DE102012213556A1 - Elektrische Schaltung für den Betrieb einer Sendeempfangseinheit - Google Patents

Elektrische Schaltung für den Betrieb einer Sendeempfangseinheit Download PDF

Info

Publication number
DE102012213556A1
DE102012213556A1 DE102012213556.1A DE102012213556A DE102012213556A1 DE 102012213556 A1 DE102012213556 A1 DE 102012213556A1 DE 102012213556 A DE102012213556 A DE 102012213556A DE 102012213556 A1 DE102012213556 A1 DE 102012213556A1
Authority
DE
Germany
Prior art keywords
circuit
resonant circuit
electrical
transceiver unit
electrical circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102012213556.1A
Other languages
English (en)
Inventor
Tobias Kirchner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to DE102012213556.1A priority Critical patent/DE102012213556A1/de
Priority to EP13177352.5A priority patent/EP2692451B1/de
Publication of DE102012213556A1 publication Critical patent/DE102012213556A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0207Driving circuits
    • B06B1/0215Driving circuits for generating pulses, e.g. bursts of oscillations, envelopes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B2201/00Indexing scheme associated with B06B1/0207 for details covered by B06B1/0207 but not provided for in any of its subgroups
    • B06B2201/30Indexing scheme associated with B06B1/0207 for details covered by B06B1/0207 but not provided for in any of its subgroups with electronic damping

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Transceivers (AREA)

Abstract

Es wird eine elektrische Schaltung für den Betrieb einer Sendeempfangseinheit vorgeschlagen, wobei die Schaltung einen ersten Schwingkreis zur Erzeugung eines Sendesignals, einen zweiten Schwingkreis, umfassend eine Sendeempfangseinheit, und eine Schalteinheit umfasst. Die Schalteinheit ist eingerichtet, den ersten Schwingkreis und den zweiten Schwingkreis miteinander zu koppeln, wenn eine Zustandsgröße des ersten Schwingkreises einen vordefinierten Schwellwert überschritten hat.

Description

  • Stand der Technik
  • Die vorliegende Erfindung betrifft eine elektrische Schaltung für den Betrieb einer Sendeempfangseinheit, wie sie beispielsweise in Verbindung mit Ultraschallsendeempfängern Verwendung finden kann. Insbesondere betrifft die vorliegende Erfindung eine verbesserte elektrische Schaltung zur Verkürzung der Einschwingzeit einer Sendeempfangseinheit.
  • Sendeempfangseinheiten können gemäß dem Stand der Technik für viele unterschiedliche Anwendungsfälle verwendet werden. Beispielsweise werden sie für Abstandsmessungen im Kraftfahrzeug eingesetzt, wobei als Sendeempfangseinheiten insbesondere Radar-Lidar- und Schallwandler eingesetzt werden, um von einem ausgesendeten und von einem Umgebungsobjekt reflektierten Signal auf eine aktuelle Entfernung des Fahrzeugs vom Umgebungsobjekt schließen zu können. Bei einem Ultraschallwandler wird hierzu beispielsweise eine Piezo-Membran verwendet. Beim Sendevorgang wird elektrische Energie aufgebracht, um Schall zu erzeugen, während nach dem Sendevorgang und nach abgeklungenen Membran-Restschwingungen auf die Membran eintreffender Schall in elektrische Signale umgewandelt wird. Bekanntermaßen ist hierbei erforderlich, dass der Sendepuls eine möglichst kurze Dauer hat, um bereits kurze Zeit später auf die Membran auftreffenden Reflexionsschall aus den abklingenden Membranschwingungen erkennen zu können. Um dennoch hohe Sendeenergie abstrahlen zu können, ist es erstrebenswert, bereits von Anbeginn des Sendevorgangs ein Maximum an Membranamplituden zu erzeugen und diese über den gesamten (kurzen) Sendevorgang beizubehalten. Um mittels möglichst leistungsschwachen Signalgeneratoren hohe Amplitudenschwingungen zu erzeugen, wird im Stand der Technik der Signalgenerator häufig mit einem ersten Schwingkreis (beispielsweise bestehend aus einer Reihenschaltung einer Spule und eines Kondensator) angeregt, und die Spannung an einem der beiden Energiespeicher als Eingangsgröße für einen zweiten, die Sendeempfangseinheit umfassenden, Schwingkreis verwendet. Hierbei kann der zweite Schwingkreis ausschließlich aus der (ohne weiteres schwingfähigen) Sendeempfangseinheit bestehen oder weitere Energiespeicher umfassen. Allerdings wird zur Anregung beider Schwingkreise eine gewisse Zeitdauer benötigt, um für einen Sendevorgang hinreichende Amplituden an der Sendeempfangseinheit zu erzeugen. Diese Zeitdauer begrenzt u.a. die sogenannte Nahmessfähigkeit eines Abstandsmesssystems.
  • Es ist daher eine Aufgabe der vorliegenden Erfindung, die Nahmessfähigkeit eines Ultraschall-basierten Abstandsmesssystems zu verbessern.
  • Offenbarung der Erfindung
  • Die vorstehend genannte Aufgabe wird erfindungsgemäß durch eine elektrische Schaltung mit den Merkmalen gemäß Anspruch 1 gelöst. Entsprechend wird eine elektrische Schaltung vorgeschlagen, welche für den Betrieb einer Sendeempfangseinheit, beispielsweise eines Ultraschallsendeempfängers, geeignet ist. Dabei umfasst die Schaltung einen ersten Schwingkreis zur Erzeugung eines Sendesignals sowie einen zweiten Schwingkreis mit einer Sendeempfangseinheit. Der erste Schwingkreis kann dabei mit einem Signalgenerator bzw. einer Signalquelle gekoppelt sein, dessen bzw. deren Signal den ersten Schwingkreis zu Schwingungen anregen kann. Der zweite Schwingkreis kann beispielsweise einen oder mehrere Schallwandler umfassen, mittels welcher einerseits Schallenergie abgestrahlt und andererseits Schallenergie aufgenommen und in elektrische Signale gewandelt werden kann. Hierbei kann der zweite Schwingkreis ausschließlich aus der (ohne weiteres schwingfähigen) Sendeempfangseinheit bestehen oder weitere Energiespeicher umfassen. Weiter umfasst die erfindungsgemäße elektrische Schaltung eine Schalteinheit, wobei die Schalteinheit eingerichtet ist, den ersten Schwingkreis und den zweiten Schwingkreis mit einander zu koppeln. Mit anderen Worten kann die Schalteinheit dafür sorgen, dass im ersten Schwingkreis gespeicherte elektrische Energie in den zweiten Schwingkreis gelangen kann.
  • Erfindungsgemäß wird dies im Ansprechen auf das Erreichen eines ersten vordefinierten Schwellwertes einer Zustandsgröße des ersten Schwingkreises veranlasst. Mit anderen Worten kann beispielsweise ein Strom und/oder eine Spannung in einem und/oder beiden Energiespeichern des ersten Schwingkreises eine vordefinierte Größe erreichen und im Ansprechen darauf die Schalteinheit veranlasst werden, den ersten Schwingkreis und den zweiten Schwingkreis miteinander zu koppeln. Auf diese Weise kann im zweiten Schwingkreis noch eine Reflexion erwartet und ausgewertet werden, während im ersten Schwingkreis bereits Energie für einen weiteren Sendevorgang gesammelt wird, ohne dass diese sich mit dem Empfangssignal überlagert.
  • Die Unteransprüche zeigen bevorzugte Weiterbildungen der Erfindung.
  • Bevorzugt kann der Schwellwert der Zustandsgröße eine minimale Amplitude einer mit der Schwingungsenergie des ersten Schwingkreises gekoppelten Größe sein. Beispielsweise kann eine Spannung und/oder ein Strom über einer Kapazität des ersten Schwingkreises als einen Schaltvorgang der Schalteinheit veranlassende Größe herangezogen werden. Alternativ oder zusätzlich kann ein Strom und/oder eine Spannung in einer Induktivität des ersten Schwingkreises verwendet werden. Dies hat den Vorteil, dass eine einfache Möglichkeit zur Ermittlung eines geeigneten Auslösezeitpunktes für einen Schaltvorgang zur Verfügung steht, der beispielsweise durch einen Transistor als Schalteinheit mittels analoger Schaltungstechnik als Eingangsgröße verwendet werden kann.
  • Weiter bevorzugt kann die Schalteinheit eingerichtet sein, einen Ausgang des ersten Schwingkreises mit einem Eingang des zweiten Schwingkreises zu verbinden. Mit anderen Worten kann eine elektrische Verbindung zwischen dem ersten Schwingkreis und dem zweiten Schwingkreis zur Kopplung der beiden Schwingkreise durch die Schalteinheit hergestellt werden. Dies bietet den Vorteil, dass die Sendeempfangseinheit bis zur Kopplung mit dem ersten Schwingkreis spannungsfrei bleibt.
  • Bevorzugt kann der Ausgang des ersten Schwingkreises dabei parallel zu einem Energiespeicher des ersten Schwingkreises angeordnet sein. Mit anderen Worten wird das Signal an einem ersten Anschluss eines parallel zum Ausgang liegenden Energiespeichers abgegriffen, dessen zweiter Anschluss mit der elektrischen Masse verbunden ist. Mit dem ersten Anschluss kann nun die Schalteinheit verbunden sein, welche in geschlossenem Zustand den Ausgang des ersten Schwingkreises mit dem Eingang des zweiten Schwingkreises verbindet. Die vorstehend genannte Anordnung stellt eine einfache und schaltungstechnisch gut beherrschbare Ausführungsform dar.
  • Alternativ oder zusätzlich kann die Schalteinheit eingerichtet sein, einen masseseitigen Anschluss der Sendeempfangseinheit mit der elektrischen Masse elektrisch zu koppeln. Mit anderen Worten kann die Schalteinheit oder eine zusätzliche Schalteinheit eine Verbindung zwischen der Sendeempfangseinheit und der elektrischen Masse ohne Zwischenschaltung weiterer elektrischer Bauelemente vornehmen. Im Gegensatz zum vorstehend beschriebenen Aufbau, nach welchem eine elektrische Verbindung zwischen den beiden Schwingkreisen geschaltet wird, bietet die Alternative eine einfachere Möglichkeit zur Ansteuerung des Schalters.
  • Weiter bevorzugt kann die Sendeempfangseinheit des zweiten Schwingkreises als Ultraschallwandler ausgestaltet sein oder zumindest einen solchen umfassen. Dies bietet den Vorteil, dass diese Technik einerseits sicher beherrschbar ist und andererseits die erforderlichen Ultraschallwandler in hoher Stückzahl für den Automobilbau gefertigt werden, wodurch eine erfindungsgemäße Schaltung kostengünstig herstellbar ist. Da sich, wie in Verbindung mit den beigefügten Zeichnungsfiguren noch diskutiert wird, ein Ultraschallwandler auf Piezobasis bereits selbst wie ein elektrischer Schwingkreis verhält, müssen außer einem solchen Ultraschallwandler keine weiteren elektrischen Bauelemente für den Aufbau des zweiten Schwingkreises vorgesehen werden. Dies bietet den Vorteil eines besonders einfachen und kostengünstigen Aufbaus einer erfindungsgemäßen elektrischen Schaltung.
  • Weiter bevorzugt kann als Schalteinheit ein Transistor, insbesondere ein Feldeffekttransistor, äußerst bevorzugt ein Metalloxidschichtfeldeffekttransistor (MOSFET) vorgesehen sein. Dies bietet den Vorteil, dass Transistoren einerseits als Massenartikel hergestellt und daher günstig erworben werden können, andererseits, insbesondere in Verbindung mit den vorgenannten Feldeffekttransistoren, geringe Schalt- und Sperrverluste entstehen.
  • Weiter bevorzugt kann eine Signalquelle mit dem ersten Schwingkreis gekoppelt sein, wobei die Kopplung insbesondere dauerhaft, mit anderen Worten also nicht schaltbar, sein kann. Dies bietet den Vorteil eines besonders einfachen Aufbaus, während die Funktionssicherheit erhöht wird.
  • Die Unteransprüche zeigen bevorzugte Weiterbildungen der Erfindung.
  • Kurze Beschreibung der Zeichnungen
  • Nachfolgend werden Ausführungsbeispiele der Erfindung unter Bezugnahme auf die begleitenden Zeichnungen im Detail beschrieben. In den Zeichnungen ist:
  • 1 ein Schaltbild eines typischen Ausführungsbeispiels gemäß dem Stand der Technik,
  • 2 ein Schaltbild eines Ausführungsbeispiels gemäß der vorliegenden Erfindung,
  • 3 zwei Diagramme, veranschaulichend die Spannung zur Anregung des ersten Schwingkreises (oben) und die resultierende Spannung an der Sendeempfangseinheit (unten),
  • 4 ein Zeitdiagramm von Strömen durch eine Sendeempfangseinheit gemäß dem Stand der Technik und der vorliegenden Erfindung (oben) und ein Zeitdiagramm von Spannungen an der Sendeempfangseinheit gemäß dem Stand der Technik und der vorliegenden Erfindung (unten), und
  • 5 zwei Zeitdiagramme zur Veranschaulichung der unterschiedlichen Anregungsdauer nach dem Stand der Technik und nach der vorliegenden Erfindung.
  • Ausführungsformen der Erfindung
  • 1 zeigt eine elektrische Schaltung, wie sie aus dem Stand der Technik zur Verwendung eines Ultraschallsendeempfängers verwendet wird. Eine Signalquelle 4 ist eingerichtet, einen aus einer Spule L1 von beispielsweise 285 µH und einem Kondensator C1 von 46 nF bestehenden Schwingkreis mit einer sinusförmigen Spannung zu beaufschlagen. Parallel zum Kondensator C1 ist das Ersatzschaltbild eines Sendeempfängers 2 dargestellt, welches aus einer Parallelschaltung von vier Zweigen besteht. Der erste Zweig besteht auf einer Kapazität C2 von 2 nF. Der zweite Zweig besteht aus einer Induktivität L3 von 350 mH, einer zur Induktivität L3 in Reihe geschalteten Kapazität C3 von 40 pF und einer ebenfalls in Reihe geschalteten ohmschen Last R3 von 3 kΩ. Der dritte Zweig besteht aus einer Induktivität L4 von 50 µH, einem Kondensator C4 von 40 pF und einer ohmschen Last R4 von 3 kΩ. Der vierte Zweig schließlich besteht aus einer Spule L5 von 20 mH, einer Kapazität C5 von 40 pF und einer ohmschen Last R5 von 3 kΩ. Eine Schalteinheit ist nicht vorgesehen, so dass die Signalquelle 4 stets beide Schwingkreise bzw. die gesamte dargestellte Anordnung passiver Elemente als Last sieht.
  • 2 zeigt ein Schaltbild eines Ausführungsbeispiels gemäß der vorliegenden Erfindung. Eine Signalquelle 4 treibt einen Schwingkreis SK1, welcher aus einer Reihenschaltung aus einer ersten Induktivität L1 und einer ersten Kapazität C1 besteht. Zwischen der Induktivität L1 und der Kapazität C1 ist eine Ausgangsklemme 3 des ersten Schwingkreises SK1 angeordnet. An die Ausgangsklemme 3 schließt sich ein erster Schalter S1 zum Koppeln der beiden Schwingkreise SK1 und SK2 an. Mit dem Schalter S1 ist ein bereits in Verbindung mit 1 diskutiertes Ersatzschaltbild eines Ultraschallwandlers 2 als Sendeempfangseinheit verbunden. Masseseitig ist zwischen dem Ultraschallwandler 2 und der elektrischen Masse 10 ein zweiter Schalter S2 (gestrichelt) als zweite Schalteinheit S2 vorgesehen. Die Elemente des Ersatzschaltbildes der Sendeempfangseinheit 2 stimmen mit den in 1 dargestellten übereinstimmen, so dass auf eine detaillierte Diskussion dieser der Kürze halber verzichtet werden kann. Die Funktion der erfindungsgemäßen Schaltung ist wie folgt: Die Signalquelle regt den ersten Schwingkreis SK1 an, im Ansprechen worauf sich über der Kapazität C1 um ein Vielfaches höhere Spannungsamplituden einstellen, als sie die Signalquelle 4 allein zu liefern im Stande ist. Im Ansprechen auf ein Erreichen eines ersten Schwellwertes, der mit für einen Sendeempfangsvorgang geeigneten Amplituden korrespondiert, wird der erste Schalter S1 geschlossen, wodurch die über der ersten Kapazität C1 anliegenden Spannungen nun über dem aus dem Ultraschallwandler gebildeten Zweipol als zweiter Schwingkreis SK2 anliegen. Die vorstehenden Ausführungen treffen für den Fall zu, dass der zweite Schalter S2 entweder geschlossen oder nicht vorhanden ist. Identisch könnte der zweite Schalter S2 verwendet werden, während der erste Schalter S1 geschlossen oder nicht vorhanden ist. Die Funktionsweise ergibt sich für den zweiten Schalter S2 entsprechend. Nach Beenden des Sendevorgangs wird der jeweils verwendete Schalter (oder falls beide Schalter S1/S2 verwendet werden, zumindest einer der beiden Schalter S1/S2) geöffnet, so dass keine Energie mehr aus dem ersten Schwingkreis SK1 in den zweiten Schwingkreis SK2 gelangt und die Membran der Sendeempfangseinheit 2 abklingt oder beispielsweise in bekannter Weise passiv oder aktiv gedämpft wird. An der Sendeempfangseinheit 2 eintreffende Echos können nun ihrerseits die Membran der Sendeempfangseinheit 2 in Schwingungen versetzen und in bekannter Weise aus dem elektrischen Signal der Sendeempfangseinheit 2 detektiert werden.
  • 3 zeigt in ihrer oberen Hälfte ein Zeitdiagramm eines Spannungssignals V4, wie es durch die in 2 gezeigte Signalquelle 4 erzeugt werden könnte. Die dargestellte Wechselspannung hat eine Amplitude von 3 V. Aufgrund des ersten Schwingkreises SK1 ergibt sich nach einiger Zeit eine bedeutend höhere Amplitude beispielsweise für die Spannung über der ersten Kapazität C1. Diese Spannung wird bereits im Stand der Technik dazu benutzt, die Sendeempfangseinheit 2 mit einem zur Aussendung geeigneten elektrischen Signal zu beaufschlagen. In der unteren Hälfte von 3 ist eine Spannung V2 über der Zeit aufgetragen, welche sich in einer Schaltung gemäß dem Stand der Technik (siehe 1) am Ultraschallwandler ohne einen erfindungsgemäßen Schaltvorgang ergeben könnte. Es ist erkennbar, dass ab dem Zeitpunkt, ab welchem die Signalquelle 4 eine Spannung V4 ausgibt, auch eine Spannung V2 über dem Ultraschallwandler anliegt, welche jedoch ihre maximale Amplitude erst zeitgleich mit dem Ende des Spannungssignals V4 erreicht. Anschließend klingt die Amplitude der Spannung V2 im Wesentlichen mit einer e-Funktion ab.
  • 4 zeigt in seiner oberen Hälfte einen Vergleich von Zeitdiagrammen zweier Ströme, wie sie gemäß der vorliegenden Erfindung (I2E) bzw. gemäß dem Stand der Technik (I2PA) bei entsprechender Anregung durch den Ultraschallwandler 2 fließen würden. Die untere Hälfte von 2 zeigt die entsprechenden Spannungssignale (V2E: Spannung am Ultraschallwandler 2 gemäß der vorliegenden Erfindung, V2PA: Spannung am Ultraschallwandler 2 gemäß dem Stand der Technik), welche zu den jeweiligen Strömen, wie sie in der oberen Bildhälfte von 4 dargestellt sind, gehören. Der Spannungsverlauf gemäß dem Stand der Technik V2PA entspricht im Wesentlichen dem in der unteren Hälfte von 3 dargestellten Verlauf. Da zu Beginn der Anregung des Ultraschallwandlers 2 auch der erste Schwingkreis noch nicht voll erregt ist, steigt die Amplitude der Spannung V2PA nur langsam an. Entsprechendes gilt insbesondere für den Strom I2PA durch den Ultraschallwandler 2 in der oberen Hälfte der 4. Somit wird nur langsam Energie in den zweiten Schwingkreis SK2 "gepumpt". Deutlich andere Verläufe ergeben sich gemäß der vorliegenden Erfindung. Die Spannung V2E in der unteren Hälfte von 4 beginnt mit einer maximalen Amplitude, da zum Schaltzeitpunkt der erste Schwingkreis SK1 bereits voll erregt und somit die Spannung über der ersten Kapazität C1 bereits ihr Maximum erreicht hat. Die Erregung des Ultraschallwandlers 2 mit maximalen Spannungen führt zu einem deutlich schnelleren Ansteigen des durch ihn fließenden Stromes I2E. Mit anderen Worten ergeben sich deutlich früher für einen Sendevorgang erforderliche Signalamplituden, so dass innerhalb kürzerer Zeit die erforderliche Schallenergie durch den Ultraschallwandler 2 abgestrahlt werden kann. Indem auf diese Weise der Sendevorgang früher beendet und die Membranschwingungen auf ein für einen Empfangsvorgang erforderliches Maß abgeklungen sind, können bereits zu einem früheren Zeitpunkt als gemäß dem Stand der Technik Echos aus dem Signal des Ultraschallwandlers 2 detektiert werden. Auf diese Weise kann die sogenannte "Nahdetektionsschwelle" deutlich gesenkt werden, so dass auch nahe am Fahrzeug bzw. am Ultraschallwandler 2 angeordnete Umgebungsobjekte sicher detektiert werden können.
  • 5 zeigt zwei Spannungsverläufe (V4E, V4PA) zur Anregung des ersten Schwingkreises SK1 durch die Signalquelle 4, wobei die obere Spannung V4E gegenüber der unten dargestellten Spannung V4PA früher eingeschaltet und früher ausgeschaltet wird. Zwar wird der erste Schwingkreis mit der Spannung V4E bereits zu einem früheren Zeitpunkt mit Energie versorgt, dies stört jedoch noch andauernde Empfangsvorgänge im zweiten Schwingkreis nicht, da zu diesem Zeitpunkt gemäß der vorliegenden Erfindung keine Kopplung der Schwingkreise besteht. Der spätere Signalanfang der Spannung V4PA gemäß dem Stand der Technik fällt zeitlich mit dem Anregungszeitpunkt des zweiten Schwingkreises zusammen. Um für den Sendevorgang hinreichend Energie über den Sendeempfänger abstrahlen zu können, ist gemäß dem Stand der Technik jedoch eine längere Anregungszeit des zweiten Schwingkreises SK2 als gemäß der vorliegenden Erfindung erforderlich. Daher können durch die vorliegende Erfindung kürzere Pulse verwirklicht werden, die eine bessere Entfernungsauflösung und eine bessere Auflösung von Mehrfachechos erlauben.
  • Es ist ein Kerngedanke der vorliegenden Erfindung, einen zur Erzeugung eines Sendesignals für eine Sendeempfangseinrichtung verwendeten ersten Schwingkreis zunächst mit Energie zu versorgen, ohne dass die Sendeempfangseinrichtung bereits Anteile an dieser Energie aufnehmen kann. Erst wenn die abgebbare Energie innerhalb des ersten Schwingkreises ein vorbestimmtes Maß erreicht hat, wird mittels einer Schalteinrichtung ein Energieübertrag aus dem ersten Schwingkreis auf die Sendeempfangseinheit, welche bevorzugt in einem zweiten Schwingkreis angeordnet ist, ermöglicht. Für die Anordnungen und Ausgestaltungen der Schalteinheit sind unterschiedliche Lösungen vorgeschlagen worden. Der Gegenstand der vorliegenden Erfindung ermöglicht es, z.B. noch während eines Empfangsvorgangs mittels der Sendeempfangseinheit elektrische Energie in den ersten Schwingkreis zu bringen und somit einen auf den Empfangsvorgang folgenden Sendevorgang vorzubereiten.
  • Auch wenn die erfindungsgemäßen Aspekte und vorteilhaften Ausführungsformen anhand der in Verbindung mit den beigefügten Zeichnungsfiguren erläuterten Ausführungsbeispielen im Detail beschrieben worden sind, sind für den Fachmann Modifikationen und Kombinationen von Merkmalen der dargestellten Ausführungsbeispiele, insbesondere auch mit weiteren, aus dem Stand der Technik bekannten Lösungen und Merkmalen, möglich, ohne den Bereich der vorliegenden Erfindung zu verlassen, deren Schutzbereich durch die beigefügten Ansprüche definiert wird.

Claims (9)

  1. Elektrische Schaltung für den Betrieb einer Sendeempfangseinheit (2), wobei die Schaltung (1) umfasst: – einen ersten Schwingkreis (SK1) zur Erzeugung eines Sendesignals – einen zweiten Schwingkreis (SK2) umfassend eine Sendeempfangseinheit (2), und – eine Schalteinheit (S1, S2), wobei die Schalteinheit (S1, S2) eingerichtet ist, den ersten Schwingkreis (SK1) und den zweiten Schwingkreis (SK2) miteinander zu koppeln, wenn eine Zustandsgröße des ersten Schwingkreises (SK1) einen vordefinierten Schwellwert überschritten hat.
  2. Elektrische Schaltung nach Anspruch 1, wobei die Zustandsgröße eine minimale Amplitude einer mit der Schwingungsenergie des ersten Schwingkreises (SK1) gekoppelten Größe ist.
  3. Elektrische Schaltung nach Anspruch 1 oder 2, wobei die Schalteinheit eingerichtet ist, einen Ausgang (3) des ersten Schwingkreises (SK1) mit einem Eingang des zweiten Schwingkreises (SK2) zu verbinden.
  4. Elektrische Schaltung nach Anspruch 3, wobei der Ausgang des ersten Schwingkreises (SK1) parallel zu einem Energiespeicher (C1) des ersten Schwingkreises (SK1) angeordnet ist.
  5. Elektrische Schaltung nach einem der vorstehenden Ansprüche, wobei die Schalteinheit (S1, S2) eingerichtet ist, einen masseseitigen Anschluss (5) der Sendeempfangseinheit (2) mit der elektrischen Masse (10) elektrisch zu koppeln.
  6. Elektrische Schaltung nach einem der vorstehenden Ansprüche, wobei der Energiespeicher ein Kondensator (C1) oder eine Spule (L1) ist.
  7. Elektrische Schaltung nach einem der vorstehenden Ansprüche, wobei die Sendeempfangseinheit (2) einen Ultraschallwandler umfasst.
  8. Elektrische Schaltung nach einem der vorstehenden Ansprüche, wobei die Schalteinheit (S1, S2) ein Transistor, insbesondere ein Metalloxidschicht-Feldeffekttransistor ist.
  9. Elektrische Schaltung nach einem der vorstehenden Ansprüche, wobei weiter eine Signalquelle (4), insbesondere dauerhaft, mit dem ersten Schwingkreis (SK1) gekoppelt ist.
DE102012213556.1A 2012-08-01 2012-08-01 Elektrische Schaltung für den Betrieb einer Sendeempfangseinheit Withdrawn DE102012213556A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102012213556.1A DE102012213556A1 (de) 2012-08-01 2012-08-01 Elektrische Schaltung für den Betrieb einer Sendeempfangseinheit
EP13177352.5A EP2692451B1 (de) 2012-08-01 2013-07-22 Elektrische Schaltung für den Betrieb einer Sendeempfangseinheit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102012213556.1A DE102012213556A1 (de) 2012-08-01 2012-08-01 Elektrische Schaltung für den Betrieb einer Sendeempfangseinheit

