DE102014008770B4 - Xenon-Gewinnung aus methanhaltigen Gasen - Google Patents

Xenon-Gewinnung aus methanhaltigen Gasen Download PDF

Info

Publication number
DE102014008770B4
DE102014008770B4 DE102014008770.0A DE102014008770A DE102014008770B4 DE 102014008770 B4 DE102014008770 B4 DE 102014008770B4 DE 102014008770 A DE102014008770 A DE 102014008770A DE 102014008770 B4 DE102014008770 B4 DE 102014008770B4
Authority
DE
Germany
Prior art keywords
column
product
stream
feed stream
methane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
DE102014008770.0A
Other languages
English (en)
Other versions
DE102014008770B9 (de
DE102014008770A1 (de
Inventor
Norbert Peters
Hans Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xenon Holding GmbH
Original Assignee
Xenon Holding GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xenon Holding GmbH filed Critical Xenon Holding GmbH
Priority to DE102014008770.0A priority Critical patent/DE102014008770B9/de
Priority to EA201790011A priority patent/EA201790011A1/ru
Priority to PCT/EP2015/001181 priority patent/WO2015188938A1/de
Publication of DE102014008770A1 publication Critical patent/DE102014008770A1/de
Application granted granted Critical
Publication of DE102014008770B4 publication Critical patent/DE102014008770B4/de
Publication of DE102014008770B9 publication Critical patent/DE102014008770B9/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B23/00Noble gases; Compounds thereof
    • C01B23/001Purification or separation processes of noble gases
    • C01B23/0036Physical processing only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0237Heat exchange integration integrating refrigeration provided for liquefaction and purification/treatment of the gas to be liquefied, e.g. heavy hydrocarbon removal from natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0219Refinery gas, cracking gas, coke oven gas, gaseous mixtures containing aliphatic unsaturated CnHm or gaseous mixtures of undefined nature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0238Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/028Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of noble gases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0029Obtaining noble gases
    • C01B2210/0037Xenon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0068Organic compounds
    • C01B2210/007Hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/70Refluxing the column with a condensed part of the feed stream, i.e. fractionator top is stripped or self-rectified
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/74Refluxing the column with at least a part of the partially condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/12Refinery or petrochemical off-gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/18H2/CO mixtures, i.e. synthesis gas; Water gas, shifted synthesis gas or purge gas from HYCO synthesis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/20H2/N2 mixture, i.e. synthesis gas for or purge gas from ammonia synthesis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/36Xenon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/02Separating impurities in general from the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/30Compression of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/32Compression of the product stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2260/00Coupling of processes or apparatus to other units; Integrated schemes
    • F25J2260/20Integration in an installation for liquefying or solidifying a fluid stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/12External refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/14External refrigeration with work-producing gas expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/60Closed external refrigeration cycle with single component refrigerant [SCR], e.g. C1-, C2- or C3-hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/66Closed external refrigeration cycle with multi component refrigerant [MCR], e.g. mixture of hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/902Details about the refrigeration cycle used, e.g. composition of refrigerant, arrangement of compressors or cascade, make up sources, use of reflux exchangers etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Die Erfindung betrifft Verfahren zur Gewinnung eines Xe-haltigen Produktstroms (P), insbesondere eines hochreinen Xe-haltigen Produktstroms (P), aus einem gasförmigen, methanhaltigem Einsatzstrom (E), aufweisend die Schritte: Abkühlen und eventuell Ankondensieren des Einsatzstroms (E), Einleiten des Einsatzstroms (E) in eine erste Kolonne (31), Abziehen eines Kopfprodukts in Form einer methanreichen gasförmigen Phase (G) aus dem Kopf der ersten Kolonne, Abziehen eines Sumpfprodukts in Form einer (methanarmen) Xe-haltigen flüssigen Phase (F) aus dem Sumpf der ersten Kolonne, Einleiten des Sumpfprodukts in eine zweite Kolonne (33), und Abziehen des Xe-haltigen Produktstroms (P) aus dem Kopf der zweiten Kolonne (33). Die für die Kondensatoren der beiden Kolonnen und eventuell die Abkühlung des Einsatzgases notwendige Kälte wird über einen Kältekreislauf zur Verfügung gestellt, der bevorzugt aus einem Teilstrom des angewärmten Kopfproduktes der ersten Kolonne mit Kältemittel versorgt wird. Des Weiteren betrifft die Erfindung eine entsprechende Anlage (1) zur Xe-Gewinnung.

Description

  • Die Erfindung betrifft ein Verfahren zur Gewinnung von Xe gemäß Anspruch 1 sowie eine Anlage zur Gewinnung von Xe gemäß Anspruch 13.
  • Xenon (Xe) wurde bisher nur als Xenon-Krypton-Gemisch aus den Restgasen der Ammoniak- bzw. Methanolsynthese gewonnen, in denen neben ca. 100 ppmV Xe und Kr und ca. 1 Vol.-% bis 2 Vol.-% Ar und N2 und weniger als ca. 0,2 Vol.-% C2+ (Kohlenwasserstoffe mit zwei oder mehr Kohlenstoffatomen) nur noch Methan vorkommt. Derartige Verfahren zur Gewinnung von Xe sind z.B. aus der DE 39 22 723 A1 , DE 39 22 594 A1 , SU 1 262 224 A1 sowie JP S48-26 694A bekannt. Diese Verfahren sind vergleichsweise komplex und erfordern einen hohen Aufwand an Apparaten und Maschinen.
  • Hiervon ausgehend liegt der vorliegenden Erfindung die Aufgabe zugrunde, derartige Verfahren auch auf höhere Xe-Gehalte auszudehnen und des Weiteren zu vereinfachen.
  • Dieses Problem wird durch ein Verfahren mit den Merkmalen des Anspruchs 1 gelöst. Bevorzugte Ausführungsformen des erfindungsgemäßen Verfahrens sind in den entsprechenden Unteransprüchen angegeben bzw. werden nachfolgend beschrieben.
  • Das erfindungsgemäße Verfahren zur Gewinnung eines Xe-haltigen Produktstroms, insbesondere eines hochreinen Xe-haltigen Produktstroms, aus einem gasförmigen, methanhaltigem Einsatzstrom, sieht dabei die Schritte vor:
    • – Abkühlen und eventuell Ankondensieren (teilweises Kondensieren) des Einsatzstroms,
    • – Einleiten des Einsatzstroms in eine erste Kolonne,
    • – Abziehen eines Kopfprodukts in Form einer methanreichen gasförmigen Phase aus dem Kopf der ersten Kolonne,
    • – Abziehen eines Sumpfprodukts in Form einer methanarmen, Xe-haltigen flüssigen Phase aus dem Sumpf der ersten Kolonne,
    • – Einleiten des Sumpfprodukts bzw. der Xe-haltigen flüssigen Phase in eine zweite Kolonne, und
    • – Abziehen des Xe-haltigen Produktstroms aus dem Kopf der zweiten Kolonne.
  • Bei dem Einsatzstrom bzw. Einsatzgas kann es sich z. B. um Erdgas handeln, das z. B. direkt aus einer Pipeline entnommen wird. Ein derartiges Einsatzgas weist bevorzugt 0 Vol.-% bis 5 Vol.-% N2, 90 Vol.-% bis 98 Vol.-% CH4, 1 Vol.-% bis 5 Vol.-% C2H6, 0 Vol.-% bis 3 Vol.-% C3+ (hierbei bezeichnet C3+ Kohlenwasserstoffe mit 3 oder mehreren Kohlenstoffatomen) sowie einen Volumenanteil von Xe und Kr auf, der geringer ist als 0,1 Vol.-%.
  • Bei dem Einsatzgas bzw. Einsatzstrom kann es sich weiterhin auch um ein Erdölbegleitgas handeln. Ein derartiges Einsatzgas weist bevorzugt 0 Vol.-% bis 5 Vol.-% N2, 40 Vol.-% bis 80 Vol.-% CH4, 10 Vol.-% bis 20 Vol.-% C2H6, 5 Vol.-% bis 15 Vol.-% C3H8 auf sowie einem Volumenanteil von C4+, der geringer ist als 3 bis 10 Vol.-%, sowie ferner einen Volumenanteil von Xe und Kr, der geringer ist als 0,1 Vol.-% (bei C4+ handelt es sich um Kohlenwasserstoffe, die vier oder mehr Kohlenstoffatome aufweisen).
  • Weiterhin kann es sich bei dem Einsatzgas- bzw. strom auch um ein Restgas aus der Ammoniak- oder Methanolsynthese handeln, das einen Volumenanteil von CH4 aufweist, der insbesondere oberhalb von 98 Vol.-% liegt, wobei der Volumenanteil von Xe insbesondere geringer als 10 ppmV und der Volumenanteil von Kr insbesondere geringer als 200 ppmV ist.
  • Weiterhin wird im Sinne der Erfindung unter einem hochreinen Xe-haltigen Produktstrom ein Xe-Produktstrom verstanden, der neben Xe lediglich Verunreinigungen (andere Komponenten) unterhalb von 10 ppmV aufweist.
  • Im Hinblick auf das Kopfprodukt der ersten Kolonne bedeutet methanreich bevorzugt, dass das Kopfprodukt neben CH4 lediglich Verunreinigungen unterhalb von 2 Vol.-% bis 10 Vol.-% enthält, insbesondere je nach Gehalt an N2 und Ar des Einsatzgases.
  • Im Hinblick auf das Sumpfprodukt der ersten Kolonne bedeutet methanarm bevorzugt, dass das Sumpfprodukt Methan lediglich im Bereich von 0 ppmV bis 10 ppmV aufweist.
  • Gemäß einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens ist vorgesehen, dass aus dem Kopf der ersten Kolonne eine methanreiche, gasförmige Phase abgezogen, in einem ersten Kondensator gegen einen ersten Kältemittelstrom zumindest teilweise kondensiert und die entstandene Flüssigkeit als Rücklauf in die erste Kolonne zurückgegeben wird, um die Xe-Konzentration im Kopfprodukt zu minimieren und damit die Xe-Ausbeute des Prozesses zu maximieren. Alternativ hierzu besteht die Möglichkeit, dass der ankondensierte Einsatzstrom auf einen obersten Boden der ersten Kolonne gegeben wird. Ferner wird bevorzugt aus dem Sumpf der ersten Kolonne eine Xe-haltige flüssige Phase abgezogen, die in einem ersten Aufkocher (z. B. Umlaufverdampfer) gegen warme Prozessströme (z. B. Einsatzgas bzw. -strom, Kältemittestrom, insbesondere Hochdruck-Kältemittel) teilweise verdampft wird und in die erste Kolonne zurückgegeben wird, um die Xe-Ausbeute zu maximieren und die Sumpfkonzentration an Methan einzustellen. Alternativ kann der Abzug der Xe-haltigen flüssigen Phase auch vom zweituntersten Boden der Kolonne erfolgen, wenn dadurch eine bessere Kältenutzung bei der teilweisen Verdampfung dieses Stromes möglich ist.
  • Gemäß einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens ist weiterhin vorgesehen, dass aus dem Kopf der zweiten Kolonne eine Xe-haltige gasförmige Phase abgezogen, in einem zweiten Kondensator gegen einen zweiten Kältemittelstrom zumindest teilweise kondensiert und in die zweite Kolonne zurückgegeben wird, um ein hochreines Xe-Kopfprodukt einzustellen. Weiterhin ist bevorzugt vorgesehen, dass aus dem Sumpf der zweiten Kolonne eine kohlenwasserstoffhaltige (insbesondere C2+) flüssige Phase abgezogen wird, in einem zweiten Aufkocher (z. B. Umlaufverdampfer) teilweise verdampft wird und in die zweite Kolonne zurückgegeben wird, um die Restkonzentration von Xe im Sumpfprodukt der zweiten Kolonne zu minimieren und damit die Xe-Ausbeute des Prozesses zu maximieren. Alternativ kann der Abzug der kohlenwasserstoffhaltigen flüssigen Phase auch vom zweituntersten Boden der Kolonne erfolgen, wenn dadurch eine bessere Kältenutzung bei der teilweisen Verdampfung dieses Stromes möglich ist.
  • Durch das Rückführen der zumindest teilweise kondensierten gasförmigen Phase in den Kopf der jeweiligen Kolonne sowie das Zurückführen der teilweise verdampften flüssigen Phase in den Sumpf/unteren Bereich der jeweiligen Kolonne wird sichergestellt, dass die gasförmige und die flüssige Phase die jeweilige Kolonne im Gegenstrom durchlaufen, was eine effektive Rektifikation in den Kolonnen ermöglicht.
  • Gemäß einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens ist weiterhin vorgesehen, dass das Abkühlen und eventuell Ankondensieren des Einsatzstroms in einer Wärmeübertragereinheit gegen den kalten Produktstrom bzw. kalte Produktströme und/oder einen oder mehrere kalte Kältemittelströme durchgeführt wird.
  • Gemäß einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens ist weiterhin vorgesehen, dass der erste und/oder der zweite Kondensator in die Wärmeübertragereinheit integriert sind oder separat zu dieser ausgebildet sind. Weiterhin können auch der erste und/oder der zweite Aufkocher in die Wärmeübertragereinheit integriert oder separat zu dieser ausgebildet sein.
  • Gemäß einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens ist vorgesehen, dass das Kopfprodukt aus der ersten Kolonne in der Wärmeübertragereinheit gegen abzukühlendes Einsatzgas (Einsatzstrom) und/oder einen oder mehrere abzukühlende Kältemittelströme angewärmt wird, verdichtet wird und zumindest teilweise in eine Rohrleitung bzw. Pipeline zurückgeführt wird, aus der der Einsatzstrom an einer Entnahmestelle zuvor entnommen wurde (die insbesondere stromauf der besagten Abkühlung bzw. Ankondensation des Einsatzstromes liegt).
  • Alternativ bzw. ergänzend hierzu kann ein Teil des Kopfprodukts (oder das gesamte Kopfprodukt) aus der ersten Kolonne nach Einstellung des Inertengehalts (z. B. N2, Ar) auf Werte unter 1 Vol.-% bis 2 Vol.-% verflüssigt und als Flüssigerdgas-Produkt (LNG) gelagert werden.
  • Gemäß einer besonders bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens ist vorgesehen, dass zumindest ein Teil des methanreichen Kopfprodukts aus der ersten Kolonne einen Bestandteil des ersten und/oder zweiten Kältemittelstroms bzw. der oben genannten Kältemittelströme bildet, also in einen entsprechenden Kältekreislauf eingespeist wird. Ein derartiger Teilstrom des Kopfprodukts der ersten Kolonne (Rückgas) kann z. B. über ein Ventil in einen geschlossenen Kältemittelkreislauf eingespeist werden.
  • Im besagten Kältemittelkreislauf wird bevorzugt eine Verdichtung des Kältemittelstromes durchgeführt (z. B. eine ein- oder zweistufige Vorverdichtung des Kältemittelstromes gefolgt von einer weiteren Verdichtung, z. B. mittels eines Boosters) und Abkühlung auf ca. Umgebungstemperatur mittels Wasser- oder Luftkühlung. Hiernach wird der Kältemittelstrom bevorzugt in die Wärmeübertragereinheit geleitet, in der der Kältemittelstrom abgekühlt wird. Anschließend wird der Kältemittelstrom bevorzugt in einen ersten und einen zweiten Kältemittelstrom aufgeteilt, wobei der erste Kältemittelstrom bevorzugt einem Expander zugeführt wird und dort arbeitsleistend expandiert wird (jene Arbeit kann zum Antreiben des besagten Boosters verwendet werden), und wobei der zweite Kältemittelstrom bevorzugt in der Wärmeübertragereinheit unterkühlt wird und hiernach wiederum in einen ersten und einen zweiten Kältemittelstrom aufgeteilt wird. Diese beiden letzteren Kältemittelströme werden bevorzugt jeweils entspannt, wobei der erste dieser Kältemittelströme in den ersten Kondensator und der zweite dieser Kältemittelströme in den zweiten Kondensator eingeleitet wird und dort jeweils die aus dem Kopf der ersten bzw. zweiten Kolonne abgezogene gasförmige Phase zumindest teilweise kondensiert. Anschließend werden die beiden hierbei zumindest teilweise verdampften Kältemittelströme sowie der expandierte erste Kältemittelstrom (Austrittsstrom des Expanders) bevorzugt zusammengeführt und miteinander vermischt. Der solchermaßen wieder vereinte Kältemittelstrom K wird bevorzugt durch die Wärmeübertragereinheit geführt und anschließend wieder zur besagten Verdichtung gefahren (siehe oben), so dass sich der Kältekreislauf schließt.
  • Weiterhin besteht die Möglichkeit, dass der erste und/oder der zweite Kältemittelstrom bzw. der Kältemittelstrom durch von außen zugeführten Stickstoff an N2 angereichert werden, um den Joule-Thomson-Effekt im Kältekreislauf beim Expandieren bzw. Entspannen zu verstärken.
  • Weiterhin kann je nach Beschaffenheit des Einsatzstromes eine Vorbehandlung des Einsatzgases bzw. -stromes durchgeführt werden, bei der insbesondere CO2 und H2O sowie ggf. sonstige ausfrierbare Komponenten entfernt werden, die der nachfolgenden Tieftemperaturzerlegung schaden könnten (siehe auch unten). Bevorzugt wird hierbei jene Vorbehandlung nach der besagten Entnahme des Einsatzgases aus der heranführenden Pipeline/Rohrleitung sowie stromauf der Abkühlung und eventuell Ankondensation durchgeführt.
  • Weiterhin ist gemäß einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens vorgesehen, dass das Sumpfprodukt aus der ersten Kolonne nach dem Abziehen aus der ersten Kolonne auf einen Druck zwischen 1 bar und 10 bar entspannt wird und sodann in die zweite Kolonne gefahren wird.
  • Das in der zweiten Kolonne anfallende (methanarme bzw. -freie) Sumpfprodukt enthält die restlichen, schwereren Kohlenwasserstoffe des Einsatzgases und kann nach Anwärmung/Verdampfung in der Wärmeübertragereinheit als Brenngas verwendet werden. Alternativ hierzu kann jenes Sumpfprodukt mittels einer Pumpe auf einen Druck gebracht werden, damit es nach Verdampfung und Anwärmung in der Wärmeübertragereinheit oder einem separaten Wärmeübertrager gegen das Einsatzgas oder den abzukühlenden Kältemittelstrom wieder zurück in die Rohrleitung des Einsatzgases geführt werden kann, bevorzugt stromab der Entnahmestelle des Einsatzgases. Alternativ kann das flüssige Sumpfprodukt in einer oder mehreren weiteren Prozesseinheiten zu spezifikationsgerechten Flüssigprodukten (z. B. Ethan, LPG, Gasoline) aufbereitet werden.
  • Schließlich kann das (hochreine) Xe-Kopfprodukt der zweiten Kolonne gemäß einer bevorzugten Ausgestaltung des erfindungsgemäßen Verfahrens nach Anwärmung gegen abzukühlendes Einsatzgas (Einsatzstrom) und/oder den abzukühlenden Kältemittelstrom bzw. abzukühlende Kältemittelströme in der Wärmeübertragereinheit auf vorzugsweise 50 bar bis 200 bar komprimiert und in Flaschen abgefüllt werden.
  • Grundsätzlich kann bei dem erfindungsgemäßen Verfahren bzw. in der entsprechenden Anlage eine Wärmeübertragereinheit verwendet werden, die als einzelner Wärmeübertrager (z. B. Plattenwärmeübertrager) ausgestaltet ist, in dem alle Prozessströme miteinander Wärme tauschen, oder mehrere separate Wärmeübertrager aufweist, die miteinander über Rohrleitungen verbunden sind. Für den Fall, dass separate Wärmeübertrager vorliegen, werden der oder die Kältemittelströme bevorzugt getrennt von den Einsatzströmen gefahren.
  • Weiterhin wird das erfindungsgemäße Problem durch eine Anlage mit den Merkmalen des Anspruchs 13 gelöst. Vorteilhafte Ausgestaltungen der erfindungsgemäßen Anlage sind in den entsprechenden Unteransprüchen angegeben bzw. werden nachfolgend beschrieben.
  • Gemäß Anspruch 13 weist die Anlage zur Gewinnung eines Xe-haltigen Produktstroms, insbesondere eines hochreinen Xe-haltigen Produktstroms, aus einem gasförmigen, methanhaltigem Einsatzstrom, die folgenden Merkmale auf:
    • – eine erste Kolonne zum Auftrennen des Einsatzstromes in ein Kopfprodukt in Form einer methanreichen, gasförmigen Phase und ein Sumpfprodukt in Form einer methanarmen, Xe-haltigen flüssigen Phase,
