DE102011078605A1 - Temperature-stable component made of a refractory metal and method for the production thereof - Google Patents

Temperature-stable component made of a refractory metal and method for the production thereof Download PDF

Info

Publication number
DE102011078605A1
DE102011078605A1 DE201110078605 DE102011078605A DE102011078605A1 DE 102011078605 A1 DE102011078605 A1 DE 102011078605A1 DE 201110078605 DE201110078605 DE 201110078605 DE 102011078605 A DE102011078605 A DE 102011078605A DE 102011078605 A1 DE102011078605 A1 DE 102011078605A1
Authority
DE
Germany
Prior art keywords
metal
refractory metal
component
refractory
oxide layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE201110078605
Other languages
German (de)
Inventor
Steffen Walter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to DE201110078605 priority Critical patent/DE102011078605A1/en
Priority to PCT/EP2012/062800 priority patent/WO2013004648A1/en
Publication of DE102011078605A1 publication Critical patent/DE102011078605A1/en
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/30Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes using a layer of powder or paste on the surface
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/30Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes using a layer of powder or paste on the surface
    • C23C10/32Chromising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/34Embedding in a powder mixture, i.e. pack cementation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/34Embedding in a powder mixture, i.e. pack cementation
    • C23C10/36Embedding in a powder mixture, i.e. pack cementation only one element being diffused
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/34Embedding in a powder mixture, i.e. pack cementation
    • C23C10/36Embedding in a powder mixture, i.e. pack cementation only one element being diffused
    • C23C10/38Chromising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/34Embedding in a powder mixture, i.e. pack cementation
    • C23C10/36Embedding in a powder mixture, i.e. pack cementation only one element being diffused
    • C23C10/48Aluminising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/60After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/12Oxidising using elemental oxygen or ozone
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
    • C23C8/42Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions only one element being applied
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment

Abstract

Die Erfindung betrifft ein Bauteil aus sehr hochschmelzendem Metall, so genanntem Refraktärmetall, das gegenüber der Zersetzung an Luft bei Temperaturen oberhalb 300°C verbesserte Stabilität zeigt. Zudem betrifft die Erfindung ein Verfahren zur Stabilisierung eines derartigen Bauteils. Dabei wird die Oxidbildung des Refraktärmetalls zugunsten der Oxidbildung eines vorher eingebrachten Metalls unterdrückt.The invention relates to a component of very high-melting metal, so-called refractory metal, which shows improved stability to the decomposition in air at temperatures above 300 ° C. In addition, the invention relates to a method for stabilizing such a component. The oxide formation of the refractory metal is suppressed in favor of the oxide formation of a previously introduced metal.

Description

Die Erfindung betrifft ein Bauteil aus sehr hochschmelzendem Metall, so genanntem Refraktärmetall, das gegenüber der Zersetzung an Luft bei Temperaturen oberhalb 300°C verbesserte Stabilität zeigt. Zudem betrifft die Erfindung ein Verfahren zur Stabilisierung eines derartigen Bauteils. The invention relates to a component of very high-melting metal, so-called refractory metal, which shows improved stability to the decomposition in air at temperatures above 300 ° C. In addition, the invention relates to a method for stabilizing such a component.

Bekannt sind die Refraktärmetalle schon seit längerem als besonders hochschmelzende Metalle, die vorteilhaft sind für viele technischen Anwendungen, weil sie neben dem niedrigen Schmelzpunkt auch noch einen niedrigen Wärmeausdehnungskoeffizient haben, gepaart mit einer hohen Leitfähigkeit für Wärme und Strom. The refractory metals have long been known as particularly high-melting metals, which are advantageous for many technical applications, because in addition to the low melting point, they also have a low coefficient of thermal expansion, coupled with a high conductivity for heat and electricity.

Nachteilig an den Bauteilen aus Refraktärmetall ist jedoch, dass sie zwar den hohen Schmelzpunkt haben, aber an Luftsauerstoff bei Temperaturen über 300 °C Oxide bilden, die flüchtig sind und verdampfen. Deshalb zersetzen sich diese Refraktärmetalle bei Temperaturen ab 300°C an Luft unter Oxidbildung. A disadvantage of the components of refractory metal, however, is that although they have the high melting point, but form at atmospheric oxygen at temperatures above 300 ° C oxides that are volatile and evaporate. Therefore, these refractory metals decompose at temperatures above 300 ° C in air to form oxides.

Aufgabe der vorliegenden Erfindung ist es daher, ein Verfahren anzugeben, durch das der technische Einsatz von Refraktärmetallen an Luftsauerstoff unter Normalbedingungen möglich ist. Außerdem ist Gegenstand der vorliegenden Erfindung ein an Luftsauerstoff bei Temperaturen oberhalb 300°C stabiles Bauteil aus einem Refraktärmetall zu schaffen. Object of the present invention is therefore to provide a method by which the technical use of refractory metals of atmospheric oxygen under normal conditions is possible. In addition, the present invention is an object of atmospheric oxygen at temperatures above 300 ° C stable component of a refractory metal to create.

Lösung der Aufgaben und der Gegenstand der vorliegenden Erfindung ist in der Beschreibung und den Ansprüchen offenbart. Solution to the objects and object of the present invention is disclosed in the specification and claims.

Dementsprechend ist Gegenstand der vorliegenden Erfindung ein Bauteil, ein Refraktärmetall umfassend, wobei die Oberfläche des Refraktärmetalls mit einer Metalloxidschicht überzogen ist, deren Dicke im Bereich von 1–15 µm liegt und die diese Oberfläche gegenüber Luftsauerstoff passiviert. Zudem ist Gegenstand der Erfindung ein Verfahren zur Passivierung eines Bauteils aus Refraktärmetall durch Bildung einer 1–15 µm dicken Metalloxidschicht auf dem Refraktärmetall, gekennzeichnet durch die folgenden Verfahrensschritte:

  • a) Anreicherung von elementarem Metall M an der Oberfläche des Refraktärmetalls R in Inertgasatmosphäre und dabei Bildung einer Metall-Itierungsschicht von RxMy-Verbindungen auf der Oberfläche und/oder im Randbereich des Refraktärmetalls, wobei R für Refraktärmetall, also die schweren Elemente aus der 4. 5. 6. und 7. Nebengruppe, steht und M für ein anderes, eine Passivierungsschicht auf dem Refraktärmetall bildendes, Metall,
  • b) Diffusion von Halogenid-Ionen in die Metall-Itierungsschicht und darauf folgende
  • c) Temperung des behandelten Bauteils an Luftsauerstoff.
Accordingly, the subject of the present invention is a component comprising a refractory metal, wherein the surface of the refractory metal is coated with a metal oxide layer whose thickness is in the range of 1-15 microns and passivates this surface to atmospheric oxygen. In addition, the invention provides a process for passivating a refractory metal component by forming a 1-15 μm thick metal oxide layer on the refractory metal, characterized by the following process steps:
  • a) accumulation of elemental metal M on the surface of the refractory metal R in an inert gas atmosphere and thereby forming a metal-Itierungsschicht of R x M y compounds on the surface and / or in the edge region of the refractory metal, wherein R for refractory metal, ie the heavy elements of the 4th, 5th, 6th and 7th subgroups, and M stands for another, a passivation layer on the refractory metal-forming metal,
  • b) Diffusion of halide ions into the metal iti fi cation layer and subsequent
  • c) tempering of the treated component of atmospheric oxygen.

Die Gruppe der hier gemeinten schweren Refraktärmetalle umfasst grundsätzlich die nicht-radioaktiven Elemente der 4. bis 7. Nebengruppe, also Zirkon, Hafnium, Vanadium, Niob, Tantal, Molybdän, Wolfram, Mangan und Rhenium, wobei bislang bekannt, ist, dass die Oxide des Molybdäns (MoO3), des Wolframs (WoO3) und des Rheniums (ReO3) flüchtige Oxid-Verbindungen bilden, die bei Temperaturen über 300°C und unter 700°C verdampfen (Pestverhalten). Insbesondere die Refraktärmetalle, die bei diesen Temperaturen flüchtige Oxide bilden, ansonsten aber technisch gut einsetzbar wären, sind mit dem Begriff „Refraktärmetall“ im vorliegenden Fall gemeint. Die Gruppe kann nicht abschließend benannt werden, da manche Oxide und manche Verwertbarkeiten der Metalle noch nicht erkannt sind und daher auch nicht zugeordnet werden können. The group of heavy refractory metals referred to here basically comprises the non-radioactive elements of the 4th to 7th subgroups, ie zirconium, hafnium, vanadium, niobium, tantalum, molybdenum, tungsten, manganese and rhenium, it being previously known that the oxides of molybdenum (MoO3), tungsten (WoO3) and rhenium (ReO 3 ) form volatile oxide compounds which evaporate at temperatures above 300 ° C and below 700 ° C (pest behavior). In particular, the refractory metals, which form volatile oxides at these temperatures, but would otherwise be technically easy to use, are meant by the term "refractory metal" in the present case. The group can not be named conclusively, since some oxides and some usabilities of the metals are not yet recognized and therefore can not be assigned.

Durch die Bildung einer Metalloxidschicht auf der Oberfläche des Refraktärmetalls wird die Bildung des Refraktärmetalloxids verhindert und somit das Refraktärmetall an Luft bei hohen Temperaturen stabilisiert. Dadurch sind Einsatzgebiete des Refraktärmetalls bis zu 1100°C möglich. Bei höheren Temperaturen kann der Refraktärmetall-Grundkörper mit Oxidschicht so tiefe Risse bekommen, dass die Eindiffusion von Sauerstoff bis in den Grundkörper erfolgt und dadurch wieder die Zersetzung durch das flüchtige Oxid stattfinden kann. The formation of a metal oxide layer on the surface of the refractory metal prevents the formation of the refractory metal oxide and thus stabilizes the refractory metal in air at high temperatures. As a result, applications of the refractory metal up to 1100 ° C are possible. At higher temperatures, the refractory metal base body with oxide layer can get such deep cracks that the diffusion of oxygen into the base body takes place, which in turn can cause the decomposition by the volatile oxide.

Als Metalle für die Bildung der Metalloxidschicht kommen prinzipiell alle Metalle in Frage, die auf Oberflächen passivierende stabile Oxidschichten ausbilden. Dazu zählen insbesondere das Aluminium, Chrom, Platin etc. Ein so genannter Allitierungsprozess in der Randzone kann entsprechend durch einen Chromierungsprozess oder auch Platinierungsprozess ersetzt werden. In diesem Fall wird vorliegend einfach von einem „Metall-Itierungsprozess“ gesprochen. Entsprechend des Verfahrens kommt es zu einer Chrom-reichen oder Platinreichen Randschicht und somit nach der Behandlung mit Halogenid zur Ausbildung der entsprechenden Oxide als Schutzschicht. In principle, all metals which form passivating stable oxide layers on surfaces can be considered as metals for the formation of the metal oxide layer. These include, in particular, aluminum, chromium, platinum, etc. A so-called alliteration process in the edge zone can be replaced by a chromating process or a platination process. In this case, this is simply referred to as a "metal-iting process". According to the method, there is a chromium-rich or platinum-rich surface layer and thus after treatment with halide to form the corresponding oxides as a protective layer.

Nach einer vorteilhaften Ausführungsform des Verfahrens wird die Halogenidbehandlung des Refraktärmetalls mit Fluor durchgeführt. According to an advantageous embodiment of the method, the halide treatment of the refractory metal is carried out with fluorine.

Insbesondere die Behandlung im wässrigen Bad hat sich dabei als vorteilhaft erwiesen, wobei das Fluorid als Flusssäure, also als HF-Bad, beispielsweise, in einer Konzentration von 0,01 bis 1%, insbesondere von 0,1 bis 0,9 und insbesondere bevorzugt im Bereich von 0,3 bis 0,75 vorliegt. In particular, the treatment in an aqueous bath has proven to be advantageous, wherein the fluoride as hydrofluoric acid, ie as HF bath, for example, in a concentration of 0.01 to 1%, in particular from 0.1 to 0.9 and particularly preferred in the range of 0.3 to 0.75.

Nach einer weiteren vorteilhaften Ausführungsform des Verfahrens wird das Einbringen des das Metalloxid bildenden Metalls in die Randzone des Refraktärmetalls, also beispielsweise die Alitierung, in einem Temperaturbereich zwischen 600 °C und 1000°C durchgeführt. According to a further advantageous embodiment of the method, the introduction of the metal oxide-forming metal into the edge zone of the refractory metal, that is, for example, the alitization, carried out in a temperature range between 600 ° C and 1000 ° C.

Nach einer weiteren vorteilhaften Ausführungsform des Verfahrens wird dabei als Schutzgas Argon eingesetzt. According to a further advantageous embodiment of the method, argon is used as protective gas.

Nach einer weiteren vorteilhaften Ausführungsform des Verfahrens wird die Temperung als thermische Auslagerung zur Bildung vom Metalloxid, also beispielsweise von Al2O3, zwischen 500°C und 900°C an Luft durchgeführt. According to a further advantageous embodiment of the method, the heat treatment is carried out as thermal aging to form the metal oxide, that is, for example, Al 2 O 3 , between 500 ° C and 900 ° C in air.

Im Folgenden wird die Erfindung noch anhand eines Beispiels näher erläutert:
Die Alitierung (Alitierung bedeutet „mit Al eine Elementverbindung bildend“) von Versuchsproben, wie beispielsweise Mo-Stiften, erfolgt im Pulverbett bei 900°C für 4 Stunden in Argon-Atmosphäre. Das Pulverbett ist beispielsweise eine Mischung aus Aluminium Dampfphase und Aluminiumoxid-Pulver, welches mit Ammoniumchlorid NH4Cl versetzt wurde. Nach dem Alitierungsprozess bildet sich eine Al-reiche Randzone im Mo-Stift, da Aluminium in die Randzone des Mo-Stifts eindiffundiert und dabei die Al-reiche Phase Mo3O8 ausbildet. Das konnte durch entsprechende REM-Aufnahmen belegt werden.
The invention will be explained in more detail below with reference to an example:
The alitization (alitating means "Al forming an element compound") of experimental samples such as Mo-pins is carried out in the powder bed at 900 ° C for 4 hours in an argon atmosphere. The powder bed is, for example, a mixture of aluminum vapor phase and alumina powder, which has been mixed with ammonium chloride NH 4 Cl. After Alitierungsprozess an Al-rich edge zone forms in the Mo-pin, as aluminum diffuses into the edge zone of the Mo-pin and thereby forms the Al-rich phase Mo 3 O 8 . This could be proven by appropriate SEM images.

Die Diffusion von Fluorid-Ionen in die Randzone erfolgt im HF-Bad, wobei die HF-Badkonzentration variieren kann und Werte bis zu 5% annehmen kann. Die Diffusion dauert von 10 Minuten bis zu mehrere Stunden, beispielsweise liegt sie im Bereich von 25 Min bis 5 Stunden. The diffusion of fluoride ions into the edge zone takes place in the HF bath, wherein the HF bath concentration can vary and can assume values of up to 5%. The diffusion lasts from 10 minutes to several hours, for example in the range of 25 minutes to 5 hours.

Abschließend wird der so behandelte Mo-Stift bei Temperaturen zwischen 500°C und 900°C ausgelagert. Während der oxidativen Temperaturbehandlung kommt es in der Randzone zur Bildung von AlF3 und MoF3, wobei die Kinetik der AlF3-Bildung begünstigt ist und das AlF3 zur Oberfläche diffundiert. AlF3 reagiert mit dem Luftsauerstoff und bildet Al2O3 und F, wobei F wieder in die Randzone eindringt und von neuem mit Al reagieren kann. Dabei bildet sich an der Oberfläche der Mo-Stifte eine Al2O3-Schutzschicht aus, die den Angriff von Sauerstoff auf das Molybdän unterbindet. Finally, the treated Mo-pin at temperatures between 500 ° C and 900 ° C outsourced. During the oxidative temperature treatment, AlF 3 and MoF 3 are formed in the peripheral zone, favoring the kinetics of AlF 3 formation and diffusing AlF 3 to the surface. AlF 3 reacts with atmospheric oxygen to form Al 2 O 3 and F, whereby F re-enters the boundary zone and can react with Al again. An Al 2 O 3 protective layer forms on the surface of the Mo pins, which prevents the attack of oxygen on the molybdenum.

Entsprechend wird während der oxidativen Auslagerung der Mo-Stift nicht zerstört, was normalerweise, bei einem unbeschichteten Mo-Stift passieren würde. Similarly, during oxidative aging, the Mo pin is not destroyed, which would normally happen with an uncoated Mo pin.

Durch die vorliegende Erfindung wird erstmals gezeigt, wie durch einen Metall-Itierungsschritt mit anschließender Diffusion von Halogenid-Ionen ein Refraktärmetall bei hohen Temperaturen an Luft stabilisiert wird. The present invention shows for the first time how a refractory metal is stabilized in air at high temperatures by means of a metal-iting step with subsequent diffusion of halide ions.

Durch den Metall-Itierungsprozess, wie dem Alitierungsprozess, wird beispielsweise der Al-Gehalt in der Randzone eines Bauteils aus Refraktärmetall so stark erhöht, dass der Al-Gehalt ausreicht, um eine Passivierungsschicht aus Al2O3 zu bilden. For example, the metal-etching process, such as the alitization process, increases the Al content in the edge zone of a refractory metal component to such an extent that the Al content is sufficient to form a passivation layer of Al 2 O 3 .

Um die Kinetik, die normalerweise die Zerstörung des Refraktärmetalls gegenüber dem Ausbilden einer Fremdmetalloxidschicht begünstigen würde, umzudrehen, wird der Umweg über die Alitierung genommen. So erreicht man, dass die schützende Passivierungsschicht vor der zerstörerischen Refraktär-Metallschicht, die bei hohen Temperaturen verdampft, gebildet wird und die Ausbildung letzterer verhindert. In order to reverse the kinetics which would normally favor the destruction of the refractory metal over the formation of a foreign metal oxide layer, the detour via alitization is taken. Thus, it is achieved that the protective passivation layer is formed before the destructive refractory metal layer which evaporates at high temperatures and prevents the formation of the latter.

Im konkreten Fall ist beispielsweise die kinetisch begünstigte MoO3 Oxidbildung viel rascher als die der Aluminiumoxidbildung. Zudem sind die Oxide der Refraktärmetalle viel weniger kompakt, so dass sie ein größeres Volumen einnehmen. Durch die Diffusion der Fluor-Ionen in den alitierten Randbereich, also in den Mo-Stift, in welchem hauptsächlich Mo3F8 entstanden ist, wird nun die Kinetik zur Bildung von Al2O3 begünstigt, womit sich sehr schnell eine Al-Oxidschicht aufbauen kann und das Refraktärmetall gegen weiteren Angriff durch Luftsauerstoff passiviert ist. Diese Schutzschicht reicht aus, um das Bauteil dauerhaft in einem Temperaturbereich zwischen 700 und 1100°C relativ wirksam gegen Oxidation zu schützen. Darüber hinaus bietet die so hergestellte Oberfläche auch einen gewissen Selbstheilungsprozess, weil Beschädigungen, wie kleine und nicht bis aufs Grundmaterial reichende Risse, durch die Nachbildung von Al2O3 an Luft wieder geheilt werden. In the specific case, for example, the kinetically favored MoO 3 oxide formation is much faster than that of alumina formation. In addition, the oxides of the refractory metals are much less compact, so they take up a larger volume. Due to the diffusion of fluorine ions in the alitierten edge region, ie in the Mo-pen, in which mainly Mo 3 F 8 was formed, now the kinetics for the formation of Al 2 O 3 is favored, which very quickly an Al-oxide layer can build up and the refractory metal is passivated against further attack by atmospheric oxygen. This protective layer is sufficient to permanently protect the component against oxidation in a temperature range between 700 and 1100 ° C. In addition, the surface thus produced also offers a certain self-healing process, because damage, such as small cracks that do not extend to the base material, is cured by replicating Al 2 O 3 in air.

Die Erfindung betrifft ein Bauteil aus sehr hochschmelzendem Metall, so genanntem Refraktärmetall, das gegenüber der Zersetzung an Luft bei Temperaturen oberhalb 300°C verbesserte Stabilität zeigt. Zudem betrifft die Erfindung ein Verfahren zur Stabilisierung eines derartigen Bauteils. Dabei wird die Oxidbildung des Refraktärmetalls zugunsten der Oxidbildung eines vorher eingebrachten Metalls unterdrückt. The invention relates to a component of very high-melting metal, so-called refractory metal, which shows improved stability to the decomposition in air at temperatures above 300 ° C. In addition, the invention relates to a method for stabilizing such a component. The oxide formation of the refractory metal is suppressed in favor of the oxide formation of a previously introduced metal.

Claims (9)

Bauteil, ein Refraktärmetall umfassend, wobei die Oberfläche des Refraktärmetalls mit einer Metalloxidschicht überzogen ist, deren Dicke im Bereich von 1–15 µm liegt und die diese Oberfläche gegenüber Luftsauerstoff passiviert. Component comprising a refractory metal, wherein the surface of the refractory metal is coated with a metal oxide layer whose thickness is in the range of 1-15 microns and passivates this surface to atmospheric oxygen. Bauteil nach Anspruch 1, wobei die Metalloxidschicht Aluminium-, Platin- und/oder Chromoxid umfasst. Component according to claim 1, wherein the metal oxide layer comprises aluminum, platinum and / or chromium oxide. Verfahren zur Passivierung eines Bauteils aus Refraktärmetall durch Bildung einer 1–15 µm Metalloxidschicht auf dem Refraktärmetall, gekennzeichnet durch die folgenden Verfahrensschritte: a) Anreicherung von elementarem Metall M an der Oberfläche des Refraktärmetalls R in Inertgasatmosphäre und dabei Bildung einer Metall-Itierungsschicht von RxMy-Verbindungen auf der Oberfläche und/oder im Randbereich des Bauteils, wobei R für Refraktärmetall, also die schweren Elemente aus der 4. 5. 6. und 7. Nebengruppe, steht und M für ein, eine Passivierungsschicht bildendes, Metall, b) Diffusion von Halogenid-Ionen in die Metall-Itierungsschicht und darauf folgende c) Temperung des behandelten Bauteils an Luftsauerstoff. Process for passivating a component of refractory metal by forming a 1-15 μm metal oxide layer on the refractory metal, characterized by the following process steps: a) enrichment of elemental metal M on the surface of the refractory metal R in an inert gas atmosphere and thereby formation of a metal itiating layer of R x M y compounds on the surface and / or in the edge region of the component, where R stands for refractory metal, ie the heavy elements of the 4th, 5th and 7th subgroups, and M is a metal forming a passivation layer, b ) Diffusion of halide ions into the metal iti fi cation layer and subsequent c) annealing of the treated component to atmospheric oxygen. Verfahren nach Anspruch 3, wobei die Halogenid-Behandlung des Bauteils im Halogensäure-Bad durchgeführt wird. The method of claim 3, wherein the halide treatment of the component is carried out in the halo acid bath. Verfahren nach Anspruch 4, wobei im Halogensäure-Bad eine Konzentration an Halogenid von 0,01 bis 1% vorliegt. The method of claim 4, wherein in the halo acid bath, a concentration of halide of 0.01 to 1% is present. Verfahren nach einem der Ansprüche 3 bis 5, wobei die Metall-Itierungsschicht in einem Temperaturbereich zwischen 600 °C und 1000°C erzeugt wird. Method according to one of claims 3 to 5, wherein the metal itierungsschicht in a temperature range between 600 ° C and 1000 ° C is generated. Verfahren nach einem der Ansprüche 3 bis 6, wobei als Schutzgas bei der Bildung der Metall-Itierungsschicht Argon eingesetzt wird. Method according to one of claims 3 to 6, wherein argon is used as protective gas in the formation of the metal Itierungsschicht. Verfahren nach einem der Ansprüche 3 bis 7, wobei die Temperung als thermische Auslagerung zur Bildung der Metalloxidschicht zwischen 500°C und 900°C an Luft durchgeführt wird. Method according to one of claims 3 to 7, wherein the annealing is performed as thermal aging to form the metal oxide layer between 500 ° C and 900 ° C in air. Verfahren nach einem der Ansprüche 3 bis 8, wobei die Anreicherung von elementarem Metall M an der Oberfläche des Refraktärmetalls R in Intertgasatmosphäre im Pulverbett erfolgt. Method according to one of claims 3 to 8, wherein the enrichment of elemental metal M on the surface of the refractory metal R takes place in Intertgasatmosphäre in the powder bed.
DE201110078605 2011-07-04 2011-07-04 Temperature-stable component made of a refractory metal and method for the production thereof Ceased DE102011078605A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE201110078605 DE102011078605A1 (en) 2011-07-04 2011-07-04 Temperature-stable component made of a refractory metal and method for the production thereof
PCT/EP2012/062800 WO2013004648A1 (en) 2011-07-04 2012-07-02 Thermally stable component of a refractory metal and method for the production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE201110078605 DE102011078605A1 (en) 2011-07-04 2011-07-04 Temperature-stable component made of a refractory metal and method for the production thereof

Publications (1)

Publication Number Publication Date
DE102011078605A1 true DE102011078605A1 (en) 2013-01-10

Family

ID=46614440

Family Applications (1)

Application Number Title Priority Date Filing Date
DE201110078605 Ceased DE102011078605A1 (en) 2011-07-04 2011-07-04 Temperature-stable component made of a refractory metal and method for the production thereof

Country Status (2)

Country Link
DE (1) DE102011078605A1 (en)
WO (1) WO2013004648A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3335028A (en) * 1963-11-26 1967-08-08 Ritter Pfaudler Corp Complex fluoro salt cementation method for coating refractory metallic substrates
FR1490744A (en) * 1966-06-24 1967-08-04 Onera (Off Nat Aerospatiale) Improvements made to the processes for the formation of surface alloys for diffusing chromium and aluminum on refractory metal parts and on the corresponding treated parts
GB1384883A (en) * 1972-01-11 1975-02-26 Inst Metallurg Im Aa Baikova A Method for applying nonmetallic coatings
US20100199678A1 (en) * 2007-09-13 2010-08-12 Claus Krusch Corrosion-Resistant Pressure Vessel Steel Product, a Process for Producing It and a Gas Turbine Component

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Donchev, A.; Schütze, M.; Yankov, R.; Kolitsch, A.; Möller, W.: Unterdrückung von Sauerstoffversprödung von Titanlegierungen. Karl-Winnacker-Institut, 2009, http://kwi.dechema.de/kwi_media/Downloads/hochtemperaturwerkstoffe/Projekte/HTW_Schlussbericht_F508.pdf, [abgerufen am 08.03.2012]. *
Zschau, H.E.; Schütze, M.: Verbesserung des Oxidationsschutzes von neuen Hochtemperatur-Leichtbauwerkstoffen durch Flüssigphasen- und Pulverpackverfahren. Karl-Winnacker-Institut, Laufzeit: 01.01.2003 bis 31.12.2004, http://kwi.dechema.de/kwi_media/Downloads/hochtemperaturwerkstoffe/Projekte/high_temperature_materials_poster_tial_fluid-p-1327.pdf [abgerufen am 08.03.2012]. *

Also Published As

Publication number Publication date
WO2013004648A1 (en) 2013-01-10

Similar Documents

Publication Publication Date Title
EP2796588B1 (en) Method for producing a high temperature protective coating
EP1978131A1 (en) Means for manufacturing corrosion protection coats on metal surfaces
DE102004028395A1 (en) Reduction of stress corrosion cracking in steam turbines
DE102011078605A1 (en) Temperature-stable component made of a refractory metal and method for the production thereof
WO2010054633A2 (en) Wear-resistant layer for tial
EP0397731B1 (en) Metallic object, in particular gas turbine blade with protective coating
EP1298230A1 (en) Process for removing corrosion products from metallic parts
DE102006024886A1 (en) Increasing the oxidation resistance of TiAl alloys by treatment with fluorine
EP2607515B1 (en) Diffusion coating method and chromium layer produced according to the method
DE2126479C3 (en) Process for applying a chromium coating by diffusion coating to an object made of a heat-resistant alloy
EP2428591A2 (en) Method for treating the surfaces of a substrate comprising a TiAl alloy for improved oxidation resistance
EP2980263A1 (en) Component made from a molybdenum alloy and manufacturing method for the same
WO2015090709A1 (en) Spark plug electrode and spark plug subject to less corrosive wear, and method for the production of a spark plug electrode
DE2450341A1 (en) SEMICONDUCTOR COMPONENTS WITH HEAT-RESISTANT METAL LAYERS
DE102013009843B4 (en) Process for cleaning turbine blades
DE4222210C1 (en) Protective coating for titanium@ or titanium@ alloy jet engine component - comprises top layer of titanium@ intermetallic cpd. with vanadium@ chromium@, manganese@, niobium, molybdenum@, tantalum or tungsten@, and interlayer
DE1521556B2 (en) Metal of niobium or a niobium alloy coated with a surface layer containing CoSi and / or CoSi deep 2 and process for its production
DE102011114737B3 (en) Hochofenblasform
DE1925482B2 (en) METHOD OF DIFFUSION COATING A SURFACE OF A METAL OBJECT
EP3006602B1 (en) Method for cleaning turbine blades
DE1293401B (en) Process for the production of firmly adhering, gas-tight coatings on molded bodies made of niobium or tantalum or alloys of these metals
WO2018177705A1 (en) Spark plug electrode, spark plug and method for producing a spark plug electrode
DE102021127344A1 (en) Method for coating a component of an aircraft engine with a wear protection layer and component for an aircraft engine with at least one wear protection layer
EP2805021B1 (en) Method for producing a ceramic layer on a surface formed from an ni base alloy
DE2750805A1 (en) PROCESS FOR THE PRODUCTION OF METALLIC COATINGS ON SURFACES OF SEMICONDUCTOR COMPONENTS

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R002 Refusal decision in examination/registration proceedings
R003 Refusal decision now final

Effective date: 20131219