Publications (1)

Publication Number Publication Date
DE102012213556A1 true DE102012213556A1 (de) 2014-02-06

Family

ID=48877028

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102012213556.1A Withdrawn DE102012213556A1 (de) 2012-08-01 2012-08-01 Elektrische Schaltung für den Betrieb einer Sendeempfangseinheit

Country Status (2)

Country Link
EP (1) EP2692451B1 (de)
DE (1) DE102012213556A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018105283A1 (de) * 2018-03-07 2019-09-12 Elmos Semiconductor Aktiengesellschaft Vorrichtung und Verfahren zur übertragerfreien Ansteuerung eines Ultraschalltransducers mit Signalen mit einer Amplitude oberhalb der doppelten Versorgungsspannungsamplitude
DE102018105284A1 (de) * 2018-03-07 2019-09-12 Elmos Semiconductor Aktiengesellschaft Vorrichtung und Verfahren zur übertragerfreien Ansteuerung eines Ultraschalltransducers mit Signalen mit einer Amplitude oberhalb der doppelten Versorgungsspannungsamplitude

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3003317A1 (de) * 1980-01-30 1981-08-06 Siemens AG, 1000 Berlin und 8000 München Schaltung fuer wechselweises aussenden und empfangen mit nur einem schallgeber-wandler
DE19514330A1 (de) * 1994-05-19 1995-11-23 Siemens Ag Duplexer für ein Ultraschallabbildungssystem
US6234017B1 (en) * 1997-11-01 2001-05-22 Pulsar Process Measurement Limited Transducer assembly

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19548161C1 (de) * 1995-12-22 1997-02-13 Klaus Dipl Ing Petry Verringerung der Nachlaufzeit eines elektromechanischen Systems
FR2757009B1 (fr) * 1996-12-05 1999-01-15 France Etat Procede et dispositif d'elimination des regimes transitoires de transducteurs piezoelectriques
DE19814331A1 (de) * 1998-03-31 1999-10-14 Dornier Medtech Holding Int Gmbh Vorrichtung zum Erzeugen von akustischen Druckpulsen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3003317A1 (de) * 1980-01-30 1981-08-06 Siemens AG, 1000 Berlin und 8000 München Schaltung fuer wechselweises aussenden und empfangen mit nur einem schallgeber-wandler
DE19514330A1 (de) * 1994-05-19 1995-11-23 Siemens Ag Duplexer für ein Ultraschallabbildungssystem
US6234017B1 (en) * 1997-11-01 2001-05-22 Pulsar Process Measurement Limited Transducer assembly