    • – eine zweite Kolonne zum Auftrennen des Sumpfprodukts der ersten Kolonne in ein Kopfprodukt in Form jenes Xe-haltigen Produktstroms sowie ein Sumpfprodukt in Form einer kohlenwasserstoffhaltigen flüssigen Phase, wobei die erste Kolonne mit der zweiten Kolonne in Strömungsverbindung steht, so dass das Sumpfprodukt aus der ersten Kolonne in die zweite Kolonne führbar ist, und
    • – eine Wärmeübertragereinheit zum Abkühlen und eventuell Ankondensieren des Einsatzstroms, wobei die Wärmeübertragereinheit mit der ersten Kolonne in Strömungsverbindung steht, so dass der ankondensierte Einsatzstrom aus der Wärmeübertagereinheit in die erste Kolonne führbar ist.
  • Gemäß einer bevorzugten Ausführungsform der erfindungsgemäßen Anlage ist vorgesehen, dass der Kopf der ersten Kolonne, insbesondere über die Wärmeübertrageeinheit, mit einem Kältekreislauf der Anlage in Strömungsverbindung bringbar ist bzw. steht, so dass das Kopfprodukt der ersten Kolonne als Kältemittelstrom in den Kältekreislauf einleitbar und dort verwendbar ist.
  • Weiterhin ist gemäß einer bevorzugten Ausführungsform der erfindungsgemäßen Anlage vorgesehen, dass der Kopf der erste Kolonne mit einem ersten Kondensator in Strömungsverbindung steht, der wiederum mit dem Kältekreislauf in Strömungsverbindung steht, so dass eine aus dem Kopf der ersten Kolonne abgezogene methanreiche, gasförmige Phase im ersten Kondensator gegen einen ersten Kältemittelstrom des Kältekreislaufs zumindest ankondensierbar und in die erste Kolonne zurückführbar ist, und/oder dass der Kopf der zweiten Kolonne mit einem zweiten Kondensator in Strömungsverbindung steht, der mit dem Kältekreislauf in Strömungsverbindung steht, so dass eine aus dem Kopf der zweiten Kolonne abziehbare Xe-haltige, gasförmige Phase in dem zweiten Kondensator gegen einen zweiten Kältemittelstrom des Kältekreislaufs zumindest ankondensierbar und in die zweite Kolonne zurückführbar ist.
  • Weitere Merkmale bzw. bevorzugte Ausgestaltungen der erfindungsgemäßen Anlage ergeben sich auch aus den im Zusammenhang mit dem erfindungsgemäßen Verfahren beschriebenen Merkmalen sowie aus allen sinnvollen Kombinationen der im Rahmen der nachfolgenden Figurenbeschreibung beschriebenen Merkmale der erfindungsgemäßen Anlage.
  • Bevorzugt werden zur Tieftemperaturzerlegung des Einsatzgases (neben dem Kältekreislauf sowie den Wärmeübertragern, Verdichtern und dem Expander) im erfindungsgemäßen Verfahren bzw. bei der erfindungsgemäßen Anlage lediglich zwei Kolonnen verwendet.
  • Zusammenfassend ermöglicht die Erfindung die Herstellung eines hochreinen Xe-Produktes mit Verunreinigungen im einstelligen ppmV-Bereich. Diese Spezifikation wird dabei mit nur zwei Kolonnen erreicht (siehe oben), ohne zusätzliche Feinreinigung (der Prozess kann so geführt werden, dass trotz hohem Anteil von Kr im Xe + Kr-Anteil des Einsatzgases nur noch wenige ppmV Kr im Xe-Produkt vorliegen). Weiterhin handelt es sich bei dem erfindungsgemäßen Verfahren um ein energetisch günstiges Verfahren, das einen geringen apparativen Aufwand aufweist und damit vergleichsweise kostengünstig ist. Das Verfahren ist auch einsetzbar für sehr schwere Einsatzgase (z. B. Erdölbegleitgase) und sehr methanreiche Gase (z. B. Restgase aus der Ammoniak- oder Methanolsynthese, siehe oben). Weiterhin lassen sich mit dem erfindungsgemäßen Verfahren Xe-Ausbeuten von 90% bis 95% ohne große Verschlechterung des Energiebedarfs erreichen; erst bei Ausbeuten oberhalb von 95% steigt der Energiebedarf merklich an.
  • Weitere Vorteile und Merkmale der Erfindung sollen bei den nachfolgenden Figurenbeschreibungen von Ausführungsbeispielen der Erfindung anhand der Figuren erläutert werden. Es zeigen:
  • 1 ein Schaubild eines erfindungsgemäßen Verfahrens bzw. einer erfindungsgemäßen Anlage; und
  • 2 ein Detail der 1;
  • 1 zeigt im Zusammenhang mit 2 eine Ausführungsform des erfindungsgemäßen Verfahrens bzw. einer erfindungsgemäßen Anlage zur Gewinnung von Xenon (Xe) aus einem methanhaltigen (sowie Xe enthaltenden) Einsatzgas bzw. Einsatzstrom E. Die angegebenen Temperaturen und Drücke sind beispielhafte, bevorzugte Werte. Andere Verfahrensführungen sind nicht ausgeschlossen.
  • Bei dem Verfahren wird ein Einsatzstrom E bereitgestellt, bei dem es sich z. B. um Erdgas handeln kann, das z. B. in einer Pipeline bzw. Rohrleitung L geführt wird. Das Erdgas kann z. B. einer Ppipeline-Spezifikation entsprechen, bei der das Einsatzgas bzw. der Einsatzstrom E gemäß einem Beispiel der Erfindung 0 Vol.-% bis 5 Vol.-% N2, 90 Vol.-% bis 98 Vol.-% CH4, 1 Vol.-% bis 5 Vol.-% C2H6, 0 Vol.-% bis 3 Vol.-% C3+, sowie einen Volumenanteil von Xe und Kr enthält, der geringer ist als 0,1 Vol.-%.
  • Bei dem Einsatzgas E kann es sich gemäß weiteren Beispielen der Erfindung auch um methanhaltige Erdölbegleitgase oder um methanhaltige Restgase aus verschiedenen Syntheseprozessen handeln, z. B. um Erdölbegleitgase mit 0 Vol.-% bis 5 Vol.-% N2, 40 Vol.-% bis 80 Vol.-% CH4, 10 Vol.-% bis 20 Vol.-% C2H6, 5 Vol.-% bis 15 Vol.-% C3H8, sowie mit einem Volumenanteil von C4+, der geringer ist als 3 Vol.-% bis 10 Vol.-%, sowie mit einem Volumenanteil von Xe und Kr, der geringer ist als 0,1 Vol.-%.
  • Bei einem Restgas aus verschiedenen Syntheseprozessen kann es sich gemäß einem Beispiel der Erfindung um ein Restgas aus der Ammoniak- oder Methanolsynthese handeln, mit einem Volumenanteil von CH4, der oberhalb von 98 Vol.-% liegt, wobei der Volumenanteil von Xe geringer als 10 ppmV und der Volumenanteil von Kr geringer als 200 ppmV ist.
  • Optional wird der bereitgestellte Einsatzstrom E, insbesondere je nach Gasqualität, einer Vorbehandlung bzw. Vorreinigung 2 unterzogen (siehe auch 2). Hierbei wird der Einsatzstrom E über eine Strömungsverbindung 204 (z. B. Rohrleitung) sowie insbesondere über ein regelbares Ventil 203, mit dem der Einsatzstrom E regelbar ist, in die Anlage 1 eingeführt. Bevorzugt wird der Einsatzstrom E weiterhin verdichtet (nicht dargestellt), insbesondere falls der Druck des Einsatzgases E unter ca. 10 bar liegt. Über die Strömungsverbindung 204 wird der Einsatzstrom E in eine Prozesseinheit 24 zur CO2-Entfernung geführt, in der der Einsatzstrom E z. B. einer Aminwäsche zur Entfernung von CO2 25 bzw. Sauergasen aus dem Einsatzgasstrom E unterzogen wird. Die Wärme zur Regenerierung des dabei verwendeten, beladenen Waschmittels kann z. B. durch Heißöl 26a bereitgestellt werden. Anfallendes Abwasser 27a wird abgeführt. Alternativ kann die Entfernung von CO2/Sauergasen aus dem Einsatzstrom E in einer Molsiebstation mit optionaler, sich anschließender Trocknung des Einsatzstromes E durchgeführt werden. Sofern Quecksilber (Hg) im Einsatzstrom E vermutet wird bzw. enthalten ist, kann der Einsatzstrom E stromauf der Einheit zur CO2-Entfernung 24 z. B. mittels der Ventile 230, 231, 232 über einen Quecksilberadsorber 23 geführt werden (Schließen des Ventils 230 sowie Öffnen der Ventile 231 und 232, die in Strömungsverbindung mit jenem Adsorber 23 stehen (nicht dargestellt)). Aus der CO2-Entfernung wird das Einsatzgas E sodann über eine Strömungsverbindung 208 (z. B. Rohrleitung) in eine Einheit zur Trocknung 28 des Einsatzgases E geführt, in der H2O aus dem Einsatzgasstrom E entfernt wird. Zur Trocknung verwendete Wärme kann hierbei wiederum mittels eines Heißöls 26b als Wärmeträger bereitgestellt werden. Bei der Trocknung 28 anfallendes Abwasser 27b wird abgeführt. Das solchermaßen vorbehandelte Einsatzgas E' wird dann dem Tieftemperaturzerlegungsteil des Verfahrens bzw. der Anlage 1 zugeführt (vgl. 1), in dem die Xe-Gewinnung aus dem (ggf. wie oben vorbehandelten) Einsatzstrom E' durchgeführt wird.
  • Hierzu wird der Einsatzstrom E über eine Strömungsverbindung (z. B. Rohrleitung) 300 einer Wärmeübertragereinheit 30 zugeführt, in der der Einsatzstrom E auf ca. –110°C abgekühlt und inbesondere ankondensiert wird. Der hierdurch ggf. als zweiphasiges Gemisch (flüssig/gasförmig) vorliegende Einsatzstrom E' wird insbesondere über ein Ventil 301 in eine erste Kolonne 31 (Rektifikationskolonne) geführt, die einen Druck von ca. 8 bar aufweist, wobei die sich im Sumpf ansammelnde, Xe-haltige und methanarme flüssige Phase aus dem Sumpf abgezogen wird, in einem ersten Aufkocher zumindest teilweise verdampft wird und bei ca. –30°C wieder in die erste Kolonne 31 zurückgeführt wird. Der erste Aufkocher kann dabei gemäß 1 in die Wärmeübertragereinheit 30 integriert sein, wozu die erste Kolonne 31 über entsprechende Strömungsverbindungen 304 mit der Wärmeübertragereinheit 30 verbunden ist, so dass jene Xe-haltige flüssige Phase aus der ersten Kolonne 31 in den dort integrierten ersten Aufkocher führbar, dort teilweise verdampfbar und als zweiphasiger Strom wieder in die erste Kolonne 31 zurückführbar ist. Alternativ kann der Abzug der Xe-haltigen flüssigen Phase auch vom zweituntersten Boden der ersten Kolonne 31 erfolgen, wenn dadurch eine bessere Kältenutzung bei der teilweisen Verdampfung dieses Stromes möglich ist.
  • Alternativ kann ein separater Wärmeübertrager als erster Aufkocher verwendet werden. In beiden Fällen wird die besagte Xe-haltige flüssige Phase aus dem Sumpf der ersten Kolonne 31 gegen den Einsatzstrom E oder einen Kältemittelstrom K' (siehe unten) erhitzt bzw. teilverdampft. Weiterhin wird aus dem Kopf der ersten Kolonne 31 eine methanreiche, gasförmige Phase G' abgezogen, in einen ersten Kondensator 32 geführt, dort gegen den Kältemittelstrom S (siehe unten) zumindest teilweise kondensiert und in die erste Kolonne 31 bei ca. –130°C zurückgegeben.
  • Weiterhin wird aus dem Kopf der ersten Kolonne 31 als Kopfprodukt eine CH4-reiche gasförmige Phase G abgezogen, die als Rückgas G bezeichnet wird und Methan und Inertgase wie N2 und Ar, Kr enthält. Dieses Kopfprodukt der ersten Kolonne 31 wird in der Wärmeübertragereinheit 30 gegen den abzukühlenden Einsatzstrom und/oder den abzukühlenden Kältemittelstrom bis auf ca. 20°C angewärmt, über eine Strömungsverbindung 307 einem Verdichter 35 zugeführt, dort verdichtet und in den Einsatzstrom E bzw. die Pipeline/Rohrleitung L zurückgeführt, insbesondere stromab der Abzweigung/Entnahmestelle zur Vorbehandlung 2. Alternativ hierzu besteht die Möglichkeit, das besagte Kopfprodukt nach teilweiser Entfernung der Inertgase zu verflüssigen und als LNG-Produkt weiter zu verwerten.
  • Zur Gewinnung des Xe wird weiterhin eine als Sumpfprodukt aus dem Sumpf der ersten Kolonne 31 abgezogene, Xe-haltige sowie methanarme flüssige Phase F entspannt (z. B. über Ventil 302), und zwar bevorzugt auf einen Druck zwischen 1 bar und 10 bar, und wird sodann über eine Strömungsverbindung 303 (z. B. Rohrleitung) in eine zweite Kolonne 33 gefahren (sogenannte Xenon-Anreicherungskolonne), in der Xe angereichert wird. In der flüssigen Phase F ist so gut wie kein Methan mehr enthalten (< 1 ppmV), jedoch noch die schwereren Kohlenwasserstoffe (C2+) aus dem Einsatzgas E.
  • Aus dem Sumpf der zweiten Kolonne 33, die in unserem Beispiel bei ca. 3 bar betrieben wird, wird bei ca. –60°C ein Sumpfprodukt in Form einer flüssigen Phase F' abgezogen, das jene schwereren Kohlenwasserstoffe, wie z. B. C2+ enthält (je nach Einsatzgas E) und ggf. über eine Strömungsverbindung 308 (z. B. Rohrleitung) seiner weiteren Verwendung zugeführt wird. Dieses Sumpfprodukt F' kann z. B. nach Anwärmung/Verdampfung gegen den abzukühlenden Einsatzstrom und/oder den abzukühlenden Kältemittelstrom in der Wärmeübertragereinheit 30 als Brenngas 38 verwendet werden. Alternativ kann dieses Sumpfprodukt nach Druckerhöhung in der Wärmeübertragereinheit 30 (oder in einem separaten Wärmeübertrager) verdampft werden (z. B. gegen den Einsatzstrom E oder den Kältemittelstrom K') und in die Pipeline/Rohrleitung L zurückgegeben werden. Alternativ kann das flüssige Sumpfprodukt in einer oder mehreren weiteren Prozesseinheiten zu spezifikationsgerechten Flüssigprodukten (z. B. Ethan, LPG, Gasoline) aufbereitet werden.
  • Weiterhin wird eine sich im Sumpf der zweiten Kolonne 33 ansammelnde, kohlenwasserstoffhaltige flüssige Phase aus dem Sumpf der zweiten Kolonne 33 abgezogen, in einem zweiten Aufkocher teilweise verdampft und bei ca. –60°C wieder in die zweite Kolonne 33 zurückgeführt. Alternativ kann der Abzug der kohlenwasserstoffhaltigen flüssigen Phase auch vom zweituntersten Boden der Kolonne erfolgen, wenn dadurch eine bessere Kältenutzung bei der teilweisen Verdampfung dieses Stromes möglich ist. Der zweite Aufkocher kann dabei wiederum gemäß 1 in die Wärmeübertragereinheit 30 integriert sein, wozu die zweite Kolonne 33 über eine entsprechende Strömungsverbindung 305 mit der Wärmeübertragereinheit 30 verbunden ist, so dass jene kohlenwasserstoffhaltige flüssige Phase aus der ersten Kolonne 33 in den dort integrierten zweiten Aufkocher führbar, dort teilweise verdampfbar und als zweiphasiger Strom wieder in die zweite Kolonne 33 zurückführbar ist. Alternativ kann ein separater Wärmeübertrager als zweiter Aufkocher verwendet werden. In beiden Fällen wird die besagte kohlenwasserstoffhaltige flüssige Phase aus dem Sumpf der zweiten Kolonne 33 gegen den Einsatzstrom E oder den Kältemittelstrom K' (siehe unten) erhitzt bzw. verdampft. Weiterhin wird aus dem Kopf der zweiten Kolonne 33 eine Xe-haltige, gasförmige Phase G'' abgezogen, in einen zweiten Kondensator 34 geführt, dort gegen den Kältemittelstrom S' (siehe unten) zumindest teilkondensiert und in die zweite Kolonne 33 zurückgegeben.
  • Als Kopfprodukt bzw. Produktstrom P wird aus der zweiten Kolonne 33 bei ca. –110°C schließlich hochreines Xe oder ein hochreines Xe-Kr-Gemisch (je nach Einsatzgas E) mit weniger als 10 ppmV Verunreinigungen an Methan und Ethan abgezogen. Dieser Produktstrom P wird dann bevorzugt über eine Strömungsverbindung 306 der Wärmeübertragereinheit 30 zugeführt, dort auf ca. 20°C angewärmt und kann nach Verdichtung 37 und nachfolgender Kühlung 36 bei z. B. 50 bar bis 200 bar Druck in Flaschen abgefüllt werden.
  • Zur Bereitstellung der im Zerlegungsteil Z benötigten Kälteleistung ist ein geschlossener Kältekreislauf K vorgesehen, wobei als Kältemittel bzw. Kältemittelstrom K', K'', K''', S, S' bevorzugt zumindest ein Teilstrom des besagten Rückgases G verwendet wird. Hierzu kann stromab des Verdichters 35 eine Strömungsverbindung (z. B. Rohrleitung) 400 zum Kältekreislauf K vorgesehen sein, so dass das Rückgas G bzw. K' z. B. über ein Ventil 401 in den Kältekreislauf K einspeisbar ist.
  • Im Kältekreislauf K erfolgt eine ein- oder zweistufige Vorverdichtung in einem ersten Kreislaufverdichter 40, 41 auf ca. 40 bar mit jeweils nachgeschalteter Kühlung (z. B. jeweils mittels eines Wärmeübertragers 42 bzw. 43) auf ca. 40°C. Sodann wird der Kältemittelstrom K mittels eines zweiten Kreislaufverdichters 44 (Booster) weiter verdichtet auf ca. 55 bar und auf ca. 40°C abgekühlt (z. B. mittels eines Wärmeübertragers 45). Hiernach wird der Kältemittelstrom K' über eine Strömungsverbindung 402 der Wärmeübertragereinheit 30 zugeführt, in der der Kältemittelstrom K' gegen insbesondere einen oder mehrere (anzuwärmende) Ströme (z. B. Produkt- oder Kältemittelstrom) auf ca. –50°C abgekühlt wird.
  • Nach Verlassen der Wärmeübertragereinheit 30 wird der Kältemittestrom K' sodann in einen ersten und einen zweiten Kältemittelstrom K'', K''' aufgeteilt, wobei der erste Kältemittelteilstrom K'', der bevorzugt 25% bis 99% des Volumenstroms des Kältemittelstroms K' aufweist, einem Expander 46 zugeführt wird und dort arbeitsleistend auf ca. 7 bar expandiert wird, wobei jene Arbeit zum Antreiben des Boosters 44 verwendet werden kann. Der zweite Kältemittelstrom K''' wird der Wärmeübertragereinheit 30 über eine von der Strömungsverbindung 402 abzweigende Strömungsverbindung (z. B. Rohrleitung) 403 zugeführt und dort vorzugsweise gegen anzuwärmende Produktströme und/oder anzuwärmende Kältemittelströme kondensiert und auf ca. –130°C unterkühlt. Hiernach wird der zweite Kältemittelstrom K''' wiederum in einen ersten und einen zweiten Kältemittelstrom S, S' aufgeteilt, wobei diese beiden Kältemittelströme S, S' jeweils über eine Strömungsverbindung 404, 405 je einer Drossel 410 bzw. 411 zugeleitet werden, dort auf ca. 7 bar entspannt werden und in den ersten bzw. zweiten Kondensator 32, 34 eingeleitet werden, um dort jeweils die aus dem Kopf der ersten bzw. zweiten Kolonne 31, 32 abgezogene gasförmige Phase G', G'' zumindest teilweise zu kondensieren. Die beiden Kältemittelteilströme S, S' werden dabei jeweils im zugeordneten Kondensator 32, 34 zumindest teilweise verdampft. Anschließend werden die beiden Kältemittelströme S, S' sowie der expandierte erste Kältemittelteilstrom K'' (Austrittsstrom des Expanders 46) über je eine Strömungsverbindung 406, 407, 408 zusammengeführt und miteinander vermischt. Der solchermaßen wieder vereinte Kältemittelstrom K wird in der Wärmeübertragereinheit 30 gegen den abzukühlenden Einsatzstrom und/oder den abzukühlenden Kältemittelstrom bis auf ca. 20°C angewärmt und über eine Strömungsverbindung 409 (z. B. Rohrleitung) zum ersten Kreislaufverdichter 40, 41 gefahren, so dass sich der Kältekreislauf K schließt.
  • Je nach Kapazität und Qualität des Einsatzgases E kann auch auf den zweiten Kreislaufverdichter bzw. Booster 44 verzichtet werden. Der Expander 46 kann dann z. B. mit mechanischer oder Flüssigkeitsbremse betrieben werden. Weiterhin kann je nach Kapazität und Qualität des Einsatzgases E ggf. auch vollständig auf den Expander-Booster 44, 46 verzichtet werden. Der erste Kreislaufverdichter 40, 41 drückt dann das Kreislaufmedium (Kältelmittelstrom) K auf Enddruck und die gesamte Kreislaufmenge wird über die Entspannungsventile (Drosseln) 410, 411 gefahren.
  • Grundsätzlich besteht hinsichtlich aller Varianten der Erfindung die Möglichkeit, dass die Wärmeübertragereinheit 30 als ein einzelner Wärmeübertrager (z. B. Plattenwärmeübertrager) ausgebildet ist oder aus mehreren separaten Wärmeübertragern (z. B. Plattenwärmeübertragern) zusammengeschaltet ist. Sofern separate Wärmeübertrager vorliegen, können die Kältemittelströme getrennt von den Einsatz(gas)strömen gefahren werden.
  • Weiterhin können natürlich auch die beiden Kondensatoren 32, 34 in die Wärmeübertragereinheit 30 integriert sein. Ferner besteht die Möglichkeit, auf den ersten Kondensator 32 zu verzichten. Zur Sicherstellung einer effektiven Rektifikation wird dann bevorzugt der abgekühlte bzw. ankondensierte Einsatzstrom E aus der Wärmeübertragereinheit 30 in den Kopf der ersten Kolonne 31 gegeben, insbesondere auf einen obersten Boden der ersten Kolonne 31.
  • Weiterhin besteht die Möglichkeit, dem Kältemittelstrom K', der fast vollständig aus Methan besteht (Rückgas G), Stickstoff zuzufügen, so dass der Kältemittelstrom K' (bzw. die daraus abgeleiteten Ströme K'', K''', S, S') einen höheren Anteil an N2 aufweist. Der Vorteil liegt in einem besseren Joule-Thomson-Effekt beim Expandieren im Expander 46 sowie beim Entspannen über die Drosseln 410 und 411.
  • Falls das methanreiche Rückgas G verflüssigt werden soll, um ein LNG-Produkt zu erhalten, kann das Kreislaufgas (Kältemittelstrom) K' auch durch einen Gemischkreislauf ersetzt werden (Expander 46 entfällt), falls dies energetisch günstiger sein sollte als der Expanderkreislauf. Bezugszeichenliste
    1 Anlage
    2 Vorbehandlung Einsatzgas
    20 Brenngassystem
    21 Filter-Abscheider
    22 Abwasserbehandlung
    23 Einbindung Hg-Adsorber
    24 CO2-Entfernung
    25 Sauergas
    26a, 26b Heißöl
    27a, 27b Abwasser
    28 Trocknung
    30 Wärmeübertragereinheit
    31 Erste Kolonne
    32 Erster Kondensator
    33 Zweite Kolonne
    34 Zweiter Kondensator
    35 Erster Verdichter
    36 Wärmeübertrager
    37 Zweiter Verdichter
    38 Brenngas zur Wärmeversorgung
    40, 41 Erster Kreislaufverdichter
    42, 43, 45 Wärmeübertrager
    44 Zweiter Kreislaufverdichter (Booster)
    46 Expander
    203, 230232 Ventil
    204, 208 Strömungsverbindung (z. B. Rohrleitung)
    300, 303308 Strömungsverbindung (z. B. Rohrleitung)
    301, 302 Ventil
    400, 402409 Strömungsverbindung (z. B. Rohrleitung)
    401 Ventil
    410, 411 Drossel
    G Methanreiche gasförmige Phase (Rückgas)
    G' Methanreiche gasförmige Phase
    G'' Xe-haltige gasförmige Phase
    F Xe-haltige flüssige Phase
    F' Flüssige Phase
    K Kältekreislauf
    K' Kältemittelstrom
    K'' Erster Kältemittelstrom
    K''' Zweiter Kältemittelstrom
    E, E Einsatzgas bzw. Einsatzstrom
    P Produkt bzw. Produktstrom
    S erster Kältemittelstrom
    S' zweiter Kältemittelstrom
    Z Zerlegungsteil

Claims (15)

  1. Verfahren zur Gewinnung eines Xe-haltigen Produktstroms (P), insbesondere eines hochreinen Xe-haltigen Produktstroms (P), aus einem gasförmigen, methanhaltigen Einsatzstrom (E), aufweisend die Schritte: – Abkühlen und insbesondere Ankondensieren des Einsatzstroms (E), – Einleiten des Einsatzstroms (E) in eine erste Kolonne (31), – Abziehen eines Kopfprodukts in Form einer methanreichen gasförmigen Phase (G) aus dem Kopf der ersten Kolonne (31), – Abziehen eines Sumpfprodukts in Form einer methanarmen, Xe-haltigen flüssigen Phase (F) aus dem Sumpf der ersten Kolonne (31), – Einleiten des Sumpfprodukts in eine zweite Kolonne (33), und – Abziehen des Xe-haltigen Produktstroms (P) aus dem Kopf der zweiten Kolonne (33).
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass aus dem Kopf der ersten Kolonne (31) eine methanreiche, gasförmige Phase (G') abgezogen, in einem ersten Kondensator (32) gegen einen ersten Kältemittelstrom (S) zumindest teilkondensiert und in die erste Kolonne (31) zurückgegeben wird, oder dass der ankondensierte Einsatzstrom (E') auf einen obersten Boden der ersten Kolonne (31) gegeben wird; und dass aus dem Sumpf der ersten Kolonne (31) eine Xe-haltige flüssige Phase (F) abgezogen wird, in einem ersten Aufkocher gegen den abzukühlenden Einsatzstrom und/oder einen abzukühlenden Kältemittelstrom teilverdampft wird und in die erste Kolonne (31) zurückgegeben wird.
  3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass aus dem Kopf der zweiten Kolonne (33) eine Xe-haltige gasförmige Phase (G'') abgezogen, in einem zweiten Kondensator (34) gegen einen zweiten Kältemittelstrom (S') zumindest teilkondensiert und in die zweite Kolonne (33) zurückgegeben wird, und dass aus dem Sumpf der zweiten Kolonne (33) eine kohlenwasserstoffhaltige flüssige Phase abgezogen wird, in einem zweiten Aufkocher gegen den abzukühlenden Einsatzstrom und/oder einen abzukühlenden Kältemittelstrom teilverdampft wird und in die zweite Kolonne (33) zurückgegeben wird.
  4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Abkühlen und insbesondere Ankondensieren des Einsatzstroms (E') in einer Wärmeübertragereinheit (30) durchgeführt wird.
  5. Verfahren nach Anspruch 4 und nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass der erste und/oder der zweite Kondensator (32, 34) in die Wärmeübertragereinheit (30) integriert sind oder separat zu dieser ausgebildet sind, und/oder dass der erste und/oder der zweite Aufkocher in die Wärmeübertragereinheit (30) integriert sind oder separat zu dieser ausgebildet sind.
  6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Kopfprodukt (G) aus der ersten Kolonne (31) in der Wärmeübertragereinheit (30) gegen den abzukühlenden Einsatzstrom (E) und/oder einen abzukühlenden Kältemittelstrom angewärmt wird, verdichtet wird (35) und zumindest teilweise in eine Rohrleitung (L) zurückgeführt wird, aus der der Einsatzstrom (E) an einer Entnahmestelle entnommen wird, bevor er die besagte Abkühlung und insbesondere Ankondensation durchläuft, wobei das Kopfprodukt (G) bevorzugt stromab der Entnahmestelle in die Rohrleitung (L) zurückgeführt wird.
  7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zumindest ein Teil des Kopfprodukts (G) aus der ersten Kolonne (31), insbesondere nach Einstellung des Inertengehalts, verflüssigt wird und als Flüssig-Erdgas-Produkt seiner weiteren Verwendung zugeführt wird.
  8. Verfahren nach einem der vorhergehenden Ansprüche sofern rückbezogen auf Anspruch 2 oder 3, dadurch gekennzeichnet, dass zumindest ein Teil des methanreichen Kopfprodukts (G) aus der ersten Kolonne (31) als Bestandteil des ersten und/oder zweiten Kältemittelstroms (S, S') verwendet wird.
  9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der erste und/oder zweite Kältemittelstrom (S, S') N2 als weiteren Bestandteil aufweisen.
  10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Einsatzstrom (E) vor der Abkühlung und insbesondere Ankondensation (30) sowie insbesondere nach der besagten Entnahme aus der Rohrleitung einer Vorbehandlung (2) unterzogen wird.
  11. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Sumpfprodukt (F) aus der ersten Kolonne (31) nach dem Abziehen aus der ersten Kolonne (31) auf einen Druck zwischen 1 bar und 10 bar entspannt wird und sodann in die zweite Kolonne (33) gefahren wird.
  12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das flüssige Sumpfprodukt (F') der zweiten Kolonne (33) in einer oder mehreren weiteren Prozesseinheiten zu spezifikationsgerechten Flüssigprodukten, insbesondere Ethan, LPG, und/oder Gasoline, aufbereitet wird.
  13. Anlage zur Gewinnung eines Xe-haltigen Produktstroms (P), insbesondere eines hochreinen Xe-haltigen Produktstroms (P), aus einem gasförmigen, methanhaltigem Einsatzstrom (E), mit: – einer ersten Kolonne (31) zum Auftrennen des Einsatzstromes (E) in ein Kopfprodukt (G) in Form einer methanreichen, gasförmigen Phase und ein Sumpfprodukt in Form einer methanarmen, Xe-haltigen flüssigen Phase, – einer zweiten Kolonne zum Auftrennen des Sumpfprodukts der ersten Kolonne in ein Kopfprodukt in Form jenes Xe-haltigen Produktstroms (P) sowie ein Sumpfprodukt in Form einer kohlenwasserstoffhaltigen flüssigen Phase, wobei die erste Kolonne (31) mit der zweiten Kolonne (33) in Strömungsverbindung (303) steht, so dass das Sumpfprodukt aus der ersten Kolonne in die zweite Kolonne führbar ist, und – einer Wärmeübertragereinheit (30) zum Abkühlen und insbesondere Ankondensieren des Einsatzstroms (E), wobei die Wärmeübertragereinheit (30) mit der ersten Kolonne (31) in Strömungsverbindung (300) steht, so dass der abgekühlte und insbesondere ankondensierte Einsatzstrom (E') aus der Wärmeübertagereinheit (30) in die erste Kolonne (31) führbar ist.
  14. Anlage nach Anspruch 13, dadurch gekennzeichnet, dass der Kopf der ersten Kolonne (31), insbesondere über die Wärmeübertrageeinheit (30), mit einem Kältekreislauf (K) der Anlage (1) in Strömungsverbindung (400, 401) bringbar ist, so dass das Kopfprodukt (G) der ersten Kolonne als Kältelmittelstrom (K, K', K'', K''', S, S') in den Kältekreislauf (K) einleitbar ist.
  15. Anlage nach Anspruch 13 oder 14, dadurch gekennzeichnet, dass der Kopf der erste Kolonne (31) mit einem ersten Kondensator (32) in Strömungsverbindung steht, der wiederum mit dem Kältekreislauf (K) in Strömungsverbindung (404, 406) steht, so dass eine aus dem Kopf der ersten Kolonne (31) abgezogene methanreiche, gasförmige Phase (G') im ersten Kondensator (32) gegen einen ersten Kältemittelstrom (S) des Kältekreislaufs (K) zumindest teilkondensierbar und in die erste Kolonne (31) zurückführbar ist, und/oder dass der Kopf der zweiten Kolonne (33) mit einem zweiten Kondensator (34) in Strömungsverbindung steht, der mit dem Kältekreislauf (K) in Strömungsverbindung (405, 407) steht, so dass eine aus dem Kopf der zweiten Kolonne (33) abziehbare Xe-haltige gasförmige Phase (G'') in dem zweiten Kondensator (34) gegen einen zweiten Kältemittelstrom (S') des Kältekreislaufs (K) zumindest teilkondensierbar und in die zweite Kolonne (33) zurückführbar ist.
DE102014008770.0A 2014-06-12 2014-06-12 Xenon-Gewinnung aus methanhaltigen Gasen Active DE102014008770B9 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE102014008770.0A DE102014008770B9 (de) 2014-06-12 2014-06-12 Xenon-Gewinnung aus methanhaltigen Gasen
EA201790011A EA201790011A1 (ru) 2014-06-12 2015-06-11 Получение ксенона из метансодержащих газов
PCT/EP2015/001181 WO2015188938A1 (de) 2014-06-12 2015-06-11 Xenon-gewinnung aus methanhaltigen gasen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102014008770.0A DE102014008770B9 (de) 2014-06-12 2014-06-12 Xenon-Gewinnung aus methanhaltigen Gasen

Publications (3)

Publication Number Publication Date
DE102014008770A1 DE102014008770A1 (de) 2015-12-17
DE102014008770B4 true DE102014008770B4 (de) 2016-02-11
DE102014008770B9 DE102014008770B9 (de) 2016-04-07

Family

ID=53434294

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102014008770.0A Active DE102014008770B9 (de) 2014-06-12 2014-06-12 Xenon-Gewinnung aus methanhaltigen Gasen

Country Status (3)

Country Link
DE (1) DE102014008770B9 (de)
EA (1) EA201790011A1 (de)
WO (1) WO2015188938A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3403039B1 (de) 2016-01-11 2021-03-03 Praxair Technology, Inc. System und verfahren zur rückgewinnung von seltenen gasen

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3037359A (en) * 1958-10-21 1962-06-05 American Messer Corp Rare gas recovery process
JPS4826694A (de) * 1971-08-11 1973-04-07
SU1262224A1 (ru) * 1984-05-11 1986-10-07 Московский ордена Ленина и ордена Трудового Красного Знамени химико-технологический институт им.Д.И.Менделеева Способ получени криптоно-ксеноновой смеси
DE3922723A1 (de) * 1988-08-16 1990-02-22 Leipzig Chemieanlagen Verfahren zur abtrennung von krypton und xenon
DE3922594A1 (de) * 1988-08-16 1990-02-22 Leipzig Chemieanlagen Verfahren zur gewinnung von krypton und xenon aus den restgasen der ammoniak- oder methanolsynthese, in denen u. a. hoeher als methan siedende kohlenwasserstoffe vorhanden sind
WO2011102747A1 (en) * 2010-02-16 2011-08-25 Vladimir Petrovich Smetannikov Method of xenon concentrate extraction from natural combustible gas, products of its processing, including anthropogenic off gases and the device for its realization (variants)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD60291A (de) *
DD47047A1 (de) * 1962-03-13 1966-07-25
CN201488467U (zh) * 2009-08-13 2010-05-26 上海启元科技发展有限公司 一种高收率纯氪和纯氙的全精馏提取装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3037359A (en) * 1958-10-21 1962-06-05 American Messer Corp Rare gas recovery process
JPS4826694A (de) * 1971-08-11 1973-04-07
SU1262224A1 (ru) * 1984-05-11 1986-10-07 Московский ордена Ленина и ордена Трудового Красного Знамени химико-технологический институт им.Д.И.Менделеева Способ получени криптоно-ксеноновой смеси
DE3922723A1 (de) * 1988-08-16 1990-02-22 Leipzig Chemieanlagen Verfahren zur abtrennung von krypton und xenon
DE3922594A1 (de) * 1988-08-16 1990-02-22 Leipzig Chemieanlagen Verfahren zur gewinnung von krypton und xenon aus den restgasen der ammoniak- oder methanolsynthese, in denen u. a. hoeher als methan siedende kohlenwasserstoffe vorhanden sind
WO2011102747A1 (en) * 2010-02-16 2011-08-25 Vladimir Petrovich Smetannikov Method of xenon concentrate extraction from natural combustible gas, products of its processing, including anthropogenic off gases and the device for its realization (variants)

Also Published As

Publication number Publication date
EA201790011A1 (ru) 2017-05-31
DE102014008770B9 (de) 2016-04-07
DE102014008770A1 (de) 2015-12-17
WO2015188938A1 (de) 2015-12-17

Similar Documents

Publication Publication Date Title
EP1729077B1 (de) Verfahren und Vorrichtung zur Gewinnung von Produkten aus Synthesegas
US3213631A (en) Separated from a gas mixture on a refrigeration medium
US4152130A (en) Production of liquid oxygen and/or liquid nitrogen
DE102010044646A1 (de) Verfahren zum Abtrennen von Stickstoff und Wasserstoff aus Erdgas
DE60102174T2 (de) Verfahren zur Gewinnung von C2+ Kohlenwasserstoff
EP1724542B1 (de) Verfahren und Vorrichtung zur Gewinnung von Produkten aus Synthesegase
US20110239701A1 (en) Method of rejecting nitrogen from a hydrocarbon stream to provide a fuel gas stream and an apparatus therefor
WO2016087491A1 (de) Verfahren und anlage zur herstellung von kohlenwasserstoffen
DE102010020282A1 (de) Stickstoff-Abtrennung aus Erdgas
DE112007003171T5 (de) System und Verfahren zur Herstellung von Flüssigerdgas
DE102007007581A1 (de) Verfahren und Vorrichtung zur Trennung eines Gasgemisches
DE102011010633A1 (de) Verfahren zum Abkühlen eines ein- oder mehrkomponentigen Stromes
DE102014011226B4 (de) Xenon-Gewinnung aus ethanreichen Flüssigkeiten und Gasen
DE102005010054A1 (de) Verfahren zum gleichzeitigen Gewinnen einer Helium- und einer Stickstoff-Reinfraktion
DE102012020469A1 (de) Verfahren und Vorrichtung zur Abtrennung von Methan aus einem Synthesegas
DE102009015766A1 (de) Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion
WO2017001514A1 (de) Verfahren und anlage zur gewinnung von wasserstoff aus einem wasserstoff und kohlenwasserstoffe enthaltenden einsatzgemisch
DE102014008770B4 (de) Xenon-Gewinnung aus methanhaltigen Gasen
DE102007051184A1 (de) Verfahren und Vorrichtung zur Tieftemperatur-Luftzerlegung
DE102012017654A1 (de) Verfahren und Vorrichtung zur Stickstoffverflüssigung
DE102006021620B4 (de) Vorbehandlung eines zu verflüssigenden Erdgasstromes
DE2932561A1 (de) Verfahren und vorrichtung zum zerlegen eines gasgemisches
EP2312247A1 (de) Verfahren und Vorrichtung zur Gewinnung von flüssigem Stickstoff durch Tieftemperatur-Luftzerlegung
WO2007020252A2 (de) Verfahren und anlage zum verflüssigen eines kohlenwasserstoffreichen stroms
DE102012020470A1 (de) Verfahren und Vorrichtung zur Abtrennung von Methan aus einem Synthesegas

Legal Events

Date Code Title Description
R163 Identified publications notified
R012 Request for examination validly filed
R018 Grant decision by examination section/examining division
R020 Patent grant now final
R082 Change of representative

Representative=s name: ANDREA SOMMER PATENTANWAELTE PARTNERSCHAFT MBB, DE

Representative=s name: V. FUENER EBBINGHAUS FINCK HANO, DE

R082 Change of representative

Representative=s name: ANDREA SOMMER PATENTANWAELTE PARTNERSCHAFT MBB, DE

R082 Change of representative

Representative=s name: ANDREA SOMMER PATENTANWAELTE PARTNERSCHAFT MBB, DE

R082 Change of representative