DE102013205807A1 - Rudermaschine - Google Patents

Rudermaschine Download PDF

Info

Publication number
DE102013205807A1
DE102013205807A1 DE102013205807.1A DE102013205807A DE102013205807A1 DE 102013205807 A1 DE102013205807 A1 DE 102013205807A1 DE 102013205807 A DE102013205807 A DE 102013205807A DE 102013205807 A1 DE102013205807 A1 DE 102013205807A1
Authority
DE
Germany
Prior art keywords
hydraulic
cylinder
pump
chamber
rowing machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE102013205807.1A
Other languages
English (en)
Inventor
Roland Körner
Ulrich Stäuble
Swen Jörissen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Marine Systems GmbH
Original Assignee
ThyssenKrupp Marine Systems GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp Marine Systems GmbH filed Critical ThyssenKrupp Marine Systems GmbH
Priority to DE102013205807.1A priority Critical patent/DE102013205807A1/de
Priority to EP14712692.4A priority patent/EP2981458B1/de
Priority to ES14712692T priority patent/ES2766929T3/es
Priority to PCT/EP2014/056189 priority patent/WO2014161769A1/de
Publication of DE102013205807A1 publication Critical patent/DE102013205807A1/de
Ceased legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/06Steering by rudders
    • B63H25/08Steering gear
    • B63H25/12Steering gear with fluid transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H20/00Outboard propulsion units, e.g. outboard motors or Z-drives; Arrangements thereof on vessels
    • B63H20/08Means enabling movement of the position of the propulsion element, e.g. for trim, tilt or steering; Control of trim or tilt
    • B63H20/12Means enabling steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/06Steering by rudders
    • B63H25/08Steering gear
    • B63H25/14Steering gear power assisted; power driven, i.e. using steering engine
    • B63H25/18Transmitting of movement of initiating means to steering engine
    • B63H25/22Transmitting of movement of initiating means to steering engine by fluid means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/06Steering by rudders
    • B63H25/08Steering gear
    • B63H25/14Steering gear power assisted; power driven, i.e. using steering engine
    • B63H25/26Steering engines
    • B63H25/28Steering engines of fluid type
    • B63H25/30Steering engines of fluid type hydraulic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • F15B1/025Installations or systems with accumulators used for thermal compensation, e.g. to collect expanded fluid and to return it to the system as the system fluid cools down
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/04Special measures taken in connection with the properties of the fluid
    • F15B21/045Compensating for variations in viscosity or temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20561Type of pump reversible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/505Pressure control characterised by the type of pressure control means
    • F15B2211/50509Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means
    • F15B2211/50518Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means using pressure relief valves
    • F15B2211/50527Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means using pressure relief valves using cross-pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/625Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7051Linear output members
    • F15B2211/7053Double-acting output members
    • F15B2211/7054Having equal piston areas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7051Linear output members
    • F15B2211/7055Linear output members having more than two chambers
    • F15B2211/7056Tandem cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B7/00Systems in which the movement produced is definitely related to the output of a volumetric pump; Telemotors
    • F15B7/005With rotary or crank input

Abstract

Die Erfindung betrifft eine Rudermaschine, insbesondere für ein Unterwasserfahrzeug, mit einem Hydraulikkreislauf, in welchem eine Pumpe angeordnet ist, wobei die Pumpe eine motorbetriebene reversierbare Hydraulikpumpe ist, und dass der Hydraulikkreislauf ein geschlossener Kreislauf ist. Die Erfindung betrifft weiteren eine Ausgleichseinrichtung für einen geschlossenen Hydraulikkreislauf, insbesondere einer Rudermaschine, in welchem eine durch einen Motor angetriebene reversierbare Hydraulikpumpe direkt auf eine Hydraulikzylinderanordnung zur Steuerung eines Ruders wirkt, wobei die Ausgleichseinrichtung zum Konstanthalten eines vorbestimmten Drucks in dem Hydraulikkreislauf vorgesehen ist und einen Tandemzylinder mit beidseitiger Kolbenstange und gleichen Kolbenflächen umfasst, wobei zwei in dieselbe Richtung wirksame Kolbenflächen mit einem Hydrospeicher und die anderen beiden Kolbenflächen jeweils mit einer Seite der Hydraulikzylinderanordnung in Verbindung stehen.

Description

  • Die Erfindung betrifft eine Rudermaschine mit einem Hydraulikkreislauf und eine Ausgleichseinrichtung für einen Hydraulikkreislauf.
  • Im Stand der Technik sind sowohl Rudermaschinen bekannt, die elektrisch angetrieben werden als auch Rudermaschinen, die hydraulisch angetrieben werden.
  • Rein elektrisch betriebene Rudermaschinen haben im Hinblick auf die Energieeffizienz gegenüber hydraulisch betriebenen Rudermaschinen einen Vorteil. Allerdings benötigen sie ein Getriebe mit hoher Untersetzung oder einen Antrieb mit hohem Drehmoment.
  • Bei größeren Stellkräften werden fast ausschließlich hydraulische Antriebe eingesetzt. Als Stellantrieb werden dabei beispielsweise Plungerzylinder, doppeltwirkende Hydraulikzylinder oder Drehkolbenzylinder verwendet, die in einem offenen hydraulischen Kreislauf betrieben werden. Dabei stellt eine Hydraulikpumpe den benötigten Hydraulikdruck zur Verfügung. Die Ansteuerung der Stellantriebe erfolgt meist über Stetigventile. Die Hydraulikpumpen werden entweder dauernd betrieben, oder aber, um Energie einzusparen, zeitweise abgestellt, wobei dann die erforderliche Hydraulikenergie zuvor aufgeladenen Speichern entnommen wird.
  • Um Energie zu sparen, ist der Einsatz von verstellbaren Hydraulikpumpen (Schrägachsenmaschinen) und die Drehzahlregelung der Pumpenantriebe bekannt. Allerdings muss auch bei kleinen Drehzahlen ein ausreichendes Moment vorhanden sein.
  • Wegen der Ansteuerung mittels Hydraulikventilen und den damit verbundenen Strömungsverlusten ist eine derartige Ruderanlage wenig energieeffizient.
  • Eine regelbare Verstellpumpe zum Betrieb in einem offenen Hydraulikkreislauf einer Ruderanlage ist beispielsweise in DE 1 036 088 beschrieben.
  • Vor diesem Stand der Technik liegt der Erfindung die Aufgabe zugrunde, die Energieeffizienz in einem hydraulischen Kreislauf einer Rudermaschine zu erhöhen.
  • Diese Aufgabe wird gemäß der Erfindung durch eine Rudermaschine mit den in Anspruch 1 angegebenen Merkmalen sowie durch eine Ausgleichseinrichtung mit den in Anspruch 13 angegebenen Merkmalen gelöst. Vorteilhafte Weiterbildungen der Erfindung sind in den jeweiligen abhängigen Ansprüchen definiert. Hierbei können gemäß der Erfindung die in den Unteransprüchen und der Beschreibung angegebenen Merkmale jeweils für sich aber auch in geeigneter Kombination die erfindungsgemäße Lösung gemäß Anspruch 1 bzw. gemäß Anspruch 13 weiterbilden.
  • Erfindungsgemäß wird eine Rudermaschine, insbesondere für ein Unterwasserfahrzeug, mit einem Hydraulikkreislauf bereitgestellt, in welchem eine Pumpe angeordnet ist, wobei die Pumpe eine motorbetriebene reversierbare Hydraulikpumpe ist und der Hydraulikkreislauf ein geschlossener Kreislauf ist. Die erfindungsgemäße Rudermaschine vereint die Vorteile der beiden oben beschriebenen Antriebsarten, d. h. die Vorteile der Energieeffizienz, die bisher mit elektrischen Antrieben erzielt werden konnten und die Vorteile der hohen Stellkräfte, die mit hydraulischen Antrieben erzielbar sind. Es wird eine Kombination von elektrisch angetriebener Hydraulikpumpe in einem geschlossenen Hydraulikkreislauf vorgesehen, welche eine erhöhte Energieeffizienz auf einfache Weise erzielt. Die Energieeffizienz beruht im Wesentlichen darauf, dass ein geschlossener hydraulischer Kreislauf Verwendung findet, sodass hydraulische Energie nur dann zugeführt werden muss, wenn das Ruder bewegt werden soll.
  • Grundgedanke der erfindungsgemäßen Lösung ist es somit, einerseits einen geschlossenen hydraulischen Kreislauf vorzusehen, um die aufzuwendende Energie möglichst gering zu halten, andererseits eine reversierbare Pumpe vorzusehen, um unter Vermeidung aufwendiger Ventilsteuerungen in zwei Richtungen fahren zu können, das heißt unter Verwendung desselben hydraulischen Kreislaufes und ohne aufwändige Ventilanordnungen über einen doppeltwirkenden oder zwei einfach wirkende Stellzylinder das Ruder in die eine Richtung und wahlweise auch in die andere Richtung bewegen zu können.
  • Gemäß einer bevorzugten Ausführungsform wirkt die Hydraulikpumpe direkt auf eine Hydraulikzylinderanordnung, insbesondere auf einen doppeltwirkenden Arbeitszylinder gleicher Kolbenfläche und mit beidseitiger Kolbenstange.
  • Gemäß noch einer bevorzugten Ausführungsform ist die Hydraulikpumpe durch einen Servomotor, insbesondere einen im Vierquadrantenbetrieb betreibbarer Servomotor, angetrieben. Ein solcher Antrieb hat den Vorteil, dass die Ruderstellung direkt durch den Elektromotor steuerbar ist und keine Wegaufnehmer oder dergleichen erforderlich sind.
  • Vorzugsweise ist ein gefördertes Volumen der Hydraulikpumpe direkt proportional zu dem Zylinderhub der Hydraulikzylinderanordnung. Eine solche Ausbildung ist dann die Anzahl der Antriebsmotorumdrehungen, die im festen Verhältnis zur Schwenkbewegung des Ruders steht und somit eine sehr einfache Steuerung möglich ist.