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Wikipedia: Electronic oscillator. Online encyclopedia. Version 28.07.2012 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018105283A1 (de) * 2018-03-07 2019-09-12 Elmos Semiconductor Aktiengesellschaft Vorrichtung und Verfahren zur übertragerfreien Ansteuerung eines Ultraschalltransducers mit Signalen mit einer Amplitude oberhalb der doppelten Versorgungsspannungsamplitude
DE102018105284A1 (de) * 2018-03-07 2019-09-12 Elmos Semiconductor Aktiengesellschaft Vorrichtung und Verfahren zur übertragerfreien Ansteuerung eines Ultraschalltransducers mit Signalen mit einer Amplitude oberhalb der doppelten Versorgungsspannungsamplitude

Also Published As

Publication number Publication date
EP2692451B1 (de) 2021-05-05
EP2692451A3 (de) 2017-12-20
EP2692451A2 (de) 2014-02-05

Similar Documents

Publication Publication Date Title
EP2984503B1 (de) Verfahren zur messung mittels ultraschall, insbesondere als parkhilfe für fahrzeuge, und ultraschallmesssysteme
EP2780125B1 (de) Ultraschallwandler und korrespondierende vorrichtung zur umfelderfassung in einem fahrzeug
EP3208634B1 (de) Ultraschallmesssystem, insbesondere zur abstandsmessung und/oder als parkhilfe bei fahrzeugen
DE2813729C2 (de) Verfahren und Schaltungsanordnung zur Anregung von Ultraschallschwingern, die in der Impuls-Echo-Technik eingesetzt werden
DE102010008495A1 (de) Verfahren zur Positionsmessung und Positions-Messvorrichtung
DE10136628A1 (de) Verfahren zum Betrieb eines Ultraschallwandlers zum Aussenden und Empfangen von Ultraschallwellen mittels einer Membran
EP2743725A1 (de) Ultraschallvorrichtung
DE3513270A1 (de) Einrichtung zur abstandsmessung, insbesondere fuer kraftfahrzeuge
EP2807500B1 (de) Umfelderfassungsvorrichtung und dazugehöriges verfahren zur bestimmung der position und/oder der bewegung von einem objekt
EP2692451B1 (de) Elektrische Schaltung für den Betrieb einer Sendeempfangseinheit
WO2015173163A1 (de) Treiberschaltung für eine induktivität, verfahren zum betreiben einer induktivität und aktive sendeeinrichtung mit einer treiberschaltung
EP0623395B1 (de) Schaltungsanordnung zur Dämpfung eines Ultraschallwandlers
WO2015176885A1 (de) Verfahren zum betreiben eines ultraschallsensors eines kraftfahrzeugs, ultraschallsensorvorrichtung, fahrerassistenzsystem sowie kraftfahrzeug
DE102015002687A1 (de) Verfahren der induktiven Stromübertragung
EP3004919B1 (de) Ultraschall sende- und empfangsvorrichtung
EP3023832B1 (de) Pockelszellen-Treiberschaltung mit Induktivitäten
DE4414746C2 (de) Sende-Empfangsschaltung für ein akustisches Pulsecho-Entfernungsmeßsystem
EP2880463B1 (de) Verfahren zum betrieb eines ultraschallwandlers
EP3423864B1 (de) Filtereinrichtung zum filtern einer versorgungsspannung eines ultraschallsensors eines kraftfahrzeugs, ultraschallsensorvorrichtung sowie kraftfahrzeug
DE102011089542A1 (de) Verfahren und Schaltungsanordnung zur Ansteuerung eines Ultraschallsensors
DE102010062930A1 (de) Verfahren zur Erfassung eines Objekts in einem Umfeld und Vorrichtung zur Erzeugung eines Ultraschallsignals
DE10328113A1 (de) Vorrichtung zum Betreiben einer schwingfähigen Einheit eines Vibrationsresonators
DE102018105283A1 (de) Vorrichtung und Verfahren zur übertragerfreien Ansteuerung eines Ultraschalltransducers mit Signalen mit einer Amplitude oberhalb der doppelten Versorgungsspannungsamplitude
DE102018105284A1 (de) Vorrichtung und Verfahren zur übertragerfreien Ansteuerung eines Ultraschalltransducers mit Signalen mit einer Amplitude oberhalb der doppelten Versorgungsspannungsamplitude
DE102012208849A1 (de) Vorrichtung zur Unterdrückung von Schwebungen bei der aktiven Dämpfung von Ultraschallsensoren

Legal Events

Date Code Title Description
R163 Identified publications notified
R012 Request for examination validly filed
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee