DE102010048791A1 - Floating water turbine installation has floating gate whose bottom slope is designed according to principle of inclined plane for flow acceleration such that bottom slope leads to flow acceleration with smaller flux flow velocity - Google Patents

Floating water turbine installation has floating gate whose bottom slope is designed according to principle of inclined plane for flow acceleration such that bottom slope leads to flow acceleration with smaller flux flow velocity Download PDF

Info

Publication number
DE102010048791A1
DE102010048791A1 DE102010048791A DE102010048791A DE102010048791A1 DE 102010048791 A1 DE102010048791 A1 DE 102010048791A1 DE 102010048791 A DE102010048791 A DE 102010048791A DE 102010048791 A DE102010048791 A DE 102010048791A DE 102010048791 A1 DE102010048791 A1 DE 102010048791A1
Authority
DE
Germany
Prior art keywords
flow
floating
funnel
impeller
construction according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102010048791A
Other languages
German (de)
Inventor
Helmut Lehner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE102010048791A priority Critical patent/DE102010048791A1/en
Publication of DE102010048791A1 publication Critical patent/DE102010048791A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • F03B17/062Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially at right angle to flow direction
    • F03B17/063Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially at right angle to flow direction the flow engaging parts having no movement relative to the rotor during its rotation
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B9/00Water-power plants; Layout, construction or equipment, methods of, or apparatus for, making same
    • E02B9/02Water-ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/12Fluid guiding means, e.g. vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/13Stators to collect or cause flow towards or away from turbines
    • F05B2240/133Stators to collect or cause flow towards or away from turbines with a convergent-divergent guiding structure, e.g. a Venturi conduit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/93Mounting on supporting structures or systems on a structure floating on a liquid surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

Floating water turbine installation has a floating gate comprising a channel impeller and a suction funnel. The bottom slope of the floating gate is designed according to principle of inclined plane for flow acceleration such that bottom slope leads to flow acceleration with smaller flux flow velocity.

Description

Schwimmende Wasserkraftanlagen nach dem Schiffsmühlen-Prinzip sind als Investitionsgegenstand der erneuerbaren Energietechnik zwar aktuell, aber bisher nicht wirtschaftlich. Die drei Faktoren der Leistungsformel P = ½ m·v2·η ließen bisher nicht ausreichend steigern.Floating hydropower plants based on the ship mill principle are currently up-to-date investment objects in renewable energy technology, but have not yet been economically viable. The three factors of the performance formula P = ½ m · v 2 · η have so far not sufficiently increase.

Der Wirkungsgrad η von historischen Schiffmühlen liegt unter 0,3, der bei Kraftwerken mit Wasserturbinen-Anlagen reicht hingegen bis 0,95.The efficiency η of historic ship mills is below 0.3, whereas that of power plants with water turbine plants is up to 0.95.

Zudem war das Schluckvermögen (Masse m) des tiefschlächtigen Laufrades von Schiffsmühlen durch die Schaufel-Tauchtiefe von 0,25 Laufrad-Radius wegen des Ein- und Austauchwiderstandes begrenzt.In addition, the buoyancy (mass m) of the low-speed impeller of ship mills was limited by the blade depth of 0.25 impeller radius because of the insertion and Ausauchwiderstandes.

Desweiteren weisen die wenigsten Flüsse eine jahresdurchschnittliche Fließgeschwindigkeit von 1,5 m/s auf, mit der eine historische Schiffsmühle bei Schluckvermögen von rund 2,5 cbm/s nur etwa 1,5 kW an Leistung erreicht. Für Wirtschaftlichkeit zur Stromerzeugung ist annähernd die 6-fache Leistung erforderlich.Furthermore, the fewest rivers have an annual average flow velocity of 1.5 m / s, with which a historic ship mill achieves only about 1.5 kW of power with a capacity of about 2.5 cbm / s. For efficiency in power generation, almost 6 times the power is required.

Die Schiffsmühlen-Leistung könnte sich über Wirkungsgrad η mit einem tiefschlächtigen Wasserrad mit Pendel- bzw. Klappschaufeln in einem Laufrad-Gerinne annähernd verdoppelt lassen (η = 0,6), da diese einen minimierten Austauchwiderstand haben. Zugleich kann mit den Pendelschaufeln die Tauchtiefe (0,5 R) und damit das Schluckvermögen (Masse m) verdoppelt werden.The ship mill power could be approximately doubled (η = 0.6) over efficiency η with a deep waterwheel with pendulum or folding vanes in an impeller channel (η = 0.6), as these have a minimized replacement resistance. At the same time, the immersion depth (0.5 R) and thus the absorption capacity (mass m) can be doubled with the pendulum blades.

Lösungen für die Leistungssteigerung über die künstliche Beschleunigung der Fluß-Fließgeschwindigkeit v1 waren bisher begrenzt. Bei Schiffsmühlen nutzte man die beschleunigte Strömung zwischen zwei Brücken-Pfeilern. Da diese bis unter die Sohle gründen, verengten diese damit den gesamten Flussquerschnitt. Bei dieser Verengung des Flusses handelte es sich physikalisch um das Venturi-Prinzip. Da der Venturi-Trichter geschlossene Systeme voraussetzt, kann man diese Art der Strömungsbeschleunigung nicht so ohne werteres auf schwimmende Anlagen übertragen.Solutions for increasing the performance via the artificial acceleration of the flow velocity v 1 were previously limited. In ship mills used the accelerated flow between two bridge piers. Since these are found below the sole, they narrowed the entire river cross section. This constriction of the river was physically the Venturi principle. Since the Venturi funnel requires closed systems, this type of flow acceleration can not be transferred to floating equipment in such a way.

Nutzt man nach dem Stand der Technik ein schwimmendes Laufrad-Gerinne und versieht es mit einem Stautrichter nach Venturi sowie einen Saugtrichter zu einer Schwimmkulisse, dann lässt sich die Leistung schon etwas mehr steigern.If, according to the state of the art, you use a floating impeller channel and provide it with a stowage gate to Venturi and a suction funnel to create a floating backdrop, then you can increase the performance a bit more.

Kombiniert man dieses Schwimmkulissen-Systeme in einer technisch neuartigen Konstruktion zur Strömungsbeschleunigung, dann bietet sich ein Lösungsansatz zu einer wirkungsvollen Leistungssteigerung schwimmender Anlagen.Combining this floating gate system in a technically novel design for flow acceleration, then offers a solution to an effective increase in performance of floating equipment.

Die Strömung beschleunigt zwar auch bei Flussbett-Verengungen, aber maßgebend für die Fließgeschwindigkeit, gut sichtbar bei Sohlrampen, ist das Fließgefälle im Reliefgelände.Although the flow also accelerates in the case of river bed constrictions, the flow gradient in the relief area is decisive for the flow velocity, which is clearly visible in the case of the bottom ramps.

Nun könnte man durch entsprechende Wasser-Baumaßnahmen das Fließgefälle teilweise entsprechend ändern. Dies ist sowohl ökologisch wie auch kostenmäßig keine umsetzbare Lösung.Now you could change the flow gradient partially by appropriate water-construction measures. This is not a viable solution both ecologically and in terms of cost.

Die Lösung liegt nach dem Prinzip der schiefen Ebene in einem Kulissen-Gefälleboden, analog einer Sohlrampe, als Vorrichtung in der Schwimmkulissenkonstruktion.The solution is based on the principle of the inclined plane in a backdrop slope floor, analogous to a Sohlrampe, as a device in the Schwimmkulissenkonstruktion.

Diese Schwimmkulissen-Konstruktion besteht aus einem Stautrichter (1), einem Laufrad-Gerinne (2) und eine Saugtrichter (3). Der Stautrichtermund ist beispielsweise drei Mal so breit wie das Gerinne (z. B. 9,00 m). Dieses hat die Breite der Laufradschaufel zuzüglich der Rotationspalten-Breiten. Die Breite des Laufrades (4) sollte richtwertig 75% von dessen Durchmesser von beispielhaft 4,00 m haben. Die Schaufeltauchtiefe wird mit 0,45 R für das Beispiel angenommen, was 0,90 m ergibt.This floating gate construction consists of a stowage funnel ( 1 ), an impeller channel ( 2 ) and a suction funnel ( 3 ). For example, the Stautrichtermund is three times as wide as the channel (eg 9.00 m). This has the width of the impeller blade plus the rotational column widths. The width of the impeller ( 4 ) should have an average of 75% of its diameter of 4.00 m by way of example. The shovel depth is assumed to be 0.45 R for the example, giving 0.90 m.

Zur Dimension der Anlage nach dem Beispiel ist zu vermerken, dass diese in der Breite 9,00 m und in der Länge 9,20 m misst. Der Murecker Nachbau einer historischen Schiffsmühle mit einem Laufrad von 5,00 m Breite weist rund 12,00 m auf 13,00 m auf.To the dimension of the plant according to the example, it should be noted that it measures 9.00 m in width and 9.20 m in length. The Murecker replica of a historic ship mill with a wheel width of 5.00 m has about 12.00 m to 13.00 m.

Die schwimmende Sohlrampe (5) setzt im Trichter (1) an und fällt bis zur Staurinne (5). Die Fließstrecke in der Sohlrampe entspricht analog der der Fließgeschwindigkeit v2. Diese ist aus der Gefällehöhe, gleich Fallhöhe, die die mit Hälfte der Schaufel-Tauchtiefe angesetzt wird, zu ermitteln.The floating bottom ramp ( 5 ) sits in the funnel ( 1 ) and falls to the reservoir ( 5 ). The flow path in the bottom ramp corresponds analogously to the flow velocity v 2 . This is from the gradient height, equal fall height, which is set at half of the bucket depth to determine.

Bei einer Fallhöhe von 0,45 m nach der Formel h = v2/2g ermittelt sich eine Fließgeschwindigkeit in der Sohlrampe von 2,97 m/s bzw. eine Gefällestrecke gleich Rampenlänge von 2,97 m. Bei der Fluss-Fließgeschwindigkeit v1 wird ein Wert von 1,00 m/s beispielhaft zugrunde gelegt.With a fall height of 0.45 m according to the formula h = v 2 / 2g, a flow velocity in the bottom ramp of 2.97 m / s or a slope path equal to a ramp length of 2.97 m is determined. The flow flow velocity v 1 is based on a value of 1.00 m / s by way of example.

Die Dimensionierung der Konstruktion muss so ausgelegt sein, dass der Zufluss-Volumenstrom am Trichtermund dem Schluckvermögen des Laufrades entspricht, damit die optimale Leistung erzielt werden kann. Beispiel-Rechnung:
Volumenstrom = 9,00 m × 0,45 m × 1,00 m/s = 4,05 cbm/s
Schluckvermögen = 0,5 × 3,00 m × 0,90 m × 2,97 m/s = 4,01 cbm/s
The sizing of the structure must be designed so that the inflow volume flow at the funnel and the impeller's absorption capacity are the same for optimum performance. Example calculation:
Volume flow = 9.00 m × 0.45 m × 1.00 m / s = 4.05 cbm / s
Swallowing capacity = 0.5 × 3.00 m × 0.90 m × 2.97 m / s = 4.01 cbm / s

Die Leistung P ermittelt sich aus der Wirkung der neuartigen Konstruktion einer schwimmenden Wasserkraftanlage mit vorgenannter Dimensionierung mit rund 10 kW (= 0,5 × 4,010 to/s × 2,97 2 (m/s) × 0,6 × 0,94), womit eine Wirtschaftlichkeitsgrenze erreicht wird.The power P is calculated from the effect of the novel design of a floating hydroelectric plant with the aforementioned dimensioning of around 10 kW (= 0.5 × 4.010 to / s × 2.97 2 (m / s) × 0.6 × 0.94) , whereby a profitability limit is reached.

Die Schwimmkulissen-Konstruktion besteht aus einer beplankten Skelettbauweise (6), bei der die Tragelemente über Kreuz verschraubt werden. Den Auftrieb gewährleisten mehrere kippstabile Schwimmer (7), im Beispiel 8. Diese sind einerseits transportkonform und anderseits so angeordnet, dass sie vor Baumstamm-„Torpedos” insbesondere bei Hochwasser gesichert sind.The floating gate construction consists of a planked skeleton construction ( 6 ), in which the support elements are screwed crosswise. The buoyancy is ensured by several tilt-stable floats ( 7 ), in Example 8. These are on the one hand transport compliant and on the other hand arranged so that they are protected from tree trunk "torpedoes" especially at high tide.

Die neue Konstruktionseinheit der Schwimmkulissen-Konstruktion mit dem Prinzip zur Strömungsbeschleunigung mit Trichter- und Gefälle-Vorrichtung ist nicht nur bei offenen Gerinnen mit einem Wasserrad sondern auch bei geschlossenen Gerinnen schwimmender Strömungsturbinen-Anlagen unterschiedlicher Bauart anzuwenden und daher kann auf analoge Wasserkraftanlagen-Konstruktionen übertragen werden.The new construction of the floating gate design with the principle of flow acceleration with funnel and incline device is applicable not only to open water gutters but also to the closed channels of floating turbines of different designs and therefore can be transferred to analogue hydropower plant designs ,

Claims (9)

Die erneuerbare Energie-Anlage zur Gewinnung der kinetischen Strömungsenergie ist dadurch gekennzeichnet, dass es sich um eine neue Konstruktion einer schwimmenden Wasserkraftanlage mit einer Schwimmkulisse als Strömungsbeschleunigungs-Vorrichtung, die aus der Kombination eines Stautrichters, Laufrad-Gerinnes und eines Saugtrichters besteht, welches sich durch einen Kulissen-Gefälleboden nach dem Prinzip der schiefen Ebene zur Strömungsbeschleunigung der Fluss-Fließgeschwindigkeit v1 auszeichnet.The renewable energy plant for kinetic kinetic energy flow is characterized in that it is a new construction of a floating hydropower plant with a floating scenery as a flow acceleration device, which consists of the combination of a jam stoker, impeller-channel and a suction funnel, which through a backdrop slope floor according to the principle of the inclined plane for flow acceleration of the flow velocity v 1 is characterized. Die Schwimmanlagen-Konstruktion nach Anspruch 1 ist werter dadurch gekennzeichnet, dass das Fließgefälle des Schwimmkulisse-Bodens eine Gefällehöhe analog der Fallhöhe h ausweist, die sich nach einer anteiligen Schaufel-Tauchtiefe, optimal deren Hälfte, zu bemessen ist und eine beschleunigbare Fließgeschwindigkeit v2 gemäß v2 = √h·2·g bewirkt.The swimming-pool construction according to claim 1 is characterized by the fact that the flow gradient of the floating scenery floor identifies a gradient height analogous to the height of fall h, which is to be dimensioned according to a proportional scoop diving depth, optimally half thereof, and an acceleratable flow velocity v 2 v 2 = square root hour · 2 · g causes. Die Schwimmanlagen-Konstruktion nach Anspruch 1 ist weiter dadurch gekennzeichnet, dass die Länge der schwimmenden Sohlrampe nach der Längenbemessung aus der durch die Gefällehöhe h beschleunigten Fließgeschwindigkeit v2 in m/s2 zu bemessen ist.The swimming-pool construction according to claim 1 is further characterized in that the length of the floating slab ramp after the dimensioning of length is to be measured from the rate of flow h accelerated flow velocity v 2 in m / s 2 . Die Schwimmanlagen-Konstruktion nach Anspruch 1 ist weiter dadurch gekennzeichnet, dass die Dimensionierung von Trichtermund- und Schaufel-Tauchfläche so bemessen ist, damit sich Zufluss-Volumenstrom und Laufrad-Schluckvermögen im Wert cbm/s entsprechen. Die optimale Dimensionierung ist dadurch gekennzeichnet, dass die Stautrichtermund-Breite mit der mehrfachen, optimal dreifachen Breite des Laufrad-Gerinnes und die Stautrichterhals-Breite mit deren einfacher Breite sowie die Trichtermund-Tauchtiefe mit der anteilliegen, optimal halben Schaufel-Tauchtiefe bemessen ist.The swimming pool construction according to claim 1 is further characterized in that the dimensioning of funnel mouth and scoop plunge surface is dimensioned so that inflow volume flow and impeller swallowing capacity in the value cbm / s correspond. The optimum dimensioning is characterized in that the Stautrichtermund width is measured with the multiple, optimally three times the width of the impeller-Gerinnes and the Stautrichterhals width with their simple width and the funnel mouth-immersion depth with the part sharing, optimally half shovel depth. Die Schwimmanlagen-Konstruktion nach Anspruch 1 ist weiter dadurch gekennzeichnet, dass am Ende der Schwimm-Sohlrampe eine Staurinne im Laufrad-Gerinne angeordnet ist, die ein Kreissegment zwischen zwei Laufrad-Speichen bildet und parallel zur Wellen-Achslinie am Sohlpunkt des Laufrades mittig ausgerichtet verläuft.The swimming pool construction according to claim 1 is further characterized in that at the end of the floating bottom ramp a storage channel is arranged in the impeller channel, which forms a circular segment between two impeller spokes and extends parallel to the shaft axis line at the bottom of the impeller centered , Die Schwimmanlagen-Konstruktion nach Anspruch 1 ist werter dadurch gekennzeichnet, dass die Oberwasser-Sohlrampe von der Staurinne zum Trichtermund, etwa bis zur halben Trichterlänge, aufsteigt und die Unterwasser-Sohlrampe nach der Staurinne im Saugtrichter abfällt.The swimming-pool construction according to claim 1 is also characterized in that the upper water bottom ramp rises from the storage channel to the mouth of the funnel, approximately to half the funnel length, and the underwater sole ramp drops to the storage channel in the suction funnel. Die Schwimmanlagen-Konstruktion nach Anspruch 1 ist weiter dadurch gekennzeichnet, dass der Auftrieb der Anlage beidseits der Konstruktion durch mehrere Schwimmer, die sich wiederum aus mehreren transportkonformen Kuben zusammen setzen, erfolgt.The swimming pool construction according to claim 1 is further characterized in that the buoyancy of the plant on both sides of the construction by several floats, which in turn put together from several transport compliant cubes, takes place. Die Schwimmanlagen-Konstruktion nach Anspruch 1 ist weiter dadurch gekennzeichnet, dass die Tragkonstruktion in geeigneter Materialart aus einem Bausatz für eine beplankte Skelettbauweise besteht, bei dem die Tragelemente über Kreuz verschraubt und im Dreiecksverband stabilisiert sind.The swimming-pool construction according to claim 1 is further characterized in that the support structure consists of a suitable type of material from a kit for a planked skeleton construction, in which the support elements are screwed crosswise and stabilized in a triangle. Die Schwimmanlagen-Konstruktion nach Anspruch 1 ist weiter dadurch gekennzeichnet, dass deren neues Konstruktions-Prinzip zur Strömungsbeschleunigung mit Trichter- und Gefälle-Vorrichtung nicht nur bei offenen Gerinnen mit einem Wasserrad sondern auch bei geschlossenen Gerinnen schwimmender Strömungsturbinenanlagen unterschiedlicher Bauart anzuwenden ist und daher auf analoge Wasserkraftanlagen-Konstruktionen übertragen werden kann.The swimming pool construction according to claim 1 is further characterized in that their new design principle for flow acceleration with funnel and incline device is not only applicable to open channels with a water wheel but also with closed channels floating flow turbine systems of different types and therefore to analog Hydroelectric power plant designs can be transferred.
DE102010048791A 2010-10-18 2010-10-18 Floating water turbine installation has floating gate whose bottom slope is designed according to principle of inclined plane for flow acceleration such that bottom slope leads to flow acceleration with smaller flux flow velocity Withdrawn DE102010048791A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102010048791A DE102010048791A1 (en) 2010-10-18 2010-10-18 Floating water turbine installation has floating gate whose bottom slope is designed according to principle of inclined plane for flow acceleration such that bottom slope leads to flow acceleration with smaller flux flow velocity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102010048791A DE102010048791A1 (en) 2010-10-18 2010-10-18 Floating water turbine installation has floating gate whose bottom slope is designed according to principle of inclined plane for flow acceleration such that bottom slope leads to flow acceleration with smaller flux flow velocity

Publications (1)

Publication Number Publication Date
DE102010048791A1 true DE102010048791A1 (en) 2012-04-19

Family

ID=45895849

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102010048791A Withdrawn DE102010048791A1 (en) 2010-10-18 2010-10-18 Floating water turbine installation has floating gate whose bottom slope is designed according to principle of inclined plane for flow acceleration such that bottom slope leads to flow acceleration with smaller flux flow velocity

Country Status (1)

Country Link
DE (1) DE102010048791A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020159449A1 (en) * 2019-01-29 2020-08-06 Rivertum D.O.O. Acceleration channels with momentum generators
US11008998B2 (en) 2016-10-27 2021-05-18 Upravljanje Kaoticnim Sustavima d.o.o. Floating screw turbines device
US11319920B2 (en) 2019-03-08 2022-05-03 Big Moon Power, Inc. Systems and methods for hydro-based electric power generation

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1048664A (en) * 1911-08-14 1912-12-31 Thomas H Downward Water-power system.
US2764871A (en) * 1951-03-31 1956-10-02 Dowling Patrick Hydro-electric power apparatus
DE10302203A1 (en) * 2003-01-20 2004-08-05 Helmut Lehner Mobile flowing water power unit has flow channel through the belly of a ship to drive a water wheel
WO2007023432A2 (en) * 2005-08-22 2007-03-01 Pieter Malan Water barricade incorporating floating waterwheel
WO2007072513A1 (en) * 2005-12-20 2007-06-28 Ener Water Limited Hydroelectric floating device and hydroelectric power station comprising such a device
WO2008137677A1 (en) * 2007-05-02 2008-11-13 Hofmann Energy Systems Llc Waterwheel apparatus and methods
WO2009121824A2 (en) * 2008-03-31 2009-10-08 Aweg Ag Für Wasser Und Energie Hydropower plant
DE202009011950U1 (en) * 2008-10-18 2009-12-10 Peickert, Ulrich Joachim Christian, Dipl.-Arch. Hydropower plant with water wheels, floats, automatic height regulation, small wind turbines and photovoltaic
WO2011039406A1 (en) * 2009-10-02 2011-04-07 Jorma Einolander Device for producing energy by hydropower

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1048664A (en) * 1911-08-14 1912-12-31 Thomas H Downward Water-power system.
US2764871A (en) * 1951-03-31 1956-10-02 Dowling Patrick Hydro-electric power apparatus
DE10302203A1 (en) * 2003-01-20 2004-08-05 Helmut Lehner Mobile flowing water power unit has flow channel through the belly of a ship to drive a water wheel
WO2007023432A2 (en) * 2005-08-22 2007-03-01 Pieter Malan Water barricade incorporating floating waterwheel
WO2007072513A1 (en) * 2005-12-20 2007-06-28 Ener Water Limited Hydroelectric floating device and hydroelectric power station comprising such a device
WO2008137677A1 (en) * 2007-05-02 2008-11-13 Hofmann Energy Systems Llc Waterwheel apparatus and methods
WO2009121824A2 (en) * 2008-03-31 2009-10-08 Aweg Ag Für Wasser Und Energie Hydropower plant
DE202009011950U1 (en) * 2008-10-18 2009-12-10 Peickert, Ulrich Joachim Christian, Dipl.-Arch. Hydropower plant with water wheels, floats, automatic height regulation, small wind turbines and photovoltaic
WO2011039406A1 (en) * 2009-10-02 2011-04-07 Jorma Einolander Device for producing energy by hydropower

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11008998B2 (en) 2016-10-27 2021-05-18 Upravljanje Kaoticnim Sustavima d.o.o. Floating screw turbines device
WO2020159449A1 (en) * 2019-01-29 2020-08-06 Rivertum D.O.O. Acceleration channels with momentum generators
US11319920B2 (en) 2019-03-08 2022-05-03 Big Moon Power, Inc. Systems and methods for hydro-based electric power generation
US11835025B2 (en) 2019-03-08 2023-12-05 Big Moon Power, Inc. Systems and methods for hydro-based electric power generation

Similar Documents

Publication Publication Date Title
AT413868B (en) POWER BUOY
DE102007029921B3 (en) Apparatus for generating energy and fresh water in the sea
DE102010048791A1 (en) Floating water turbine installation has floating gate whose bottom slope is designed according to principle of inclined plane for flow acceleration such that bottom slope leads to flow acceleration with smaller flux flow velocity
DE102010008103A1 (en) Surface hydro-electric power station for generating power from running water, has floating bodies connected with each other, where different arrangements of bodies such as parallel arrangement, are provided based on availability of surface
DE202007016897U1 (en) Pumped storage power plant with cavern as lower basin
DE102006014205A1 (en) Floating waterwheel to produce electricity has waterwheel mounted on multi-hull craft so that it can rotate freely between hulls
DE102008009453A1 (en) Hydroelectric power station for generating electricity from sea, has pipes and water tank, whose volumes are measured such that station is permanently supplied with water and operated during eddy and flood tides and in intermediate time
DE202013006981U1 (en) Band hydropower plant
WO2014190448A1 (en) Method and apparatus for generating electricity by using river water
DE202005010121U1 (en) Tsunami-safe building has guide rods swivel mounted on each side of buoyant foundation through swivel bearings connected to ground and with centre tube for anchorage to floating island
DE202008011923U1 (en) Power generator for water courses with water level adjustment
DE10302203A1 (en) Mobile flowing water power unit has flow channel through the belly of a ship to drive a water wheel
DE2446980A1 (en) Water wheel for electric power generation - has impeller in longitudinal sections suspended to float in stream
WO2021127790A1 (en) Run-of-the-river power plant
DE882554C (en) Emergency bridge consisting of floating bodies lined up in a row
DE10329465A1 (en) Immersed water power generator for extracting power from wave energy has Archimedes screw whose screw thread is divided into individual vanes with vane profile attached to axle at distance apart
DE202006009953U1 (en) Floating turbine with up and down drive in tower filled with water has tube diameter adapted to that of the watertight tower
DE3627130A1 (en) Bladed wheel having automatically pivoting blades of different shapes
DE202008015093U1 (en) Flow guide for a hydroelectric machine
DE759178C (en) Floodable underwater power plant for rivers
DE202012003839U1 (en) Pilot plant for the further development of structures, in particular energy-generating pumped-storage power plants, CO2-free energy-generating and flood-proof houses, onshore wind turbines and offshore wind turbines
AT412363B (en) WATER POWER PLANT
DE202018002586U1 (en) Small hydropower plants with linear generators and small turbines
Williams The Romance of Modern Engineering: Containing Interesting Descriptions in Non-technical Language of the Nile Dam, the Panama Canal, the Tower Bridge, the Brooklyn Bridge, the Trans-Siberian Railway, the Niagara Falls Power Co., Bermuda Floating Dock, Etc., Etc
DE553499C (en) System for utilizing the energy that is released when the tide alternates, with two reservoirs separated from each other by a weir

Legal Events

Date Code Title Description
R079 Amendment of ipc main class

Free format text: PREVIOUS MAIN CLASS: E02B0009020000

Ipc: F03B0007000000

R163 Identified publications notified
R120 Application withdrawn or ip right abandoned

Effective date: 20121110