DE102013000303A1 - Verfahren zur Erzeugung eines Wasserdampf-Gas-Gemischs und zur Enhanced Oil Recovery sowie hierfür eingerichtete Vorrichtung - Google Patents

Verfahren zur Erzeugung eines Wasserdampf-Gas-Gemischs und zur Enhanced Oil Recovery sowie hierfür eingerichtete Vorrichtung Download PDF

Info

Publication number
DE102013000303A1
DE102013000303A1 DE201310000303 DE102013000303A DE102013000303A1 DE 102013000303 A1 DE102013000303 A1 DE 102013000303A1 DE 201310000303 DE201310000303 DE 201310000303 DE 102013000303 A DE102013000303 A DE 102013000303A DE 102013000303 A1 DE102013000303 A1 DE 102013000303A1
Authority
DE
Germany
Prior art keywords
combustion
oxy
water
water vapor
gas mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE201310000303
Other languages
English (en)
Inventor
Dr. Alekseev Alexander
Marcus Guzmann
Thomas Niehoff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to DE201310000303 priority Critical patent/DE102013000303A1/de
Publication of DE102013000303A1 publication Critical patent/DE102013000303A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1853Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines coming in direct contact with water in bulk or in sprays
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

Ein Verfahren zur Erzeugung eines Wasserdampf-Gas-Gemischs, bei dem eine Oxyfuel-Verbrennung (130) zumindest teilweise innnerhalb eines Wasserkörpers (110) durchgeführt wird und mittels Verbrennungswärme der Oxyfuel-Verbrennung (130) aus Wasser des Wasserkörpers (110) erzeugter Wasserdampf mit dem Verbrennungsabgas der Oxyfuel-Verbrennung (130) als das Wasserdampf-Gas-Gemisch bereitgestellt wird, wird vorgeschlagen. Ein Verfahren zur Enhanced Oil Recovery und entsprechende Vorrichtungen sind ebenfalls Gegenstand der Erfindung.

Description

  • Die vorliegende Erfindung betrifft Verfahren zur Erzeugung eines Wasserdampf-Gas-Gemischs und zur Enhanced Oil Recovery sowie eine zur Durchführung derartiger Verfahren eingerichtete Vorrichtung.
  • Stand der Technik
  • Erdöl befindet sich typischerweise in Erdöllagerstätten unterhalb der Erdoberfläche. Um ein Erdölvorkommen zu fördern, werden mittels Bohrungen Förderleitungen bis zur Tiefe der Erdöllagerstätte unter die Erdoberfläche eingebracht. Über diese Förderleitungen wird das Erdöl aus der Erdöllagerstätte gewonnen.
  • Die Förderung erfolgt dabei im Wesentlichen in drei Phasen. In der ersten Phase, der primären Erdölförderung, lässt sich das Erdöl oft ohne weitere Maßnahmen durch den Eigendruck in der Erdöllagerstätte fördern. In größerer Tiefe steht das Erdöl unter dem Druck der auflastenden Erdschichten.
  • In der zweiten Phase, der Sekundärförderung, reicht der Eigendruck der Erdöllagerstätte nicht mehr aus, um das Erdöl an die Erdoberfläche zu transportieren. Der Druck in der Lagerstätte wird daher durch Einpressen von Wasser, Dampf oder Gas über Leitungen erhöht, die mittels Bohrungen ins Erdreich eingebracht werden.
  • Das restliche, in der Erdöllagerstätte verbleibende, zunehmend zähe, dichte und bitumenartige Öl erschwert eine weitere Förderung. Weiteres Öl kann dann nur noch über spezielle Verfahren zur tertiären Erdölförderung gewonnen werden.
  • Zu dieser tertiären Erdölförderung, auch als Enhanced Oil Recovery (EOR) bezeichnet, können verschiedene Fluide unter Druck in die Nähe der bzw. direkt in die Lagerstätte eingepresst werden. Beispielsweise können dabei heißer Wasserdampf oder Gase wie Stickstoff und Kohlenstoffdioxid (CO2) verwendet werden. CO2 erhöht zum einen den Druck in der Lagerstätte und löst sich zum anderen unter geeigneten Bedingungen im Erdöl. Durch das im Erdöl gelöste CO2 wird die Viskosität des Erdöls deutlich verringert und die Förderung verbessert.
  • Wasserdampf kann dabei konventionell in Dampfkesseln an der Erdoberfläche erzeugt und über Leitungen in die Lagerstätten transportiert werden. Auch die Möglichkeit, Wasserdampf in den Bohrlöchern selbst zu erzeugen, ist gegeben. Hierzu können sogenannte Dowhnhole-Dampfgeneratoren (Downhole Steam Generators, DSG) eingesetzt werden, wie in der EP 0 200 195 A2 beschrieben.
  • Dabei ergeben sich bereits bei der Dampferzeugung große Schwierigkeiten. Durch heiße Abgasströme müssen hohe Energieverluste und mäßige Wirkungsgrade hingenommen werden. Ferner wird durch die Abgase die Umweltbelastung erhöht. Auch der Wasserdampf muss durch die langen Transportwege von der Erdoberfläche bis hin zu den Lagerstätten hohe Energieverluste hinnehmen. Bei der Nutzung von Dowhnhole-Dampfgeneratoren stößt man auf erschwerte Bedingungen, um Wasserdampf in räumlich stark begrenzten Bohrlöchern zu erzeugen.
  • Es ist daher wünschenswert, eine Möglichkeit bereitzustellen, um auf einfache aber effektive Weise Wasserdampf zu erzeugen, um die Phase der Enhanced Oil Recovery möglichst effizient durchführen zu können.
  • Offenbarung der Erfindung
  • Die Erfindung schlägt Verfahren zur Erzeugung eines Wasserdampf-Gas-Gemischs und zur Enhanced Oil Recovery sowie eine zur Durchführung derartiger Verfahren eingerichtete Vorrichtung mit den Merkmalen der unabhängigen Patentansprüche vor. Bevorzugte Ausgestaltungen sind Gegenstand der Unteransprüche sowie der nachfolgenden Beschreibung.
  • Vorteile der Erfindung
  • Ein wesentlicher Aspekt der vorliegenden Erfindung ist die Durchführung einer sogenannten Oxyfuel-Verbrennung, die zumindest teilweise in einem Wasserkörper erfolgt. Erfindungsgemäß wurde erkannt, dass gerade diese Kombination aus Oxyfuel-Verbrennung und Verbrennung in einem Wasserkörper besondere Vorteile gegenüber einer reinen Oxyfuel-Verbrennung und/oder einer herkömmlichen Verbrennung in einem Wasserkörper, wie sie in der GB 1898 09855 A beschrieben ist, bietet.
  • Im Gegensatz zu herkömmlichen Verbrennungsverfahren dient bei der Oxyfuel-Verbrennung nicht Luft, sondern ein sauerstoffreiches Gas, insbesondere (nahezu) reiner Sauerstoff als Oxidator. Der ”nahezu” reine Sauerstoff weist allenfalls geringe Anteile an Stickstoff und Argon auf. Ist im Rahmen dieser Anmeldung von einer Oxyfuel-Verbrennung die Rede, sei damit aber nicht nur die Verbrennung mit reinem Sauerstoff verstanden. Bei dem erfindungsgemäßen Verfahren können vielmehr auch Gase zum Einsatz kommen, die neben Sauerstoff auch andere die Verbrennung beeinflussende Komponenten wie CO2 (beispielsweise zur Kühlung und/oder zur Beeinflussung der sich ergebenden Gaszusammensetzung) umfassen.
  • Die Oxyfuel-Verbrennung wird, wie erwähnt, in einem Wasserkörper durchgeführt. Hierzu eignet sich in besonderer Weise eine Brennkammer, die innerhalb eines Kessels angeordnet ist. Der Kessel ist bis zur Höhe einer Wasseroberfläche mit Wasser gefüllt, das damit den Wasserkörper bildet. Die Brennkammer ist zumindest teilweise unterhalb der Wasseroberfläche (also innerhalb des Wasserkörpers selbst) angeordnet und öffnet sich an einer Seite zu dem Wasserkörper.
  • Bei geeigneter Ausbildung des Brenners muss jedoch keine Brennkammer vorgesehen sein. Der Brenner kann in diesem Fall in den Wasserkörper feuern, ohne dass die Flamme erlischt, wenn der Druck der Brenngase und des die Verbrennung unterstützenden Gases ausreichend hoch ist. In besonderer Weise gilt dies, wenn der Brennstoff dem Brenner zusammmen mit dem sauerstoffhaltigen Gas zugeführt wird. Der Brenner kann hierzu oberhalb der Wasseroberfläche (also außerhalb des Wasserkörpers) gezündet und anschließend in den Wasserkörper abgesenkt werden. Insbesondere kann der Brenner hierbei seitlich in den Wasserkörper feuern.
  • Einem Brenner, z. B. innerhalb einer Brennkammer, werden Brennstoff und das sauerstoffreiche Gas zugeführt. Die Verbrennungswärme, d. h. die Flamme bzw. die heißen Produkte der Oxyfuel-Verbrennung, z. B. in der zumindest teilweise in den Wasserkörper eingetauchten Brennkammer, bewirkt eine Verdampfung des Wassers des Wasserkörpers zu Wasserdampf. Die Verbrennungsabgase der Oxyfuel-Verbrennung, also die Verbrennungsprodukte, und der Wasserdampf bilden das gewünschte Wasserdampf-Gas-Gemisch.
  • Insbesondere bei Nutzung nahezu reinen Sauerstoffs entstehen bei der Oxyfuel-Verbrennung kaum Stickoxide (NOx) und somit kaum umweltbelastende Schadstoffe. Ferner entstehen keine Abgase, welche abgeleitet werden müssen, da die entstehenden Verbrennungsgase mit dem Wasserdampf besagtes Wasserdampf-Gas-Gemisch bilden. Somit müssen auch keine Energieverluste in Form von Abgasabwärme hingenommen werden.
  • Da erfindungsgemäß mittels der Oxyfuel-Verbrennung lediglich Wasser zum Verdampfen gebracht werden soll, genügt es, die Verbrennung mit relativ moderaten Temperaturen zu betreiben. Somit wird nochmals sichergestellt, dass kaum Stickoxide entstehen. Auch die thermische Belastung des Brenners sowie der Brennkammer und der übrigen Bauelemente wird dabei reduziert. Materialverschleiß wird reduziert und Materialkosten können eingespart werden. Das Verfahren kann ohne großen Aufwand durchgeführt und die Bauelemente können einfach gewartet werden. Ferner ist der Wirkungsgrad im Vergleich zu konventionellen Verfahren der Dampferzeugung erhöht.
  • Mit anderen Worten kann die üblicherweise bei hohen Temperaturen durchgeführte Oxyfuel-Verbrennung durch die Anordnung des Brenners oder der Brennkammer zumindest teilweise unter der Oberfläche eines Wasserkörpers bei sehr viel milderen Bedingungen durchgeführt werden, so dass sich Einspareffekte ergeben. Dies verringert den Kesselverschleiß, die Investitionskosten für den Dampfkessel, und ermöglicht eine platzsparendere Bauweise als bei herkömmlichen Kesselhäusern.
  • Bevorzugt wird ein kohlenwasserstoffhaltiger Brennstoff für die Oxyfuel-Verbrennung genutzt. Besonders vorteilhaft ist Erdgas, das überwiegend Methan enthält. Bei der Verwendung reiner Kohlenwasserstoffe entsteht bei der Oxyfuel-Verbrennung fast ausschließlich CO2. Das erzeugte Gemisch ist somit ein nahezu reines Wasserdampf-CO2-Gemisch. Durch eine geeignete Wahl des Brennstoffs (z. B. mit höherem Kohlenstoff-/Wasserstoff-Verhältnis) kann die CO2-Menge in dem erzeugten Wasserdampf-Gas-Gemisch variiert werden.
  • Vorteilhafterweise wird die Oxyfuel-Verbrennung gezündet, solange die Brennkammer sich noch vollständig außerhalb des Wasserkörpers befindet. Das Verhältnis zwischen dem Brennstoff und dem sauerstoffreichen Gas sowie die Verbrennungstemperatur können somit zunächst optimal eingestellt werden, bevor die Erzeugung des Wasserdampf-Gas-Gemischs initiiert wird. Wenn die Oxyfuel-Verbrennung in der Brennkammer unter optimalen Bedingungen abläuft, wird der Brenner oder die Brennkammer zumindest teilweise in den Wasserkörper eingetaucht.
  • Bevorzugt können auch mehrere Brenner oder Brennkammern genutzt werden. Vorteilhafterweise können die einzelnen Brenner oder Brennkammern modular aufgebaut sein. Somit ist es möglich, jeden Brenner oder jede Brennkammer individuell anzusteuern und jede der ablaufenden Oxyfuel-Verbrennungen unabhängig voneinander zu regulieren. Auch ein Austausch eines defekten Brenners oder einer defekten Brennkammer oder anderer Bauelemente wird somit vereinfacht.
  • Die vorliegende Erfindung eignet sich insbesondere, um in eine Enhanced Oil Recovery-Phase integriert zu werden. Das erzeugte Wasserdampf-Gas-Gemisch wird dabei über Rohrsysteme in Bohrlöcher und letztendlich in Erdöllagerstätten geleitet. Bei geeigneter Wahl des Brennstoffs kann das gewünschte Gas, welches in die Erdöllagerstätte geleitet werden soll, direkt als Produkt der Oxyfuel-Verbrennung bereitgestellt werden. Im Gegensatz zu herkömmlichen Enhanced Oil Recovery-Verfahren werden Wasserdampf und das gewünschte Gas in einem einzigen Prozess erzeugt und können gleichzeitig in die Erdöllagerstätte geleitet werden.
  • Durch den erhöhten Wirkungsgrad der Dampferzeugung mittels der Oxyfuel-Verbrennung läuft ein Enhanced Oil Recovery-Verfahren mit der Oxyfuel-Verbrennung effizienter und kostengünstiger ab als ein Enhanced Oil Recovery-Verfahren mit herkömmlichen Mitteln der Dampferzeugung.
  • Vorteilhafterweise wird der Brennstoff so gewählt, dass das Wasserdampf-Gas-Gemisch die Viskosität des Öls in der Erdöllagerstätte reduziert. Wird beispielsweise Erdgas oder ein anderer kohlenwasserstoffhaltiger Brennstoff genutzt, entsteht ein nahezu reines Gemisch aus Wasserdampf und CO2. Bevorzugt kann das erzeugte Wasserdampf-Gas-Gemisch noch zusätzlich mit einem Fluid angereichert werden, beispielsweise CO2 oder Erdgas. Somit kann der gewünschte Effekt der Verringerung der Viskosität zusätzlich erhöht werden.
  • Die Erfindung ist anhand eines Ausführungsbeispiels in der Zeichnung schematisch dargestellt und wird im Folgenden unter Bezugnahme auf die Zeichnung ausführlich beschrieben.
  • Figurenbeschreibung
  • 1 zeigt schematisch eine Vorrichtung zur Erzeugung eines Wasserdampf-Gas-Gemischs, die zur Durchführung eines Verfahrens gemäß einer Ausführungsform der Erfindung genutzt werden kann.
  • 2 zeigt schematisch eine Vorrichtung zur Enhanced Oil Recovery, die zur Durchführung eines Verfahrens gemäß einer Ausführungsform der Erfindung genutzt werden kann.
  • In den Figuren sind einander entsprechende Elemente mit identischen Bezugszeichen angegeben. Sie werden der Übersichtlichkeit halber nicht wiederholt erläutert.
  • 1 zeigt schematisch eine Vorrichtung zur Erzeugung eines Wasserdampf-Gas-Gemischs, die zur Durchführung eines Verfahrens gemäß einer Ausführungsform der Erfindung genutzt werden kann.
  • In einem Dampfkessel 100 der Vorrichtung befindet sich ein Wasserkörper 110. Eine Brennkammer 120 kann über eine Aufhängung 121 vertikal und horizontal bewegt werden. Die Aufhängung 121 weist zwei Leitungen 140 und 150 auf. Über die Leitung 140 kann einem Brenner 122 innerhalb der Brennkammer 120 ein sauerstoffreiches Gas, beispielsweise reiner Sauerstoff, zugeführt werden. Über die Leitung 150 kann dem Brenner 122 Erdgas als Brennstoff zugeführt werden. Die Brennkammer öffnet sich an ihrer Unterseite zum Wasserkörper und ist nach Art einer Tauchkammer bzw. Tauchglocke in dem Wasserkörper angeordnet.
  • Die Brennkammer 120 wird zunächst komplett oberhalb der Oberfläche 111 des Wasserkörpers 110 positioniert. Dem Brenner 122 werden Sauerstoff und Erdgas über die Leitungen 140 und 150 zugeführt und eine Oxyfuel-Verbrennung wird gezündet. Sobald die Oxyfuel-Verbrennung stattfindet und ggf. optimal eingestellt wurde, wird die Brennkammer 120 teilweise unter die Oberfläche 111 des Wasserkörpers 110 getaucht. Eine beispielhafte Positionierung der teilweise untergetauchten Brennkammer 120 ist dabei in 1 dargestellt. Durch die Flamme 130 der Oxyfuel-Verbrennung können Teile des Wasserkörpers 110 verdampfen. Der Wasserdampf vermischt sich mit den Verbrennungsgasen zu einem Wasserdampf-Gas-Gemisch.
  • Ein Dampfkessel 100 zur Erzeugung eines Wasserdampf-Gas-Gemischs eignet sich insbesondere, um in eine Anlage zur Enhanced Oil Recovery implementiert zu werden. In 2 ist schematisch eine Vorrichtung zur Enhanced Oil Recovery dargestellt.
  • An der Erdoberfläche 200 befindet sich ein wie in 1 beschriebener Dampfkessel 100. Aus einem Sauerstofftank 141 wird über eine Leitung 140 Sauerstoff zu dem Brenner 122 geleitet. Aus einem Brennstofftank 151 wird über eine Leitung 150 z. B. Erdgas zu dem Brenner 122 geleitet.
  • Das erzeugte Wasserdampf-Gas-Gemisch wird zu der Erdöllagerstätte 201 unter der Erdoberfläche transportiert. In ein Bohrloch 212 ist eine Rohrleitung 210 eingebracht. Über eine Pumpe 211 wird das Wasserdampf-Gas-Gemisch aus dem Dampfkessel 100 in die Erdöllagerstätte gepumpt.
  • Durch das CO2 verringert sich die Viskosität des Öls in der Erdöllagerstätte, wodurch das Erdöl mittels Pumpen und Förderleitungen (in der Figur nicht mehr dargestellt) leichter gewonnen werden kann. Optional kann das Wasserdampf-Gas-Gemisch zusätzlich mit CO2 aus einem CO2 Tank 221 über eine Leitung 220 angereichert werden. Der Effekt der Viskositätsverringerung kann somit noch verstärkt werden.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • EP 0200195 A2 [0007]
    • GB 189809855 A [0011]

Claims (13)

  1. Verfahren zur Erzeugung eines Wasserdampf-Gas-Gemischs, bei dem eine Oxyfuel-Verbrennung (130) zumindest teilweise innerhalb eines Wasserkörpers (110) durchgeführt wird und mittels Verbrennungswärme der Oxyfuel-Verbrennung (130) aus Wasser des Wasserkörpers (110) erzeugter Wasserdampf mit dem Verbrennungsabgas der Oxyfuel-Verbrennung (130) als das Wasserdampf-Gas-Gemisch bereitgestellt wird.
  2. Verfahren nach Anspruch 1, bei dem die Oxyfuel-Verbrennung (130) in einer Brennkammer (120) durchgeführt wird, die zumindest teilweise innerhalb des Wasserkörpers (110) positioniert wird.
  3. Verfahren nach Anspruch 1 oder 2, bei dem zur Oxyfuel-Verbrennung (130) wenigstens ein Brenner (122) verwendet wird, der insbesondere seitlich in den Wasserkörper (110) feuert.
  4. Verfahren nach einem der vorstehenden Ansprüche, bei dem die Oxyfuel-Verbrennung (130) in variabler Höhe in Bezug auf den Wasserkörper (110) durchgeführt wird.
  5. Verfahren nach einem der vorstehenden Ansprüche, bei dem für die Oxyfuel-Verbrennung (130) ein kohlenwasserstoffhaltiger Brennstoff verwendet wird.
  6. Verfahren nach einem der vorstehenden Ansprüche, bei dem für die Oxyfuel-Verbrennung (130) Erdgas als Brennstoff verwendet wird.
  7. Verfahren nach einem der vorstehenden Ansprüche, bei dem die Oxyfuel-Verbrennung außerhalb des Wasserkörpers initiiert und anschließend zumindest teilweise innerhalb des Wasserkörpers (110) fortgesetzt wird.
  8. Verfahren zur Enhanced Oil Recovery, bei dem mittels eines Verfahrens nach einem der vorstehenden Ansprüche ein Wasserdampf-Gas-Gemisch erzeugt wird und das Wasserdampf-Gas-Gemisch über ein Rohrsystem (210) zu einem Bohrloch (212) in eine Erdöllagerstätte (201) geleitet wird.
  9. Verfahren nach Anspruch 8, bei dem mittels des erzeugten Wasserdampf-Gas-Gemischs die Viskosität von Öl in der Erdöllagerstätte (201) reduziert wird.
  10. Verfahren nach Anspruch 8 oder 9, bei dem dem erzeugten Wasserdampf-Gas-Gemisch ein Fluid zugesetzt wird.
  11. Vorrichtung zur Erzeugung eines Wasserdampf-Gas-Gemischs, die zur Durchführung eines Verfahrens nach einem der Ansprüche 1 bis 8 eingerichtet ist, mit einem Kessel (100), der zur Aufnahme des Wasserkörpers (110) eingerichtet ist, und mit wenigstens einem Brenner (122), insbesondere in einer Brennkammer (120), der dazu eingerichtet ist, zumindest teilweise in einem Wasserkörper (110) positioniert zu werden und eine Oxyfuel-Verbrennung (130) durchzuführen.
  12. Vorrichtung nach Anspruch 11, die mehrere Brenner (122) aufweist, die dazu eingerichtet sind, die Oxyfuel-Verbrennung (130) durchzuführen.
  13. Vorrichtung nach Anspruch 12, bei der die Brenner (122) unabhängig voneinander betrieben werden können.
DE201310000303 2013-01-10 2013-01-10 Verfahren zur Erzeugung eines Wasserdampf-Gas-Gemischs und zur Enhanced Oil Recovery sowie hierfür eingerichtete Vorrichtung Withdrawn DE102013000303A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE201310000303 DE102013000303A1 (de) 2013-01-10 2013-01-10 Verfahren zur Erzeugung eines Wasserdampf-Gas-Gemischs und zur Enhanced Oil Recovery sowie hierfür eingerichtete Vorrichtung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE201310000303 DE102013000303A1 (de) 2013-01-10 2013-01-10 Verfahren zur Erzeugung eines Wasserdampf-Gas-Gemischs und zur Enhanced Oil Recovery sowie hierfür eingerichtete Vorrichtung

Publications (1)

Publication Number Publication Date
DE102013000303A1 true DE102013000303A1 (de) 2014-07-10

Family

ID=51019100

Family Applications (1)

Application Number Title Priority Date Filing Date
DE201310000303 Withdrawn DE102013000303A1 (de) 2013-01-10 2013-01-10 Verfahren zur Erzeugung eines Wasserdampf-Gas-Gemischs und zur Enhanced Oil Recovery sowie hierfür eingerichtete Vorrichtung

Country Status (1)

Country Link
DE (1) DE102013000303A1 (de)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB189809855A (en) 1898-04-29 1898-08-06 Oscar Brunler Improvements in Means for Heating the Water in Steam Generators.
EP0200195A2 (de) 1980-10-07 1986-11-05 Foster-Miller Associates, Inc. Thermische Anregung

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB189809855A (en) 1898-04-29 1898-08-06 Oscar Brunler Improvements in Means for Heating the Water in Steam Generators.
EP0200195A2 (de) 1980-10-07 1986-11-05 Foster-Miller Associates, Inc. Thermische Anregung

Similar Documents

Publication Publication Date Title
DE10141896A1 (de) Verfahren und Vorrichtung zur Gewinnung und Förderung von Gashydraten und Gasen aus Gashydraten
DE2632996A1 (de) Verfahren zur verschwelung eines stein- oder braunkohlevorkommens unter tage unter hohem druck
DE102006005277A1 (de) Rauchgasinjektion für die Gewinnung von Schweröl
DE112007001504T5 (de) Stromerzeugung
DE2609249A1 (de) Verfahren zur untertagevergasung
DE4115431C2 (de)
DE102012000092B4 (de) Vorrichtung und Verfahren zur Gewinnung von kohlenstoffhaltigen Substanzen aus Ölsanden
DE102013000303A1 (de) Verfahren zur Erzeugung eines Wasserdampf-Gas-Gemischs und zur Enhanced Oil Recovery sowie hierfür eingerichtete Vorrichtung
US20140144626A1 (en) Superheated steam water treatment process
DE200423C (de)
EP3299335A1 (de) Verfahren und vorrichtung zur dampfreformierung
EP2217365A1 (de) Verfahren und vorrichtung zur plasma-reformierung von brennstoff für triebwerksanwendungen
DE102021111918B4 (de) Verfahren zur bereitstellung von prozessdampf und verfahrenstechnische anlage zur nutzung von prozessdampf
DE3930232A1 (de) Hot-weak-rock verfahren zur allgemeinen erdwaermenutzung in der 'zone of weakness' (in tiefen von 13 - 30 km)
DE102015111145A1 (de) Verfahren und Anlage zur Energiegewinnung aus geothermischer Energie
EP0796384B1 (de) Verfahren und vorrichtung zur herstellung von bohrlöchern
EP3256269B1 (de) Verfahren zum reinigen eines grosstanks für brennbare flüssigkeit und vorrichtung hierzu
DE102014014569A1 (de) Verfahren zur Gewinnung von CO2
DE931430C (de) Verfahren zur Gewinnung von OEl aus OElschieferlagerstaetten und anderen sedimentaeren geologischen Schichten mit organischer Substanz durch elektrothermische Erhitzung
DE48746C (de) Luftcarburator
DE945647C (de) Verfahren zur Gewinnung fluessiger oder gasfoermiger Brennstoffe aus bituminoesen Schieferlagern oder anderen brennstoffhaltigen geologischen Formationen
DE102020004152A1 (de) Verfahren und Vorrichtung zur Expansion unter Druck stehender Gase mittels Expansionsmaschine unter Nutzung von Wärmequellen niedrigen Temperaturniveaus
DE102014004778A1 (de) Sauerstoff/Luft-Brennstoff-Brennanlage und Verfahren zum Vorwärmen von Verbrennungskomponenten
DE102014014573A1 (de) Gemeinsame Verwendung einer Pipeline für Gas- und Flüssigkeitstransport
DE2215144C3 (de) Verfahren zum Lösen und Gewinnen von Salzen aus einer unterirdischen Lagerstätte sowie Anlage zu dessen Durchführung

Legal Events

Date Code Title Description
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee