DE102012014334A1 - Mischvorrichtung zur Nachbehandlung von Abgasen - Google Patents

Mischvorrichtung zur Nachbehandlung von Abgasen Download PDF

Info

Publication number
DE102012014334A1
DE102012014334A1 DE102012014334.6A DE102012014334A DE102012014334A1 DE 102012014334 A1 DE102012014334 A1 DE 102012014334A1 DE 102012014334 A DE102012014334 A DE 102012014334A DE 102012014334 A1 DE102012014334 A1 DE 102012014334A1
Authority
DE
Germany
Prior art keywords
exhaust gas
inner tube
mixing device
mixing
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102012014334.6A
Other languages
English (en)
Inventor
Herbert Albert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN Truck and Bus SE
Original Assignee
MAN Truck and Bus SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAN Truck and Bus SE filed Critical MAN Truck and Bus SE
Priority to DE102012014334.6A priority Critical patent/DE102012014334A1/de
Priority to EP13002561.2A priority patent/EP2687697B1/de
Priority to BR102013018004-1A priority patent/BR102013018004B1/pt
Priority to RU2013133962A priority patent/RU2628849C2/ru
Priority to CN201310307825.3A priority patent/CN103573351B/zh
Publication of DE102012014334A1 publication Critical patent/DE102012014334A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/21Mixing gases with liquids by introducing liquids into gaseous media
    • B01F23/213Mixing gases with liquids by introducing liquids into gaseous media by spraying or atomising of the liquids
    • B01F23/2132Mixing gases with liquids by introducing liquids into gaseous media by spraying or atomising of the liquids using nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/10Mixing by creating a vortex flow, e.g. by tangential introduction of flow components
    • B01F25/102Mixing by creating a vortex flow, e.g. by tangential introduction of flow components wherein the vortex is created by two or more jets introduced tangentially in separate mixing chambers or consecutively in the same mixing chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/313Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
    • B01F25/3131Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit with additional mixing means other than injector mixers, e.g. screens, baffles or rotating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • F01N3/0253Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust adding fuel to exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2892Exhaust flow directors or the like, e.g. upstream of catalytic device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/36Arrangements for supply of additional fuel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F2025/93Arrangements, nature or configuration of flow guiding elements
    • B01F2025/931Flow guiding elements surrounding feed openings, e.g. jet nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/20Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a flow director or deflector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/06Adding substances to exhaust gases the substance being in the gaseous form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

Die Erfindung gibt eine Mischvorrichtung (2) zur Nachbehandlung von Abgasen in einer Abgasanlage einer Brennkraftmaschine, die ein Gehäuse (4) mit einer einen Eintrittsquerschnitt aufweisenden Eintrittsöffnung (24) und ein innerhalb des Gehäuses (4) angeordnetes Innenrohr (6) mit einem im Inneren des Innenrohres (6) ausgebildeten Mischbereich (8) umfasst, wobei an einer Stirnseite des Gehäuses (4) eine Dosiereinrichtung (10) zur Zuführung einer Flüssigkeit und/oder eines Flüssigkeit-Gas-Gemisches (14) angeordnet ist, und wobei das Innenrohr (6) an seiner Mantelfläche (16) Zutrittsöffnungen (18) aufweist, durch welche die Abgase in den Mischbereich (8) einleitbar sind. Dabei weist das Gehäuse (4) einen spiralförmigen Gehäuseabschnitt (22) auf, wobei sich der spiralförmige Gehäuseabschnitt (22) zumindest entlang sämtlicher Zutrittsöffnungen (18) erstreckt. Ferner gibt die Erfindung ein Verfahren zum Mischen Abgases mit einer Flüssigkeit und/oder einem Flüssigkeit-Gas-Gemisches unter Verwendung einer vorgenannten Mischvorrichtung (2) an.

Description

  • Die Erfindung betrifft eine Mischvorrichtung zur Nachbehandlung von Abgasen in einer Abgasanlage einer Brennkraftmaschine, die ein Gehäuse mit einer einen Eintrittsquerschnitt aufweisenden Eintrittsöffnung und ein innerhalb des Gehäuses angeordnetes Innenrohr mit einem im Inneren des Innenrohres ausgebildeten Mischbereich umfasst, wobei an einer Stirnseite des Gehäuses eine Dosiereinrichtung zur Zuführung einer Flüssigkeit und/oder eines Flüssigkeit-Gas-Gemisches angeordnet ist. Dabei weist das Innenrohr an seiner Mantelfläche Zutrittsöffnungen auf, durch welche die Abgase in den Mischbereich einleitbar sind. Die Erfindung betrifft weiter ein Verfahren zum Mischen eines Abgases mit einer Flüssigkeit und/oder einem Flüssigkeit-Gas-Gemisches unter Verwendung einer derartigen Mischvorrichtung.
  • Der Einsatz eines Hydrolysekatalysators zur Reduzierung von Stickoxiden in einem Abgasstrom insbesondere eines Kraftfahrzeugs ist allgemein bekannt. Im Rahmen der beispielsweise mit einem SCR-Katalysator durchgeführten selektiven katalytischen Reduktion (SCR) wird dem Abgasstrom eine unmittelbar reduzierend wirkende Substanz, wie beispielsweise Ammoniak oder ein Vorprodukt, wie beispielsweise eine wässrige Harnstofflösung, das erst im Abgas reduzierende Substanzen freisetzt, zugeführt. Üblicherweise wird das Vorprodukt dabei vor dem SCR-Katalysator in den Abgasstrom eingesprüht.
  • Darüber hinaus wird zur Minimierung des Ausstoßes von Feinstoffpartikeln in einem Kraftfahrzeug regelmäßig ein sogenannter Partikelfilter eingesetzt. Dabei strömt das Abgas üblicherweise durch das Filtermedium hindurch. Hierbei kann es zur „Verstopfung” des Partikelfilters und folglich zu einer Erhöhung des Abgasgegendrucks kommen. Dies wirkt sich wiederum negativ auf die Motorleistung und den Kraftstoffverbrauch der Brennkraftmaschine aus. Daher wird in der Regel eine Partikelfilterregeneration durchgeführt, welche insbesondere durch eine aktive Anhebung der Abgastemperatur eines Abgasstroms, welcher dann dem Partikelfilter zugeführt wird, realisiert wird. Üblicherweise werden hierbei zur Erwärmung des Abgasstroms stromauf des Partikelfilters dem Abgasstrom Kohlenwasserstoffe zugesetzt. Dieses Gemisch wird anschließend einem HC-Oxidationskatalysator zugeführt, dessen Aktivkomponente mit den Kohlenwasserstoffen durch exotherme Reaktion einen erhitzten Abgasstrom erzeugt. Dieser heiße Abgasstrom strömt zum Partikelfilter, wo die im Partikelfilter eingelagerten kohlenstoffhaltigen Russpartikel zu CO, CO2, N2 und NO umgesetzt werden, wodurch der Partikelfilter regeneriert wird.
  • Hierbei wird die jeweils in das Abgas einzubringende, in der Regel flüssig vorliegende Substanz, üblicherweise über eine Düse einer Dosiervorrichtung in den Abgasstrom eingesprüht. Zur Erzielung eines möglichst hohen Wirkungsgrads ist dabei insbesondere eine gleichmäßige Verteilung der in das Abgas eingebrachten Flüssigkeit von wesentlicher Bedeutung.
  • Eine Mischvorrichtung der eingangs genannten Art ist beispielsweise in der DE 42 03 807 A1 offenbart. Darin wird eine als Mischvorrichtung zur Nachbehandlung von Abgasen in einer Abgasanlage einer Brennkraftmaschine ausgebildete Anordnung dargestellt, die eine Durchmischung von Abgasen mit einer Harnstofflösung vor dem Eintritt in einen Hydrolysekatalysator ermöglicht. Hierzu ist in einem Gehäuse ein als Innenrohr ausgestaltetes konisches Leitblech angeordnet. Das Leitblech weist als Zutrittsöffnungen in einen innerhalb des Leitblechs ausgebildeten Mischbereich eine Vielzahl von Bohrungen auf. An dem Gehäuse ist stirnseitig eine als Druckzerstäuberdüse ausgebildete Dosiereinrichtung angeordnet, über welche eine Harnstofflösung als Spray in den Mischbereich zugeführt wird. Das Abgas wird über eine Eintrittsöffnung in das Gehäuse eingeführt und strömt durch die Bohrungen des Leitblechs in den Mischbereich, in dem das Abgas mit dem Spray vermischt wird. Nachteilig hierbei ist jedoch, dass auf das eingebrachte Spray in Umfangsrichtung gesehen durch das über die Bohrungen eingebrachte Abgas unterschiedlich starke Kräfte wirken, was zu einer Ablenkung und damit zu einer unsymmetrischen Ausbreitung des Sprays führt. Dadurch wird das Sprays nicht homogen mit dem Harnstoff vermischt.
  • Der Erfindung liegt die erste Aufgabe zugrunde, eine Mischvorrichtung bereitzustellen, die ein möglichst homogenes Vermischen einer Flüssigkeit und/oder eines Flüssigkeit-Gas-Gemisches mit dem Abgas unabhängig oder nur unter geringem Einfluss eines zuströmenden zuströmenden Abgasvolumenstroms gewährleistet. Ferner liegt der Erfindung die zweite Aufgabe zugrunde, ein Verfahren zum möglichst homogenen Vermischen einer Flüssigkeit und/oder eines Flüssigkeit-Gas-Gemisches mit dem Abgas bereitzustellen.
  • Diese erste Aufgabe wird gelöst durch eine Mischvorrichtung zur Nachbehandlung von Abgasen in einer Abgasanlage einer Brennkraftmaschine, die ein Gehäuse mit einer einen Eintrittsquerschnitt aufweisenden Eintrittsöffnung und ein innerhalb des Gehäuses angeordnetes Innenrohr mit einem im Inneren des Innenrohres ausgebildeten Mischbereich umfasst, wobei an einer Stirnseite des Gehäuses eine Dosiereinrichtung zur Zuführung einer Flüssigkeit und/oder eines Flüssigkeit-Gas-Gemisches angeordnet ist, und wobei das Innenrohr an seiner Mantelfläche Zutrittsöffnungen aufweist, durch welche die Abgase in den Mischbereich einleitbar sind. Dabei weist das Gehäuse einen spiralförmigen Gehäuseabschnitt auf, wobei sich der spiralförmige Gehäuseabschnitt zumindest entlang sämtlicher Zutrittsöffnungen des Innenrohrs erstreckt.
  • Die Erfindung geht dabei in einem ersten Schritt von der Überlegung aus, dass für ein homogenes Vermischen der insbesondere in Form eines Sprays eingebrachten Flüssigkeit und/oder des eingebrachten Flüssigkeit-Gas-Gemisches mit dem Abgas eine homogene Ausbreitung des Sprays in dem Mischbereich erforderlich ist. In einem zweiten Schritt geht die Erfindung von der Überlegung aus, dass für eine homogene Ausbreitung des Sprays auf dieses in Umfangsrichtung um die zentrale Hauptströmungsachse des Sprays gleichmäßige Strömungskräfte herrschen müssen. Mit anderen Worten müssen in Umfangsrichtung gleichmäßige Strömungs- und Druckverhältnisse vorliegen. Daher sieht die Erfindung vor, dass das Gehäuse einen spiralförmigen Gehäuseabschnitt aufweist, welcher sich zumindest entlang sämtlicher Zutrittsöffnungen des Innenrohrs erstreckt. Durch die Spiralform wird gewährleistet, dass an der außen liegenden Mantelfläche entlang des mit Zutrittsöffnungen versehenen. Abschnitts des Innenrohrs annähernd gleiche Strömungs- und Druckverhältnisse herrschen, so dass insbesondere in Umfangsrichtung gesehen eine gleichmäßige Zuführung des Abgases über die Zutrittsöffnungen in den Mischbereich erfolgt und sich im Mischbereich rotationssymmetrische Strömungsverhältnisse ausbilden können.
  • Die Eintrittsöffnung des Gehäuses dient insbesondere der Zufuhr von Abgas in das Gehäuse. Das Innenrohr weist als Grundkörper insbesondere einen länglichen Hohlkörper mit einem kreisrunden, ovalen, rechteckigen oder vieleckigen Querschnitt auf. Innerhalb des Innenrohres ist der Mischbereich ausgebildet, in dem das Abgas mit einer über die Dosiereinrichtung zugeführten Flüssigkeit und/oder einem Flüssigkeit-Gas-Gemisch vermischt wird. Die Flüssigkeit enthält insbesondere Harnstoff und/oder Kohlenwasserstoff.
  • Der spiralförmige Gehäuseabschnitt führt insbesondere das über die Eintrittsöffnung zuströmende Abgas zu dem Innenrohr hin und in Umfangsrichtung entlang des Innenrohrs. Durch die Spiralform tritt in diesem Gehäuseabschnitt in Umfangsrichtung eine Volumenverkleinerung zwischen der Mantelfläche des Innenrohrs und der Gehäusewand auf und einem den spiralförmige Gehäuseabschnitt durchströmenden Abgasstrom wird durch die Spiralform ein gewisser Drall eingeprägt. Dieser spiralförmige Gehäuseabschnitt erstreckt sich dabei zumindest entlang sämtlicher Zutrittsöffnungen, das heißt, sämtliche Zutrittsöffnungen des Innenrohres sind innerhalb dieses Gehäuseabschnitts angeordnet.
  • Die Erfindung hat den Vorteil, dass dadurch eine Mischvorrichtung bereitgestellt wird, die ein möglichst homogenes Vermischen einer Flüssigkeit und/oder eines Flüssigkeit-Gas-Gemisches mit dem Abgas unabhängig oder nur unter geringem Einfluss des zuströmenden Abgasvolumenstroms gewährleistet. Durch den entlang der Zutrittsöffnungen verlaufenden spiralförmigen Gehäuseabschnitt stellen sich an der außen liegenden Mantelfläche annähernd gleiche Strömungs- und Druckverhältnisse ein, so dass insbesondere in Umfangsrichtung gesehen eine gleichmäßige Zuführung des Abgases über die Zutrittsöffnungen in den Mischbereich erfolgt und sich im Mischbereich rotationssymmetrische Strömungsverhältnisse ausbilden können.
  • Ein aus axialer Richtung in das Gehäuse einströmendes Abgas, welches innerhalb des Gehäuses axial zu dem der Dosiereinrichtung abgewandten axialen Ende strömt, kann sich zumindest zeitweise in diesem Endbereich des Gehäuses anstauen, wodurch der Abgasvolumenstrom der durch die Zutrittsöffnungen, die sich in diesem Bereich befinden, größer wäre, als der Abgasvolumenstrom, welcher durch die Zutrittsöffnungen eines dosiereinrichtungsnäheren Bereichs strömt. Um dennoch möglichst gleich große Abgasvolumenströme zu erhalten, nimmt vorteilhafterweise ein durch die Zutrittsöffnungen gebildeter Durchtrittsquerschnitt zu dem der Dosiereinrichtung abgewandten axialen Ende des Innenrohrs hin ab. Dabei ist der Durchtrittsquerschnitt die Querschnittsfläche, die dem Abgas aufgrund der Zutrittsöffnungen zum Eintritt in den Mischbereich zur Verfügung steht. Dieser Durchtrittsquerschnitt kann zu dem der Dosiereinrichtung abgewandten Ende hin beispielsweise stetig abnehmen. Der Durchtrittsquerschnitt kann zu dem der Dosiereinrichtung abgewandten Ende hin aber auch insbesondere bereichsweise abnehmen. Mit anderen Worten ist der Durchtrittsquerschnitt in einem dosiereinrichtungsnahen Bereich größer, als der Durchtrittsquerschnitt in einem dosiereinrichtungsferneren Bereich. Dabei sind die einzelnen Bereiche untereinander im Wesentlichen gleich groß. Ein Bereich ist gebildet durch eine definierte Umfangsfläche des Innenrohrs, wobei sich diese Umfangsfläche aus der Summe von Fläche des Vollmaterials und der Querschnittsfläche der Zutrittsöffnungen ergibt. Das heißt, dass das Verhältnis der Fläche des Vollmaterials zur Querschnittsfläche der Zutrittsöffnungen in einem dosiereinrichtungsnahen Bereich kleiner ist, als das Verhältnis der Fläche des Vollmaterials zur Querschnittsfläche der Zutrittsöffnungen in einem dosiereinrichtungsferneren Bereich.
  • Um eine Abnahme des Durchtrittsquerschnitts zu realisieren, nimmt die Anzahl der Zutrittsöffnungen zweckmäßigerweise zu dem der Dosiereinrichtung abgewandten axialen Ende des Innenrohrs hin zumindest bereichsweise ab. Dadurch kann auf verhältnismäßig einfache Weise die Abnahme des durch die Zutrittsöffnungen gebildeten Durchtrittsquerschnitts zu dem der Dosiereinrichtung abgewandten axialen Ende des Innenrohrs hin realisiert werden. Damit wird, insbesondere bei einem aus axialer Richtung in das Gehäuse einströmendem Abgas, erreicht, dass das in das Innenrohr strömende Abgas entlang des gesamten mit Zutrittsöffnungen versehenen Abschnitts des Innenrohrs möglichst homogen in den Mischbereich strömt. Hierfür nimmt der Abstand zweier benachbarter Zutrittsöffnungen in axialer Richtung und/oder in Umfangsrichtung zu dem der Dosiereinrichtung abgewandten axialen Ende des Innenrohrs hin zu. Die Anzahl der Zutrittsöffnungen kann dabei zu dem der Dosiereinrichtung abgewandten Ende hin stetig abnehmen. Die Anzahl der Zutrittsöffnungen kann zu dem der Dosiereinrichtung abgewandten Ende hin aber auch bereichsweise abnehmen. Mit anderen Worten ist dabei die Anzahl der Zutrittsöffnungen in einem dosiereinrichtungsfernen Bereich kleiner, als die Anzahl der Zutrittsöffnungen in einem dosiereinrichtungsnäheren Bereich.
  • Um eine Abnahme des Durchtrittsquerschnitts zu realisieren, nimmt vorteilhafterweise die Querschnittsfläche der Zutrittsöffnungen zu dem der Dosiereinrichtung abgewandten axialen Ende hin zumindest bereichsweise ab. Die Querschnittsfläche der einzelnen Zutrittsöffnungen kann dabei zu dem der Dosiereinrichtung abgewandten Ende hin stetig abnehmen. Die Querschnittsfläche der einzelnen Zutrittsöffnungen kann zu dem der Dosiereinrichtung abgewandten Ende hin aber auch bereichsweise abnehmen. Das heißt, dass die Querschnittsfläche der einzelnen Zutrittsöffnungen in einem dosiereinrichtungsfernen Bereich kleiner ist, als die Querschnittsfläche der einzelnen Zutrittsöffnungen in einem dosiereinrichtungsnäheren Bereich.
  • In einer vorteilhaften Ausführungsform erstreckt sich ein Abgaseinlassrohr zumindest teilweise in das Gehäuse, wobei die Längsmittelsachse des Abgaseinlassrohres und die Längsmittelachse des Innenrohres im Wesentlichen parallel zueinander ausgerichtet sind. Über ein derartiges Abgaseinlassrohr kann das Abgas gezielt einem bestimmten Bereich innerhalb des Gehäuses zugeführt werden. Das Abgaseinlassrohr erstreckt sich hierbei über die Eintrittsöffnung in das Gehäuse, das heißt, dass das Abgaseinlassrohr durch die Eintrittsöffnung in das Gehäuse geführt ist. Dabei ist das Abgaseinlassrohr insbesondere kreiszylinderförmig oder konusförmig ausgebildet. Bei einer kreisrunden Eintrittsöffnung entspricht der Außendurchmesser des Abgaseinlassrohres im Bereich der Eintrittsöffnung im Wesentlichen dem Durchmesser der Eintrittsöffnung.
  • Vorteilhafterweise erstreckt sich das Abgaseinlassrohr innerhalb des Gehäuses zumindest entlang des spiralförmigen Gehäuseabschnitts, wobei das Abgaseinlassrohr an der sich entlang des spiralförmigen Gehäuseabschnitts erstreckenden Umfangsfläche Austrittsöffnungen aufweist. Durch diese Austrittsöffnungen kann ein dem Abgaseinlassrohr zugeführter Abgasstrom insbesondere in den spiralförmigen Gehäuseabschnitt strömen. Die Austrittsöffnungen sind insbesondere vollumfänglich an der Umfangsfläche des Abgaseinlassrohrs angeordnet und weisen beispielsweise eine kreis- oder schlitzförmige Geometrie auf. Dadurch kann auch ein insbesondere aus einer axialen Richtung dem Abgaseinlassrohr zugeführter Abgasstrom beim Austritt aus dem Abgaseinlassrohr durch die Austrittsöffnungen in eine radiale Richtung „umgelenkt” oder ihm zumindest eine radiale Geschwindigkeitskomponente erteilt werden. Ferner wird dadurch dazu beigetragen, dass das Abgas entlang des gesamten mit Austrittsöffnungen versehenen Abschnitts des Abgaseinlassrohrs möglichst homogen in den spiralförmigen Gehäuseabschnitt strömt.
  • Da sich das in das Abgaseinlassrohr hineinströmende Abgas zumindest zeitweise an dem der Eintrittsöffnung abgewandten axialen Ende des Abgaseinlassrohrs anstauen kann und damit der Abgasvolumenstrom aus den Austrittsöffnungen, die sich in diesem Bereich befinden, größer sein kann, als der Abgasvolumenstrom aus den Austrittsöffnungen eines eintrittsöffnungsnäheren Bereichs, nimmt bevorzugt die Anzahl der Austrittsöffnungen zu dem der Eintrittsöffnung abgewandten axialen Ende des Abgaseinlassrohrs hin zumindest bereichsweise ab. Damit wird erreicht, dass das in das Abgaseinlassrohr einströmende Abgas entlang des gesamten mit Austrittsöffnungen versehenen Abschnitts des Abgaseinlassrohrs möglichst homogen in den spiralförmigen Gehäuseabschnitt strömt. Hierfür nimmt der Abstand zweier benachbarter Austrittsöffnungen in axialer Richtung und/oder in Umfangsrichtung zu dem der Eintrittsöffnung abgewandten axialen Ende des Abgaseinlassrohrs hin zu. Die Anzahl der Austrittsöffnungen kann dabei zu dem der Eintrittsöffnung abgewandten Ende hin stetig abnehmen. Die Anzahl der Austrittsöffnungen kann zu dem der Eintrittsöffnung abgewandten Ende hin aber auch bereichsweise abnehmen. Mit anderen Worten ist dabei die Anzahl der Austrittsöffnungen in einem dosiereinrichtungsfernen Bereich kleiner, als die Anzahl der Zutrittsöffnungen in einem dosiereinrichtungsnäheren Bereich. Dabei sind die einzelnen Bereiche untereinander im Wesentlichen gleich groß. Ein Bereich ist gebildet durch eine definierte Umfangsfläche des Abgaseinlassrohrs, wobei sich diese Umfangsfläche aus der Summe von Fläche des Vollmaterials und der Querschnittsfläche der Austrittsöffnungen ergibt. Das heißt, dass das Verhältnis der Fläche des Vollmaterials zur Querschnittsfläche der Austrittsöffnungen in einem dosiereinrichtungsnahen Bereich kleiner ist, als das Verhältnis der Fläche des Vollmaterials zur Querschnittsfläche der Austrittsöffnungen in einem dosiereinrichtungsferneren Bereich.
  • Alternativ oder kumulativ zur Abnahme der Anzahl der Austrittsöffnungen nimmt bevorzugt die Querschnittsfläche der einzelnen Austrittsöffnungen zu dem der Dosiereinrichtung abgewandten Ende hin stetig ab. Die Querschnittsfläche der einzelnen Austrittsöffnungen kann zu dem der Dosiereinrichtung abgewandten Ende hin aber auch bereichsweise abnehmen. Das heißt, dass die Querschnittsfläche der einzelnen Austrittsöffnungen in einem dosiereinrichtungsfernen Bereich kleiner ist, als die Querschnittsfläche der einzelnen Austrittsöffnungen in einem dosiereinrichtungsnäheren Bereich.
  • Zweckmäßigerweise ist das Innenrohr kreiszylinderförmig oder konusförmig ausgebildet. Diese Formen wirken sich, je nach eingesetzter Dosiereinrichtung und damit verbundener Ausbreitung der Flüssigkeit und/oder des Flüssigkeit-Gas-Gemisches, weiter positiv auf eine homogene Ausbreitung der Flüssigkeit und/oder des Flüssigkeit-Gas-Gemisches in dem Mischbereich aus. Bei einem konusförmigen Innenrohr weitet sich der Durchmesser des Innenrohrs zu dem der Dosiereinrichtung abgewandten Ende.
  • Die Zutrittsöffnungen sind vorteilhafterweise mit Abgasleitelementen versehen, welche aus der Haupterstreckung der Mantelfläche abstehen. Diese Abgasleitelemente dienen insbesondere zum einen zur Strömungsführung des Abgases und zum anderen verhindern sie den Austritt der Flüssigkeit und/oder des Flüssigkeit-Gas-Gemisches aus dem Mischbereich. Ferner wird den durch die Zutrittsöffnungen strömenden Abgasteilströmen durch die Abgasleitelemente ein Drall eingeprägt und/oder die durch das spiralförmigen Gehäuseabschnitt erzeugte Drallbewegung verstärkt. Die Geometrie der Abgasleitelemente ist auf den jeweiligen Einzelfall abgestimmt zu wählen und insbesondere abhängig von der Ausbreitungscharakteristik der eingebrachten Flüssigkeit und/oder des eingebrachten Flüssigkeit-Gas-Gemisches im Mischbereich sowie den auftretenden Abgasvolumenströmen.
  • Dabei erstrecken sich die Abgasleitelemente zweckmäßigerweise zumindest in den Mischbereich. Daneben kann an einer Zutrittsöffnung aber auch zusätzlich ein Abgasleitelement vorgesehen sein, das sich in den Zwischenraum zwischen Mantelfläche des Innenrohrs und Gehäusewand erstreckt. Bevorzugt ist das Abgasleitelement oder sind beide Abgasleitelemente derart geformt, dass sie, gesehen von der Längsmittelachse des Innenrohrs radial nach außen die Zutrittsöffnung blickdicht „verschließen”, das heißt, dass ein von der Längsmittelachse und senkrecht zu dieser radial nach außen gehender (gedachter) Strahl die Zutrittsöffnung möglichst durchdringen kann.
  • Vorteilhafterweise sind die Abgasleitelemente einstückig an der Mantelfläche des Innenrohrs ausgebildet. Dies ermöglicht eine einfache und kostengünstige Fertigung.
  • In einer vorteilhaften Ausführungsform schließt die Projektion einer Öffnungsachse des Abgasleitelements auf eine durch die Zutrittsöffnung des Abgasleitelements verlaufende Mittellängsebene des Innenrohres mit der Längsmittelachse des Innenrohres einen Neigungswinkel von 5° bis 90°, bevorzugt von 30° bis 50°, besonders bevorzugt von 35° bis 40° ein. Bei einer Neigung der Abgasleitelemente unter einem derartigen Winkel kann insbesondere der Austritt der Flüssigkeit und/oder des Flüssigkeit-Gas-Gemisches aus dem Mischbereich besonders effektiv unterbunden werden. Hierbei verläuft die Mittellängsebene zum einen durch den Mittelpunkt der jeweiligen Zutrittsöffnung und zum anderen durch die Längsmittelachse des Innenrohrs und erstreckt sich entlang dieser Längsmittelachse. Mit anderen Worten handelt es sich bei dem Neigungswinkel um den Winkel, um den das Abgasleitelement aus der Grundmantelfläche des Innenrohrs, also aus der Mantelfläche ohne Berücksichtigung der Abgasleitelemente, absteht.
  • Zweckmäßigerweise schließt eine Öffnungsachse des Abgasleitelements mit einer durch die Zutrittsöffnung des Abgasleitelements verlaufenden Mittellängsebene des Innenrohres einen Ausrichtungswinkel von 0° bis 90°, bevorzugt von 10° bis 90°, besonders bevorzugt von 20° bis 90° ein. Hierbei verläuft die Mittellängsebene zum einen durch den Mittelpunkt der jeweiligen Zutrittsöffnung und zum anderen durch die Längsmittelachse des Innenrohrs und erstreckt sich entlang dieser Längsmittelachse. Mit anderen Worten gibt der Ausrichtungswinkel denjenigen Winkel an, um den die Zutrittsöffnung aus einem in Richtung der Längsmittelachse des Innenrohrs ausgerichteten Verlauf „hinaus verdreht” ist. Bei einer Ausrichtung der Abgasleitelemente gemäß einem Ausrichtungswinkel von kleiner 90°, bewirken die Abgasleitelemente eine teilweise Umlenkung des Abgasteilstroms hin zur Hauptinjektionsrichtung. Dadurch wird insbesondere erreicht, dass das aus dem spiralförmigen Gehäuseabschnitt zuströmende Abgas durch die Zutrittsöffnungen und die daran angeordneten Abgasleitelemente in Abgasteilströme umgelenkt wird, welche eine gewisse in Hauptinjektionsrichtung der Dosiereinrichtung verlaufende Geschwindigkeitskomponente aufweisen, was wiederum zu einem homogenen Vermischen Flüssigkeit und/oder des Flüssigkeit-Gas-Gemiches mit dem Abgas beiträgt.
  • In einer zweckmäßigen Ausführungsform ist die Dosiereinrichtung koaxial zu der Längsmittelachse des Innenrohrs angeordnet. Dadurch wird eine mittige Zudosierung in den Mischbereich hinein ermöglicht, was sich weiter positiv auf die gleichmäßige Ausbreitung der Flüssigkeit und/oder des Flüssigkeit-Gas-Gemiches uns somit auf das homogene Vermischen mit dem Abgas auswirkt.
  • Vorteilhafterweise entspricht der durch die Zutrittsöffnungen gebildete Durchtrittsquerschnitt 80% bis 300% des Eintrittsquerschnitts der Eintrittsöffnung, bevorzugt 90% bis 250%. Ein derartiges Verhältnis von Eintrittsquerschnitt zu Durchtrittsquerschnitt wirkt sich weiter positiv auf die homogene Zuströmung des Abgases in den Mischbereich aus.
  • Bevorzugt weist die Mantelfläche des Innenrohrs zusätzlich zu den Zutrittsöffnungen, insbesondere im Bereich eines axialen Endes des spiralförmigen Gehäuseabschnitts, einen zumindest teilweise umlaufenden Ringspalt auf, der als eine Art „Bypass” für das Abgas dient. Dabei kann im Bereich des Ringspalts optional ein Leitelement angeordnet sein, das eine Umlenkung eines durch den Ringspalt strömenden Abgasteilstroms zumindest teilweise in Hauptinjektionsrichtung der Dosiereinrichtung bewirkt.
  • Bevorzugt ist das Innenrohr derart in dem spiralförmigen Gehäuseabschnitt angeordnet, dass in Umfangsrichtung zwischen dem Innenrohr und der Gehäusewand stets ein vom Verlauf der Spiralform abhängiger Abstand ausgebildet ist. Hierdurch ist zwischen Innenrohr und Gehäusewand in Umfangsrichtung gesehen stets ein Zwischenraum vorhanden und keine „Sackgasse” gebildet, an der sich das einströmende Abgas anstauen würde. Dies trägt weiter positiv zu einem homogenen Strömungsverlauf durch den spiralförmigen Gehäuseabschnitt bei.
  • Die zweite Aufgabe wird gelöst durch ein Verfahren zum Mischen eines Abgases mit einer Flüssigkeit und/oder einem Flüssigkeit-Gas-Gemisches unter Verwendung einer vorstehend beschriebenen Mischvorrichtung.
  • Mit diesem Verfahren wird ein möglichst homogenes Vermischen einer Flüssigkeit und/oder eines Flüssigkeit-Gas-Gemisches mit dem Abgas unabhängig oder nur unter geringem Einfluss des zuströmenden Abgasvolumenstroms ermöglicht. Dadurch, dass das Abgas über einen entlang der Zutrittsöffnungen des Innenrohrs verlaufenden spiralförmigen Gehäuseabschnitt zuströmt, stellen sich an der außen liegenden Mantelfläche des Innenrohres annähernd gleiche Strömungs- und Druckverhältnisse ein, so dass insbesondere in Umfangsrichtung gesehen eine gleichmäßige Zuführung des Abgases über die Zutrittsöffnungen in den Mischbereich erfolgt und sich im Mischbereich rotationssymmetrische Strömungsverhältnisse ausbilden können.
  • Ausführungsbeispiele der Erfindung werden im Folgenden anhand einer Zeichnung näher erläutert. Darin zeigen:
  • 1 in einer schematischen Darstellung eine Mischvorrichtung,
  • 2 in einer schematischen Längsschnittdarstellung gemäß Schnittlinie A-A die Mischvorrichtung aus 1,
  • 3 in einer schematischen Querschnittdarstellung gemäß Schnittlinie B-B die Mischvorrichtung aus 2,
  • 4 in einer schematischen Darstellung einen spiralförmigen Gehäuseabschnitt einer alternativen Ausführungsform,
  • 5 in einer schematischen Darstellung ein Innenrohr in einer weiteren Ausführungsform,
  • 6 in einer schematischen Längsschnittdarstellung gemäß Schnittlinie E-E einen vergrößerten Ausschnitt des Innenrohrs aus 5,
  • 7 in einer schematischen Längsschnittdarstellung verschiedene Ausführungsformen eines Abgasleitelements,
  • 8 in einer schematischen Längsschnittdarstellung eine Mischvorrichtung in einer alternativen Ausführungsform,
  • 9a9c in schematischen Längsschnittdarstellungen eines vergrößerten Ausschnitts C verschiedene Ausführungsformen eines Leitelements und eines Innenrohrs aus 8.
  • In 1 ist in einer schematischen Darstellung eine Mischvorrichtung 2 zur Nachbehandlung von Abgasen in einer Abgasanlage einer Brennkraftmaschine dargestellt. Dabei ist die Mischvorrichtung 2 einem SCR-Katalysator strömungstechnisch vorgeschaltet. Die Mischvorrichtung 2 umfasst ein Gehäuse 4 und ein innerhalb des Gehäuses 4 angeordnetes, kreiszylinderförmiges Innenrohr 6. Im Inneren des Innenrohres 6 ist ein Mischbereich 8 ausgebildet.
  • 2 zeigt in einer schematischen Längsschnittdarstellung gemäß Schnittlinie A-A die Mischvorrichtung 2 aus 1. Dabei ist wiederum das in dem Gehäuse 4 angeordnete Innenrohr 6 mit dem in seinem Inneren ausgebildeten Mischbereich 8 zu erkennen. Koaxial zu der Längsmittelachse des Innenrohrs 6 ist eine Dosiereinrichtung 10 an einer Stirnseite des Gehäuses 4 angebracht. Die Dosiereinrichtung 10 dient der Zuführung eines Flüssigkeit-Gas-Gemisches in den Mischbereich 8 über eine Düse 12 in Form eines Sprays 14. Die Flüssigkeit ist dabei eine Harnstofflösung.
  • Das Innenrohr 6 weist an seiner Mantelfläche 16 Zutrittsöffnungen 18 auf, durch welche Abgase in den Mischbereich 8 einleitbar sind. Die Zutrittsöffnungen 18 sind mit Abgasleitelementen 20 versehen, welche aus der Haupterstreckung der Mantelfläche 16 abstehen. Diese Abgasleitelemente 20 dienen insbesondere zum einen zur Strömungsführung des Abgases und zum anderen verhindern sie den Austritt des Sprays 14 aus dem Mischbereich 8. Dabei sind die Abgasleitelemente 20 einstückig an der Mantelfläche 16 des Innenrohrs 6 ausgebildet, was eine einfache und kostengünstige Fertigung ermöglicht.
  • Die Anzahl der Zutrittsöffnungen 18 nimmt hierbei zu dem der Dosiereinrichtung 10 abgewandten axialen Ende des Innenrohrs 6 hin stetig ab. Hierfür nimmt der Abstand zweier benachbarter Zutrittsöffnungen 18 in axialer Richtung und in Umfangsrichtung zu dem der Dosiereinrichtung 10 abgewandten axialen Ende des Innenrohrs 6 hin zu. Dadurch wird eine Abnahme des durch die Zutrittsöffnungen 18 gebildeten Durchtrittsquerschnitts zu dem der Dosiereinrichtung 10 abgewandten axialen Ende des Innenrohrs 6 hin realisiert. Weiter ist in 2 zu erkennen, dass die Zutrittsöffnungen 18 um einen in Richtung der Längsmittelachse des Innenrohrs 6 ausgerichteten Verlauf „hinaus verdreht” sind.
  • Ferner umfasst das Gehäuse 4 einen spiralförmigen Gehäuseabschnitt 20, der sich entlang sämtlicher Zutrittsöffnungen 18 des Innenrohrs 6 erstreckt, das heißt, sämtliche Zutrittsöffnungen 18 des Innenrohres 6 sind innerhalb dieses spiralförmigen Gehäuseabschnitts 20 angeordnet.
  • Über eine Eintrittsöffnung 24 erstreckt sich ein kreiszylinderförmig ausgebildetes Abgaseinlassrohr 26 in das Gehäuse 4. Mit anderen Worten ist das Abgaseinlassrohr 26 durch die Eintrittsöffnung 24 in das Gehäuse 4 geführt. Hierzu entspricht der Außendurchmesser des Abgaseinlassrohres 26 im Wesentlichen dem Durchmesser der Eintrittsöffnung 24. Die Längsmittelsachse des Abgaseinlassrohres 26 und die Längsmittelachse des Innenrohres 6 sind parallel zueinander ausgerichtet und das Abgaseinlassrohr 26 erstreckt sich axial entlang des gesamten spiralförmigen Gehäuseabschnitts 22. Entlang des spiralförmigen Gehäuseabschnitts 22 weist das Abgaseinlassrohr 26 zudem Austrittsöffnungen 28 auf. Die Austrittsöffnungen 28 sind vollumfänglich an der Umfangsfläche 30 des Abgaseinlassrohrs 26 angeordnet und weisen eine kreisförmige Geometrie auf.
  • Im Betrieb strömt ein der Mischvorrichtung 2 zugeführter Abgaszustrom 32 zunächst über das Abgaseinlassrohr 26 in Richtung Gehäuse 4 und strömt dabei über die Austrittsöffnungen 28 in den spiralförmigen Gehäuseabschnitt 22. Der Abgaszustrom 32 wird also beim Austritt aus dem Abgaseinlassrohr 26 durch die Austrittsöffnungen 28 aus einer axialen Richtung in eine radiale Richtung „umgelenkt” bzw. wird ihm zumindest eine radiale Geschwindigkeitskomponente erteilt. Ferner wird der Abgaszustrom 32 entlang des gesamten mit Austrittsöffnungen 28 versehenen Abschnitts des Abgaseinlassrohrs 26 relativ homogen dem spiralförmigen Gehäuseabschnitt 22 zugeführt.
  • Dadurch, dass sich der spiralförmige Gehäuseabschnitt 22 entlang sämtlicher Austrittsöffnungen 28 und insbesondere entlang sämtlicher Zutrittsöffnungen 18 erstreckt, wird gewährleistet, dass an der Mantelfläche 16 des Innenrohrs 6, entlang des mit Zutrittsöffnungen 18 versehenen Abschnitts, annähernd gleiche Strömungs- und Druckverhältnisse herrschen. Dadurch erfolgt insbesondere in Umfangsrichtung gesehen eine gleichmäßige Zuführung von Abgasteilströmen über die Zutrittsöffnungen 18 in den Mischbereich 8 und es können sich im Mischbereich 8 rotationssymmetrische Strömungsverhältnisse ausbilden. Dadurch kann sich das Spray 14 in dem Mischbereich 8 homogen ausbreiten, da insbesondere in Umfangsrichtung um die zentrale Hauptströmungsachse des Sprays 14, welche bei einer derartigen Anordnung im Wesentlichen der Längsmittelachse des Innenrohrs 6 entspricht, annähernd gleichmäßige Strömungs- und Druckverhältnisse vorliegen. Dies sorgt für ein homogenes Vermischen des Sprays 14 mit dem über die Zutrittsöffnungen 18 in Form von Abgasteilströmen zugeführten Abgas.
  • Da der aus axialer Richtung in das Abgaseinlassrohr 26 einströmende Abgaszustrom 32, welcher axial zu dem der Dosiereinrichtung 10 abgewandten axialen Ende strömt, sich zumindest zeitweise in diesem Endbereich des Abgaseinlassrohres 26 anstauen kann, ist der Abgasvolumenstrom, der durch die Austrittsöffnungen 28 strömt, die sich in diesem Bereich befinden, zumindest zeitweise größer, als der Abgasvolumenstrom, welcher durch die Austrittsöffnungen 28 eines dosiereinrichtungsnäheren Bereichs strömt.
  • Durch die stetige Abnahme der Anzahl der Zutrittsöffnungen 18 zu dem der Dosiereinrichtung 10 abgewandten axialen Ende des Innenrohrs 6 hin wird dennoch erreicht, dass das in das Innenrohr 6 strömende Abgas, auch axial entlang des gesamten mit Zutrittsöffnungen 18 versehenen Abschnitts, äußerst homogen in den Mischbereich 8 strömt. Dies wirkt sich weiter positiv auf gleichmäßige Strömungs- und Druckverhältnisse im Mischbereich 8 und somit auf das homogene Vermischen des Sprays 14 mit dem Abgas aus.
  • Weiterhin wird durch die dargestellte Ausrichtung der Zutrittsöffnungen 18 und damit insbesondere der jeweiligen Abgasleitelemente 20 teilweise eine Umlenkung der durch die Zutrittsöffnungen 18 strömenden Abgasteilströme hin zur Hauptinjektionsrichtung des Sprays 14 bewirkt. Die insbesondere im dosiereinrichtungsnahen Bereich abgelenkten Abgasteilströme erhalten also eine gewisse in Hauptinjektionsrichtung der Dosiereinrichtung 10 verlaufende Geschwindigkeitskomponente. Das trägt zusätzlich zu einem homogenen Vermischen des Sprays 14 mit dem Abgas bei, da insbesondere im dosiereinrichtungsnahen Bereich keine oder nur eine sehr geringe Ablenkung des Sprays 14 erfolgt.
  • Aus dem Innenrohr 6 und schließlich aus dem Gehäuse 4 strömt in axialer Richtung somit ein homogen vermischtes Spray-Abgas-Gemisch dem SCR-Katalysator zu.
  • 3 zeigt in einer schematischen Querschnittdarstellung gemäß Schnittlinie B-B die Mischvorrichtung aus 2. Hierbei ist insbesondere die Anordnung des Innenrohrs 6 in dem spiralförmigen Gehäuseabschnitt 22 zu erkennen. Aufgrund der durch die Spiralform in Umfangsrichtung bedingten Volumenverkleinerung des Zwischenraums zwischen Innenrohr 6 und Gehäusewand, wird dazu beigetragen, dass an der außen liegenden Mantelfläche 8 des Innenrohrs 6 entlang des Umfangs annähernd gleiche Druck- und Strömungsverhältnisse herrschen, wodurch eine möglichst gleichmäßige Zuführung des Abgases in den Mischbereich 8 erfolgen kann.
  • In 4 ist in einer schematischen Darstellung ein spiralförmiger Gehäuseabschnitt 22 einer alternativen Ausführungsform dargestellt. Hierbei ist zu erkennen, dass das Innenrohr 6 derart in dem spiralförmigen Gehäuseabschnitt 22 angeordnet ist, dass in Umfangsrichtung zwischen dem Innenrohr 6 und der Gehäusewand stets ein vom Verlauf der Spiralform abhängiger Abstand s ausgebildet ist. Hierdurch ist zwischen Innenrohr 6 und Gehäusewand in Umfangsrichtung gesehen stets ein Zwischenraum vorhanden und keine „Sackgasse” gebildet, an der sich einströmendes Abgas anstauen könnte. Dies trägt weiter positiv zu einem homogenen Strömungsverlauf durch den spiralförmigen Gehäuseabschnitt 22 bei. Der Krümmungsradius des spiralförmigen Gehäuseabschnitts 22 verhält sich gemäß folgender Spiralgleichung: r(☐) = (D + s)/2 + A – ☐/360·A
  • In dieser Gleichung bedeuten r der Krümmungsradius, D der Durchmesser des Innenrohrs 6, s der Abstand der Mantelfläche 8 des Innenrohrs 6 von der Gehäusewand des spiralförmigen Gehäuses 22 und A der Querschnitt der Zuströmöffnung des spiralförmigen Gehäuses.
  • 5 zeigt in einer schematischen Darstellung ein Innenrohr 6 in einer weiteren Ausführungsform. Hierbei sind die an der Mantelfläche 16 des Innenrohrs 6 angeordneten Zutrittsöffnungen 18 und die an den Zutrittsöffnungen 18 einstückig ausgebildeten Abgasleitelemente 20 dargestellt. Die Zutrittsöffnungen 18 und die Abgasleitelemente 20 sind aus einem in Richtung der Längsmittelachse des Innenrohrs 6 ausgerichteten Verlauf um einen Ausrichtungswinkel α „hinaus verdreht”. Der Ausrichtungswinkel α ist dabei zwischen einer Öffnungsachse 36 eines Abgasleitelements 20 und einer durch die Zutrittsöffnung 18 des Abgasleitelements 20 verlaufenden Mittellängsebene 38 des Innenrohres 6 eingeschlossen. Hierbei verläuft die Mittellängsebene 38 zum einen durch den Mittelpunkt der jeweiligen Zutrittsöffnung 18 und zum anderen durch die Längsmittelachse des Innenrohrs 6 und erstreckt sich entlang dieser Längsmittelachse. Bei einer Ausrichtung der Abgasleitelemente 20 gemäß einem Ausrichtungswinkel α von kleiner 90°, bewirken die Zutrittsöffnungen 18 und insbesondere die Abgasleitelemente 20 eine gewisse Umlenkung des durch die Zutrittsöffnungen 18 strömenden Abgasteilstroms hin zur Hauptinjektionsrichtung einer Dosiereinrichtung 10. Dabei nimmt der Ausrichtungswinkel α axial nach rechts hin, das heißt, axial zu einem einer Dosiereinrichtung 10 abgewandten Ende hin, zu. Die Größe der Ausrichtungswinkel α und insbesondere die Zunahme axial nach rechts hin, ist dabei insbesondere abhängig von der im Einzelfall eingesetzten Dosiereinrichtung 10 und Düse 12, sowie von den Abgasvolumenströmen, die durch die Zutrittsöffnungen 18 in den Mischbereich 8 des Innenrohrs 6 strömen.
  • 6 zeigt in einer schematischen Längsschnittdarstellung gemäß Schnittlinie E-E einen vergrößerten Ausschnitt des Innenrohrs aus 5. Hierbei sind die an der Mantelfläche 16 des Innenrohrs 6 angeordneten Zutrittsöffnungen 18 und insbesondere die an den Zutrittsöffnungen 18 einstückig ausgebildeten Abgasleitelemente 20 zu erkennen. An jeder Zutrittsöffnung 18 erstreckt sich ein Abgasleitelement 20 in einen Mischbereich 8 und ein weiteres Abgasleitelement 20 erstreckt sich in einen Zwischenraum zwischen Mantelfläche 16 des Innenrohrs 6 und einer Gehäusewand eines Gehäuses 4, in dem das Innenrohr 6 angeordnet ist. Dabei sind die jeweils beiden Abgasleitelemente 20 einer Zutrittsöffnung 18 derart geformt, dass sie, gesehen von einer Längsmittelachse des Innenrohrs 6 radial nach außen die Zutrittsöffnung möglichst blickdicht „verschließen”. Auf diese Weise wird ein Austritt eines durch eine Dosiereinrichtung 10 in einen im Inneren des Innenrohrs 6 gebildeten Mischbereich 8 besonders effektiv unterbunden. Die dargestellten Abgasleitelemente 20 stehen hierbei unter einem Neigungswinkel β aus der Grundmantelfläche des Innenrohrs 6, also aus der Mantelfläche 8 ohne Berücksichtigung der Abgasleitelemente 20, ab.
  • In 7 sind in einer schematischen Längsschnittdarstellung verschiedene Ausführungsformen eines Abgasleitelements 20 dargestellt, welche an Zutrittsöffnungen 18 einer Mantelfläche 16 eines Innenrohrs 6, welches in einem Gehäuse 4 eingebaut ist, angeordnet sind. In V1 ist nur ein Abgasleitelement 20 an einer Zutrittsöffnung 18 angeordnet, das sich in einen Zwischenraum zwischen der Mantelfläche 16 und einer Gehäusewand des Gehäuses 4 erstreckt. V2 zeigt eine Zutrittsöffnung 18, an der ein Abgasleitelement 20 angeordnet ist, das sich in einen innerhalb eines Innenrohrs 6 ausgebildeten Mischbereich 8 erstreckt. V3 entspricht der in 6 dargestellten Ausführungsform.
  • 8 zeigt in einer schematischen Längsschnittdarstellung eine Mischvorrichtung 2 in einer alternativen Ausführungsform. Hierbei entspricht die Mischvorrichtung 2 im Wesentlichen der in 1 bis 3 gezeigten Mischvorrichtung. Im Gegensatz dazu nimmt der Abstand zweier axial benachbarter Austrittsöffnungen 28 des Abgaseinlassrohrs 26 in axialer Richtung zu dem der Eintrittsöffnung 24 abgewandten axialen Ende des Abgaseinlassrohrs 26 hin zu. Folglich nimmt die Anzahl der Austrittsöffnungen 28 zu dem der Eintrittsöffnung 24 abgewandten Ende hin ab. Damit wird erreicht, dass der in das Abgaseinlassrohr 26 hineinströmende Abgaszustrom 32 entlang des gesamten mit Austrittsöffnungen 28 versehenen Abschnitts des Abgaseinlassrohrs 26 möglichst homogen in den spiralförmigen Gehäuseabschnitt 22 strömt.
  • Zudem weist die Mantelfläche 16 des Innenrohrs 6 im dosiereinrichtungsnahen Bereich einen umlaufenden Ringspalt auf, der als Bypasskanal 40 für das Abgas dient. Ein Leitelement 42 ist an der und koaxial zu der Dosiereinrichtung 10 angeordnet und ragt axial in den Mischbereich 8 des Innenrohrs 6 hinein. Das Leitelement 42 verhindert eine Beaufschlagung des Sprays 14 mit dem den Bypasskanal 40 passierenden Abgasteilstrom im dosiereinrichtungsnahen Bereich. Das Leitelement 42 lenkt ferner diesen Abgasteilstrom in die axiale Hauptinjektionsrichtung um. Hierzu ist das Leitelement 42 ringartig und vorzugsweise rotationssymmetrisch ausgebildet und in seinem Querschnitt an seiner Außenfläche zu dem der Dosiereinrichtung 10 abgewandten Ende hin verjüngend ausgebildet.
  • 9a9c zeigen in schematischen Längsschnittdarstellungen verschiedene Ausführungsformen eines Leitelements 42 und eines Innenrohrs 6 eines vergrößerten Ausschnitts C aus 8. Hierbei sind zum einen die verschieden ausgestalteten Zutrittsöffnungen 18 zu erkennen. Zum anderen sind die Leitelemente 42 insbesondere hinsichtlich ihrer axialen und/oder radialen Erstreckung unterschiedlich ausgestaltet.
  • Dabei ist die axiale Erstreckung des der Dosiereinrichtung 10 abgewandten Endbereichs 44 des in 9b gezeigten Leitelements 42 verhältnismäßig groß gewählt. Dadurch kann ein Kontakt oder eine Benetzung des der Dosiereinrichtung 10 abgewandten, radial innenseitigen Endbereichs 44 des Leitelements 42 mit dem Spray 14 realisiert werden. Eine geringfügige und/oder temporäre Benetzung der Innenwand 46 des Leitelements 42 ist insbesondere im abgasdurchströmten Zustand vorteilhaft. Dadurch, dass sich ein geringer Teil des Sprays 14 zumindest temporär an der Innenwand 46 des Leitelements 42 ansetzt, wird ein gewisser Flüssigkeitsspeicher realisiert. Die Dosiereinrichtung 10 arbeitet in der Regel zeitweise. Damit kann während der Nichteinspritzzeiträume ein „Abbau” der an der Innenwand 46 des Leitelements 42 befindlichen Flüssigkeit erreicht werden. Dieser Effekt wird dadurch begünstigt, dass das Leitelement 42 dünnwandig ist und/oder außenseitig von dem durch den Bypasskanal 40 strömenden Abgasteilstrom erwärmt wird, so dass sich auch die an den Wandabschnitten der Innenwand 46 befindliche Flüssigkeit erwärmt. Diese Wärme erleichtert den Abtrenneffekt und Aufspaltungseffekt (Sekundäraufbruch) der sich an dem Leitelement 42 innenseitig anlegenden Flüssigkeitströpfchen. Mit anderen Worten wird durch den gezielten geringfügigen temporären Wandkontakt des Sprays 14 die Mischfunktion der Mischvorrichtung 2 weiter begünstigt.
  • Über die Auslegung der axialen Erstreckung des Leitelements 42 und insbesondere dessen der Dosiereinrichtung 10 abgewandten Endbereichs 44 kann auf konstruktiv einfache und effektive Weise der Grad des temporären Anhaftens der Flüssigkeit eingestellt werden. In der Regel ist die Dosiereinrichtung 10 und damit der Spraywinkel sowie die Dichte der Flüssigkeit vorgegeben. Diese Parameter beeinflussen die Ausbreitungseigenschaften des Sprays 14 abhängig von dem Abgasvolumenstrom. Soll nun eine Flüssigkeit mit einer anderen Dichte und/oder eine Dosiereinrichtung 10 mit einem anderen Spraywinkel verbaut werden, so genügt es, wenn die Mischvorrichtung 2 durch Veränderung der axialen Erstreckung des Leitelements 42 und insbesondere dessen der Dosiereinrichtung 10 abgewandten Endbereichs 44 angepasst wird, um den oben beschriebenen Effekt (Sekundäraufbruch) einzustellen. Dies ermöglicht eine Modulbauweise und/oder ein Nachrüstsystem durch entsprechende Auswahl eines Leitelements 42 der bevorzugten axialen Erstreckung.
  • Bezugszeichenliste
  • 2
    Mischvorrichtung
    4
    Gehäuse
    6
    Innenrohr
    8
    Mischbereich
    10
    Dosiereinrichtung
    12
    Düse
    14
    Spray
    16
    Mantelfläche
    18
    Zutrittsöffnung
    20
    Abgasleitelement
    22
    spiralförmiger Gehäuseabschnitt
    24
    Eintrittsöffnung
    26
    Abgaseinlassrohr
    28
    Austrittsöffnung
    30
    Umfangsfläche
    32
    Abgaszustrom
    34
    Spray-Gas-Gemisch
    36
    Öffnungsachse
    38
    Mittellängsebene
    40
    Bypasskanal
    42
    Leitelement
    44
    Endbereich
    46
    Innenwand
    V1
    Variante 1
    V2
    Variante 2
    V3
    Variante 3
    α
    Ausrichtungswinkel
    β
    Neigungswinkel
    s
    Abstand
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • DE 4203807 A1 [0005]

Claims (15)

  1. Mischvorrichtung (2) zur Nachbehandlung von Abgasen in einer Abgasanlage einer Brennkraftmaschine, die ein Gehäuse (4) mit einer einen Eintrittsquerschnitt aufweisenden Eintrittsöffnung (24) und ein innerhalb des Gehäuses (4) angeordnetes Innenrohr (6) mit einem im Inneren des Innenrohres (6) ausgebildeten Mischbereich (8) umfasst, wobei an einer Stirnseite des Gehäuses (4) eine Dosiereinrichtung (10) zur Zuführung einer Flüssigkeit und/oder eines Flüssigkeit-Gas-Gemisches (14) angeordnet ist, und wobei das Innenrohr (6) an seiner Mantelfläche (16) Zutrittsöffnungen (18) aufweist, durch welche die Abgase in den Mischbereich (8) einleitbar sind, dadurch gekennzeichnet, dass das Gehäuse (4) einen spiralförmigen Gehäuseabschnitt (22) aufweist, wobei sich der spiralförmige Gehäuseabschnitt (22) zumindest entlang sämtlicher Zutrittsöffnungen (18) des Innenrohrs (6) erstreckt.
  2. Mischvorrichtung (2) nach Anspruch 1, dadurch gekennzeichnet, ein durch die Zutrittsöffnungen (18) gebildeter Durchtrittsquerschnitt zu dem der Dosereinrichtung (10) abgewandten axialen Ende des Innenrohrs (6) hin abnimmt.
  3. Mischvorrichtung (2) nach Anspruch 2, dadurch gekennzeichnet, dass die Anzahl der Zutrittsöffnungen (18) zu dem der Dosiereinrichtung (10) abgewandten axialen Ende des Innenrohrs (6) hin zumindest bereichsweise abnimmt.
  4. Mischvorrichtung (2) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Querschnittsfläche der Zutrittsöffnungen (18) zu dem der Dosiereinrichtung (10) abgewandten axialen Ende hin zumindest bereichsweise abnimmt.
  5. Mischvorrichtung (2) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sich ein Abgaseinlassrohr (26) zumindest teilweise in das Gehäuse (4) erstreckt, wobei die Längsmittelachse des Abgaseinlassrohres (26) und die Längsmittelachse des Innenrohres (6) im Wesentlichen parallel zueinander ausgerichtet sind.
  6. Mischvorrichtung (2) nach Anspruch 5, dadurch gekennzeichnet, dass sich das Abgaseinlassrohr (26) innerhalb des Gehäuses (4) zumindest entlang des spiralförmigen Gehäuseabschnitts (22) erstreckt, wobei das Abgaseinlassrohr (26) an seiner sich entlang des spiralförmigen Gehäuseabschnitts (22) erstreckenden Umfangsfläche (30) Austrittsöffnungen (28) aufweist.
  7. Mischvorrichtung (2) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Innenrohr (6) kreiszylinderförmig oder konusförmig ausgebildet ist.
  8. Mischvorrichtung (2) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Zutrittsöffnungen (18) mit Abgasleitelementen (20) versehen sind, welche aus der Haupterstreckung der Mantelfläche (16) abstehen.
  9. Mischvorrichtung (2) nach Anspruch 8, dadurch gekennzeichnet, dass sich die Abgasleitelemente (20) zumindest in den Mischbereich (8) erstrecken.
  10. Mischvorrichtung (2) nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass die Abgasleitelemente (20) einstückig an der Mantelfläche (16) des Innenrohrs (6) ausgebildet sind.
  11. Mischvorrichtung (2) nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass die Projektion einer Öffnungsachse (36) des Abgasleitelements (20) auf eine durch die Zutrittsöffnung (18) des Abgasleitelements (20) verlaufende Mittellängsebene (38) des Innenrohres (6) mit der Längsmittelachse des Innenrohres (6) einen Neigungswinkel (β) von 5° bis 90°, bevorzugt von 30° bis 50°, besonders bevorzugt von 35° bis 40° einschließt.
  12. Mischvorrichtung (2) nach einem der Ansprüche 8 bis 11, dadurch gekennzeichnet, dass eine Öffnungsachse (36) des Abgasleitelements (20) mit einer durch die Zutrittsöffnung (18) des Abgasleitelements (20) verlaufenden Mittellängsebene (38) des Innenrohres (6) einen Ausrichtungswinkel (α) von 0° bis 90°, bevorzugt von 10° bis 90°, besonders bevorzugt von 20° bis 90° einschließt.
  13. Mischvorrichtung (2) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Dosiereinrichtung (10) koaxial zu der Längsmittelachse des Innenrohrs (6) angeordnet ist.
  14. Mischvorrichtung (2) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der durch die Zutrittsöffnungen (18) gebildete Durchtrittsquerschnitt 80% bis 300% des Eintrittsquerschnitts der Eintrittsöffnung (24), bevorzugt 90% bis 250% beträgt.
  15. Verfahren zum Mischen eines Abgases mit einer Flüssigkeit und/oder einem Flüssigkeit-Gas-Gemisches unter Verwendung einer Mischvorrichtung (2) nach einem der Ansprüche 1 bis 14.
DE102012014334.6A 2012-07-20 2012-07-20 Mischvorrichtung zur Nachbehandlung von Abgasen Withdrawn DE102012014334A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE102012014334.6A DE102012014334A1 (de) 2012-07-20 2012-07-20 Mischvorrichtung zur Nachbehandlung von Abgasen
EP13002561.2A EP2687697B1 (de) 2012-07-20 2013-05-16 Mischvorrichtung zur Nachbehandlung von Abgasen
BR102013018004-1A BR102013018004B1 (pt) 2012-07-20 2013-07-15 dispositivo de mistura para tratamento posterior de gases de descarga
RU2013133962A RU2628849C2 (ru) 2012-07-20 2013-07-19 Смешивающее устройство для последующей обработки отработанного газа
CN201310307825.3A CN103573351B (zh) 2012-07-20 2013-07-22 用于后处理排气的混合装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102012014334.6A DE102012014334A1 (de) 2012-07-20 2012-07-20 Mischvorrichtung zur Nachbehandlung von Abgasen

Publications (1)

Publication Number Publication Date
DE102012014334A1 true DE102012014334A1 (de) 2014-05-15

Family

ID=48444031

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102012014334.6A Withdrawn DE102012014334A1 (de) 2012-07-20 2012-07-20 Mischvorrichtung zur Nachbehandlung von Abgasen

Country Status (5)

Country Link
EP (1) EP2687697B1 (de)
CN (1) CN103573351B (de)
BR (1) BR102013018004B1 (de)
DE (1) DE102012014334A1 (de)
RU (1) RU2628849C2 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013114111A1 (de) * 2013-12-16 2015-06-18 Tenneco Gmbh Mischrohranordnung mit Gehäuse
EP3067529A1 (de) 2015-03-10 2016-09-14 MAN Truck & Bus AG Vorrichtung zur nachbehandlung von abgas eines kraftfahrzeugs
DE102016224617A1 (de) * 2016-12-09 2018-06-14 Man Diesel & Turbo Se Mischvorrichtung für ein Abgasnachbehandlungssystem, Abgasnachbehandlungssystem und Brennkraftmaschine
JP2021025482A (ja) * 2019-08-07 2021-02-22 日新工業株式会社 排気浄化装置、流路形成部材、及び筒状部材
WO2024122245A1 (ja) * 2022-12-06 2024-06-13 株式会社 三五 排気浄化装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5802878B2 (ja) * 2014-03-06 2015-11-04 有限会社トリビオックス・ラボラトリーズ マイクロナノバブル発生装置
DE202014102872U1 (de) 2014-06-10 2014-07-09 Tenneco Gmbh Abgasmischer
US9718037B2 (en) 2014-12-17 2017-08-01 Caterpillar Inc. Mixing system for aftertreatment system
DE102015103303B3 (de) * 2015-03-06 2016-09-01 Tenneco Gmbh Mix Box
DE102015005689B3 (de) * 2015-05-06 2016-03-24 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Mischeinrichtung
US10040028B2 (en) * 2015-11-04 2018-08-07 Ford Global Technologies, Llc Methods and systems for a mixer
GB2557651B (en) 2016-12-14 2019-08-21 Perkins Engines Co Ltd Pipe mixer for an aftertreatment system
CN107165704A (zh) * 2017-07-27 2017-09-15 天纳克(苏州)排放系统有限公司 发动机排气后处理混合装置及其后处理装置与应用
JP2021504627A (ja) * 2017-12-01 2021-02-15 アー・ファウ・エル・リスト・ゲー・エム・ベー・ハーAvl List Gmbh 排ガス後処理システム
CN107939488B (zh) * 2017-12-23 2020-03-17 无锡威孚力达催化净化器有限责任公司 车用尾气处理用尿素混合装置
DE102018219851A1 (de) * 2018-11-20 2020-05-20 Robert Bosch Gmbh Abgasnachbehandlungseinrichtung
CN111672263A (zh) * 2020-05-23 2020-09-18 江西馨源香料有限公司 一种应用于香料废气处理装置
CN115608102B (zh) * 2022-01-27 2023-11-17 江苏希捷新能源工程技术有限公司 一种核电站废气处理系统的使用方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4203807A1 (de) 1990-11-29 1993-08-12 Man Nutzfahrzeuge Ag Vorrichtung zur katalytischen no(pfeil abwaerts)x(pfeil abwaerts)-reduktion

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1323501A (fr) * 1956-10-17 1963-04-12 Appareil mélangeur atomiseur
DE4012411A1 (de) * 1990-04-19 1991-10-24 Webasto Ag Fahrzeugtechnik Mit abgas einer brennkraftmaschine betreibbarer brenner zur regenerierung einer partikelfiltereinrichtung
DE19913462A1 (de) * 1999-03-25 2000-09-28 Man Nutzfahrzeuge Ag Verfahren zur thermischen Hydrolyse und Dosierung von Harnstoff bzw. wässriger Harnstofflösung in einem Reaktor
US6722123B2 (en) * 2001-10-17 2004-04-20 Fleetguard, Inc. Exhaust aftertreatment device, including chemical mixing and acoustic effects
CN101203664B (zh) * 2005-04-13 2010-12-01 格兰富Nonox公司 一种用于混合尿素和空气的混合装置
DE102009053950A1 (de) * 2009-11-19 2011-05-26 Man Nutzfahrzeuge Aktiengesellschaft Vorrichtung zur Nachbehandlung von Abgasen von Brennkraftmaschinen
ES2434865T3 (es) * 2009-12-16 2013-12-17 Iveco Motorenforschung Ag Procedimiento para dosificar un agente reductor a base de urea en una corriente de escape de gas.
US8539761B2 (en) * 2010-01-12 2013-09-24 Donaldson Company, Inc. Flow device for exhaust treatment system
WO2011163395A1 (en) * 2010-06-22 2011-12-29 Donaldson Company, Inc. Dosing and mixing arrangement for use in exhaust aftertreatment
DE102010056314A1 (de) * 2010-12-27 2012-06-28 Friedrich Boysen Gmbh & Co. Kg Vorrichtung zum Verteilen von Fluiden in Abgasanlagen
CN202360191U (zh) * 2011-09-26 2012-08-01 杭州银轮科技有限公司 一种用于柴油机尾气处理的scr催化转化器
CN102671322A (zh) * 2012-06-06 2012-09-19 孟欣佳 一种空气过滤器

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4203807A1 (de) 1990-11-29 1993-08-12 Man Nutzfahrzeuge Ag Vorrichtung zur katalytischen no(pfeil abwaerts)x(pfeil abwaerts)-reduktion

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10072550B2 (en) 2013-12-16 2018-09-11 Tenneco Gmbh Mixing pipe arrangement with housing
DE102013114111A1 (de) * 2013-12-16 2015-06-18 Tenneco Gmbh Mischrohranordnung mit Gehäuse
CN105971697B (zh) * 2015-03-10 2019-12-06 曼卡车和巴士股份公司 用于来自机动车辆的排出气体的后处理的装置
CN105971697A (zh) * 2015-03-10 2016-09-28 曼卡车和巴士股份公司 用于来自机动车辆的排出气体的后处理的装置
US9982584B2 (en) 2015-03-10 2018-05-29 Man Truck & Bus Ag Device for the aftertreatment of exhaust gas from a motor vehicle
DE102015002974A1 (de) 2015-03-10 2016-09-15 Man Truck & Bus Ag Vorrichtung zur Nachbehandlung von Abgas eines Kraftfahrzeugs
EP3067529A1 (de) 2015-03-10 2016-09-14 MAN Truck & Bus AG Vorrichtung zur nachbehandlung von abgas eines kraftfahrzeugs
DE102016224617A1 (de) * 2016-12-09 2018-06-14 Man Diesel & Turbo Se Mischvorrichtung für ein Abgasnachbehandlungssystem, Abgasnachbehandlungssystem und Brennkraftmaschine
KR20180066854A (ko) * 2016-12-09 2018-06-19 만 디젤 앤 터보 에스이 배기 가스 후처리 시스템을 위한 혼합 장치, 배기 가스 후처리 시스템 및 내연 기관
JP2018105301A (ja) * 2016-12-09 2018-07-05 マン・ディーゼル・アンド・ターボ・エスイー 排ガス後処理システムのための混合装置、排ガス後処理システム及び内燃機関
KR102326459B1 (ko) * 2016-12-09 2021-11-12 만 에너지 솔루션즈 에스이 배기 가스 후처리 시스템을 위한 혼합 장치, 배기 가스 후처리 시스템 및 내연 기관
JP2021025482A (ja) * 2019-08-07 2021-02-22 日新工業株式会社 排気浄化装置、流路形成部材、及び筒状部材
WO2024122245A1 (ja) * 2022-12-06 2024-06-13 株式会社 三五 排気浄化装置

Also Published As

Publication number Publication date
EP2687697A2 (de) 2014-01-22
CN103573351A (zh) 2014-02-12
RU2628849C2 (ru) 2017-08-22
BR102013018004A2 (pt) 2015-06-30
EP2687697A3 (de) 2017-06-28
RU2013133962A (ru) 2015-01-27
EP2687697B1 (de) 2022-07-06
CN103573351B (zh) 2019-08-06
BR102013018004B1 (pt) 2021-05-04

Similar Documents

Publication Publication Date Title
EP2687697B1 (de) Mischvorrichtung zur Nachbehandlung von Abgasen
DE102014222698B4 (de) Abgasnachbehandlungseinrichtung mit Injektionsabschnitt
EP2691618B1 (de) Kompakte abgasbehandlungseinheit mit mischbereich und verfahren zur vermischung eines abgases
EP2266681B1 (de) Abgasanlage mit Reduktionsmittelzufuhr und Filterelement mit SCR-Katalysator
EP2598730B1 (de) Vorrichtung zur motornahen abgasbehandlung
EP3478947B1 (de) Mischervorrichtung für ein abgasnachbehandlungssystem eines kraftfahrzeugs, abgasnachbehandlungssystem und kraftfahrzeug
DE112016000450T5 (de) Abgasnachbehandlungssystem mit einer Mischeranordnung
DE102020124106A1 (de) Kraftfahrzeugabgasnachbehandlungssystem
WO2013010700A1 (de) Anordnung zum einbringen eines zusatzstoffes in einen gasstrom
EP3443209B1 (de) Abgasnachbehandlungsvorrichtung mit katalysator und mischvorrichtung
DE102010021438A1 (de) Abgasnachbehandlungsvorrichtung
DE102011013335A1 (de) Abgasanlage einer Brennkraftmaschine
DE112017007124T5 (de) Injektorsprühschutz
DE102012014333A1 (de) Mischvorrichtung zur Nachbehandlung von Abgasen
EP2334916B1 (de) Anordnung und verfahren zur abgasreinigung mittels eines reduktionsmittels
DE102013211662A1 (de) Mischereinrichtung
DE112020004364T5 (de) Abgas- und reduktionsmittelmischer für ein nachbehandlungssystem
WO2000008314A1 (de) Abgasanlage mit einer vorrichtung zur katalytischen nox-reduktion und einem aus fasern bestehenden katalysatorträgerkörper
EP3752721B1 (de) Abgasnachbehandlungseinrichtung zum eindosieren eines flüssigen abgasnachbehandlungsmittels
EP2325450B1 (de) Vorrichtung zur Nachbehandlung von Abgasen einer Brennkraftmaschine
WO2006056499A1 (de) Gasbeaufschlagungsvorrichtung
DE102013200008A1 (de) Dosiermodul zum druckluftunterstützten Eindosieren eines Reduktionsmittels in den Abgasstrang einer Brennkraftmaschine eines Kraftfahrzeuges
DE102015015029A1 (de) Abgasunterstütztes Zersetzungsreaktorrohr
DE102008022998B4 (de) Vorrichtung und Verfahren zur Reinigung von Abgasen für einen Abgasstrang einer Brennkraftmaschine
DE102015209165B4 (de) Abgasbehandlungseinrichtung für eine Brennkraftmaschine

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R079 Amendment of ipc main class

Free format text: PREVIOUS MAIN CLASS: F01N0003100000

Ipc: F01N0003280000

R081 Change of applicant/patentee

Owner name: MAN TRUCK & BUS SE, DE

Free format text: FORMER OWNER: MAN TRUCK & BUS AG, 80995 MUENCHEN, DE

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee