DE102013005136A1 - Verfahren zurn Abtragen von sprödhartem Material mittels Laserstrahlung - Google Patents

Verfahren zurn Abtragen von sprödhartem Material mittels Laserstrahlung Download PDF

Info

Publication number
DE102013005136A1
DE102013005136A1 DE102013005136.3A DE102013005136A DE102013005136A1 DE 102013005136 A1 DE102013005136 A1 DE 102013005136A1 DE 102013005136 A DE102013005136 A DE 102013005136A DE 102013005136 A1 DE102013005136 A1 DE 102013005136A1
Authority
DE
Germany
Prior art keywords
laser radiation
intensity
wavelengths
damage
leading edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102013005136.3A
Other languages
English (en)
Inventor
Wolfgang Schulz
Urs Eppelt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Rheinisch Westlische Technische Hochschuke RWTH
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Rheinisch Westlische Technische Hochschuke RWTH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV, Rheinisch Westlische Technische Hochschuke RWTH filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority to DE102013005136.3A priority Critical patent/DE102013005136A1/de
Priority to EP14718506.0A priority patent/EP2978557A2/de
Priority to KR1020157030107A priority patent/KR102193056B1/ko
Priority to US14/779,646 priority patent/US20160052082A1/en
Priority to CN201480030334.1A priority patent/CN105377500B/zh
Priority to PCT/EP2014/000778 priority patent/WO2014154341A2/de
Publication of DE102013005136A1 publication Critical patent/DE102013005136A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0613Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams having a common axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/361Removing material for deburring or mechanical trimming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/0222Scoring using a focussed radiation beam, e.g. laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26

Abstract

Die Erfindung betrifft ein Verfahren zum Abtragen von sprödhartem Material mittels Laserstrahlung, wobei sich durch den Abtrag eine Abtragsvertiefung mit einem Flankenwinkel w der Flächen oder Flanken der Abtragsvertiefung in dem Material ausbildet, wobei der Flankenwinkel w als der Winkel zwischen der Oberflächennormalen auf der Abtragsvertiefung und der Oberflächennormalen auf der nicht abgetragenen Oberfläche des Materials definiert ist, und mit einer Eintrittskante, die als ein räumlich ausgedehnter Bereich der Oberfläche des Materials, wo ein unveränderter und damit nicht abgetragener Teil der Oberfläche des Materials in die Abtragsvertiefung übergeht, definiert ist, und an der räumliche Anteile der Leistung der Laserstrahlung in das nicht abgetragene Material gebrochen und fokussiert werden, das dadurch gekennzeichnet ist, dass der Anteil der Leistung der Laserstrahlung, der von der fokussierenden Wirkung der Eintrittskante erfasst wird, so eingestellt wird, dass die Intensität im Material, die durch die Fokussierung der Eintrittskante erreicht wird, einen Schwellenwert ρdamage für die Schädigung des Materials nicht erreicht.

Description

  • Die Erfindung betrifft ein Verfahren zum Abtragen, wie beispielsweise Schneiden, Ritzen, Bohren, von sprödhartem Material mittels Laserstrahlung, wobei sich durch den Abtrag eine Abtragsvertiefung mit einem Flankenwinkel w der Flanken der Abtragsvertiefung in dem Material ausbildet, wobei der Flankenwinkel w als der Winkel zwischen der Oberflächennormalen auf der Abtragsvertiefung und der Oberflächennormalen auf der nicht abgetragenen Oberfläche des Materials definiert ist, und mit einer Eintrittskante, die als ein räumlich ausgedehnter Bereich der Oberfläche des Materials, wo ein unveränderter und damit nicht abgetragener Teil der Oberfläche des Materials in die Abtragsvertiefung übergeht, definiert ist, und an der räumliche Anteile der Laserstrahlung in das nicht abgetragene Material gebrochen und fokussiert werden.
  • Solche Verfahren finden ihre Anwendung unter anderem in der Display-Technik, in der dünne Glassubstrate, ein sprödharter Werkstoff, bearbeitet werden müssen. Gerade die industrielle Display-Technik erobert ein immer größeres Marktvolumen und tendiert zu immer leichteren Geräten und somit auch dünneren Glasscheiben für zum Beispiel Smart Phones und Tablet Computer.
  • Dünne Glassubstrate bieten gerade dann Vorteile für Displays, wenn die Haltbarkeit und mechanische Stabilität von dickerem Glas erreicht werden kann. Diese dünnen Glasscheiben werden nahezu in allen Flat Panel Displays (FDP's) angewandt.
  • Konventionelle Verfahren zum Bearbeiten solcher dünnen Glasscheiben sind das Fräsen mit definierter Schneide, oder sie basieren auf mechanischen Wirkungen einer gezielt in den Werkstoff oder das Material eingebrachten Rissbildung (Ritzen und Brechen). Eine Vielzahl von bekannten Verfahrensvarianten unter Einsatz von Laserstrahlung basiert ebenfalls darauf, die mechanischen Wirkungen des Prinzips von Ritzen und anschließendem Brechen zu nutzen, indem das Ritzen durch die Einwirkung von Laserstrahlung ersetzt wird und der Werkstoff/das Material nach der Einwirkung der Laserstrahlung gebrochen wird. Die konventionelle mechanische Bearbeitung (Schneiden, Bohren) ist für dünne Glasplatten wesentlich schwieriger als für große Werkstoffdicken. Beim mechanischen Ritzen werden nämlich Mikrorisse eingebracht oder sogar kleine Teile, so genannte Chips, herausgebrochen, so dass ein Schleifen oder Ätzen als nachbearbeitender Prozess notwendig wird.
  • Es hat sich gezeigt, dass die Flächen bzw. Flanken der sich in dem Material ausbildenden Abtragsvertiefung eine beugende und brechende Wirkung auf die eingebrachte Laserstrahlung haben. Hierdurch werden durch Strahlungsanteile der Laserstrahlung Interferenz-Beugungsmuster erzeugt. Sobald diese Strahlungsanteile wieder auf die Flächen der Abtragsvertiefung treffen, wird dort die Oberfläche verstärkt aufgeraut; die lichtbrechende Wirkung dieser Rauhigkeit führt zur Fokussierung der Laserstrahlung und es können Risse in dem angrenzenden Material hervorgerufen werden. Einen sehr großen Einfluss auf die Ausbildung der Abtragsvertiefung und die entstehenden Risse hat auch die Eintrittskante im Bereich der sich ausbildenden Abtragsvertiefung. Von dieser Eintrittskante gehen nämlich Schädigungen in Form von Rissen aus, für die die Laserstrahlung ursächlich zu sein scheint, die auf die Eintrittskante auftrifft.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zu schaffen, mit dem die vorstehend beschriebenen Schädigungen, die insbesondere von der Eintrittskante ausgehen oder die ursächlich auf Laserstrahlung zurückgehen, die auf die Eintrittskante auftrifft, vermieden oder zumindest weitest gehend unterbunden werden.
  • Gelöst wird diese Aufgabe durch ein Verfahren mit den Merkmalen des Anspruchs 1.
  • Wesentlich für das erfindungsgemäße Verfahren ist, dass die Leistung der Laserstrahlung, die von der fokussierenden Wirkung der Eintrittskante erfasst wird, so eingestellt wird, dass die Intensität im Material, die durch die Fokussierung der Eintrittskante erreicht wird, einen Schwellenwert ρdamage für die Schädigung des Materials nicht erreicht.
  • Durch diese Maßnahme werden die von der Eintrittskante ausgehenden Schädigungen wesentlich reduziert oder auch vermieden, da hierdurch die Intensität der Laserstrahlung verringert wird und dadurch eine räumlich lokalisierte und damit überhöhte Belastung des sprödharten Materials vermieden wird.
  • Wie vorstehend erwähnt ist, treten bei der mechanischen Bearbeitung von dünnen Glasplatten Risse auf. Solche Risse sind aber auch bei der Bearbeitung der Glasplatten mit Laserstrahlung zu beobachten. Die Erfinder haben herausgefunden, dass sich diese Risse in mindestens drei unterschiedlichen Erscheinungsformen äußern:
    • – Risse erster Art: Eine Schädigung/Rissbildung/Chipping tritt auf der Rückseite des Werkstoffs auf. Risse erster Art treten auch schon dann auf, wenn auf der Vorderseite – von wo aus die Laserstrahlung einfällt – noch keine Schädigung und auch noch kein Abtrag erfolgt sind.
    • – Risse zweiter Art: Risse oder Schädigungen – auch Spikes genannt – gehen von der Eintrittskante aus, die den Übergang von dem unveränderten Teil der Oberfläche des Werkstücks in die seitlichen Abtragsflanken der sich ausbildenden Abtragsvertiefung darstellt.
  • Die Risse oder Schädigungen zweiter Art verlaufen über eine – im Vergleich zu Rissen dritter Art – große Tiefe in das Volumen des Materials. Diese von der Eintrittskante ausgehenden Material-Modifikationen/-Schädigungen können auch im Volumen sichtbar werden bzw. entstehen (sie werden dann auch „Filamente” genannt; Kerr-Effekt und Selbstfokussierung sind die physikalischen Ursachen) oder sogar die Rückseite bzw. die der Laserstrahlung abgewandte Oberfläche des Werkstücks erreichen.
    • – Risse dritter Art: Die Entstehung von feinen, nicht so tief eindringenden Rissen tritt zusätzlich zu den Rissen zweiter Art oder Schädigungen zweiter Art – entlang der abgetragenen Oberfläche (Schnittkante) – auf; sie sind nicht auf den Bereich nahe der Eintrittskante beschränkt und treten dort auf, wo die Laserstrahlung in der Abtragsvertiefung auf die abgetragene Oberfläche (Abtragsflanken), das bedeutet die Abtragsflanken, einfällt. Sie breiten sich von der abgetragenen Oberfläche in das Material aus. Die Risse dritter Art dringen im Vergleich zu den Rissen erster Art weniger tief in das Material ein. Die raue Oberfläche der Abtragsvertiefung weist im Vergleich zur Eintrittskante eine Rauhigkeit mit kleineren Krümmungsradien auf. Die fokussierende Wirkung der rauen Oberfläche der Abtragsvertiefung ist wesentlich stärker als die fokussierende Wirkung der Eintrittskante.
  • Diese Risse dritter Art werden somit durch das Verfahren dieser Erfindung vermieden oder zumindest deutlich gegenüber herkömmlichen Verfahren reduziert.
  • Vorzugsweise wird bei dem erfindungsgemäße Verfahren der Poyntingvektor P von dem Anteil der Laserstrahlung, der auf die nicht abgetragene Oberfläche des Materials im Bereich der Abtragsvertiefung einfällt, in Richtung auf die Eintrittskante geneigt eingestellt und der Einfallswinkel w der Laserstrahlung wird so gewählt, dass er nicht kleiner als Null (w >= 0 Winkelgrade) ist.
  • Weiterhin kann es von Vorteil sein, den Poyntingvektor P von dem Anteil der Laserstrahlung, der im Bereich der Abtragsvertiefung in die Abtragsvertiefung fällt, senkrecht zum Normalenvektor nF auf der Flanke der Abtragsvertiefung einzustellen und den Einfallswinkel w der Laserstrahlung mit w = 90 Winkelgrade zu wählen.
  • Eine vorteilhafte Ausführungsform des Verfahrens ist dann gegeben, wenn die räumliche Verteilung der Laserstrahlung am Eintritt in die Abtragsvertiefung rechteckförmig eingestellt wird (Rechteck). Hierdurch wird nämlich erreicht, dass der Bereich der Eintrittskante eine kleine Ausdehnung annimmt und so der Anteil der Laserstrahlung, der von dem Bereich der Eintrittskante erfasst und in das Material fokussiert wird, klein wird.
  • Auch kann die räumliche Verteilung der Laserstrahlung am Eintritt in die Abtragsvertiefung senkrecht zur Einfallsrichtung der Laserstrahlung gesehen gaußförmig eingestellt werden, und die gaußförmige Verteilung wird an einem Abstand von der Strahlachse, wo die Intensität im Material einen Schwellenwert ρdamage für die Schädigung des Materials erreicht, rechteckförmig abgeschnitten; für größere Abstände von der Strahlachse wird die Intensität der Laserstrahlung auf Null eingestellt, auch als Gauß-Rechteck bezeichnet. Die Laserstrahlachse ist durch den Mittelwert der Poyntingvektoren gemittelt über den Querschnitt des Laserstrahls definiert. Die Richtung der Laserstrahlung variiert über dem Querschnitt des Laserstrahls und ist durch die lokale Richtung des Poyntingvektors definiert. Typischerweise sind die Poyntingvektoren oberhalb des Fokus des Laserstrahls auf die Laserstrahlachse geneigt und unterhalb des Fokus von der Laserstrahlachse weg gerichtet. Eine Gauß-Rechteck förmige Verteilung der Intensität im Laserstrahl ist definiert als eine gaußförmige Verteilung, die ab einem definierten Abstand von der Laserstrahlachse – etwa durch eine Blende – keine Intensität mehr aufweist. Mathematisch ist ein Gauß-Rechteck die Multiplikation einer gaußförmigen Verteilung mit einer Rechteckverteilung, die den Maximalwert 1 aufweist. Mit Rechteckverteilung ist eine 2D-Rechteckverteilung gemeint, die um die Laserstrahlachse rotiert wurde.
  • Bei dem angegebenen Verfahren zum Abtragen von sprödhartem Material mittels Laserstrahlung bildet sich durch den Abtrag eine Abtragsvertiefung in dem Material aus, deren Flächen, auch als Flanken bezeichnet, beugend und brechend auf die eingebrachte Laserstrahlung wirken und dadurch Strahlungsanteile dieser Laserstrahlung Interferenz-Beugungsmuster innerhalb der Abtragsvertiefung erzeugen. Sobald diese Strahlungsanteile wieder auf die Flächen der Abtragsvertiefung treffen und in das Materialvolumen eindringen, bewirken sie dort einen entlang der Flächen räumlich veränderlichen Abtrag und rauen als Folge die Oberfläche auf und induzieren Risse in dem Materialvolumen.
  • In einer weiteren Ausgestaltung des Verfahrens wird nun als Laserstrahlung für den Abtrag eine Wellenlängenmischung aus mindestens zwei Wellenlängen eingesetzt, wobei die mindestens zwei Wellenlängen so gewählt werden, dass sich Interferenz-Beugungsmuster aufgrund der Beugung und Brechung sowohl entlang der Flächen der Abtragsvertiefung als auch im Materialvolumen im Vergleich zu Laserstrahlung mit nur einer der Wellenlängen derart einstellen, dass ein Kontrast K in der räumlichen Struktur der Intensitätsverteilung verkleinert wird, wobei der Kontrast K nach Michelson definiert ist als K = (Imax – Imin)/(Imax/Imin), wobei Imax und Imin die maximale und minimale Intensität der räumlichen Struktur der Intensitätsverteilung angibt. Der Kontrast K nach Michelson ist hierbei ein Maß für das periodische Muster von Beugungsmaxima und Beugungsminima.
  • Durch diese Maßnahmen wird der Intensitätskontrast im Bereich der Oberfläche der Flanken der Abtragsvertiefung reduziert und dadurch eine räumlich lokalisierte und damit überhöhte Belastung des Materials vermieden, und zwar als Folge davon, dass für die Bearbeitung des sprödharten Materials Laserstrahlung mit zwei unterschiedlichen Wellenlängen, die überlagert werden, verwendet wird.
  • Eine Überlagerung von Laserstrahlung mit unterschiedlichen Wellenlängen erzeugt nämlich zu jeder Wellenlänge ein in der Abtragsvertiefung räumlich verschobenes Beugungsmuster. Durch Wahl der passenden Wellenlängen der eingesetzten Strahlungsanteile, der Leistungen und der Fokusradien der (mindestens zwei) zu überlagernden Wellenlängen können die Beugungsmaxima der Laserstrahlung mit der ersten Wellenlänge an die Orte fallen, wo die Beugungsminima der Laserstrahlung mit der zweiten Wellenlänge liegen. Im Ergebnis dieser Überlagerung wird der Kontrast der überlagerten Beugungsstruktur deutlich kleiner mit der Folge, dass eine hohe Abtragsrate und, wenn überhaupt, geringe Spannungen und/oder Risse nach dem Abtrag erreicht werden.
  • Um den kleinsten Kontrast zu erreichen, müssen die Wellenlängen der zu überlagernden Strahlungsanteile sowie die zu den Wellenlängen gehörenden Leistungen und die zugehörigen Fokusradien der Strahlungsanteile angepasst werden.
  • In einer bevorzugten Ausführungsform des Verfahrens wird eine Wellenlängenmischung aus den mindestens zwei Wellenlängen so gewählt, dass räumliche Positionen von Interferenz-Maxima der einen Wellenlänge(n) in Interferenz-Minima der anderen Wellenlänge(n) fallen, wodurch erreicht wird, dass die Abtragsflanke nicht aufgeraut wird und so auch die fokussierende Wirkung der rauen Abtragskante nicht ausgebildet wird, und so der Schwellenwert für den Abtrag ρdamage, bei dem Schädigungen/Risse auftreten, nicht erreicht wird.
  • Weiterhin können Strahlungsanteile der Laserstrahlung zusätzlich zu den mindestens zwei Strahlungsanteilen eingesetzt werden, die Wellenlängen haben, die ganzzahlige Vielfache oder Teiler der mindestens zwei Wellenlängen, die als Grund-Wellenlängen bezeichnet werden können, sind.
  • Jede Wellenlänge kann durch einen gesonderten Laser bereitgestellt werden. Dies hat den Vorteil, dass die Fokusradien und die Leistungsanteile der unterschiedlichen Wellenlängen der Laserstrahlung eingestellt werden können. Falls die Laserquelle eine Modulation der Wellenlänge erlaubt, können die unterschiedlichen Wellenlängen durch eine Laserquelle bzw. ein Lasergerät bereitgestellt werden.
  • Falls die Laserquelle mehrere Wellenlängen emittiert, wie das z. B. bei Diodenlasern der Fall ist, können die unterschiedlichen Wellenlängen durch eine Laserquelle bzw. ein Lasergerät bereitgestellt werden, deren Wellenlänge moduliert wird.
  • Weitere Einzelheiten und Merkmale der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen anhand der Zeichnung. In der Zeichnung zeigt
  • 1 schematisch eine Abtragsvertiefung mit Kennzeichnung der verschiedenen Rissbildungen/Schädigungen zweiter Art und dritter Art,
  • 2 eine simulierte Abtragsvertiefung, die die Ausbreitung der sich ausbildenden Risse zweiter Art und dritter Art darstellt,
  • 3 eine schematische Skizze, um die Entstehung einer Abtragsvertiefung mit rauen Abtragsflanken zu erläutern,
  • 4 das Beugungsmuster, das durch Beugung der einfallenden Laserstrahlung an den Abtragsflanken entsteht,
  • 5 das Prinzip der Entstehung eines Risses zweiter Art (Abbildungen a, b) und das Prinzip des erfindungsgemäßen Verfahrens, um diese Risse zu vermeiden oder zumindest zu unterdrücken (Abbildungen c, d),
  • 6 eine simulierte Abtragsvertiefung, die mit einer TopHat-förmigen Verteilung der Intensität der Laserstrahlung erzeugt wurde,
  • 7 eine Ansicht entsprechend der 6, jedoch mit einer räumlichen Verteilung der Intensität der Laserstrahlung, die sich aus einer TopHat-Verteilung und einer Gauß-Verteilung zusammensetzt,
  • 8 eine Ansicht entsprechend der 6 mit einer schmalen, räumlichen Gauß-Verteilung der Intensität der Laserstrahlung unter Einsatz einer Laserstrahlung mit einem Strahlradius < 4 μm,
  • 9 eine Ansicht entsprechend der 6 mit einer räumlichen TopHat-Verteilung der Laserstrahlung am Eintritt in die Abtragsvertiefung,
  • 10 eine Bildfolge a bis e, um die Entstehung der Risse dritter Art zu erläutern, und
  • 11 in einer vergrößerten Simulationsdarstellung den Kontrast der räumlichen Verteilung der Intensität in der Abtragsvertiefung entsprechend Bild a der 5.
  • In der Darstellung der 1 ist schematisch eine V-förmige Abtragsvertiefung 1 dargestellt, die in einem dünnen Glasmaterial 2 mit einer Dicke x gebildet ist. Diese Abtragsvertiefung 1 besitzt Abtragsflanken 3, die von einer Eintrittskante 4 an der Oberfläche 5 des Materials ausgehen.
  • Für die verschiedenen Begriffe, die hier verwendet werden, sind die folgenden Definitionen anwendbar:
    Schwellenwert ρablation ist der Schwellenwert der Elektronendichte, bei dem eine Ablation/ein Abtrag einsetzt,
    Schwellenwert ρdamage ist der Schwellenwert der Elektronendichte, bei dem Schädigungen/Risse einsetzen,
    Pulsparameter ist ein Satz von Parametern, mit denen die räumlichen, zeitlichen und spektralen Eigenschaften der einfallenden Laserstrahlung charakterisiert werden. Der Pulsparameter enthält mindestens die Werte für
    • – Pulsdauer,
    • – Maximalwert der Intensität im Puls,
    • – zeitliche Pulsform; hierbei handelt es sich um die zeitliche Verteilung der Intensität von Laserstrahlung in einem Einzelpuls oder in einer Folge (Mehrfachpuls, Pulsburst) von Pulsen,
    • – räumliche Verteilung der Intensität und
    • – spektrale Verteilung der Intensität (Wellenlängenmischung).
  • Eintrittskante ist ein räumlich ausgedehnter Bereich der Oberfläche des Werkstücks, wo ein unveränderter Teil der Oberfläche des Werkstücks in den Teil der Oberfläche übergeht, in dem der Abtrag von Werkstoff stattgefunden hat und eine Abtragsvertiefung entstanden ist.
  • Rand der Abtragsvertiefung ist eine durch den Abtrag von Material erzeugte Oberfläche.
  • Rückseite oder Unterseite des Werkstücks ist die der Laserstrahlung abgewandte Oberfläche des Werkstücks.
  • Bei den drei vorstehend erläuterten unterschiedlichen Erscheinungsformen von Schädigungen/Rissen handelt es sich bei
    Rissen erster Art um Rückseitenschädigungen,
    Rissen zweiter Art um Eintrittskantenschädigungen,
    Rissen dritter Art um Schädigungen, die von der Oberfläche der Abtragsvertiefung, das bedeutet von den Flanken der Abtragsvertiefung, ausgehen.
  • Es werden zwei Schwellenwerte ρdamage, ρablation für die Elektronendichte ρ im Werkstoff, die jeweils eine Schädigung ρdamage oder einen Abtrag ρablation des Werkstoffs bewirken, definiert. Für jeden Werkstoff können diesen unterschiedlichen Schwellenwerten ρdamage, ρablation für die Elektronendichte ρ, wobei ρdamage < ρablation ist, zwei Sätze von Werten für die Parameter der Laserstrahlung zugeordnet werden.
  • Eine das Licht brechende Eigenschaft, zum Beispiel fokussierende Eigenschaft, der Eintrittskante ist für die Erfindung von besonderer Bedeutung. Die Eintrittskante kann nämlich eine geometrische Form und eine Ausdehnung aufweisen, die zwei unerwünschte Effekte bewirken kann, die allerdings durch das erfindungsgemäße Verfahren vermieden oder wesentlich verringert werden können. Zum einen kann durch die geometrische Form eine unerwünschte Fokussierung der einfallenden Laserstrahlung in den Werkstoff auftreten und zum anderen kann, durch die Ausdehnung, die Leistung der einfallenden Laserstrahlung, die von der Eintrittskante erfasst und dann in den Werkstoff fokussiert wird, in unerwünschter Weise einen Wert annehmen, so dass die Intensität in dem Fokus der Eintrittskante eine Elektronendichte ρ erzeugt, die den Schwellenwert ρdamage der Elektronendichte für eine Schädigung des Werkstoffs/Materials überschreitet und nicht den Schwellenwert ρablation der Elektronendichte für einen Abtrag erreicht.
  • Bei der Schädigung des Werkstoffs/Materials treten die drei unterschiedlichen Arten von Rissen auf, die bereits vorstehend erläutert wurden.
  • Risse erster Art sind solche, die schon dann auftreten, wenn von der Vorderseite – wo die Laserstrahlung einfällt – noch keine Schädigung und auch kein Abtrag erfolgt ist.
  • Risse zweiter Art und dritter Art, die anhand der 1 und 2 verdeutlicht werden.
  • In den 1 und 2 sind die Risse zweiter Art mit dem Bezugszeichen 22 und die Risse dritter Art mit dem Bezugszeichen 33 gekennzeichnet.
  • Erreichen die von der abgetragenen Oberfläche ausgehenden Risse 22 die Unterseite bzw. die der Laserstrahlung abgewandte Oberfläche des Werkstücks, dann können sie oft von den Rissen erster Art, das bedeutet Schädigungen der Unterseite des Werkstücks, ohne dass die Oberseite des Werkstücks bereits abgetragen ist, nicht mehr unterschieden werden. Risse oder Schädigungen der dritten Art beginnen an der rauen Abtragsvertiefung, d. h. an der abgetragenen Oberfläche, und dort, wo die abgetragene Oberfläche eine Abweichung von einer Ebenheit aufweist.
  • Diese Abweichung der Abtragsvertiefung von der Ebenheit entsteht dadurch, dass die einfallende Laserstrahlung an dem Eintritt der Abtragsvertiefung und in deren Verlauf in die Tiefe des Werkstücks (Abtragsfront, Schnittkante) gebeugt wird und eine Beugungsstruktur aufweist, wie sie in den 3 und 4 dargestellt ist.
  • Diese Beugungsstruktur ist eine räumliche Modulation der Intensität und erzeugt die Abweichung von einer ebenen Abtragsfront. Die entstehende Beugungsstruktur für die Intensität der Strahlung in der Abtragsvertiefung führt zu Überhöhungen der Intensität an der Abtragsfront und damit zu einer Abweichung der Abtragfront von einer glatten oder ebenen Abtragsfront.
  • Erfindungsgemäß wird, um das Auftreten von Rissen zweiter Art in Form einer Schädigung/Rissbildung, die von der Eintrittskante des zu bearbeitenden Werkstoffs ausgeht, zu vermeiden, die Leistung der Laserstrahlung, die von der fokussierenden Wirkung der Eintrittskante erfasst wird, so eingestellt, dass die Intensität im Material, die durch die Fokussierung der Eintrittskante erreicht wird, einen Schwellenwert ρdamage für die Schädigung des Materials nicht erreicht.
  • In 5 ist in einer Bildfolge gezeigt, wobei die Abbildungen a) und b) das Prinzip der Entstehung eines Risses zweiter Art darstellen, während die Bildfolge mit den Abbildungen c) und d) dazu dient, die erfindungsgemäßen Maßnahmen zu verdeutlichen, um das Entstehen solcher Risse zweiter Art zu vermeiden oder wesentlich zu reduzieren.
  • In den und sind die jeweiligen Eintrittskanten einer Abtragsvertiefung durch einen Bereich 40 angedeutet. Diese Eintrittskante umfasst somit einen räumlich ausgedehnten Bereich 40, in dem die Laserstrahlung fokussiert wird. In den und ist der räumlich ausgedehnte Bereich 40 durch seine Lage als ein Übergangsbereich von der nicht abgetragenen Oberfläche in die Flanke der Abtragsvertiefung zugeordnet.
  • In dem Material des Werkstücks bildet sich ein Bereich einer Schädigung bzw. der Beginn eines Filaments aus, der mit dem Bezugszeichen 41 bezeichnet ist.
  • Mit den Pfeilen 42 sind die Poyntingvektoren P (mit Richtung und Betrag) angegeben, deren zeitgemittelter Betrag auch als Intensität bezeichnet wird.
  • In den Abbildungen c) und d) der 5 sind neben den Poyntingvektoren P (Bezugszeichen 42) die Normalenvektoren nS auf der nicht abgetragenen Oberfläche und die Normalenvektoren nF auf der abgetragenen Oberfläche (Schnittkante, Rand der Abtragsvertiefung) dargestellt. Schließlich ist in der Abbildungen d) der 5 der Einfallswinkel w des Poyntingvektors P auf der nicht abgetragenen Oberfläche angegeben.
  • Erfindungsgemäß wird nun die Laserstrahlung so eingestellt, um zu vermeiden, dass zwei räumliche Anteile der Strahlung von der Eintrittskante derart in das nicht abgetragene Material gebrochen und fokussiert werden und in dem Material überlagert werden, dass der Schwellenwert ρdamage für die Schädigung überschritten wird und somit der Schwellenwert für den Abtrag ρablation nicht erreicht wird. Als Folge entsteht kein Riss/Schädigung zweiter Art.
  • Die Ausdehnung der Umgebung der Eintrittskante ist dadurch definiert, dass die in den fokussierend wirkenden Teil der Eintrittskante einfallende Laserstrahlung ausreichend Leistung enthält, so dass im Fokus dieser Leistung mindestens die Schädigungsschwelle des Materials bzw. Werkstoffs erreicht werden kann. Folglich sind, um Schädigungen im Material, die durch Laserstrahlung entstehen, die an der Eintrittskante zu der Abtragsvertiefung in das Material gebrochen und fokussiert wird, zu vermeiden, zwei Größen zu berücksichtigen und richtig einzustellen, nämlich zum einen die geometrische Form der Eintrittskante und zum anderen die Richtung der einfallenden Laserstrahlung und somit der Winkel w des Poyntingvektors zu dem auf dem nicht abgetragenen Teil der Oberfläche stehenden Normalenvektor nS.
  • Wie vorstehend erwähnt, führt die geometrische Form der Eintrittskante zu einer Brechung der Laserstrahlung und im ungünstigen Fall zur Fokussierung der einfallenden Laserstrahlung, wie dies in den Abbildungen a) und b) der 5 schematisch dargestellt ist. Die geometrische Form der Eintrittskante weist idealerweise eine scharfe Kante auf, die keine räumliche Ausdehnung besitzt; folglich ist die geometrische Form der Eintrittskante idealerweise eine solche ohne Krümmung (sie ist idealerweise eine Kante mit einem Krümmungsradius r, der den Wert r = 0 annimmt). Um eine Kante mit dem Krümmungsradius nahe r = 0 (mit dem Kriterium aus dem folgenden Absatz) zu erreichen, besteht eine erfindungsgemäße Maßnahme darin, eine Gauß-Rechteck Verteilung der einfallenden Intensität einzustellen.
  • Nach dem erfindungsgemäßen Verfahren ist die geometrische Form der Eintrittskante so einzustellen, dass die Leistung der Laserstrahlung, die von der Eintrittskante fokussiert wird bzw. von der fokussierenden Wirkung der Eintrittskante erfasst wird, so klein ist, dass die durch die Fokussierung erreichbare Intensität den Schwellenwert ρdamage für die Schädigung des Materials des Werkstücks nicht erreicht.
  • Die zweite Größe, die zu beachten ist, ist die Richtung der einfallenden Laserstrahlung, das bedeutet die Richtung des Poyntingvektors P der Laserstrahlung auf der nicht abgetragenen Oberfläche des Materials des Werkstücks. Idealerweise soll die Richtung der einfallenden Laserstrahlung außerhalb der Abtragsvertiefung, d. h. auf dem nicht abgetragenen Teil der Werkstückoberfläche, parallel zum Normalenvektor nS auf der nicht abgetragenen Oberfläche und innerhalb der Abtragsvertiefung senkrecht zum Normalenvektor nF auf dem Rand der Abtragsvertiefung liegen.
  • Entsprechend dem erfindungsgemäßen Verfahren wird nun die Richtung der einfallenden Laserstrahlung, folglich die Richtung des Poyntingvektors P der Laserstrahlung, auf der nicht abgetragenen Oberfläche des Materials des Werkstücks in Richtung auf die Abtragsvertiefung um einen Winkel w zu dem Normalenvektor nS geneigt, das bedeutet, sie bildet einen Einfallswinkel w >= 0 auf der nicht abgetragenen Oberfläche zu dem Normalenvektor nS (siehe Abbildung d) der 5) und ist innerhalb der Abtragsvertiefung idealerweise senkrecht zum Normalenvektor nF auf dem Rand der Abtragsvertiefung.
  • In den 6 bis 9 sind nun die Ergebnisse verschiedener Maßnahmen dargestellt, die angewandt werden können, um die geometrische Form der Eintrittskante zu beeinflussen.
  • 6 zeigt die simulierte Ausbildung einer Abtragsvertiefung, die mit einer einfallenden Laserstrahlung erzielt wird, die eine TopHat-förmige, räumliche Verteilung (d. h. quer zur Einfallsrichtung) der Intensität der einfallenden Laserstrahlung aufweist. Durch diese Maßnahme ist der Bereich der Eintrittskante stark verkleinert bzw. nicht mehr vorhanden und die noch vorhandenen Schädigungen besitzen eine wesentlich kleinere Eindringtiefe in das Material ausgehend von der Eintrittskante als bei einer Gauß-förmigen räumlichen Verteilung der Laserstrahlung, die üblicherweise eingesetzt wird.
  • Die 7 zeigt nun eine simulierte Darstellung entsprechend der 6, bei der jedoch die Laserstrahlung eine räumliche Verteilung der Intensität der einfallenden Laserstrahlung aufweist, die sich aus einer TopHat-Verteilung für große Abstände von der Laserstrahlachse und einer Gauß-Verteilung nahe der Laserstrahlachse zusammensetzt. Es ist deutlich zu erkennen, dass auch hierbei noch der Anteil der Laserstrahlung aufgrund der TopHat-Verteilung im oberen Bereich der Abtragsvertiefung annähernd parallele Abtragsflanken ergibt, allerdings mit einem runden Abtragsgrund, der eine Folge der Anteile der Laserstrahlung aufgrund der Gauß-Verteilung ist. Das Ergebnis dieser Simulation ist darüber hinaus eine etwas größere Eindringtiefe in das Material als der Fall, bei dem die räumliche Verteilung der Intensität der einfallenden Laserstrahlung nur TopHat-förmig ist.
  • Bei der Simulation, wie sie in 8 dargestellt ist, wurde Laserstrahlung mit einem schmalen Strahlradius (< 4 μm) und einer Gauß-Verteilung eingesetzt. Im Bereich der Eintrittskante ist die rissbildende Wirkung der aus dem Bereich der Eintrittskante fokussierten Laserstrahlung, das sind Risse zweiter Art bzw. Eintrittskantenschädigungen, nicht mehr vorhanden.
  • Lediglich die Risse dritter Art, d. h. Schädigungen, die von der Oberfläche der Abtragsvertiefung ausgehen, das bedeutet von den Flanken der Abtragsvertiefung ausgehen, treten noch auf. Die Risse dritter Art sind zwar noch vorhanden, aber deutlich kleiner ausgeprägt und Abtrags- bzw. die Bohrgeschwindigkeit nimmt größere Werte an. Das Erreichen kleiner Flanken-Winkel ist experimentell nachgewiesen.
  • 9 zeigt eine Simulation, bei der die Laserstrahlung gepulst wird und die Wellenlänge der Laserstrahlung von Puls zu Puls alternierend von 500 nm auf 1000 nm wechselt. Die geometrische Form der sich vorteilhaft ausbildenden großen Krümmung des Bereichs der Eintrittskante bewirkt eine Verkleinerung der fokussierten Intensität aus dem Bereich der Eintrittskante in das Volumen und damit ein Unterschreiten der Schädigungsschwelle und ein Vermeiden dieser Ursache für die Rissbildung.
  • In einer Ausgestaltung des Verfahrens wird als Laserstrahlung für den Abtrag eine Wellenlängenmischung aus mindestens zwei Wellenlängen eingesetzt. Hierbei werden die mindestens zwei Wellenlängen so gewählt, dass sich Interferenz-Muster aufgrund der Beugung und Brechung sowohl im Materialvolumen als auch im Volumen der Abtragsvertiefung im Vergleich zu Laserstrahlung mit nur einer der Wellenlängen derart einstellen, dass ein Kontrast K in der räumlichen Struktur der Intensitätsverteilung verkleinert wird, so dass dadurch eine räumlich lokalisierte und damit überhöhte Belastung des Materials vermieden wird. Der Kontrast K ist hierbei nach Michelson definiert als K = (Imax – Imin)/(Imax/Imin), wobei I die Intensität angibt.
  • Somit wird der Kontrast zwischen Intensitätsmaxima und Intensitätsminima verringert, der ansonsten für die Beugung der Laserstrahlung an der Oberfläche bzw. den Flanken der Abtragsvertiefung und aufgrund der Fähigkeit der Laserstrahlung zur Interferenz ursächlich ist.
  • Durch die erfindungsgemäße Überlagerung von Laserstrahlung mit mindestens zwei unterschiedlichen Wellenlängen wird zu jeder Wellenlänge ein in der Abtragsvertiefung räumlich verschobenes Beugungsmuster erzeugt. Die mindestens zwei Wellenlängen, auch in Verbindung mit der Einstellung der Leistungen und Fokusradien der entsprechenden Laserstrahlung, können so gewählt werden, dass die Beugungsmaxima der Laserstrahlung mit der ersten Wellenlänge an die Orte fallen, wo die Beugungsminima der Laserstrahlung mit der zweiten Wellenlänge liegen. Als Ergebnis dieser Überlagerung wird der Kontrast der überlagerten Beugungsstruktur wesentlich kleiner.
  • 10 verdeutlicht in der Bildfolge der Bilder a bis e nochmals die Entstehung von Rissen dritter Art, wie sie in dem letzten Bild e der Bildfolge, nach 8 Pulsen einer Laserstrahlung, zu sehen sind.
  • Bild a zeigt die ursächliche Verteilung der Intensität in der Abtragsvertiefung, Bild b diejenige im sprödharten Material. Bild c stellt die freie Elektronendichte, Bild d die Oberfläche der Abtragsvertiefung und Bild e die resultierende Verteilung von Modifikationen/Schädigungen/Rissen nach acht Pulsen der Laserstrahlung dar.
  • Anhand der Bilder der 10 ist zu erkennen, dass sich die räumliche Struktur der Intensitätsverteilung in der Abtragsvertiefung (Bild a) in einer unerwünscht stark ausgeprägten räumlichen Struktur der Intensität der Laserstrahlung im sprödharten Material fortsetzt (Bild b). Im Ergebnis sind auch die geometrische Form der Oberfläche der Abtragsvertiefung (Bild d), die erzeugte Dichte freier Elektronen (Bild c) und die Modifikationen/Schädigungen (Bild e) räumlich strukturiert und es bilden sich unerwünschte Risse der dritten Art aus.
  • Die räumliche Ausdehnung der Grafen beträgt 40 μm in beiden Richtungen, um die Größenverhältnisse zu verdeutlichen.
  • Als Kontrast, wie er hier verwendet wird, wird die Abweichung der Intensität der Laserstrahlung von einer räumlich schwach veränderlichen Verteilung bezeichnet, wie sie bei einer ungestört propagierenden Laserstrahlung in der Abtragsvertiefung vorliegen würde (Bild a von 10).
  • Dieser Kontrast in der räumlichen Verteilung der Intensität in der Abtragsvertiefung, der zu verkleinern ist, ist nochmals in der vergrößerten 11 gezeigt. Dieser Kontrast in der räumlichen Struktur der Intensitätsverteilung in der Abtragsvertiefung wird gemäß einer Ausgestaltung der Erfindung verkleinert, indem Laserstrahlung mit mindestens zwei unterschiedlichen Wellenlängen überlagert wird.

Claims (10)

  1. Verfahren zum Abtragen von sprödhartem Material mittels Laserstrahlung, wobei sich durch den Abtrag eine Abtragsvertiefung mit einem Flankenwinkel w der Flächen oder Flanken der Abtragsvertiefung in dem Material ausbildet, wobei der Flankenwinkel w als der Winkel zwischen der Oberflächennormalen auf der Abtragsvertiefung und der Oberflächennormalen auf der nicht abgetragenen Oberfläche des Materials definiert ist, und mit einer Eintrittskante, die als ein räumlich ausgedehnter Bereich der Oberfläche des Materials, wo ein unveränderter und damit nicht abgetragener Teil der Oberfläche des Materials in die Abtragsvertiefung übergeht, definiert ist, und an der räumliche Anteile der Leistung der Laserstrahlung in das nicht abgetragene Material gebrochen und fokussiert werden, dadurch gekennzeichnet, dass der Anteil der Leistung der Laserstrahlung, der von der fokussierenden Wirkung der Eintrittskante erfasst wird, so eingestellt wird, dass die Intensität im Material, die durch die Fokussierung der Eintrittskante erreicht wird, einen Schwellenwert ρdamage für die Schädigung des Materials nicht erreicht.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Poyntingvektor P von dem Anteil der Laserstrahlung, der auf die nicht abgetragene Oberfläche des Materials im Bereich der Abtragsvertiefung einfällt, in Richtung auf die Eintrittskante geneigt eingestellt wird und dass der Einfallswinkel w der Laserstrahlung nicht kleiner als Null (w >= 0 Winkelgrade) ist.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Poyntingvektor P von dem Anteil der Laserstrahlung, der im Bereich der Eintrittskante in die Abtragsvertiefung fällt, senkrecht zum Normalenvektor nF auf der Flanke der Abtragsvertiefung eingestellt wird und dass der Einfallswinkel w der Laserstrahlung w = 90 Winkelgrade ist.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die räumliche Verteilung der Laserstrahlung am Eintritt in die Abtragsvertiefung senkrecht zur Richtung der Laserstrahlachse gesehen rechteckförmig eingestellt wird.
  5. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die räumliche Verteilung der Laserstrahlung am Eintritt in die Abtragsvertiefung gaußförmig eingestellt wird und die gaußförmige Verteilung an einem Abstand von der Strahlachse, wo die Intensität im Material einen Schwellenwert ρdamage für die Schädigung des Materials erreicht, rechteckförmig abgeschnitten wird, und für größere Abstände von der Strahlachse die Intensität Null ist.
  6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Laserstrahlung für den Abtrag eine Wellenlängenmischung aus mindestens zwei Wellenlängen eingesetzt wird und die mindestens zwei Wellenlängen so gewählt werden, dass sich Interferenz-Beugungsmuster aufgrund der Beugung und Brechung sowohl entlang der Flächen der Abtragsvertiefung als auch im Materialvolumen im Vergleich zu Laserstrahlung mit nur einer der Wellenlängen derart einstellen, dass ein Kontrast K in der räumlichen Struktur der Intensitätsverteilung verkleinert wird, wobei der Kontrast K nach Michelson definiert ist als K = (Imax – Imin)/(Imax/Imin), wobei Imax und Imin die maximale und minimale Intensität der räumlichen Struktur der Intensitätsverteilung angibt.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Wellenlängenmischung aus den mindestens zwei Wellenlängen so gewählt ist, dass räumliche Positionen von Interferenz-Maxima der einen Wellenlänge(n) in Interferenz-Minima der anderen Wellenlänge(n) fallen.
  8. Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass zusätzliche Wellenlängen zu den mindestens zwei Wellenlängen so gewählt sind, dass sie ganzzahlige Vielfache oder Teller der mindestens zwei Wellenlängen sind.
  9. Verfahren nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass jede Wellenlänge durch einen gesonderten Laser bereitgestellt wird.
  10. Verfahren nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, dass die unterschiedlichen Wellenlängen durch eine Laserquelle bereitgestellt werden, deren Wellenlänge zeitlich moduliert wird.
DE102013005136.3A 2013-03-26 2013-03-26 Verfahren zurn Abtragen von sprödhartem Material mittels Laserstrahlung Pending DE102013005136A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE102013005136.3A DE102013005136A1 (de) 2013-03-26 2013-03-26 Verfahren zurn Abtragen von sprödhartem Material mittels Laserstrahlung
EP14718506.0A EP2978557A2 (de) 2013-03-26 2014-03-21 Verfahren zum abtragen von sprödhartem material mittels laserstrahlung
KR1020157030107A KR102193056B1 (ko) 2013-03-26 2014-03-21 레이저 방사선을 이용한 취성 경질 재료의 제거 방법
US14/779,646 US20160052082A1 (en) 2013-03-26 2014-03-21 Method for removing brittle-hard material by means of laser radiation
CN201480030334.1A CN105377500B (zh) 2013-03-26 2014-03-21 用于借助于激光辐射剥除脆硬材料的方法
PCT/EP2014/000778 WO2014154341A2 (de) 2013-03-26 2014-03-21 Verfahren zum abtragen von sprödhartem material mittels laserstrahlung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102013005136.3A DE102013005136A1 (de) 2013-03-26 2013-03-26 Verfahren zurn Abtragen von sprödhartem Material mittels Laserstrahlung

Publications (1)

Publication Number Publication Date
DE102013005136A1 true DE102013005136A1 (de) 2014-10-02

Family

ID=50543005

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102013005136.3A Pending DE102013005136A1 (de) 2013-03-26 2013-03-26 Verfahren zurn Abtragen von sprödhartem Material mittels Laserstrahlung

Country Status (6)

Country Link
US (1) US20160052082A1 (de)
EP (1) EP2978557A2 (de)
KR (1) KR102193056B1 (de)
CN (1) CN105377500B (de)
DE (1) DE102013005136A1 (de)
WO (1) WO2014154341A2 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3221727B1 (de) 2014-11-19 2021-03-17 Trumpf Laser- und Systemtechnik GmbH System zur asymmetrischen optischen strahlformung
DE102014116958B9 (de) 2014-11-19 2017-10-05 Trumpf Laser- Und Systemtechnik Gmbh Optisches System zur Strahlformung eines Laserstrahls, Laserbearbeitungsanlage, Verfahren zur Materialbearbeitung und Verwenden einer gemeinsamen langgezogenen Fokuszone zur Lasermaterialbearbeitung
DE102014116957A1 (de) 2014-11-19 2016-05-19 Trumpf Laser- Und Systemtechnik Gmbh Optisches System zur Strahlformung

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10059268C1 (de) * 2000-11-29 2002-08-22 Fraunhofer Ges Forschung Verfahren und Vorrichtung zur Herstellung eines Koppelgitters für einen Wellenleiter
US20060091126A1 (en) * 2001-01-31 2006-05-04 Baird Brian W Ultraviolet laser ablative patterning of microstructures in semiconductors
TWI248244B (en) * 2003-02-19 2006-01-21 J P Sercel Associates Inc System and method for cutting using a variable astigmatic focal beam spot
JP2006166275A (ja) * 2004-12-10 2006-06-22 Seiko Epson Corp 水晶デバイスの製造方法
US7811280B2 (en) 2006-01-26 2010-10-12 Amo Manufacturing Usa, Llc. System and method for laser ablation calibration
DE102007024701A1 (de) * 2007-05-25 2008-11-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Materialabtragung sowie Vorrichtung zur Durchführung des Verfahrens
US20090056794A1 (en) * 2007-08-31 2009-03-05 Texas A&M University System, The Operating devices including embedded nanoparticles
JP5383342B2 (ja) * 2008-08-01 2014-01-08 キヤノン株式会社 加工方法
US9346130B2 (en) * 2008-12-17 2016-05-24 Electro Scientific Industries, Inc. Method for laser processing glass with a chamfered edge
US20120234807A1 (en) * 2009-12-07 2012-09-20 J.P. Sercel Associates Inc. Laser scribing with extended depth affectation into a workplace
WO2011071886A1 (en) * 2009-12-07 2011-06-16 J.P. Sercel Associates, Inc. Laser machining and scribing systems and methods
US8383984B2 (en) 2010-04-02 2013-02-26 Electro Scientific Industries, Inc. Method and apparatus for laser singulation of brittle materials
DE102010029321B4 (de) * 2010-04-16 2012-05-31 Laser-Laboratorium Göttingen e.V. Verfahren und Vorrichtung zur räumlich periodischen Modifikation einer Substratoberfläche
US8389889B2 (en) * 2010-04-22 2013-03-05 Lawrence Livermore National Security, Llc Method and system for laser-based formation of micro-shapes in surfaces of optical elements
DE102010029791A1 (de) * 2010-06-08 2011-12-08 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Verfahren zur Lasermaterialbearbeitung eines Werkstücks
JP6121901B2 (ja) * 2010-07-12 2017-04-26 ロフィン−シナー テクノロジーズ インコーポレーテッド レーザーフィラメント形成による材料加工方法
GB2484713A (en) * 2010-10-21 2012-04-25 Optovate Ltd Illumination apparatus
CN102218606A (zh) 2011-05-18 2011-10-19 苏州德龙激光有限公司 紫外激光打孔的装置
US20120314214A1 (en) * 2011-06-07 2012-12-13 Alexander Dennis R Laser Induced Breakdown Spectroscopy Having Enhanced Signal-to-Noise Ratio
US8557683B2 (en) * 2011-06-15 2013-10-15 Applied Materials, Inc. Multi-step and asymmetrically shaped laser beam scribing
US8951819B2 (en) * 2011-07-11 2015-02-10 Applied Materials, Inc. Wafer dicing using hybrid split-beam laser scribing process with plasma etch
US8635887B2 (en) * 2011-08-10 2014-01-28 Corning Incorporated Methods for separating glass substrate sheets by laser-formed grooves
TWI520199B (zh) * 2012-02-18 2016-02-01 先進科技新加坡有限公司 用於以劃線對準之執行中控制而對一實質平面半導體基板劃線之方法及裝置
JP2015516352A (ja) * 2012-02-29 2015-06-11 エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド 強化ガラスを加工するための方法及び装置並びにこれにより生成された製品
US9938180B2 (en) * 2012-06-05 2018-04-10 Corning Incorporated Methods of cutting glass using a laser

Also Published As

Publication number Publication date
CN105377500A (zh) 2016-03-02
EP2978557A2 (de) 2016-02-03
WO2014154341A2 (de) 2014-10-02
WO2014154341A3 (de) 2015-03-05
US20160052082A1 (en) 2016-02-25
CN105377500B (zh) 2019-01-04
KR20150135383A (ko) 2015-12-02
KR102193056B1 (ko) 2020-12-18

Similar Documents

Publication Publication Date Title
EP3416921B1 (de) Verfahren zur kantenbearbeitung von glaselementen und verfahrensgemäss bearbeitetes glaselement
EP2931467B1 (de) Verfahren zur herstellung von linienförmig aufgereihten schädigungsstellen durch ultrakurz fokussierter gepulster laserstrahlung ; verfahren und vorrichtung zum trennen eines werkstückes mittels ultrakurz fokussierter laserstrahlung unter verwendung einer schutzgasatmosphäre
DE112004000581B4 (de) Verfahren zum Schneiden von Glas
DE102015111491A1 (de) Verfahren und Vorrichtung zum Abtrennen von Glas- oder Glaskeramikteilen
EP2978561B1 (de) Verfahren zum abtragen von sprödhartem material mittels laserstrahlung
EP2978562B1 (de) Verfahren zum abtragen von sprödhartem material mittels laserstrahlung
EP2978558A2 (de) Verfahren und vorrichtung zum abtragen von sprödhartem, für laserstrahlung transparentem material mittels laserstrahlung
DE10240033A1 (de) Strahlformungseinheit und Vorrichtung mit einer solchen Strahlformungseinheit zum Einbringen von Strahlungsenergie in ein Werkstück aus einem schwach absorbierenden Material
DE112014001653T5 (de) Laserbearbeitungsvorrichtung und Laserbearbeitungsverfahren
EP2700471A1 (de) Verfahren zur Werkstückbearbeitung
DE102013005136A1 (de) Verfahren zurn Abtragen von sprödhartem Material mittels Laserstrahlung
EP3624984B1 (de) Vorrichtung und verfahren zum trennen eines werkstücks entlang einer vorbestimmten bearbeitungslinie unter verwendung eines gepulsten polychromatischen laserstrahles und eines filters
DE102017206461B4 (de) Vorrichtung und Verfahren zum laserbasierten Trennen eines transparenten, sprödbrechenden Werkstücks
DE102015009622A1 (de) Verfahren zum Abtragen von sprödhartem Material mittels Laserstrahlung
WO2015055322A1 (de) Optisches bauelement mit transparentem grundkörper und einer passiv lichtstreuenden struktur
WO2012000986A1 (de) Schneidwerkzeug, insbesondere schneidrädchen und verfahren zu dessen herstellung unter verwendung eines geneigten laserstrahles
DE102007020704B4 (de) Einrichtung für die Bearbeitung eines Werkstückes mit einem Laserstrahl
DE112016004432T5 (de) Laserbearbeitungsverfahren und Laserbearbeitungsvorrichtung
DE102019220167A1 (de) Verfahren zum Polieren und/oder Glätten einer metallischen Oberfläche von einem Werkstück sowie Werkstück mit polierter und/oder geglätteter Oberfläche
DE102015010369A1 (de) Verfahren zum Abtragen von sprödhartem Material eines Werkstücks
DE102009017316B4 (de) Strukturiertes Schneidrad, Verfahren zu dessen Herstellung und Schneidvorrichtung
DE102022122968A1 (de) Transparentes Bauteil mit einer funktionalisierten Oberfläche
DE102022122926A1 (de) Transparentes Bauteil mit einer funktionalisierten Oberfläche
WO2023247169A1 (de) Verfahren und vorrichtung zum bearbeiten von werkstücken
DE102008007632A1 (de) Verfahren zum Laserschneiden eines nichtmetallischen Werkstücks

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R082 Change of representative

Representative=s name: GRIMM, EKKEHARD, DIPL.-PHYS., DE

R016 Response to examination communication
R016 Response to examination communication
R016 Response to examination communication