DE102013009642A1 - Messsystem, Reaktionsträger, Messverfahren und optischer Strömungssensor - Google Patents

Messsystem, Reaktionsträger, Messverfahren und optischer Strömungssensor Download PDF

Info

Publication number
DE102013009642A1
DE102013009642A1 DE102013009642.1A DE102013009642A DE102013009642A1 DE 102013009642 A1 DE102013009642 A1 DE 102013009642A1 DE 102013009642 A DE102013009642 A DE 102013009642A DE 102013009642 A1 DE102013009642 A1 DE 102013009642A1
Authority
DE
Germany
Prior art keywords
flow
particles
gas
flow channel
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE102013009642.1A
Other languages
English (en)
Other versions
DE102013009642B4 (de
Inventor
Hans-Ullrich Hansmann
Philipp Rostalski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Draeger Safety AG and Co KGaA
Original Assignee
Draeger Safety AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Draeger Safety AG and Co KGaA filed Critical Draeger Safety AG and Co KGaA
Priority to DE102013009642.1A priority Critical patent/DE102013009642B4/de
Priority to US14/896,785 priority patent/US9759702B2/en
Priority to CN201480032722.3A priority patent/CN105264340B/zh
Priority to PCT/EP2014/001351 priority patent/WO2014194983A1/de
Publication of DE102013009642A1 publication Critical patent/DE102013009642A1/de
Application granted granted Critical
Publication of DE102013009642B4 publication Critical patent/DE102013009642B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0062General constructional details of gas analysers, e.g. portable test equipment concerning the measuring method, e.g. intermittent, or the display, e.g. digital
    • G01N33/0067General constructional details of gas analysers, e.g. portable test equipment concerning the measuring method, e.g. intermittent, or the display, e.g. digital by measuring the rate of variation of the concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/661Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters using light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/704Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow using marked regions or existing inhomogeneities within the fluid stream, e.g. statistically occurring variations in a fluid parameter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/704Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow using marked regions or existing inhomogeneities within the fluid stream, e.g. statistically occurring variations in a fluid parameter
    • G01F1/708Measuring the time taken to traverse a fixed distance
    • G01F1/7086Measuring the time taken to traverse a fixed distance using optical detecting arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/007Arrangements to check the analyser
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/001Full-field flow measurement, e.g. determining flow velocity and direction in a whole region at the same time, flow visualisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/18Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the time taken to traverse a fixed distance
    • G01P5/20Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the time taken to traverse a fixed distance using particles entrained by a fluid stream
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/74Devices for measuring flow of a fluid or flow of a fluent solid material in suspension in another fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N2015/0023Investigating dispersion of liquids
    • G01N2015/0026Investigating dispersion of liquids in gas, e.g. fog
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/22Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators
    • G01N31/223Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators for investigating presence of specific gases or aerosols

Abstract

Die Erfindung betrifft einen Reaktionsträger (14) für ein Messsystem (10) zur Messung einer Konzentration von gas- und/oder aerosolförmigen Komponenten eines Gasgemisches sowie ein derartiges Messsystem (10) und entsprechendes Messverfahren. Der Reaktionsträger (14) umfasst zumindest einen Strömungskanal (42), wobei der Strömungskanal (42) eine Reaktionskammer (46) mit einem Reaktionsstoff (48) bildet, welcher ausgebildet ist, um mit zumindest einer zu messenden Komponente des Gasgemisches oder einem Reaktionsprodukt der zu messenden Komponente eine optisch detektierbare Reaktion einzugehen. Der Strömungskanal (42) ist zumindest teilweise mit Partikeln (100, 102, 104, 110) gefüllt, die eine Ausgangsposition aufweisen, bevor das Gasgemisch durch den Strömungskanal (42) strömt, und welche durch einen Gasstrom durch den Strömungskanal (42) in eine Strömungsposition beaufschlagt werden, wobei die Partikel (100, 102, 104, 110) so ausgebildet sind, dass die Partikel (100, 102, 104, 110) in der Ausgangsposition und die Partikel (100, 102, 104, 110) in der Strömungsposition optisch unterschieden werden können. Die Erfindung betrifft ferner einen optischen Strömungssensor (109) zur Bestimmung einer Strömung eines Fluids.

Description

  • Die vorliegende Erfindung bezieht sich auf ein Messsystem zur Messung einer Konzentration von gas- und/oder eine aerosolförmigen Komponenten eines Gasgemisches und einen Reaktionsträger für ein derartiges Messsystem mit zumindest einem Strömungskanal, wobei der Strömungskanal eine Reaktionskammer mit einem Reaktionsstoff bildet, welcher ausgebildet ist, um mit zumindest einer zu messenden Komponente des Gasgemisches oder einem Reaktionsprodukt der zu messenden Komponente eine optisch detektierbare Reaktion einzugehen. Die Erfindung bezieht sich ferner auf ein Messverfahren zur Messung einer Konzentration von gas- und/oder aerosolförmigen Komponenten eines Gasgemisches und einen optischen Strömungssensor.
  • Aus dem Stand der Technik sind Gasprüfröhrchen bekannt, die mit einem Reaktionsstoff gefüllt sind, welcher mit einer bestimmten chemischen Verbindung eine optisch erkennbare Reaktion eingeht. Dabei wird beispielsweise mit einer Handpumpe eine definierte Menge eines Gasgemisches durch das Gasprüfröhrchen gepumpt. Anschließend wird mittels einer Verfärbung des Reaktionsstoffs eine Konzentration der zu messenden chemischen Verbindung bestimmt.
  • Darüber hinaus sind so genannte Chip-basierte Messsysteme bekannt, bei welchen der Reaktionsstoff in einer Mehrzahl von auf einem Reaktionsträger angeordneten Reaktionskammern, die jeweils für eine Messung gebraucht werden können, vorgesehen ist. Der Reaktionsträger kann in eine Messvorrichtung eingeführt werden, welche den Reaktionsträger erkennt und ein entsprechendes Messverfahren zur Messung einer Konzentration der entsprechenden Komponente des Gasgemisches durchführt. Bei Messungen, bei denen keine Konzentration gemessen wird, weil die zu messende Komponente nicht oder unter einer Detektionsschwelle im Gasgemisch vorliegt, ist eine Funktionsprüfung des Messsystem erforderlich, um eine Fehlfunktion auszuschließen.
  • Ziel der Erfindung ist es, eine einfache Sensorik für ein derartiges Messsystem und ein entsprechendes Messverfahren bereitzustellen.
  • Die Aufgabe der Erfindung wird durch einen Reaktionsträger für ein Messsystem zur Messung einer Konzentration von gas- und/oder aerosolförmigen Komponenten eines Gasgemisches gelöst, mit zumindest einem Strömungskanal, wobei der Strömungskanal eine Reaktionskammer mit einem Reaktionsstoff bildet, welcher ausgebildet ist, um mit zumindest einer zu messenden Komponente des Gasgemisches oder einem Reaktionsprodukt der zu messenden Komponente eine optisch detektierbare Reaktion einzugehen. Der Strömungskanal ist zumindest teilweise mit Partikeln gefüllt, die eine Ausgangsposition aufweisen, bevor das Gasgemisch durch den Strömungskanal strömt, und durch einen Gasstrom durch den Strömungskanal in eine Strömungsposition beaufschlagt werden, wobei die Partikel so ausgebildet sind, dass die Partikel in der Ausgangsposition und die Partikel in der Strömungsposition optisch unterschieden werden können. Auf diese Weise kann eine Strömung des Gasgemischs durch den Strömungskanal optisch bestimmt werden, wodurch die Sensorik einer zum Messsystem gehörigen Messvorrichtung vereinfacht werden kann, indem beispielsweise die optisch detektierbare Reaktion und die Strömung des Gasgemischs über einen gemeinsamen optischen Sensor erfasst und bestimmt wird. Somit wird kein separater Sensor zur Bestimmung eines Massenstroms benötigt.
  • Es ist möglich, dass die Partikel unterschiedliche Größen aufweisen, wobei in der Ausgangsposition Partikel unterschiedlicher Größe gemischt sind und in der Strömungsposition die Partikel unterschiedlicher Größe zumindest teilweise entmischt sind. Durch den Gasstrom werden kleine Partikel ausgewaschen und lagern sich in Bereichen mit geringer Strömung ab und größere Partikel richten sich in der Strömung aus. Durch diese Entmischung verähdert sich die Intensitätsverteilung des Bilds des Strömungskanals und der Kontrast wird verstärkt.
  • Die Partikel können auch eine Strömungsform aufweisen, um sich in einem Gasstrom in einer vorbestimmten Orientierung in Strömungsrichtung in ihre Strömungsposition auszurichten. Auf diese Weise können die Partikel in eine bestimmte Richtung ausgerichtet werden und insbesondere eine isotrope oder chaotische Ausgangsposition von einer ausgerichteten bzw. geordneten Strömungsposition unterschieden werden. Beispielsweise sind die Partikel tropfenförmig ausgebildet.
  • Es ist auch möglich, dass die Partikel farbig markiert sind, um eine optische Unterscheidung der Positionen der Partikel zu erleichtern und zu verstärken.
  • Ferner können die Partikel mechanische, elektrische und/oder magnetische Eigenschaften aufweisen, um durch eine auf die Partikel wirkende mechanische, elektrische und/oder magnetische Rückstellkraft in eine Rückstellposition bewegt zu werden, wobei die Partikel so ausgebildet sind, dass die Partikel in der Rückstellposition und die Partikel in der Strömungsposition optisch unterschieden werden können. Auf diese Weise kann einerseits eine Messung wiederholt werden oder eine kontinuierliche Messung durchgeführt werden, da die durch die Rückstellkraft jeweils in ihre Rückstellposition beaufschlagt sind und somit bei Verringerung des Gasstroms in ihre Rückstellposition bewegt werden. Andererseits kann eine erste geordnete Verteilung der Partikel in ihren Rückstellpositionen gegenüber einer zweiten geordneten Verteilung der Partikel in ihren Strömungspositionen gestellt werden, wodurch eine Bestimmung der Positionen der Partikel vereinfacht werden kann.
  • Die Erfindung betrifft ferner ein Messsystem zur Messung einer Konzentration von gas- und/oder aerosolförmigen Komponenten eines Gasgemisches mit einem Reaktionsträger nach einem der vorhergehenden Ansprüche und einer Messvorrichtung, die einen optischen Sensor aufweist, welcher den Strömungskanal des Reaktionsträgers erfasst und ausgebildet ist, um die Ausgangsposition und Strömungsposition der Partikel optisch zu bestimmen. Auf diese Weise kann eine Strömung des Gasgemischs durch den Strömungskanal optisch bestimmt werden, wodurch die Sensorik einer zum Messsystem gehörigen Messvorrichtung vereinfacht werden kann, indem beispielsweise die optisch detektierbare Reaktion und die Strömung des Gasgemischs über einen gemeinsamen optischen Sensor erfasst und bestimmt wird. Somit wird kein separater Sensor zur Bestimmung eines Massenstroms benötigt.
  • Ferner kann die Messvorrichtung und/oder der Reaktionsträger ausgebildet sein, um eine elektrisches oder magnetisches Feld im Strömungskanal des Reaktionsträgers zu erzeugen. Auf diese Weise kann eine elektrische oder magnetische Rückstellkraft für entsprechende Partikel erzeugt werden.
  • Vorzugsweise kann die Rückstellkraft dynamisch moduliert werden. Auf diese Weise kann die Genauigkeit der Messung verbessert werden.
  • Die Erfindung betrifft ferner ein Messverfahren zur Messung einer Konzentration von gas- und/oder aerosolförmigen Komponenten eines Gasgemisches mit einem oben beschriebenen Reaktionsträger oder einem oben beschriebenen Messsystem, mit den Verfahrensschritten der Aufnahme eines Referenzbilds des Strömungskanals vor einem Fördern eines Gasstroms durch den Strömungskanal, wobei sich die Partikel in ihrer Ausgangsposition befinden, der Aufnahme eines Strömungsbilds des Strömungskanals während eines Förderns eines Gasstroms durch den Strömungskanal und der Bestimmung des durch den Strömungskanal strömenden Gasstroms durch Auswertung des Referenzbilds und des Strömungsbilds. Durch Auswertung des Referenzbilds und des Strömungsbilds kann eine Positionsänderung der Partikel und somit ein Gasstrom durch den Strömungskanal bestimmt werden, wodurch eine optische Bestimmung eines Gasstroms durch den Strömungskanal ermöglicht wird.
  • Gemäß einer Verfahrensvariante umfasst das Messverfahren den Verfahrensschritt des Erzeugens einer Rückstellkraft während des Förderns des Gasstroms durch den Strömungskanal, welche die Partikel in eine Rückstellposition beaufschlagt. Dies ermöglicht eine wiederholte oder kontinuierliche Messung.
  • Ferner kann das Messverfahren den Verfahrensschritt einer dynamischen Modulierung der Rückstellkraft während des Förderns des Gasstroms durch den Strömungskanal umfassen, sodass die sich die Partikel zwischen Rückstellposition und Strömungsposition hin und her bewegen. Auf diese Weise kann eine kontinuierliche Messung mit erhöhter Genauigkeit durchgeführt werden.
  • Die Erfindung betrifft ferner einen optischen Strömungssensor zur Bestimmung einer Strömung eines Fluids, mit einem transparent ausgebildeten Strömungskanal, welcher zumindest teilweise mit Partikeln gefüllt ist. Die Partikel weisen eine Strömungsform, um sich in einem Gasstrom in einer vorbestimmten Orientierung in Strömungsrichtung in eine Strömungsposition auszurichten und mechanische, elektrische und/oder magnetische Eigenschaften auf, um durch eine auf die Partikel wirkende mechanische, elektrische und/oder magnetische Rückstellkraft in eine Rückstellposition beaufschlagt zu werden, wobei die Partikel so ausgebildet sind, dass die Partikel in der Rückstellposition und die Partikel in der Strömungsposition optisch unterschieden werden können. Ferner ist eine Rückstellvorrichtung zur Erzeugung der mechanischen, elektrischen und/oder magnetischen Rückstellkraft, ein optisches Sensorelement, welches ausgebildet ist, um eine Positionsänderung der Partikel von der Ausgangsposition in die Strömungsposition zu erfassen und eine Steuereinheit vorgesehen, welche ausgebildet ist, um mittels der erfassten Positionsänderung der Partikel die Strömung des Fluids zu bestimmen. Ein derartiger Strömungssensor ermöglicht eine optische Bestimmung einer Strömung durch den Strömungskanal.
  • Die vorstehend beschriebenen Ausführungsformen können beliebig miteinander und mit den vorstehend beschriebenen Aspekten kombiniert werden, um erfindungsgemäße Vorteile zu erreichen. Weitere Merkmale und Vorteile der Erfindung ergeben sich aus den im Folgenden beschriebenen Ausführungsformen, wobei:
  • 1 eine schematische Ansicht einer ersten Ausführungsform eines erfindungsgemäßen Messsystems mit einer Messvorrichtung und einem erfindungsgemäßen Reaktionsträger zeigt;
  • 2 eine detaillierte Ansicht des Messsystems aus 1 zeigt;
  • 3 eine detaillierte Ansicht des Messsystems aus 1 mit eingeführtem Reaktionsträger zeigt;
  • 4a einen Strömungskanal gemäß einer ersten Ausführungsform eines Reaktionsträgers mit Partikeln in ihrer Ausgangsposition zeigt;
  • 4b einen Strömungskanal gemäß der ersten Ausführungsform eines Reaktionsträgers mit Partikeln in ihrer Strömungsposition zeigt;
  • 5 ein Diagramm einer Intensitätsverteilung von Bildern des Strömungskanals gemäß der ersten Ausführungsform zeigt;
  • 6 einen Strömungskanal gemäß einer zweiten Ausführungsform eines Reaktionsträgers zeigt;
  • 7a einen Abschnitt des Strömungskanals gemäß 6 mit Partikeln in ihrer Ausgangsposition zeigt;
  • 7b einen Abschnitt des Strömungskanals gemäß 6 mit Partikeln in ihrer Strömungsposition zeigt;
  • 8a einen Abschnitt des Strömungskanals eines Reaktionsträgers gemäß einer dritten Ausführungsform mit Partikeln in ihrer Rückstellposition zeigt;
  • 8b einen Abschnitt des Strömungskanals eines Reaktionsträgers gemäß der dritten Ausführungsform mit Partikeln in ihrer Strömungsposition zeigt; und
  • 9 einen Abschnitt des Strömungskanals eines Reaktionsträgers gemäß einer vierten Ausführungsform mit Partikeln in ihrer Rückstellposition zeigt.
  • 1 zeigt eine schematische Ansicht eines Gasmesssystems, im Folgenden auch Messsystem 10 bezeichnet. Das Messsystem 10 umfasst eine Messvorrichtung 12 und einen Reaktionsträger 14. Der Reaktionsträger 14 weist zumindest einen Strömungskanal 42 auf, welcher eine Reaktionskammer 46 mit einem Reaktionsstoff 48 bildet. Der Reaktionsstoff 48 ist ausgebildet, um mit zumindest einer zu messenden Komponente eines Gasgemisches oder einem Reaktionsprodukt der zu messenden Komponente eine optisch detektierbare Reaktion einzugehen. Auf diese Weise kann entweder die zu messende Komponente direkt eine Reaktion mit dem Reaktionsstoff eingehen oder es kann eine Zwischenreaktion vorgesehen sein, in der die zu messende Komponente mit einem Zwischenreaktionsstoff eine Reaktion eingeht und das dabei entstehende Reaktionsprodukt anschließend mit dem Reaktionsstoff die optisch detektierbare Reaktion eingeht.
  • Die Messvorrichtung 12 umfasst eine Gasförderbaugruppe 2 mit einer Gasfördereinrichtung 28 zur Förderung des Gasgemisches durch den Strömungskanal 42 des Reaktionsträgers 14.
  • Die Gasförderbaugruppe 2 umfasst ferner einen Gaszuflusskanal 16 mit einer Gasgemischeinströmöffnung 20, durch die das Gasgemisch in den Gaszuflusskanal 16 einströmen kann, und einem Gasanschluss 22, welcher mit dem Strömungskanal 42 des Reaktionsträgers 14 verbunden werden kann.
  • Des Weiteren umfasst die Gasförderbaugruppe 2 einen Gasabflusskanal 18 mit einem Gasanschluss 24, welcher mit dem Strömungskanal 42 des Reaktionsträgers 14 verbunden werden kann. Die Gasfördereinrichtung 28 ist im Gasabflusskanal 18 angeordnet und ermöglicht ein Fördern des Gasgemischs in einer in 1 durch Pfeile gekennzeichneten Strömungsrichtung.
  • Eine Steuerung-/Regelungseinheit 31 ist vorgesehen, die ausgebildet ist, um einen Durchfluss des Gasgemischs durch den Strömungskanal in Abhängigkeit zumindest eines Reaktionsgeschwindigkeitsparameters zu steuern oder zu regeln. Reaktionsgeschwindigkeitsparameter können beispielsweise die Ausbreitungsgeschwindigkeit einer Reaktionsfront der optisch detektierbaren Reaktion oder eine Temperatur des durch den Strömungskanal 42 strömenden Gasgemischs sein. Zur Messung der Temperatur des durch den Strömungskanal 42 strömenden Gasgemischs sind Temperaturmesselemente 84 vorgesehen, die eine Messung der Temperatur des Gasgemisches direkt im Strömungskanal 42 des Reaktionsträgers 14, oder indirekt über eine Messung der Temperatur des Reaktionsträgers 14 und/oder der Messvorrichtung 12.
  • Die Messvorrichtung 12 umfasst darüber hinaus eine Detektionsbaugruppe 3 mit einer Beleuchtungseinrichtung 37 zur Beleuchtung der Reaktionskammer 46 des Reaktionsträgers 14. In der gezeigten Ausführungsform ist die Beleuchtungseinrichtung 37 ausgebildet, um die Reaktionskammer mit einem Breitbandspektrum zu beleuchten. Beispielsweise entspricht das Breitbandspektrum weißem Licht. Es können jedoch auch benachbarte Spektralbereiche, sowie Infrarot-Spektralbereiche oder Ultraviolett-Spektralbereiche durch das Breitbandspektrum umfasst sein.
  • Die Detektionsbaugruppe 3 umfasst ferner einen optischen Sensor 38 zur Erfassung der optisch detektierbaren Reaktion in der Reaktionskammer 36 des Reaktionsträgers 14, sowie eine Auswertungseinheit 4 zur Auswertung der vom optischen Sensor erfassten Daten der optisch detektierbaren Reaktion und Bestimmung einer Konzentration der Komponente des Gasgemischs.
  • Der optische Sensor 38 ist ein Mehrkanalsensor, welcher mehrere Farbkanäle erfassen kann. In der gezeigten Ausführungsform ist der optische Sensor 38 als Digitalkamera ausgebildet, und wird im Folgenden auch Digitalkamera 38 bezeichnet.
  • Die Auswertungseinheit 4 ist ausgebildet, um bei der Auswertung der Daten des optischen Sensors 38 eine Gewichtung der Farbkanäle vorzunehmen.
  • In 1 ist die Beleuchtungseinrichtung 37 der Übersichtlichkeit halber auf der dem optischen Sensor 38 gegenüberliegenden Seite des Reaktionsträgers 14 angeordnet. Die Beleuchtungseinrichtung kann jedoch an verschiedenen Positionen an der Messvorrichtung 12 angeordnet sein und eine entsprechende Beleuchtung ermöglichen. Beispielsweise kann die Beleuchtung und die Beobachtung durch den optischen Sensors 38 aus der gleichen Richtung und somit auf der gleichen Seite des Reaktionsträgers 14 erfolgen.
  • Die Detektionsbaugruppe 3 umfasst ferner eine Auswertungseinheit 4, welche ausgebildet ist, um die Konzentration der zu messenden Komponente im Gasgemisch ausschließlich aus optisch bestimmbaren Parametern der Reaktionsfront zu bestimmen. Dazu wird bei einer Detektion einer sich in der Reaktionskammer 46 ausbreitenden Reaktionsfront beispielsweise die Frontgeschwindigkeit und ein Intensitätsgradient der sich in Strömungsrichtung in der Reaktionskammer 46 ausbreitenden Reaktionsfront gemessen und daraus die Konzentration der zu messenden Komponente bestimmt.
  • In dem Fall, indem das Gasgemisch jedoch die zu messende Komponente nicht enthält oder diese unter einer Detektionsschwelle vorliegt, muss eine Funktionsprüfung des Messsystems 10 durchgeführt werden, um einen Messfehler aufgrund einer Fehlfunktion des Messsystems, beispielsweise aufgrund einer Leckage oder einer Verstopfung des Strömungskanals, auszuschließen.
  • Die 2 und 3 zeigen eine detailliertere Ansicht des Messsystems 10 zur Messung bzw. Erfassung der Konzentration von gas- und/oder aerosolförmigen Komponenten. In die Messvorrichtung 12, auch bezeichnet als Gasmessanordnung oder übriges Gasmesssystem, wird ein austauschbarer Reaktionsträger 14, auch bezeichnet als Reaktionsträgereinheit, manuell von Hand von einem Benutzer eingeführt. Dabei ist das Messsystem 10 bzw. die Messvorrichtung 12 eine kleine, tragbare Vorrichtung, die mobil einsetzbar ist und mit einer Batterie als Energieversorgung versehen ist. 2 zeigt die Messvorrichtung 12 und den Reaktionsträger 14 getrennt und 3 zeigt die Messvorrichtung 12 mit darin eingeführtem Reaktionsträger 14.
  • An einem Gehäuse der Messvorrichtung 12 ist die Gasfördereinrichtung 28 angeordnet, die durch eine als Saugpumpe ausgebildete Pumpe realisiert ist. Das Gehäuse bildet außerdem eine Lagerung, insbesondere Gleitlagerung, für den verschieblichen Reaktionsträger 14. Mittels einer Reaktionsträgerfördereinrichtung 34 mit einem Motor, z. B. einem als Servomotor ausgebildeten Elektromotor und einer von dem Servomotor in eine Rotationsbewegung versetzbares Getriebe, insbesondere Antriebsrolle, kann der Reaktionsträger innerhalb des Gehäuses der Messvorrichtung bewegt werden, da ein mechanischer Kontakt bzw. eine Verbindung zwischen der Antriebsrolle und dem Reaktionsträger besteht.
  • Das Messsystem 10 umfasst die Messvorrichtung 12 und zumindest einen Reaktionsträger 14. Der Gaszuflusskanal 16 erstreckt sich von der Gasgemischeinströmöffnung 20 zum ersten Gasanschluss 22. Der Gasabflusskanal 18 erstreckt sich vom zweiten Gasanschluss 24 zu einer Gasgemischausströmöffnung 26.
  • Der Gaszuflusskanal 16 ist aus Glas gefertigt, wodurch eine chemische Reaktion oder eine Ablagerung von Gaskomponenten an der Wand des Gaszuflusskanals verhindert oder reduziert wird.
  • Ein Ventil 54 ist an der Gasgemischeinströmöffnung 20 stromaufwärts des Gaszuflusskanals 16 angeordnet. Das Ventil ermöglicht in seiner gezeigten ersten Stellung einen Gasstrom durch den Gaszuflusskanal 16 und verhindert in einer zweiten Stellung einem Gasstrom durch den Gaszuflusskanal 16. In der gezeigten Ausführungsform ist das Ventil 54 als 2/2-Wegeventil ausgebildet.
  • Es ist jedoch auch möglich, dass die Messvorrichtung 12 ohne ein Ventil 54 an der Gasgemischeinströmöffnung 20 ausgebildet ist. Auf diese Weise kann die Anzahl der vom Gasgemisch durchströmten Bauteile vor der Reaktionskammer 46 reduziert werden und somit eine chemische Reaktion oder eine Ablagerung von Gaskomponenten an den Bauteilen verhindert oder reduziert werden.
  • Ferner ist im Gasabflusskanal 18 ein Puffer 32 angeordnet, welcher einen gleichförmigen Gasstrom durch den Gasabflusskanal 18 ermöglicht.
  • Die Messvorrichtung 12 umfasst darüber hinaus eine Reaktionsträgerfördereinrichtung 34, welche ein Bewegen des Reaktionsträgers 14 relativ zum Gaszuflusskanal 16 und dem Gasabflusskanal 18 ermöglicht.
  • Ein Positionssensor 36 dient zum Erfassen einer Relativposition von Reaktionsträger 14 und den Gasanschlüssen 22, 24.
  • Der optische Sensor 38 zur Erfassung einer optisch detektierbaren Reaktion ist in Form einer Digitalkamera 38 vorgesehen und ermöglicht eine Aufnahme des in 1 durch das gepunktete Rechteck gezeigten Aufnahmefeldes 40.
  • Eine zentrale Steuerungseinheit 41 ist vorgesehen, welche die von dem optischen Sensor erfassten Daten verarbeiten kann und das Messverfahren steuert. In der gezeigten Ausführungsform umfasst die zentrale Steuerungseinheit die Auswertungseinheit 4.
  • Der Reaktionsträger 14 weist eine Mehrzahl von Strömungskanälen 42 auf, die sich jeweils zwischen zwei Anschlusselementen 44 erstrecken. In der gezeigten Ausführungsform bildet jeder der Strömungskanäle 42 eine Reaktionskammer 46, welche mit Reaktionsstoff 48 gefüllt ist. Der Reaktionsstoff 48 ist eine chemische Verbindung, welche mit einer zu messenden Gas und/oder ein aerosolförmigen Komponente eines Gasgemisches eine optisch detektierbare Reaktion eingeht. Dies ist beispielsweise eine kolorimetrische Reaktion.
  • In der gezeigten Ausführungsform sind die Strömungskanäle 42 jeweils auf ihrer rechten Seite mit dem Reaktionsstoff 48 gefüllt. Auf der linken Seite der Strömungskanäle 42 ist ein anderes Gasbehandlungselement vorgesehen, beispielsweise eine Trocknungssubstanz.
  • Jedem Strömungskanal 42 ist ein Anzeigestift 50 zugeordnet, welcher eine Codierung 51 bildet, die vom Positionssensor 36 erfasst wird und eine unabhängige Positionierung des Reaktionsträgers 14 in jeweils den Strömungskanälen 42 zugeordneten Relativpositionen ermöglicht. Es kann auch eine andere Art der Codierung 51, beispielsweise eine elektrische, elektronische oder magnetische Codierung vorgesehen sein, welche von einen entsprechenden Positionssensor 36 erfasst werden kann. Vorzugsweise ist jedoch zumindest zusätzlich eine optische Codierung 51 vorgesehen, damit ein Benutzer des Messsystems 10 durch Betrachten des Reaktionsträgers 14 auf einen Blick feststellen kann, ob der Reaktionsträger noch unbenutzte Reaktionskammern aufweist.
  • Der Reaktionsträger 14 weist ferner ein Informationsfeld 52 auf, auf welchen Informationen gespeichert sind. In der gezeigten Ausführungsform ist das Informationsfeld 52 als optisches Informationsfeld ausgebildet, auf dem Informationen gespeichert sind, die durch die Digitalkamera 38 ausgelesen werden können. Alternativ kann das Informationsfeld 52 als elektronischer Speicher für Informationen vorgesehen sein und beispielsweise als RFID-Chip oder SROM-Chip ausgebildet sein, die über Funk oder über elektrische Kontakte ausgelesen und/oder beschrieben werden können.
  • Das Aufnahmefeld der Digitalkamera 38 ist in der gezeigten Ausführungsform so ausgebildet, dass die Reaktionskammern 46, die Anzeigestifte 50, und das Informationsfeld 52 in jeweils zumindest einer Relativposition des Reaktionsträgers 14 in der Messvorrichtung 12 durch die Digitalkamera 38 erfasst werden. Auf diese Weise kann die Digitalkamera 38 einerseits für die Erfassung der optisch detektierbaren Reaktion des Reaktionsstoffes 48 in den Reaktionskammern 46 des Reaktionsträgers 14 und andererseits für das Auslesen der Information im Informationsfeld 52 und als Positionssensor 36 zum Erfassen der Relativposition von Reaktionsträger und den Gasanschlüssen 22, 24 verwendet werden. Es ist jedoch auch möglich, dass Positionssensor 36 und eine Auslesevorrichtung zum Auslesen des Informationsfeldes 52 als ein oder zwei separate Vorrichtungen ausgebildet sind.
  • Eine Funktionsprüfung des Messsystems 10, insbesondere für den Fall, dass das Gasgemisch die zu messende Komponente nicht enthält oder diese unter einer Detektionsschwelle vorliegt, bei der eine Strömung durch den Strömungskanal optisch über den optischen Sensor 38 gemessen werden kann wird im Folgenden beschrieben.
  • In den 4A und 4B ist jeweils ein vergrößerter Abschnitt eines Strömungskanals 42 eines Reaktionsträgers 14 gemäß einer ersten Ausführungsform gezeigt. Der Strömungskanal 42 ist mit Partikeln 100 gefüllt. Gemäß der ersten Ausführungsform weisen die Partikel 100 unterschiedliche Größen auf, wobei in der in 4A gezeigten Ausgangsposition der Partikel 100 die Partikel 100 unterschiedlicher Größe gemischt vorliegen. 4A zeigt den Ausschnitt des Strömungskanals 42 zu einem Zeitpunkt bevor ein Gasgemisch durch den Strömungskanal 42 strömt, wobei die Partikel 100 jeweils in einer Ausgangsposition vorliegen.
  • 4B zeigt den Ausschnitt des Strömungskanals 42 zu einem Zeitpunkt an dem ein Gasgemisch durch den Strömungskanal 42 strömt. Durch den Gasstrom werden die Partikel 100 in eine Strömungsposition beaufschlagt. In der in 4B gezeigten ersten Ausführungsform werden die Partikel 100 mit unterschiedlicher Größe durch den Gasstrom zumindest teilweise entmischt. Dabei werden beispielsweise feine Partikel ausgewaschen und lagern sich an Stellen mit geringerer Strömungsgeschwindigkeit ab. Große Partikel können im Gasstrom ihre Orientierung ändern und vollziehen beispielsweise eine Drehbewegung. Die Partikel sind so ausgebildet, dass die Partikel 100 in der in 4A gezeigten Ausgangsposition und die Partikel 100 in der in 4B gezeigten Strömungsposition optisch unterschieden werden können. Die oben beschriebenen Positionsänderungen der Partikel unterschiedlicher Größe führen zu einer veränderten Intensitätsverteilung bei Aufnahmen des Strömungskanals 42 vor dem Gasstrom und während des Gasstroms.
  • 5 zeigt ein Diagramm der Intensitätsprofile aller Bildpixel eine Aufnahme eines Strömungskanals gemäß der ersten Ausführungsform, wobei auf der vertikalen Achse eine Abweichung von einem Mittelwert angegeben ist und auf der horizontalen Achse die Zeit aufgetragen ist, wobei der Zeitpunkt, an dem das Gasgemisch durch den Strömungskanal 42 strömt, d. h. der Start der Gasfördereinrichtung 28, durch die vertikale gestrichelte Linie angegeben ist. Vor dem Fördern eines Gasstroms durch den Strömungskanal, auf der linken Hälfte des Diagramms, zeigen die Intensitätsprofile eine geringe Abweichung vom Mittelwert. Sobald der Gasstrom durch den Strömungskanal 42 strömt werden die Partikel 100 durch die Strömung in ihre Strömungsposition beaufschlagt, wobei sich die Partikel 100 unterschiedlicher Größe zumindest teilweise entmischen. Die Positionsänderung der Partikel 100 bewirkt eine Veränderung des Bilds, wobei die Entmischung der Partikel 100 unterschiedlicher Größe eine Kontrastverstärkung hervorruft und in einer deutlich erhöhten Abweichung vom Mittelwert in der Intensitätsverteilung erkennbar ist. Aus der optisch detektierbaren Positionsänderung der Partikel 100 kann somit überprüft werden, ob ein Massenstrom durch den Strömungskanal stattgefunden hat. Auf diese Weise kann die Funktion der Gasförderbaugruppe 2 überprüft werden.
  • Die Größenverteilung der Partikel 100 unterschiedlicher Größe ist so ausgewählt, dass eine möglichst große Änderung der Abweichung der Intensitätsverteilung bei der Positionsänderung der Partikel 100 erreicht wird. Die Partikel 100 können durch den Reaktionsstoff 48 gebildet werden oder können aus einem anderen Stoff bestehen und mit dem Reaktionsstoff 48 gemischt sein oder in einem eigenen Abschnitt des Strömungskanal 42 angeordnet sein. Vorzugsweise umfassen die Partikel 100 unterschiedlicher Größe sehr feinkörnige Partikel, die bei Anliegen einer Gasströmung sofort ausgewaschen werden und zu einer schnellen Positionsänderung der Partikel 100 und einer schnellen Detektion des Gasstroms führen.
  • 6 zeigt einen Ausschnitt eines Strömungskanals 42 einer zweiten Ausführungsform eines Reaktionsträgers 14. Der Strömungskanal 42 umfasst einen ersten Abschnitt auf der linken Seite, welcher die Reaktionskammer 46 mit dem Reaktionsstoff 48 bildet, und einen zweiten Abschnitt 101 auf der rechten Seite, welcher mit Partikeln 102 gefüllt ist, wobei die Partikel eine Strömungsform aufweisen. Die Strömungsform der Partikel 102 bewirkt, dass sich die Partikel in einem Gasstrom in einer vorbestimmten Orientierung in Strömungsrichtung in eine definierte Strömungsposition ausrichten. In 6 erfolgt ein Gasstrom von links nach rechts, wie durch den Pfeil gekennzeichnet, und alle Partikel 102 sind in ihre Strömungsposition ausgerichtet.
  • Die 7A und 7B zeigen jeweils eine Detailansicht des zweiten Abschnitts 101 der zweiten Ausführungsform. In der gezeigten Ausführungsform haben die Partikel 102 mit Strömungsform eine Tropfenform und weisen eine Farbmarkierung 103 auf. Es kann jedoch auch eine andere Strömungsform gewählt werden, welche eine Ausrichtung der Partikel 102 in eine vorbestimmte Orientierung in Strömungsrichtung bewirkt, beispielsweise eine Stäbchenform oder Scheibenform.
  • Die Farbmarkierung 103 kann einerseits zur besseren Unterscheidung der Partikel 102 von anderen von anderen Teilchen im Strömungskanal 42, beispielsweise Reaktionsstoff 48, vorgesehen sein. Andererseits kann die Farbmarkierung so ausgebildet sein, dass die Farbmarkierung in der Strömungsposition so ausgerichtet wird, dass eine bessere optische Unterscheidung zwischen Ausgangsposition und Strömungsposition der Partikel 102 mit Strömungsform ermöglicht wird.
  • 7A zeigt eine Detailansicht des zweiten Abschnitts 101 der zweiten Ausführungsform in der die Partikel 102 mit Strömungsform in einer Ausgangsposition angeordnet sind. In der Ausgangsposition ist die Ausrichtung der verschiedenen Partikel im Wesentlichen zufällig.
  • 7B zeigt die Detailansicht des zweiten Abschnitts 101 mit einer Strömung durch den Strömungskanal 42 in Richtung des Pfeils. Die Partikel 102 werden durch die Strömung in ihre Strömungsposition beaufschlagt und drehen sich in ihre vorbestimmte Orientierung in Strömungsrichtung. In der gezeigten Ausführungsform ergibt sich durch die regelmäßige Anordnung der Partikel 102 in ihrer Strömungsposition gegenüber der chaotischen zufälligen Ausrichtung der Partikel 102 in der Ausgangsposition eine homogenere Verteilung der Farbmarkierungen 103 im Vergleich zu der Verteilung in 7A.
  • Die Farbmarkierung 103 oder die Partikelform ist so gewählt, dass die Farbmarkierungen 103 oder eine Fläche der Partikel 102 in Bezug auf eine bestimmte Beobachtungsrichtung 105 des optischen Sensors 38 in der Strömungsposition zur Beobachtungsrichtung hin ausgerichtet sind, während in der zufälligen Orientierung der Partikel 102 in der Ausgangsposition die Farbmarkierungen 103 oder die Flächen der Partikel in der Beobachtungsrichtung nur teilweise sichtbar sind.
  • Die 8A und 8B zeigen einen Strömungskanal 42 eines Reaktionsträgers 14 gemäß einer dritten Ausführungsform. Der Strömungskanal 42 ist zumindest teilweise mit Partikeln 104 gefüllt, welche analog zur vorhergehenden Ausführungsform eine Strömungsform aufweisen. Zusätzlich weisen die Partikel 104 der dritten Ausführungsform eine elektrische Eigenschaft auf, um durch eine auf die Partikel 104 wirkende elektrische Rückstellkraft in eine Rückstellposition bewegt zu werden, wobei die Partikel 104 so ausgebildet sind, dass die Partikel in der Rückstellposition und die Partikel 104 in der Strömungsposition optisch unterschieden werden können.
  • In der vorliegenden Ausführungsform ist die elektrische Eigenschaft ein elektrisches Dipolmoment, wobei die Partikel 104 ein permanentes Dipolmoment oder ein induziertes Dipolmoment aufweisen können. Die elektrische Rückstellkraft wird durch ein äußeres elektrisches Feld erzeugt, in dem sich die elektrischen Dipole ausrichten. In der gezeigten Ausführungsform wird das elektrische Feld durch die Feldlinien 106 in 8A dargestellt. Das elektrische Feld wird durch eine Rückstellvorrichtung 107 erzeugt. Die Rückstellvorrichtung 107 kann in der Messvorrichtung 12 oder im Reaktionsträger 14 ausgebildet sein, beispielsweise durch parallel zum Strömungskanal 42 verlaufende Kondensatorplatten.
  • Durch den transparent ausgebildeten Strömungskanal 42 mit den Partikeln 104, die Rückstellvorrichtung 107, dem optischen Sensorelement 38 zur Erfassung der Positionsänderung der Partikel und einer Steuereinheit 108, die ausgebildet ist, um mittels der erfassten Positionsänderung der Partikel 104 die Strömung eines Gases oder eines anderen Fluids zu bestimmen, wird ein optischer Strömungssensor 109 gebildet. Der Strömungssensor 109 kann neben der gezeigten Anwendung in einem oben beschriebenen Messsystem 10 auch zur Messung der Strömung von anderen Fluiden genutzt werden.
  • 8A zeigt die Partikel 104 in ihrer Rückstellposition, in der die Partikel 104 im elektrischen Feld 106 ausgerichtet sind. In dieser Ausführungsform ist es auch möglich, die Partikel zu Beginn einer Messung durch die Rückstellkraft in ihre Rückstellposition zu bewegen, in der die Partikel 104 eine definierte Orientierung haben. Auf diese Weise kann der optische Kontrast bei der Positionsveränderung der Partikel 104 verbessert werden, indem beispielsweise Farbmarkierungen 103 oder bestimmte Flächen der Partikel 104 in einer Position zur Beobachtungsrichtung 105 hinweisen und in der anderen Position von der Beobachtungsrichtung 105 wegweisen.
  • Indem die Partikel 104 durch die Rückstellkraft in eine bestimmte Rückstellposition beaufschlagt werden können auch wiederholte oder kontinuierliche Messungen vorgenommen werden. So können zu Beginn einer jeden Messung durch Anlegen eines elektrischen Feldes die Partikel 104 in ihre Rückstellposition ausrichten und nach anschließendem Abschalten des elektrischen Feldes richten sich die Partikel 104 bei vorliegender Strömung in ihre Strömungsposition aus.
  • Außerdem kann eine Empfindlichkeit der Messung eingestellt werden, indem eine geringe Rückstellkraft die Partikel 104 in ihre Rückstellposition beaufschlagt und somit erst bei einer bestimmten Strömungsstärke die Partikel 104 mit ausreichender Kraft in Richtung der Strömungsposition beaufschlagt werden, sodass eine Positionsänderung zur Strömungsposition auftritt.
  • Ferner kann durch die die Rückstellvorrichtung 107 eine dynamische Modulierung der Rückstellkraft vorgenommen werden. Die dynamische Modulierung kann beispielsweise so vorgenommen werden, dass sich die Partikel 104 zwischen Rückstellposition und Strömungsposition hin und her bewegen, beispielsweise mit einer sinusförmigen Spannung mit einstellbaren Offset, oder über einen Regelkreis auf einem Kipppunkt gehalten werden, wobei die Messung auf diese Weise weitgehend unabhängig von den mechanischen Eigenschaften der Partikel wird. Die dafür erforderliche Spannung dient dann als Maß der Strömungsgeschwindigkeit.
  • 9 zeigt eine alternative Ausführungsform eines optischen Strömungssensors 109 mit einem Strömungskanal 42 einer vierten Ausführungsform eines Reaktionsträgers 14. Die Partikel 110 weisen analog zur zweiten und dritten Ausführungsform eine Strömungsform auf und besitzen zusätzlich magnetische Eigenschaften, um durch eine auf die Partikel wirkende magnetische Rückstellkraft in eine Rückstellposition bewegt zu werden, wobei die Partikel 110 so ausgebildet sind, dass die Partikel 110 in der Rückstellposition und die Partikel in der Strömungsposition optisch unterschieden werden können.
  • Eine Rückstellvorrichtung 107 erzeugt ein magnetisches Feld, in dem sich die Partikel 110 in ihre Rückstellposition ausrichten, wie in 9 gezeigt. Die Messung erfolgt im Wesentlichen analog zur vorhergehenden Ausführungsform, wobei anstelle des elektrischen Feldes das magnetische Feld verändert wird. Die Partikel 110 sind beispielsweise metallische Teilchen.
  • Es ist auch möglich, dass Partikel 100, 102, 104 oder 110 vorgesehen sind, welche mechanische Eigenschaften aufweisen, um durch eine auf die Partikel wirkenden mechanische Rückstellkraft in eine Rückstellposition bewegt zu werden, wobei die Partikel so ausgebildet sind, dass die Partikel in der Rückstellposition und die Partikel in der Strömungsposition optisch unterschieden werden können. Beispielsweise können die Partikel in eine elastische Matrix eingebettet sind oder selbst eine elastische Matrix bilden. Die Partikel können auch elektrische Eigenschaften aufweisen, beispielsweise durch eine Magnetisierung oder ein permanentes elektrisches Dipolmoment, sodass die Partikel untereinander wechselwirken und eine Vorzugslage der Partikel entsteht, die eine Rückstellposition bildet. Auf diese Weise werden die Partikel erst ab einem Schwellwert der Strömungsstärke aus der Vorzugslage in die Strömungsposition umgelenkt.
  • Es ist insbesondere auch möglich die verschiedenen oben beschriebenen Ausführungsformen mit einander zu kombinieren. So können beispielsweise die Partikel 104 mit elektrischen Dipolmoment in eine elastische Matrix eingebettet sein und somit einerseits eine verstellbare elektrische Rückstellkraft und andererseits eine unveränderliche mechanische Rückstellkraft auf die Partikel 104 wirken.
  • Als Maß für die Strömung kann zum einen eine Bestimmung über einen festen oder veränderlichen Schwellwert vorgesehen sein, wobei bestimmt wird, dass eine Strömung über dem Schwellwert der Strömungsstärke vorliegt. Zum anderen kann der Kontrast durch die Positionsveränderung als Maß für die Strömungsstärke verwendet werden oder eine veränderliche Rückstellkraft kann beispielsweise über die zur Rückstellung benötigte Rückstellkraft zur Bestimmung der Strömungsstärke genutzt werden.
  • Im Folgenden wird ein Messverfahren unter Bezugnahme auf die 2 und 3 beschrieben.
  • Der Reaktionsträger 14 wird in eine Einführöffnung 80 in einem Gehäuse 82 der Messvorrichtung 12 eingeführt. Der Reaktionsträger 14 wird von Hand in die Einführöffnung gesteckt, von der Reaktionsträgerfördereinrichtung 34 erfasst und in Einfuhrrichtung vorwärts transportiert.
  • Beim Transportieren des Reaktionsträgers 14 durchläuft das Informationsfeld 52 des Reaktionsträgers 14 das Aufnahmefeld 40 der Digitalkamera 38, wobei die Informationen auf dem Informationsfeld 52 von der Digitalkamera 38 erfasst werden und in einer Auswerteeinrichtung der zentralen Steuerungseinheit 41 ausgewertet werden können. Es ist auch möglich, dass der Reaktionsträger in einer Ausleseposition positioniert wird, in der ein Auslesen des Informationsfelds 52 ermöglicht wird. In der gezeigten Ausführungsform ist die Information auf dem Informationsfeld 52 optisch gespeichert und kann somit auf einfache Weise von der Digitalkamera 38 ausgelesen werden. Alternativ ist es auch möglich, dass ein elektronisches Informationsfeld 52 vorgesehen ist, welches beispielsweise als aktiver oder passiver RFID-Chip oder SRAM-Chip ausgebildet ist und über Funk oder über elektrische Kontakte ausgelesen werden kann. Die elektrischen Kontakte sind vorzugsweise über Datenleitungen zu den Ein- und Ausströmöffnungen der Strömungskanäle 42 und Gasstutzen aus einem stromleitenden Material hergestellt, sodass eine Strom- bzw. Datenverbindung zwischen dem SRAM-Chip und einer entsprechenden Auslesevorrichtung hergestellt wird, während sich die Gasstutzen in den Ein- und Ausströmöffnungen befinden.
  • In einem ersten Verfahrensschritte werden die auf dem Informationsfeld 52 enthaltenen Informationen des Reaktionsträgers 14, insbesondere in Bezug auf die zu messende Komponente des Gasgemisches und einen entsprechenden Konzentrationsbereich, ausgelesen.
  • Anschließend wird der Reaktionsträger 14 in einer Relativposition zu den Gasanschlüssen 22, 24 der Messvorrichtung 12 positioniert, wobei ein Strömungskanal 42 ausgewählt wird, welcher eine unbenutzte Reaktionskammer 46 aufweist, in dem in 3 gezeigten Beispiel der in Einführrichtung erste Strömungskanal 42 des Reaktionsträgers 14.
  • Eine Verbindung zwischen den Gasanschlüssen 22, 24 wird durch den zweiten Strömungskanal 42 hergestellt.
  • Vor dem Start der Gasfördereinrichtung 28 wird ein Referenzbild des Strömungskanals 42 aufgenommen, wobei sich die Partikel 100, 102, 104 oder 110 in einer Ausgangsposition befinden. Soweit vorgesehen können die Partikel 104 oder 110 auch durch die Rückstellkräfte in ihre Rückstellpositionen beaufschlagt werden bevor das Referenzbild des Strömungskanals 42 aufgenommen wird. In diesem Fall entspricht die Rückstellposition der Ausgangsposition.
  • Nach der Aufnahme des Referenzbilds fördert die Gasfördereinrichtung 28 ein zu messendes Gasgemisch durch den Abflusskanal 18, den zweiten Strömungskanal 42 und den Gaszuflusskanal 16, wobei die Digitalkamera 38 eine eventuelle optische detektierbare Reaktion in der Reaktionskammer 46 erkennt.
  • Während des Förderns des Gasgemischs durch die Gasfördereinrichtung 28 nimmt die Digitalkamera 38 ein Strömungsbild des Strömungskanals 42 auf. Dieses Strömungsbild kann beispielsweise sowohl für die optische Detektion der Strömung durch den Strömungskanal 42 als auch für die Detektion der optisch detektierbaren Reaktion verwendet werden.
  • Die Steuereinheit 108 wertet das Referenzbild und das Strömungsbild der Digitalkamera 38 aus und bestimmt mittels der erfassten Positionsänderung der Partikel 100, 102, 104, 110 die Strömung des durch den Strömungskanal 42 strömenden Gasstroms.
  • Vorzugsweise nimmt die Digitalkamera 38 kontinuierlich Strömungsbilder des Strömungskanals 42 auf, um eine kontinuierliche optische. Detektion der Strömung durch den Strömungskanal 42 und der optisch detektierbaren Reaktion zu ermöglichen.
  • Vorzugsweise erzeugt das Messsystem 10 eine Rückstellkraft während des Förderns des Gasstroms, welche die Partikel in eine Rückstellposition beaufschlagt. Durch Anpassung und insbesondere dynamische Modulation der Rückstellkraft kann die Genauigkeit der Bestimmung der Strömungsstärke erhöht werden.
  • Die Detektionsbaugruppe 3 erfasst eine sich in Strömungsrichtung in der Reaktionskammer 46 ausbreitende Reaktionsfront und deren Geschwindigkeit während' des Förderns des Gasgemischs und bestimmt ein vorläufiges Messergebnis der Konzentration der zu messenden Komponente des Gasgemischs aus der Geschwindigkeit der Reaktionsfront.
  • Ein Endmessergebnisses der Konzentration der Komponente des Gasgemischs wird bestimmt und nach Beendigung des Förderns des Gasgemischs ausgegeben.
  • Ist die zu bestimmende Komponente des Gasgemisches nicht im Gasgemisch enthalten oder liegt in einer Konzentration unter einer Detektionsschwelle des Konzentrationsbereichs des vorliegenden Reaktionsträgers 14 vor, so wird keine optisch detektierbare Reaktion in der Reaktionskammer 46 festgestellt, es bildet sich also keine Reaktionsfront in der Reaktionskammer 46 aus.
  • Ein entsprechendes Ergebnis der Messung wird durch die Messvorrichtung beispielsweise optisch oder akustisch angezeigt.
  • Vorzugsweise findet bei jedem Herstellen einer Verbindung zwischen den Gasanschlüssen 22, 24 über einen Strömungskanal 42 eine Überprüfung von Leckageströmen statt.
  • In einem ersten Schritt wird der Gasanschluss 24 des Gasabflusskanals 18 mit dem zugehörigen Anschlusselement 44 des Reaktionsträgers 14 verbunden. In einem zweiten Schritt wird Gas durch den Gasabflusskanal 18 und den damit verbundenen Strömungskanal 42 des Reaktionsträgers 14 gefördert, wobei der Gasstrom durch den Gasabflusskanal zur Überprüfung von Leckageströmen gemessen wird. Ist das System von Gasabflusskanal und Strömungskanal gasdicht, so wird im Wesentlichen kein Gasstrom durch den Gasabflusskanal 18 gemessen, da der Strömungskanal 42 des Reaktionsträgers 14 über das von der Dichtungsvorrichtung 62 verschlossene zweite Anschlusselement 44 gasdicht verschlossen ist.
  • In einem weiteren Schritt wird der Gaszuflusskanal 16 stromaufwärts durch das Ventil 54 verschlossen und der Gasanschluss 22 des Gaszuflusskanals 16 wird mit dem entsprechenden Anschlusselement 44 des Reaktionsträgers 14 verbunden. Anschließend wird Gas durch die Gasfördereinrichtung 28 durch den Gasabflusskanal 18, den Strömungskanal 42 und den Gaszuflusskanal 16 gefördert, wobei der Gasstrom durch den Gasabflusskanal zu Überprüfung von Leckageströmen gemessen wird. Ist das System von Gasabflusskanal 18, Strömungskanal 42 und Gaszuflusskanal 16 gasdicht, so wird im Wesentlichen kein Gasstrom durch den Gasabflusskanal 18 gemessen, da der Gaszuflusskanal 16 durch das Ventil 54 gasdicht verschlossen ist.
  • Bei einem gasdichten Messsystem 10, bei dem vor Überprüfung der Leckageströme Normaldruck in Gasabflusskanal 18, Strömungskanal 42 und/oder Gaszuflusskanal 16 vorliegt, ist die in den vorhergehenden Absätzen beschriebene Messung von im Wesentlichen keinem Gasstrom dahingehend zu verstehen, dass ein im Wesentlichen exponentiell abnehmender, dem Unterdruck folgendem Gasfluss gemessen wird. In anderen Worten entspricht der gemessene Gasstrom bei einem gasdichten Messsystem 10 der zu Beginn der Messung in den Kanälen 16, 18, 42 vorliegenden Gasmenge, welche bei der Überprüfung der Leckageströme durch die Gasfördereinrichtung 28 abgepumpt wird.
  • Wird bei der Überprüfung ein Leckagestrom, d. h. ein über den im vorhergehenden Absatz genannten Gasstrom hinausgehender Gasstrom durch den Gasabflusskanal 18, gemessen, so wird eine entsprechende Fehlermeldung durch die Messvorrichtung 12 ausgegeben. Der Strömungskanal 42 auf dem Reaktionsträger 14 oder Gasabflusskanal 18 und Gaszuflusskanal 16 der Messvorrichtung 12 können dann beispielweise durch den Benutzer überprüft werden.
  • Es ist auch möglich, dass bereits in einem ersten Schritt beide Gasanschlüsse 22, 24 des Gasabflusskanals 18 und des Gaszuflusskanals 16 mit den entsprechenden Anschlusselementen 44 des Strömungskanals 42 verbunden werden und entsprechend eine einzige Überprüfung von Leckageströmen durchgeführt wird.
  • Bezugszeichenliste
  • 2
    Gasförderbaugruppe
    3
    Detektionsbaugruppe
    4
    Auswertungseinheit
    10
    Messsystem
    12
    Messvorrichtung
    14
    Reaktionsträger
    16
    Gaszuflusskanal
    18
    Gasabflusskanal
    20
    Gasgemischeinströmöffnung
    22
    Gasanschluss
    24
    Gasanschluss
    26
    Gasgemischausströmöffnung
    28
    Gasfördereinrichtung
    30
    Durchflusssensor
    31
    Steuerungs-/Regelungseinheit
    32
    Puffer
    34
    Reaktionsträgerfördereinrichtung
    36
    Positionssensor
    37
    Beleuchtungseinrichtung
    38
    Digitalkamera/optischer Sensor
    40
    Aufnahmefeld
    41
    zentrale Steuerungseinheit
    42
    Strömungskanal
    44
    Anschlusselemente
    46
    Reaktionskammer
    48
    Reaktionsstoff
    50
    Anzeigestift
    51
    Codierung
    52
    Informationsfeld
    54
    Ventil
    76
    Bewertungseinrichtung
    78
    Speichereinrichtung
    80
    Einführöffnung
    82
    Gehäuse (der Messvorrichtung)
    100
    Partikel
    101
    Abschnitt
    102
    Partikel
    103
    Farbmarkierung
    104
    Partikel
    105
    Beobachtungsrichtung
    106
    elektrisches Feld
    107
    Rückstellvorrichtung
    108
    Steuereinheit
    109
    optischer Strömungssensor
    110
    Partikel

Claims (10)

  1. Reaktionsträger (14) für ein Messsystem (10) zur Messung einer Konzentration von gas- und/oder aerosolförmigen Komponenten eines Gasgemisches mit zumindest einem Strömungskanal (42), wobei der Strömungskanal (42) eine Reaktionskammer (46) mit einem Reaktionsstoff (48) bildet, welcher ausgebildet ist, um mit zumindest einer zu messenden Komponente des Gasgemisches oder einem Reaktionsprodukt der zu messenden Komponente eine optisch detektierbare Reaktion einzugehen, dadurch gekennzeichnet, dass der Strömungskanal (42) zumindest teilweise mit Partikeln (100, 102, 104, 110) gefüllt ist, die eine Ausgangsposition aufweisen, bevor das Gasgemisch durch den Strömungskanal (42) strömt, und welche durch einen Gasstrom durch den Strömungskanal (42) in eine Strömungsposition beaufschlagt werden, wobei die Partikel (100, 102, 104, 110) so ausgebildet sind, dass die Partikel (100, 102, 104, 110) in der Ausgangsposition und die Partikel (100, 102, 104, 110) in der Strömungsposition optisch unterschieden werden können.
  2. Reaktionsträger nach Anspruch 1, wobei die Partikel (100) unterschiedliche Größen aufweisen und wobei in der Ausgangsposition Partikel (100) unterschiedlicher Größe gemischt sind und in der Strömungsposition die Partikel (100) unterschiedlicher Größe zumindest teilweise entmischt sind.
  3. Reaktionsträger nach Anspruch 1 oder 2, wobei die Partikel (102, 104, 110) eine Strömungsform aufweisen, um sich in einem Gasstrom in einervorbestimmten Orientierung in Strömungsrichtung in ihre Strömungsposition auszurichten.
  4. Reaktionsträger nach einem der vorhergehenden Ansprüche, wobei die Partikel (104, 110) mechanische, elektrische und/oder magnetische Eigenschaften aufweisen, um durch eine auf die Partikel (104, 110) wirkende mechanische, elektrische und/oder magnetische Rückstellkraft in eine Rückstellposition bewegt zu werden, wobei die Partikel (104, 110) so ausgebildet sind, dass die Partikel (104, 110) in der Rückstellposition und die Partikel (104, 110) in der Strömungsposition optisch unterschieden werden können.
  5. Messsystem (10) zur Messung einer Konzentration von gas- und/oder aerosolförmigen Komponenten eines Gasgemisches mit einem Reaktionsträger (14) nach einem der vorhergehenden Ansprüche und einer Messvorrichtung (12), die einen optischen Sensor (38) aufweist, welcher den Strömungskanal (42) des Reaktionsträgers (14) erfasst und ausgebildet ist, um die Ausgangsposition und Strömungsposition der Partikel (100, 102, 104, 110) optisch zu bestimmen.
  6. Messsystem nach Anspruch 5, wobei die Messvorrichtung (12) und/oder der Reaktionsträger (14) ausgebildet ist, um ein elektrisches oder magnetisches Feld im Strömungskanal (42) des Reaktionsträgers (14) zu erzeugen.
  7. Messverfahren zur Messung einer Konzentration von gas- und/oder aerosolförmigen Komponenten eines Gasgemisches mit einem Reaktionsträger nach einem der Ansprüche 1 bis 4 oder einem Messsystem nach einem der Ansprüche 5 oder 6, mit den Verfahrensschritten: Aufnahme eines Referenzbilds des Strömungskanals (42) vor einem Fördern eines Gasstroms durch den Strömungskanal (42), wobei sich die Partikel (100, 102, 104, 110) in ihrer Ausgangsposition befinden; Aufnahme eines Strömungsbilds des Strömungskanals (42) während eines Förderns eines Gasstroms durch den Strömungskanal (42); und Bestimmung des durch den Strömungskanal (42) strömenden Gasstroms durch Auswertung des Referenzbilds und des Strömungsbilds.
  8. Messverfahren nach Anspruch 7, mit dem Verfahrensschritt: Erzeugen einer Rückstellkraft während des Förderns des Gasstroms durch den Strömungskanal, welche die Partikel (104, 110) in eine Rückstellposition beaufschlagt.
  9. Messverfahren nach Anspruch 8, mit dem Verfahrensschritt: dynamische Modulierung der Rückstellkraft während des Förderns des Gasstroms durch den Strömungskanal, sodass die sich die Partikel (104, 110) zwischen Rückstellposition und Strömungsposition hin und her bewegen oder in einer Position zwischen Rückstellposition und Strömungsposition gehalten werden.
  10. Optischer Strömungssensor (109) zur Bestimmung einer Strömung eines Fluids, mit einem transparent ausgebildeten Strömungskanal (42), welcher zumindest teilweise mit Partikeln (104, 110) gefüllt ist, welche eine Strömungsform aufweisen, um sich in einem Gasstrom in einer vorbestimmten Orientierung in Strömungsrichtung in eine Strömungsposition auszurichten und welche mechanische, elektrische und/oder magnetische Eigenschaften aufweisen, um durch eine auf die Partikel (104, 110) wirkende mechanische, elektrische und/oder magnetische Rückstellkraft in eine Rückstellposition beaufschlagt zu werden, wobei die Partikel (104, 110) so ausgebildet sind, dass die Partikel (104, 110) in der Rückstellposition und die Partikel (104, 110) in der Strömungsposition optisch unterschieden werden können; einer Rückstellvorrichtung (107) zur Erzeugung der mechanischen, elektrischen und/oder magnetischen Rückstellkraft; einem optischen Sensorelement (38), welches ausgebildet ist, um eine Positionsänderung der Partikel (104, 110) von der Ausgangsposition in die Strömungsposition zu erfassen; und einer Steuereinheit (108), welche ausgebildet ist, um mittels der erfassten Positionsänderung der Partikel (104, 110) die Strömung des Fluids zu bestimmen.
DE102013009642.1A 2013-06-08 2013-06-08 Messsystem, Reaktionsträger, Messverfahren und optischer Strömungssensor Active DE102013009642B4 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE102013009642.1A DE102013009642B4 (de) 2013-06-08 2013-06-08 Messsystem, Reaktionsträger, Messverfahren und optischer Strömungssensor
US14/896,785 US9759702B2 (en) 2013-06-08 2014-05-20 Reaction carrier, measuring system and measuring method for determining gas and particle concentrations, and optical flow sensor
CN201480032722.3A CN105264340B (zh) 2013-06-08 2014-05-20 反应基座、用于确定气体及颗粒浓度的测量系统和测量方法以及光学的流动传感器
PCT/EP2014/001351 WO2014194983A1 (de) 2013-06-08 2014-05-20 Reaktionsträger, messverfahren und messverfahren zur bestimmung von gas- und partikel-konzentrationen, und optischer strömungssensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102013009642.1A DE102013009642B4 (de) 2013-06-08 2013-06-08 Messsystem, Reaktionsträger, Messverfahren und optischer Strömungssensor

Publications (2)

Publication Number Publication Date
DE102013009642A1 true DE102013009642A1 (de) 2014-12-11
DE102013009642B4 DE102013009642B4 (de) 2019-10-10

Family

ID=50771461

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102013009642.1A Active DE102013009642B4 (de) 2013-06-08 2013-06-08 Messsystem, Reaktionsträger, Messverfahren und optischer Strömungssensor

Country Status (4)

Country Link
US (1) US9759702B2 (de)
CN (1) CN105264340B (de)
DE (1) DE102013009642B4 (de)
WO (1) WO2014194983A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014013143A1 (de) * 2014-09-10 2016-03-10 Dräger Safety AG & Co. KGaA Messverfahren, Messvorrichtung und Messsystem

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018040571A (ja) * 2016-09-05 2018-03-15 イマジニアリング株式会社 内燃機関における筒内流動計測方法とその装置
CN106771342A (zh) * 2016-12-13 2017-05-31 中国地质大学(武汉) 流速传感器、钻孔流速传感器、钻孔流速测定装置及方法
JP6879850B2 (ja) * 2017-07-14 2021-06-02 株式会社堀場エステック 流体測定装置、流体制御システム及び制御プログラム
CN108535155B (zh) * 2018-03-01 2020-06-26 四川大学 直接封装空气称量测定大坝泄洪雾化浓度的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2628790B1 (de) * 1976-06-26 1977-11-10 Draegerwerk Ag Gasmess- und warnvorrichtung mit einem von dem nachzuweisenden gas durchstroemten pruefroehrchen
US4245997A (en) * 1978-04-06 1981-01-20 Dragerwerk Aktiengesellschaft Gas measuring and warning device with indicator tube through which gas to be tested is directed
DE4303861A1 (de) * 1993-02-10 1994-08-11 Draegerwerk Ag Vorrichtung für den kolorimetrischen Gasnachweis in Folienverbundbauweise
EP1983340A1 (de) * 2007-04-19 2008-10-22 Hach Lange GmbH Verfahren zur Bestimmung der Konzentration von Analyten
DE102008041330A1 (de) * 2008-08-19 2010-02-25 Robert Bosch Gmbh Verfahren und Vorrichtung zur Partikelmessung
EP2405254A1 (de) * 2010-07-05 2012-01-11 SICK MAIHAK GmbH Optoelektronische Vorrichtung zur Gasanalyse und Verfahren
DE102010040717A1 (de) * 2010-09-14 2012-04-19 Basf Se Verfahren und Vorrichtung zur Bestimmung der Strömungsgeschwindigkeit mittels ausgerichteten magnetischen Partikeln und deren Verwendung
DE102012014503A1 (de) * 2012-07-20 2014-01-23 Dräger Safety AG & Co. KGaA Gasmesssystem

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1097652A (en) 1965-05-11 1968-01-03 Gen Radio Co Digital automatic impedance bridge circuit
US6325978B1 (en) 1998-08-04 2001-12-04 Ntc Technology Inc. Oxygen monitoring and apparatus
JP3783766B2 (ja) * 2000-09-06 2006-06-07 セイコーエプソン株式会社 赤外吸収分光器を用いた温室効果ガス測定方法
SE524086C2 (sv) * 2001-10-30 2004-06-22 Phase In Ab Mäthuvud för gasanalysator
CN201072403Y (zh) * 2007-07-03 2008-06-11 浙江大学 测量气固两相流中固体颗粒三维浓度场、速度场的装置
WO2010061536A1 (ja) 2008-11-26 2010-06-03 パナソニック株式会社 窒素酸化物検出エレメント、窒素酸化物検出センサとこれを使用した窒素酸化物濃度測定装置および窒素酸化物濃度測定方法
CN101509931B (zh) * 2009-03-16 2011-04-27 浙江大学 在线测量管内颗粒二维速度和粒径分布的方法和装置
CN101852814B (zh) * 2010-04-29 2012-05-30 中国农业大学 一种滴灌灌水器迷宫流道内流动的全场测试方法
US8767214B2 (en) 2011-10-06 2014-07-01 Nordson Corporation Powder flow detection

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2628790B1 (de) * 1976-06-26 1977-11-10 Draegerwerk Ag Gasmess- und warnvorrichtung mit einem von dem nachzuweisenden gas durchstroemten pruefroehrchen
US4245997A (en) * 1978-04-06 1981-01-20 Dragerwerk Aktiengesellschaft Gas measuring and warning device with indicator tube through which gas to be tested is directed
DE4303861A1 (de) * 1993-02-10 1994-08-11 Draegerwerk Ag Vorrichtung für den kolorimetrischen Gasnachweis in Folienverbundbauweise
EP1983340A1 (de) * 2007-04-19 2008-10-22 Hach Lange GmbH Verfahren zur Bestimmung der Konzentration von Analyten
DE102008041330A1 (de) * 2008-08-19 2010-02-25 Robert Bosch Gmbh Verfahren und Vorrichtung zur Partikelmessung
EP2405254A1 (de) * 2010-07-05 2012-01-11 SICK MAIHAK GmbH Optoelektronische Vorrichtung zur Gasanalyse und Verfahren
DE102010040717A1 (de) * 2010-09-14 2012-04-19 Basf Se Verfahren und Vorrichtung zur Bestimmung der Strömungsgeschwindigkeit mittels ausgerichteten magnetischen Partikeln und deren Verwendung
DE102012014503A1 (de) * 2012-07-20 2014-01-23 Dräger Safety AG & Co. KGaA Gasmesssystem

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014013143A1 (de) * 2014-09-10 2016-03-10 Dräger Safety AG & Co. KGaA Messverfahren, Messvorrichtung und Messsystem
DE102014013143B4 (de) * 2014-09-10 2017-08-31 Dräger Safety AG & Co. KGaA Messverfahren, Messvorrichtung und Messsystem

Also Published As

Publication number Publication date
DE102013009642B4 (de) 2019-10-10
CN105264340B (zh) 2018-06-29
WO2014194983A1 (de) 2014-12-11
US20160131627A1 (en) 2016-05-12
US9759702B2 (en) 2017-09-12
CN105264340A (zh) 2016-01-20

Similar Documents

Publication Publication Date Title
DE102013009642B4 (de) Messsystem, Reaktionsträger, Messverfahren und optischer Strömungssensor
DE102013006548B4 (de) Messvorrichtung, Reaktionsträger und Messverfahren
DE102013009641B4 (de) Drucksensor mit Membran deren variable Anlagefläche optisch ausgelesen werden kann, Messvorrichtung, Reaktionsträger und Messverfahren mit diesem Drucksensor
EP1342070B1 (de) Verfahren zur feststellung eines gases mit hilfe eines infrarot-gas-analysators sowie für die durchführung dieses verfahrens geeigneter gasanalysator
DE3319526C2 (de) Anordnung mit einem physikalischen Sensor
DE102012014503A1 (de) Gasmesssystem
DE102013006545B4 (de) Messvorrichtung und Messverfahren für einen Reaktionsträger
EP2605212A2 (de) Verfahren und Vorrichtung zum optischen Prüfen von bei der Herstellung und/oder Verpackung von Zigaretten zu prüfenden Objekten
DE102013006546B4 (de) Messvorrichtung, Reaktionsträger und Messverfahren
WO2012152531A1 (de) Verpackung mit indikatorbereich
DE102013210952B4 (de) Verfahren zur Bestimmung von ungelösten Teilchen in einem Fluid
DE102013006543B4 (de) Messvorrichtung, Reaktionsträger und Messverfahren
EP1715319A2 (de) Verfahren zur Bestimmung der Druckverteilung über einer Oberfläche und druckempfindliche Farbe zur Verwendung dabei
DE102014013143B4 (de) Messverfahren, Messvorrichtung und Messsystem
WO2016074788A1 (de) Gasmesschip, transportables chipmesssystem und verfahren zum betrieb eines transportablen chipmesssystems
DE102013006544B4 (de) Messvorrichtung, Reaktionsträger und Messverfahren
EP3050032A1 (de) Verfahren zum prüfen eines wertdokuments mit einem polymersubstrat und einem durchsichtsfenster und mittel zur durchführung des verfahrens
DE102009006112A1 (de) Verfahren und Vorrichtung zum Prüfen von Lumineszenzfarbmuster tragenden Gegenständen
WO2014198814A1 (de) Verfahren und vorrichtung zum nachweisen von ungelösten teilchen in einem fluid
DE2921662A1 (de) Anordnung zur analyse einer probe, insbesondere zur feststellung der verunreinigung oder verseuchung durch lebende insekten, und verfahren zur durchfuehrung der analyse
EP1682892A1 (de) Verfahren und vorrichtung zur detektion von analyten
DE2104227C3 (de) Kartenlesegerät
EP4012405A1 (de) Gasmessgerät
DE2104227B2 (de) Kartenlesegeraet

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final