiter durchdringenden Ebene angeordnet sind (B: wobei die Stirnebene den elektrischen Leiter insbesondere mittig schneidet).
  10. 10. Strommessumformer (10) nach einem der vorstehenden Ansprüche, wobei der erste Sensor (62, 64) an der ersten Sondenring-Stirnfläche und der zweite Sensor (66, 68) an der zweiten Sondenring-Stirnfläche angeordnet ist.
  11. 11. Strommessumformer (10) nach einem der vorstehenden Ansprüche, wobei der Sondenring (15) an den Sondenring-Stirnflächen einen ersten und zweiten Sensor-Aufnahmebereich (38, 39) bildet zur Aufnahme der Sensoren (62, 64, 66, 68) an den Sondenring-Stirnflächen.
  12. 12. Strommessumformer (10) nach dem vorstehenden Anspruch, wobei der erste und zweite Sensor-Aufnahmebereich (38, 39) jeweils hergerichtet ist zur Aufnahme von zumindest zwei Sensoren (62, 64, 66, 68) pro Sondenring-Stirnfläche.
  13. 13. Strommessumformer (10) nach einem der vorstehenden Ansprüche, ferner umfassend einen dritten Sensor (64), welcher benachbart zu dem ersten Sensor (62) angeordnet ist, sowie einen vierten Sensor (68), welcher benachbart zu dem zweiten Sensor (66) angeordnet ist, wobei insbesondere der erste und dritte Sensor in einem ersten Aufnahmebereich (38) im Sondenring (15) angeordnet sind, wobei insbesondere der zweite und vierte Sensor in einem zweiten Aufnahmebereich (39) im Sondenring angeordnet sind, und wobei die Auswertungseinrichtung (20) die Sensorsignale der Mehrzahl an Sensoren erfasst und auswertet, um eine Lagekompensation der Lage des elektrischen Leiters (50) zu berechnen.
  14. 14. Strommessumformer (10) nach einem der vorstehenden Ansprüche, wobei die Sensoren (62, 64, 66, 68) als magnetoresistiver Sensor oder als Hall-Sensoren ausgebildet sind.
    BE2018/5829
  15. 15. Strommessumformer (10) nach dem vorstehenden Anspruch, wobei der Gehäusebasisabschnitt (12) Befestigungsmittel (72) umfasst zur Befestigung des Strommessumformers an einer Montageschiene (70) oder an einer Wandung.
  16. 16. Strommessumformer (10) nach einem der vorstehenden Ansprüche, wobei das Gehäusegegenstück (14) elektrische Verbinder (26) aufweist zur Messung von Spannungssignalen (28) und zur Ausgabe des korrigierten Ausgabesignals, insbesondere in Form von Leistungs- und Energiewerten.
  17. 17. Strommessumformer (10) nach einem der vorstehenden Ansprüche, ferner umfassend zumindest einen mit der Auswertungseinrichtung (20) verbundenen Temperatursensor zur Temperaturkompensation des ersten und zweiten Sensorsignals.
  18. 18. Verwendung eines Strommessumformers (10) nach einem der vorstehenden Ansprüche zur werkzeugfreien Anbringung an einen an beiden Anschlussseiten angeschlossenen elektrischen Leiter (50) zum lagekompensierten Messen des in dem elektrischen Leiter fließenden Stroms.
BE20185829A 2018-11-27 2018-11-27 Lagekompensierte Strommesseinrichtung BE1026805B1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BE20185829A BE1026805B1 (de) 2018-11-27 2018-11-27 Lagekompensierte Strommesseinrichtung
PCT/EP2019/081807 WO2020109084A1 (de) 2018-11-27 2019-11-19 Lagekompensierte strommesseinrichtung
CN201980078339.4A CN113167819A (zh) 2018-11-27 2019-11-19 位置补偿的电流测量装置
DE112019004249.1T DE112019004249A5 (de) 2018-11-27 2019-11-19 Lagekompensierte Strommesseinrichtung
US17/295,795 US11885833B2 (en) 2018-11-27 2019-11-19 Position-compensated current measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
BE20185829A BE1026805B1 (de) 2018-11-27 2018-11-27 Lagekompensierte Strommesseinrichtung

Publications (2)

Publication Number Publication Date
BE1026805A1 BE1026805A1 (de) 2020-06-22
BE1026805B1 true BE1026805B1 (de) 2020-06-30

Family

ID=64606681

Family Applications (1)

Application Number Title Priority Date Filing Date
BE20185829A BE1026805B1 (de) 2018-11-27 2018-11-27 Lagekompensierte Strommesseinrichtung

Country Status (5)

Country Link
US (1) US11885833B2 (de)
CN (1) CN113167819A (de)
BE (1) BE1026805B1 (de)
DE (1) DE112019004249A5 (de)
WO (1) WO2020109084A1 (de)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050156587A1 (en) * 2004-01-16 2005-07-21 Fieldmetrics Inc. Current sensor
DE60026952T2 (de) * 1999-02-17 2006-11-30 Abb Control Stromsensor
DE102007035184A1 (de) * 2007-07-27 2009-02-05 Siemens Ag Strommessvorrichtung
US20120319676A1 (en) * 2011-06-14 2012-12-20 International Business Machines Corporation Multi-conductor cable current and voltage sensors
US20140009143A1 (en) * 2012-07-06 2014-01-09 Senis Ag Magnetic Transducer And Current Transducer For Measuring An Electrical Current
US20150212117A1 (en) * 2012-08-14 2015-07-30 Rauschert Heinersdorf-Pressig Gmbh Measuring device for a contactless current measurement
WO2016030197A1 (de) * 2014-08-27 2016-03-03 Epcos Ag Sensor
DE102014119276A1 (de) * 2014-12-19 2016-06-23 Micronas Gmbh Stromsensor

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9400960D0 (en) 1994-01-19 1994-03-16 Lem Heme Ltd Magnetic sensors
US7205757B2 (en) * 2004-09-02 2007-04-17 Denso Corporation High precision current sensor
DE102005013232A1 (de) 2005-03-18 2006-09-28 Siemens Ag Messvorrichtung zum berührungslosen Messen eines Stromes
DE102008039568B4 (de) * 2008-08-25 2015-03-26 Seuffer gmbH & Co. KG Stromerfassungsvorrichtung
GB0904441D0 (en) * 2009-03-14 2009-04-29 Gmc I Prosys Ltd Current sensing and/or measurement - apparatus and method
US20130342188A1 (en) 2012-06-21 2013-12-26 Grid Sentry LLC Disassociated Split Sensor Coil for Power Distribution Line Monitoring
TW201424222A (zh) 2012-12-14 2014-06-16 Hon Hai Prec Ind Co Ltd 供電控制裝置
DE102015100924B3 (de) 2015-01-22 2016-06-02 Sensitec Gmbh Magnetfeldsensorvorrichtung zur Messung des Stromes durch einen stromführenden Leiter
CN104764928B (zh) * 2015-03-10 2017-11-10 三峡大学 一种适合变电站现场的便携式脉冲大电流测量装置
DE102015109009A1 (de) * 2015-06-08 2016-12-08 Infineon Technologies Ag Stromsensorchip mit Magnetfeldsensor
CN105182044B (zh) * 2015-09-23 2018-05-15 红相股份有限公司 以霍尔传感器为构架对特高压直流避雷器状态检测的装置
CN205404673U (zh) * 2016-03-30 2016-07-27 三峡大学 一种便携式线路电流带电测量装置
CN106093548B (zh) * 2016-08-04 2018-12-14 中国船舶重工集团公司第七一九研究所 一种非接触式的高精度轴电流测量装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60026952T2 (de) * 1999-02-17 2006-11-30 Abb Control Stromsensor
US20050156587A1 (en) * 2004-01-16 2005-07-21 Fieldmetrics Inc. Current sensor
DE102007035184A1 (de) * 2007-07-27 2009-02-05 Siemens Ag Strommessvorrichtung
US20120319676A1 (en) * 2011-06-14 2012-12-20 International Business Machines Corporation Multi-conductor cable current and voltage sensors
US20140009143A1 (en) * 2012-07-06 2014-01-09 Senis Ag Magnetic Transducer And Current Transducer For Measuring An Electrical Current
US20150212117A1 (en) * 2012-08-14 2015-07-30 Rauschert Heinersdorf-Pressig Gmbh Measuring device for a contactless current measurement
WO2016030197A1 (de) * 2014-08-27 2016-03-03 Epcos Ag Sensor
DE102014119276A1 (de) * 2014-12-19 2016-06-23 Micronas Gmbh Stromsensor

Also Published As

Publication number Publication date
DE112019004249A5 (de) 2021-05-27
US11885833B2 (en) 2024-01-30
BE1026805A1 (de) 2020-06-22
US20220026468A1 (en) 2022-01-27
CN113167819A (zh) 2021-07-23
WO2020109084A1 (de) 2020-06-04

Similar Documents

Publication Publication Date Title
DE19523322C2 (de) Drehsensorvorrichtung und zugeordnetes Herstellungsverfahren
EP1166131A1 (de) Strommessaufnehmer
DE102013218768A1 (de) Induktive Positionsmesseinrichtung
DE202004002891U1 (de) Magnetostriktiver Streckensensor
DE102012104348A1 (de) Berührungsloses, hochgenaues Stromsensorsystem
DE102007038225B4 (de) Hochstabiles kapazitives Messsystem für extreme Einsatzbedingungen
DE102015115264B3 (de) Zentrierhalteeinrichtung für eine Rogowski-Spule, Messeinrichtung, Leistungselektronikeinrichtung und ein Verfahren zur Anordnung einer Rogowski-Spule
DE102014205397A1 (de) Abtastelement für eine induktive Winkelmesseinrichtung
BE1026805B1 (de) Lagekompensierte Strommesseinrichtung
WO2021143968A1 (de) Hochvolt-anschlussmodul mit integriertem stromsensor
WO2005064282A1 (de) Modulares messgerät
DE102006007871A1 (de) Sensor und Verfahren zur Erfaasung von Ortsverschiebungen und Drehbewegungen
DE102016123255A1 (de) Vorrichtung zur Messung von in einem elektrischen Leiter fließendem Strom
DE102004060863A1 (de) Winkelmesseinrichtung
EP1208645B1 (de) Schaltungsanordnung zur erzeugung von rechteckimpulsen
EP3561524A1 (de) Strommessvorrichtung mit flexibler leiterplatte
DE102015008516B4 (de) Messanordnung und Verfahren zur berührungslosen Stromstärkemessung
AT510380B1 (de) Vorrichtung zur strommessung bei leistungskondensatoren
DE102008061006A1 (de) Verfahren und Vorrichtung zur Messung von elektrischen Strom
EP3837557A1 (de) Strommessgerät zum erfassen eines stroms in einer elektrischen leitung
EP3671226A1 (de) Strommessvorrichtung zur messung eines elektrischen stroms in einem leiter
DE19701319A1 (de) Positionsmeßeinrichtung
DE202014101303U1 (de) Messwertgeber-Anordnung zur Kurzschlusserfassung
EP3499245A1 (de) Anordnung mit koaxialwiderstand
DE102012111275A1 (de) Spulenkörperanordnung und Einrichtung zur magnetisch-induktiven Durchflussmessung

Legal Events

Date Code Title Description
FG Patent granted

Effective date: 20200630

MM Lapsed because of non-payment of the annual fee

Effective date: 20201130