  • Darüber hinaus ist es bevorzugt, wenn ein Ruder über eine Koppeleinrichtung, insbesondere über eine Pleuelstange, mit der Hydraulikzylinderanordnung verbunden ist.
  • Gemäß noch einer weiteren bevorzugten Ausführungsform ist die Bewegung des Ruders über die Drehbewegung des Servomotors steuerbar, insbesondere die Stellung des Ruders über die Anzahl der Drehungen des Servomotors einstellbar.
  • Es können weiterhin Ventile zum hydraulischen Verriegeln des Ruders bei Pumpenstillstand im Hydraulikkreislauf vorgesehen sein. Eine hydraulische Verriegelung des Rotors ist vorteilhaft, da dann antriebsseitig keine Vorkehrungen getroffen werden müssen, um diese Gegenkraft aufbringen zu müssen, das heißt bei Pumpenstillstand auch keine elektrische oder sonstige Energie erforderlich ist.
  • Auch ist es vorteilhaft, wenn Druckbegrenzungsventile im hydraulischen Kreislauf vorgesehen sind.
  • Bei einseitiger Beaufschlagung einer Kolbenstange der Hydraulikzylinderanordnung mit Tiefendruck ist es von Vorteil, wenn ein abgewandt gegenüberliegendes Ende der Kolbenstange ebenfalls mit Tiefendruck beaufschlagbar ist. Eine solche Ausgestaltung hat den Vorteil, dass die Kolbenstange hinsichtlich des Tiefendrucks stets druckausgeglichen ist, das heißt unabhängig von der Tauchtiefe stets die gleichen Kräfte zur Bewegung des Ruders erforderlich sind.
  • In einer Zuleitung der Hydraulikpumpe können Kühler zum Abführen von Verlustwärme angeordnet sein. Eine solche Kühlung der Hydraulikflüssigkeit in der Zuleitung der Hydraulikpumpe ist besonders wirksam um Kavitation zu vermeiden.
  • Gemäß noch einer weiteren bevorzugten Ausführungsform ist in dem Hydraulikkreislauf eine zweite Pumpe vorgesehen, welche in einem zweiten Leistungsbereich, insbesondere in einem Hochleistungsbereich, zuschaltbar ist.
  • Vorzugsweise ist in dem Hydraulikkreislauf zusätzlich eine von einem druckluftbetriebenen Motor angetriebene Hydraulikpumpe oder ein Druckluftmotor als Hilfsantrieb für eine Hydraulikpumpe vorgesehen. Als Hilfsantrieb einen Druckluftmotor einzusetzen, ist besonders vorteilhaft, da unterseebootseitig Druckluft ohnehin zur Verfügung steht und diese auch verfügbar ist, wenn andere Energiequellen ausfallen. Darüber hinaus sind Druckluftantriebe kostengünstig und einfach zu installieren, da keine geschlossenen Kreisläufe und keine Rückführleitungen erforderlich sind.
  • Erfindungsgemäß wird darüber hinaus eine Ausgleichseinrichtung für einen geschlossenen Hydraulikkreislauf, insbesondere einer Rudermaschine, in welchem eine durch einen Motor angetriebene reversierbare Hydraulikpumpe direkt auf eine Hydraulikzylinderanordnung zur Steuerung eines Ruders wirkt, bereitgestellt, wobei die Ausgleichseinrichtung zum Konstanthalten eines vorbestimmten Drucks in dem Hydraulikkreislauf vorgesehen ist und einen Tandemzylinder mit beidseitiger Kolbenstange und gleichen Kolbenflächen umfasst, wobei zwei in dieselbe Richtung wirksame Kolbenflächen mit einem Hydrospeicher und die anderen beiden Kolbenflächen jeweils mit einer Seite der Hydraulikzylinderanordnung in Verbindung stehen. Die Ausgleichseinrichtung sieht auf einfache und effektive Weise den für den geschlossenen Hydraulikkreislauf notwendigen Volumenausgleich vor, wie er zum Ausgleich von temperaturbedingten Volumenschwankungen und Leckagen erforderlich ist. Temperatur- und leckagebedingte Volumenänderungen werden mittels der erfindungsgemäßen Ausgleichseinrichtung derart ausgeglichen, dass das Gesamtsystem beim Fahren des Zylinders im Gegensatz zu aus dem Stand der Technik bekannten Systemen „hart” bleibt. Aus dem Stand der Technik bekannte Systeme reagieren dagegen „weich”, was eine aufwändige Regelung des Kolbenhubs erfordert. Die erfindungsgemäße Ausgleichseinrichtung sorgt also einerseits für den erforderlichen Volumenausgleich, vermeidet jedoch andererseits die von hydraulischen Speichern sonst bekannten Federwirkungen. Die erfindungsgemäße Ausgleichseinrichtung ist nicht nur für einen geschlossenen Hydraulikkreislauf einer Ruderanlage einsetzbar, sondern auch in beliebigen anderen hydraulischen Kreisläufen, vorzugsweise geschlossenen Kreisläufen, um diesen Effekt zu erzielen.
  • Gemäß einer bevorzugten Ausführungsform umfasst die Hydraulikzylinderanordnung einen Arbeitszylinder, insbesondere einen doppeltwirkenden Arbeitszylinder gleicher Kolbenfläche und mit beidseitiger Kolbenstange.
  • Vorzugsweise weist der Tandemzylinder einen ersten Zylinder mit einer ersten Kammer und einer zweiten Kammer und einen zweiten Zylinder mit einer ersten Kammer und einer zweiten Kammer auf, und der Arbeitszylinder weist eine erste Kammer und eine zweite Kammer auf, wobei die jeweiligen ersten Kammern jeweils auf der einen, z. B. der linken Seite der jeweiligen Kolbenflächen liegen und die jeweiligen zweiten Kammern auf der jeweiligen anderen, dann der rechten Seite der jeweiligen Kolbenflächen liegen, wobei die erste Kammer des Arbeitszylinders mit der ersten Kammer des ersten Zylinders verbunden ist und die zweite Kammer des Arbeitszylinders mit der ersten Kammer des zweiten Zylinders verbunden ist, und wobei die zweite Kammer des ersten Zylinders mit dem Hydrospeicher verbunden ist und die zweite Kammer des zweiten Zylinders mit dem Hydrospeicher verbunden ist.
  • Weiterhin ist es bevorzugt, wenn ein einzustellender Mitteldruck in dem Hydraulikkreislauf gleich einer halben maximalen Pumpendruckdifferenz plus einem Sockeldruck ist.
  • Gemäß einer weiteren bevorzugten Ausführungsform ist die Rudermaschine mit einer Ausgleichseinrichtung, wie oben beschrieben, ausgestattet.
  • Die Erfindung ist nachfolgend anhand eines in der Zeichnung dargestellten Ausführungsbeispiels näher erläutert. Es zeigen
  • 1 eine schematische Darstellung eines geschlossenes hydraulisches System gemäß einer Ausführungsform der Erfindung,
  • 2 eine schematische Darstellung eines geschlossenes hydraulisches Systems mit einer Ausgleichseinrichtung gemäß einer weiteren Ausführungsform der Erfindung, und
  • 3 ein Hydraulikschaltplan einer Rudermaschine mit Ausgleichseinrichtung gemäß einer weiteren Ausführungsform der Erfindung.
  • 1 ist eine schematische Darstellung eines geschlossenen Hydraulikkreislaufs 1, in welchem eine durch einen Servomotor 5 betriebene reversierbare Hydraulikpumpe 4 direkt auf einen doppeltwirkenden Arbeitszylinder 2 mit beidseitiger Kolbenstange 6 wirkt. Die beidseitigen Kolbenstangendurchmesser sind dabei gleich groß. Über eine hier nicht dargestellte Pleuelstange ist ein ebenfalls hier nicht dargestelltes Ruder an die Kolbenstange 6 angelenkt (siehe 3) und die Ruderbewegung wird ausschließlich durch die Bewegung des Servomotors 5 gesteuert. Zur Richtungsumkehr werden der Servomotor 5 und die Hydraulikpumpe 4 gestoppt und in entgegengesetzter Richtung wieder angefahren.
  • Der Hydraulikkreislauf 1 dieses geschlossenen Systems ist für einen bestimmten Systemdruck ausgelegt. Dehnt sich temperaturbedingt die Hydraulikflüssigkeit in dem Hydraulikkreislauf 1 aus, kann sich der Systemdruck erhöhen und zulässige Drücke überschreiten. Verringert sich der Systemdruck dagegen temperaturbedingt und/oder in Folge von Leckagen, kann es zu Kavitationserscheinungen an Pumpen und Ventilen kommen und die Funktion des Systems nicht mehr erfüllt werden. Um den Druck in diesem System daher möglichst konstant zu halten, ist an beide Seiten eines hydraulischen Arbeitszylinders 2 jeweils ein Hydrospeicher 3 angeschlossen, der mit dem Systemdruck vorgespannt ist. Hierbei darf das Gasvolumen nicht zu klein bemessen sein, da es ansonsten in Folge von Temperaturschwankungen zu großen Systemdruckschwankungen kommt. Bei der hier dargestellten Ausführungsform handelt es sich um ein „weiches” System. Bei einer äußeren Belastung gibt der Kolben des Arbeitszylinders 2 nach. Druckseitig fließt Hydraulikflüssigkeit in den Hydrospeicher 3, während der saugseitige Hydrospeicher 3 sich entspannt. Eine neue Gleichgewichtslage wird erreicht. Wird der Kolben des Arbeitszylinders 2 von der Hydraulikpumpe 4 angetrieben, so ist ein zusätzliches Volumen zu fördern und zusätzliche Kompressionsarbeit zu leisten, was durch eine Regelung des Kolbenhubs einzustellen ist.
  • 2 ist eine schematische Darstellung eines geschlossenen hydraulischen Systems mit einem Hydraulikkreislauf 1 gemäß einer weiteren Ausführungsform der Erfindung, wobei es sich hier im Gegensatz zu dem in 1 dargestellten „weichen” System um ein „hartes” System handelt, welches auch bei Temperatur- und Leckagebedingten Volumenänderungen im Hydraulikkreislauf 1 beim Bewegen des Zylinders „hart” bleibt. Um dies zu erreichen, ist in der hier dargestellten Ausführungsform ein Tandemzylinder 7 mit beidseitiger Kolbenstange 8 und gleich großen Kolbenflächen in dem Hydraulikkreislauf 1 angeordnet. Der Tandemzylinder 7 weist einen ersten Zylinder 9 mit einer ersten Kammer 10 und einer zweiten Kammer 10' und einen zweiten Zylinder 11 mit einer ersten Kammer 12 und einer zweiten Kammer 12' auf. Der Arbeitszylinder 2 weist ebenfalls eine erste Kammer 13 und eine zweite Kammer 13' auf. Die ersten Kammern, nämlich die erste Kammer 10 des ersten Zylinders 9, die erste Kammer 12 des zweiten Zylinders 11 und die erste Kammer 13 des Arbeitszylinders 2 liegen in der Figur jeweils auf der linken Seite der jeweiligen Kolbenflächen 14, 15 und 16. Die zweiten Kammern, nämlich die zweite Kammer 10' des ersten Zylinders 9, die zweite Kammer 12' des zweiten Zylinders 11 und die zweite Kammer 13' des Arbeitszylinders 2 liegen dagegen auf der jeweiligen rechten Seite der jeweiligen Kolbenflächen 14, 15 und 16. Ferner ist die erste Kammer 13 des Arbeitszylinders 2 mit der ersten Kammer 10 des ersten Zylinders 9 verbunden, und die zweite Kammer 13' des Arbeitszylinders 2 ist mit der ersten Kammer 12 des zweiten Zylinders 11 verbunden. Die zweite Kammer 10' des ersten Zylinders 9 ist mit einem Hydrospeicher 3 verbunden und die zweite Kammer 12' des zweiten Zylinders 11 ist ebenfalls mit dem Hydrospeicher 3 verbunden. Durch die so in Fluidkommunikation stehenden Kammern 10, 10', 12, 12', 13, 13' der Zylinder 2, 9 und 11 drücken die Kammerdrücke den Tandemkolben 8 nach rechts. Die Kolbenkräfte addieren sich. In entgegengesetzter Richtung nach links wirkt der Druck des Hydrospeichers auf die Kolbenflächen 14, 15. Der Druck im Hydrospeicher ist folglich das arithmetische Mittel der beiden Kammerdrücke des Arbeitszylinders 2. Erhöht sich das Hydraulikvolumen des Hydraulikkreislaufs 1 durch einen Temperaturanstieg, so verschiebt sich die Kolbenstange 8 des Tandemzylinders 7 nach rechts und Flüssigkeit aus den beiden rechten Kammern 10', 12' des Tandemzylinders 7 wird in den Hydrospeicher 3 gedrückt. Der Systemdruck steigt entsprechend dem verdrängten Volumen im Hydrospeicher leicht an. Vermindert sich das Hydraulikvolumen im Hydraulikkreislauf 1 infolge einer Abkühlung oder einer Leckage, schiebt Hydraulikflüssigkeit aus dem Hydrospeicher 3 im Hydrokreislauf 1 die Kolbenstange 8 des Tandemzylinders 7 nach links und das Kreislaufvolumen wird verringert. Der Systemdruck bleibt bis auf eine minimale Druckabsenkung erhalten.
  • Wirkt bei verschlossener Pumpe 4 eine Kraft F auf die Kolbenstange 6 des Arbeitszylinders 2, so entlastet sich die der Kraftrichtung zugewandte Kolbenkammer um Δp während die andere Kammer um Δp belastet wird. Auf den Tandemzylinder 7 wirkt wieder das arithmetische Mittel, welches dem Systemdruck, vorgegeben durch den Gasdruck im Hydrospeicher 3, entspricht. Die Kolbenstange 6 wird sich nicht bewegen. Der einzustellende Systemdruck ist damit gleich der halben zulässigen Pumpendruckdifferenz plus einem Sockeldruck. Dieser ist notwendig, um Kavitation auszuschließen. Die Volumina von Tandemkolben 8 und Hydrospeicher 3 sind so bemessen, dass der geforderte Dichte- bzw. Temperaturbereich mit ausreichender Sicherheit ausgeglichen werden kann und auch für angenommene Leckagen ausreichend Flüssigkeit vorhanden ist.
  • 3 ist ein Hydraulikschaltplan einer Rudermaschine 17 mit einer Ausgleichseinrichtung gemäß einer weiteren Ausführungsform der Erfindung. Wie hier ebenfalls erkennbar ist, handelt es sich um einen geschlossenen Hydraulikkreislauf 1, in welchem eine Hydraulikpumpe 4 direkt auf einen doppeltwirkenden Arbeitszylinder 2 mit beidseitiger Kolbenstange 6 wirkt, wobei die Kolbenstangendurchmesser gleich groß sind. Über eine Koppeleinrichtung 18, welche hier als Pleuelstange ausgebildet ist, ist ein Ruder 19 mit dem Arbeitszylinder 2 bewegungsgekoppelt. Die Hydraulikpumpe 4 ist reversierbar und wird durch den Servomotor 5 angetrieben. Zur Richtungsumkehr werden der Servomotor 5 und die Hydraulikpumpe 4 gestoppt und in entgegengesetzter Drehrichtung wieder angefahren. Die Hydraulikpumpe 4 ist hier als Schraubenspindelpumpe ausgeführt, da sie den Vorteil der Pulsationsarmut aufweist. Weiterhin ist die Pumpe 4 ausgelegt, um unter Nennlast zum Anlauf bereits das Nennmoment zu erreichen. Außerdem sollten aus akustischen Gründen kleine Drehzahlen realisiert werden. Dies kann durch so genannte Torque-Motoren, ausgeführt als permanent erregte Synchronmotoren, erreicht werden. Diese haben ein Anfahrmoment in der Höhe des Nennmomentes.
  • Da die Ruderbewegung über die Hydraulikpumpe 4 gesteuert wird, ist ein Motorsteller 20 vorgesehen, welcher für den Vier-Quadranten-Betrieb ausgelegt ist. Die Ruderbewegung wird damit ausschließlich über die Drehbewegung des Servomotors 5 gesteuert. Wird keine Ruderverstellung gefordert, wird das Ruder 19 in seiner Stellung durch Halteventile 21, 21' (Rückschlagventile) hydraulisch verriegelt. Dadurch ist kein Motormoment im Stillstand aufzubringen und es wird Energie gespart. Neben den Rohrleitungsverlusten bewirken die Halteventile 21, 21' einen Verlust. Für einen verlustarmen Betrieb sind diese im geöffneten Zustand widerstandsarm ausgeführt.
  • Fährt der Arbeitszylinder 2 in eine Endlage und der Motor 5 schaltet sich aus, sind zum Schutz von Motor 5 und Pumpe 4 Druckbegrenzungsventile 22, 22' in dem Hydraulikkreislauf 1 angeordnet, die den Öldruck und damit das Motormoment begrenzen. Um Verlustwärme abzuführen die überwiegend durch Reibungsverluste in der Pumpe 4 entsteht ist nahe an der Pumpe 4 ein Kühler 23 vorgesehen.
  • Da der geschlossene Hydraulikkreislauf 1 einen Volumenausgleich benötigt, um Volumenänderungen infolge von Temperaturänderungen aufzunehmen bzw. den mittleren Druck im System konstant zu halten, ist auch hier eine Ausgleichseinrichtung, wie in Zusammenhang mit 2 bereits beschrieben wurde, vorgesehen. Hierzu dient wiederum der Tandemzylinder 7 mit beidseitiger Kolbenstange 8 und gleichen Kolbenflächen. Die Saug- und Druckseite des Arbeitszylinders 2 sind mit dem Tandemzylinder 7 derartig verbunden, dass sich die Kolbenkräfte addieren. Die Verbindung der einzelnen Kammern wurde bereits in Zusammenhang mit 2 eingehend beschrieben. In entgegengesetzter Richtung wirkt der Druck des Hydrospeichers 3. Dieser Druck ist genau das arithmetische Mittel der Saug- und Druckseite des Arbeitszylinders 2. Dehnt sich das Volumen aus, so wird die Kolbenstange 8 des Tandemzylinders 7 in 3 nach rechts verschoben und Flüssigkeit in den Hydrospeicher 3 gedrückt. Der mittlere Systemdruck steigt leicht an. Vermindert sich das Hydraulikvolumen im Hydraulikkreislauf 1 infolge einer Abkühlung, schiebt der Hydrospeicher 3 Hydraulikflüssigkeit in den Tandemzylinder 7, der sich dann in 3 nach links bewegt und das Kreislaufvolumen verringert, so dass der Systemdruck leicht sinkt. Der einzustellende Mitteldruck ist damit gleich der halben maximalen Pumpendruckdifferenz plus einem Sockeldruck zur Vermeidung von Kavitation an Pumpen und Ventilen.
  • Bei Unterwasserfahrzeugen ist es üblich, die Kolbenstange 6 des Arbeitszylinders 2 durch einen Druckkörper 24 zu führen. Dadurch wirkt der Tauchdruck zusätzlich auf die Kolbenstange 6. Damit auf den Arbeitszylinder 2 unabhängig von der Tiefe keine weiteren Kräfte als das Rudermoment wirken, wird der Tauchdruck auch auf die entgegengesetzte Seite 25 der Kolbenstange 6 geführt, wodurch geringere Stellkräfte und Pumpendrücke und damit auch geringere Verluste der Pumpe 4 infolge innerer Leckage realisiert werden können.
  • Gemäß einer weiteren Ausführungsform kann die maximal benötigte Pumpenleistung auch auf zwei Aggregate unterschiedlicher Förderkapazität aufgeteilt werden. Für die überwiegende Betriebszeit reichen kleine Ruderausschläge bei geringen Verstellgeschwindigkeiten aus. Werden z. B. für Hafenmanöver große Verstellgeschwindigkeiten gefordert, wird eine Pumpe mit höherer Förderkapazität parallel dazu geschaltet. Da ein kleineres Pumpenaggregat weniger Leckageverluste, weniger Reibung und auch der Stromsteller eines kleineren Motors geringere elektrische Verluste gegenüber einem großen Elektromotor hat, kann die Rudermaschine 17 noch effizienter betrieben werden. Zusätzlich ist eine Redundanz vorhanden.
  • Weiterhin ist ein Druckluftmotor 26 vorgesehen, der bei Ausfall des Servomotors 5 oder der Regelung die Pumpe 4 antreibt. Druckluft steht beispielsweise einem Unterwasserfahrzeug aus Drucklufttanks 27 ausreichend und instantan zur Verfügung. Der Druckluftmotor 26 wird allerdings sinnvollerweise erst dann mit der Pumpe 4 verbunden, was durch die gestrichelte Linie 28 angedeutet ist, wenn der Druckluftmotor 26 mit Druckluft beaufschlagt wird. Diese Schaltung ist von Druckluftanlassern für Dieselmotoren bekannt. Das Ruder 19 wird dann entweder manuell oder elektrisch über ein 3/4-Wegeventil 29 gestellt.
  • Die Regelung der Rudermaschine 19 wird wie folgt durchgeführt. Vorgegeben ist der Soll-Ruderwinkel bzw. der Weg s des Arbeitszylinders 2. Ein Regler 30 für die Wegvorgabe 31 ermittelt die Abweichung zum Ist-Wert und gibt die Drehrichtung und Drehgeschwindigkeit des Motors 5 vor. Der Regler 30 hat die Aufgabe, ein Schwingen um den Sollwert zu vermeiden. Der Arbeitszylinder 2 ist dazu mit einem Wegsensor 32 zur Wegmessung ausgestattet.
  • Bezugszeichenliste
  • 1
    Hydraulikkreislauf
    2
    Arbeitszylinder
    3
    Hydrospeicher
    4
    Pumpe
    5
    Motor
    6
    Kolbenstange des Arbeitszylinders
    7
    Tandemzylinder
    8
    Kolbenstange des Tandemzylinders
    9
    erster Zylinder des Tandemzylinders
    10, 10'
    erste und zweite Kammer des ersten Zylinders
    11
    zweiter Zylinder des Tandemzylinders
    12, 12'
    erste und zweite Kammer des zweiten Zylinders
    13, 13'
    erste und zweite Kammer des Arbeitszylinders
    14
    Kolbenfläche des ersten Zylinders
    15
    Kolbenfläche des zweiten Zylinders
    16
    Kolbenfläche des Arbeitszylinders
    17
    Rudermaschine
    18
    Koppeleinrichtung
    19
    Ruder
    20
    Motorsteller
    21, 21'
    Halteventile
    22, 22'
    Druckbegrenzungsventile
    23
    Kühler
    24
    Druckkörper
    25
    entgegengesetzte Seite der Kolbenstange 6
    26
    Druckluftmotor
    27
    Drucklufttank
    28
    gestrichelte Linie
    29
    3/4-Wege-Ventil
    30
    Regler
    31
    Wegvorgabe
    32
    Wegsensor
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • DE 1036088 [0007]

Claims (17)

  1. Rudermaschine (17), insbesondere für ein Unterwasserfahrzeug, mit einem Hydraulikkreislauf (1), in welchem eine Pumpe (4) angeordnet ist, dadurch gekennzeichnet, dass die Pumpe (4) eine motorbetriebene reversierbare Hydraulikpumpe (4) ist, und dass der Hydraulikkreislauf (1) ein geschlossener Kreislauf ist.
  2. Rudermaschine (17) gemäß Anspruch 1, dadurch gekennzeichnet, dass die Hydraulikpumpe (4) direkt auf eine Hydraulikzylinderanordnung, insbesondere auf einen doppeltwirkenden Arbeitszylinder (2) gleicher Kolbenfläche (16) und mit beidseitiger Kolbenstange (6), wirkt.
  3. Rudermaschine (17) gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Hydraulikpumpe (4) durch einen Servomotor (5), insbesondere einen im Vierquadrantenbetrieb betreibbarer Servomotor (5), angetrieben ist.
  4. Rudermaschine (17) gemäß Anspruch 2 oder 3, dadurch gekennzeichnet, dass ein gefördertes Volumen der Hydraulikpumpe (4) direkt proportional zu dem Zylinderhub der Hydraulikzylinderanordnung ist.
  5. Rudermaschine (17) gemäß einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass ein Ruder (19) über eine Koppeleinrichtung (18), insbesondere über eine Pleuelstange, mit der Hydraulikzylinderanordnung verbunden ist.
  6. Rudermaschine (17) gemäß Anspruch 5, dadurch gekennzeichnet, dass die Bewegung des Ruders (19) über die Drehbewegung des Servomotors (5) steuerbar ist, insbesondere die Stellung des Ruders (19) über die Anzahl der Drehungen des Servomotors (5) einstellbar ist.
  7. Rudermaschine (17) gemäß einem der Ansprüche 5 oder 6, dadurch gekennzeichnet, dass Ventile (21, 21') zum hydraulischen Verriegeln des Ruders (19) bei Pumpenstillstand im Hydraulikkreislauf (1) vorgesehen sind.
  8. Rudermaschine (17) gemäß einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass Druckbegrenzungsventile (22, 22') im hydraulischen Kreislauf (1) vorgesehen sind.
  9. Rudermaschine (17) gemäß einem der Ansprüche 2 bis 8, dadurch gekennzeichnet, dass bei einseitiger Beaufschlagung einer Kolbenstange (6) der Hydraulikzylinderanordnung mit Tiefendruck ein abgewandt gegenüberliegendes Ende der Kolbenstange (6) ebenfalls mit Tiefendruck beaufschlagbar ist.
  10. Rudermaschine (17) gemäß einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass in einer Zuleitung der Hydraulikpumpe (4) zumindest ein Kühler (23) zum Abführen von Verlustwärme angeordnet ist.
  11. Rudermaschine (17) gemäß einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass in dem Hydraulikkreislauf (1) eine zweite Pumpe vorgesehen ist, welche in einem zweiten Leistungsbereich, insbesondere in einem Hochleistungsbereich, zuschaltbar ist.
  12. Rudermaschine (17) gemäß einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass in dem Hydraulikkreislauf (1) zusätzlich eine von einem druckluftbetriebenen Motor angetriebene Hydraulikpumpe oder ein Druckluftmotor (26) als Hilfsantrieb für eine Hydraulikpumpe (4) vorgesehen ist.
  13. Ausgleichseinrichtung für einen geschlossenen Hydraulikkreislauf (1), insbesondere einer Rudermaschine (17), in welchem eine durch einen Motor (5) angetriebene reversierbare Hydraulikpumpe (4) direkt auf eine Hydraulikzylinderanordnung zur Steuerung eines Ruders (19) wirkt, wobei die Ausgleichseinrichtung zum Konstanthalten eines vorbestimmten Drucks in dem Hydraulikkreislauf (1) vorgesehen ist und einen Tandemzylinder (7) mit beidseitiger Kolbenstange (8) und gleichen Kolbenflächen (14, 15) umfasst, wobei zwei in dieselbe Richtung wirksame Kolbenflächen (14, 15) mit einem Hydrospeicher (3) und die anderen beiden Kolbenflächen (14, 15) jeweils mit einer Seite der Hydraulikzylinderanordnung in Verbindung stehen.
  14. Ausgleichseinrichtung gemäß Anspruch 13, dadurch gekennzeichnet, dass die Hydraulikzylinderanordnung einen Arbeitszylinder (2), insbesondere einen doppeltwirkenden Arbeitszylinder (2) gleicher Kolbenfläche (16) und mit beidseitiger Kolbenstange (6), umfasst.
  15. Ausgleichseinrichtung gemäß Anspruch 13 oder 14, dadurch gekennzeichnet, dass der Tandemzylinder (7) einen ersten Zylinder (9) mit einer ersten Kammer (10) und einer zweiten Kammer (10') und einen zweiten Zylinder (11) mit einer ersten Kammer (12) und einer zweiten Kammer (12') aufweist, und der Arbeitszylinder (2) eine erste Kammer (13) und eine zweite Kammer (13') aufweist, wobei die jeweiligen ersten Kammern (10, 12, 13) jeweils auf der linken Seite der jeweiligen Kolbenflächen (14, 15, 16) liegen und die jeweiligen zweiten Kammern (10', 12', 13') auf der jeweiligen rechten Seite der jeweiligen Kolbenflächen (14, 15, 16) liegen, wobei die erste Kammer (13) des Arbeitszylinders (2) mit der ersten Kammer (10) des ersten Zylinders (9) verbunden ist und die zweite Kammer (13') des Arbeitszylinders (2) mit der ersten Kammer (12) des zweiten Zylinders (11) verbunden ist, und wobei die zweite Kammer (10) des ersten Zylinders (9) mit dem Hydrospeicher (3) verbunden ist und die zweite Kammer (10') des zweiten Zylinders (10) mit dem Hydrospeicher (3) verbunden ist.
  16. Ausgleichseinrichtung gemäß einem der Ansprüche 13 bis 15, dadurch gekennzeichnet, dass ein einzustellender Mitteldruck in dem Hydraulikkreislauf (1) gleich einer halben maximalen Pumpendruckdifferenz plus einem Sockeldruck ist.
  17. Rudermaschine (17) gemäß einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass die Rudermaschine (17) eine Ausgleichseinrichtung gemäß den Ansprüchen 13 bis 16 umfasst.
DE102013205807.1A 2013-04-02 2013-04-02 Rudermaschine Ceased DE102013205807A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE102013205807.1A DE102013205807A1 (de) 2013-04-02 2013-04-02 Rudermaschine
EP14712692.4A EP2981458B1 (de) 2013-04-02 2014-03-27 Rudermaschine
ES14712692T ES2766929T3 (es) 2013-04-02 2014-03-27 Máquina de timón
PCT/EP2014/056189 WO2014161769A1 (de) 2013-04-02 2014-03-27 Rudermaschine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102013205807.1A DE102013205807A1 (de) 2013-04-02 2013-04-02 Rudermaschine

Publications (1)

Publication Number Publication Date
DE102013205807A1 true DE102013205807A1 (de) 2014-10-02

Family

ID=50382464

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102013205807.1A Ceased DE102013205807A1 (de) 2013-04-02 2013-04-02 Rudermaschine

Country Status (4)

Country Link
EP (1) EP2981458B1 (de)
DE (1) DE102013205807A1 (de)
ES (1) ES2766929T3 (de)
WO (1) WO2014161769A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3067252A1 (de) * 2015-03-13 2016-09-14 BAE Systems PLC Hydraulikanlage
WO2016146969A1 (en) * 2015-03-13 2016-09-22 Bae Systems Plc Hydraulic system
CN113341766A (zh) * 2021-06-10 2021-09-03 哈尔滨理工大学 一种加载与消扰臂长可调的电液负载模拟器
US11692918B2 (en) 2021-06-01 2023-07-04 China University Of Mining And Technology, Beijing Pressure-preserving conventional triaxial compression loading apparatus and method for performing conventional triaxial compression test on pressure-preserving specimen using same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1036088B (de) 1956-04-16 1958-08-07 Licentia Gmbh Wegabhaengig ferngesteuerte hydraulische Ruderanlage fuer Schiffe, Flugzeuge od. dgl.
US2892310A (en) * 1954-02-17 1959-06-30 Mercier Jean Automatic follow-up system for successive application of power sources
DE7511765U (de) * 1975-09-04 Wedekind K Handstelltrieb für die Ruderanlage von Segel· und Motorfahrzeugen
DE2923130A1 (de) * 1979-06-07 1980-12-11 Hermes Hans Steuerungstech Hydraulische ruderanlage
US5481871A (en) * 1995-03-02 1996-01-09 Teleflex (Canada) Ltd. Hydraulic steering system with spool pressure equalization
US5632217A (en) * 1994-10-11 1997-05-27 Nautamatic Marine Systems, Inc. Automatic steering apparatus and method for small watercraft
FR2831226A1 (fr) * 2001-10-24 2003-04-25 Snecma Moteurs Actionneur electrohydraulique autonome
US7254945B1 (en) * 2006-02-27 2007-08-14 Kayaba Industry Co., Ltd. Operate check valve and hydraulic driving unit
US20120143408A1 (en) * 2010-12-02 2012-06-07 Furuno Electric Company Limited Steering assist system and method using autopilot device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB365939A (en) * 1931-05-22 1932-01-28 John Hastie & Company Ltd Improvements in or relating to hydraulic ships' steering gear
US3986475A (en) * 1974-06-17 1976-10-19 Heiser Kenneth R Control arrangement
JPS58133999A (ja) * 1982-02-01 1983-08-09 Mitsubishi Heavy Ind Ltd 単ラム型油圧式舵取装置
US5427045A (en) * 1993-09-30 1995-06-27 Teleflex (Canada) Ltd. Steering cylinder with integral servo and valve
US8046122B1 (en) * 2008-08-04 2011-10-25 Brunswick Corporation Control system for a marine vessel hydraulic steering cylinder
WO2010052777A1 (ja) * 2008-11-06 2010-05-14 三菱重工業株式会社 舵取機
JP2012136148A (ja) * 2010-12-27 2012-07-19 Kawasaki Heavy Ind Ltd 舶用操舵装置及び舶用操舵方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE7511765U (de) * 1975-09-04 Wedekind K Handstelltrieb für die Ruderanlage von Segel· und Motorfahrzeugen
US2892310A (en) * 1954-02-17 1959-06-30 Mercier Jean Automatic follow-up system for successive application of power sources
DE1036088B (de) 1956-04-16 1958-08-07 Licentia Gmbh Wegabhaengig ferngesteuerte hydraulische Ruderanlage fuer Schiffe, Flugzeuge od. dgl.
DE2923130A1 (de) * 1979-06-07 1980-12-11 Hermes Hans Steuerungstech Hydraulische ruderanlage
US5632217A (en) * 1994-10-11 1997-05-27 Nautamatic Marine Systems, Inc. Automatic steering apparatus and method for small watercraft
US5481871A (en) * 1995-03-02 1996-01-09 Teleflex (Canada) Ltd. Hydraulic steering system with spool pressure equalization
FR2831226A1 (fr) * 2001-10-24 2003-04-25 Snecma Moteurs Actionneur electrohydraulique autonome
US7254945B1 (en) * 2006-02-27 2007-08-14 Kayaba Industry Co., Ltd. Operate check valve and hydraulic driving unit
US20120143408A1 (en) * 2010-12-02 2012-06-07 Furuno Electric Company Limited Steering assist system and method using autopilot device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WILL, Dieter; GEPHARDT, Norbert: Hydraulik. 5. Auflage. Heidelberg Dordrecht London New York : Springer, 2011. S. 179, 316, 317. - ISBN 978-3-642-17242-7 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3067252A1 (de) * 2015-03-13 2016-09-14 BAE Systems PLC Hydraulikanlage
WO2016146969A1 (en) * 2015-03-13 2016-09-22 Bae Systems Plc Hydraulic system
AU2016231996B2 (en) * 2015-03-13 2019-11-21 Bae Systems Plc Hydraulic system
US11692918B2 (en) 2021-06-01 2023-07-04 China University Of Mining And Technology, Beijing Pressure-preserving conventional triaxial compression loading apparatus and method for performing conventional triaxial compression test on pressure-preserving specimen using same
CN113341766A (zh) * 2021-06-10 2021-09-03 哈尔滨理工大学 一种加载与消扰臂长可调的电液负载模拟器
CN113341766B (zh) * 2021-06-10 2024-04-12 哈尔滨理工大学 一种加载与消扰臂长可调的电液负载模拟器

Also Published As

Publication number Publication date
EP2981458A1 (de) 2016-02-10
EP2981458B1 (de) 2019-11-06
ES2766929T3 (es) 2020-06-15
WO2014161769A1 (de) 2014-10-09

Similar Documents

Publication Publication Date Title
DE102008039011B4 (de) Druckspeicherlose hydraulische Antriebsanordnung sowie Verfahren zum druckspeicherlosen hydraulischen Antreiben eines Verbrauchers
EP2181221B1 (de) Drehwerk eines baggers mit einem hydraulikantrieb.
EP2693054B1 (de) Steuervorrichtung für hydrostatische Antriebe
DE2538078A1 (de) Stelleinrichtung in integrierter oder konzentrierter bauweise
DE3217527A1 (de) Steuereinrichtung fuer hydraulische doppelt wirkende arbeitszylinder
EP3601805B1 (de) Vorrichtung zum regeln einer hydraulischen maschine
EP2834542B1 (de) Geschlossener hydraulischer kreislauf
DE102011078241B3 (de) Hydraulikeinheit und Verfahren zum Betreiben einer Hydraulikeinheit
DE102009029840A1 (de) Hydrauliksystem
DE102013008047A1 (de) Drehzahlvariabler Antrieb mit zwei Pumpen und einem Differenzialzylinder
EP2981458B1 (de) Rudermaschine
DE102010014071B4 (de) Hydraulische Anlage
EP3504435B1 (de) Hydrostatisches system und pumpstation für eine öl- oder gas-pipeline
EP3601806B1 (de) Vorrichtung zum regeln einer hydraulischen maschine
DE102009021866A1 (de) Hydroantrieb mit einer unabhängigen Speisepumpe
WO2012041497A2 (de) Hydrostatischer antrieb
DE102010007247A1 (de) Hydraulischer Lüfterantrieb
EP3101281A1 (de) Hydraulische schaltung zur druckmittelversorgung eines hydraulischen verbrauchers in einem geschlossenen hydraulischen kreis
DE102015222672A1 (de) Verfahren zum Betreiben einer elektro-hydraulischen Achse und elektro-hydraulische Achse
DE102010046217A1 (de) Druckregelung mit DDU/DVR Einheiten unter Verwendung von Motorzyklen
DE102022203979A1 (de) Hydraulischer Linearantrieb
DE102014111824A1 (de) Antriebssystem einer mobilen Arbeitsmaschine mit einer Speisepumpeneinrichtung
DE102022124253A1 (de) Elektronische druckkompensierte hydraulikmotorpumpe mit variabler ausgangsleistung
DE3311042A1 (de) Steuersystem fuer eine hydraulikmotorantriebseinheit
DE102016223386A1 (de) Pumpensystem, Automatikgetriebe und Kraftfahrzeug

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R084 Declaration of willingness to licence
R084 Declaration of willingness to licence

Effective date: 20150206

R082 Change of representative
R081 Change of applicant/patentee

Owner name: THYSSENKRUPP MARINE SYSTEMS GMBH, DE

Free format text: FORMER OWNER: THYSSENKRUPP MARINE SYSTEMS GMBH, 24143 KIEL, DE

R016 Response to examination communication
R002 Refusal decision in examination/registration proceedings
R003 Refusal decision now final