DE102010041807A1 - Method for connecting hollow cylindrical elements of tower of wind-power plant e.g. wind turbine, involves forming circumferential gap between cylindrical elements to connect cylindrical elements that are welded together at end faces - Google Patents

Method for connecting hollow cylindrical elements of tower of wind-power plant e.g. wind turbine, involves forming circumferential gap between cylindrical elements to connect cylindrical elements that are welded together at end faces Download PDF

Info

Publication number
DE102010041807A1
DE102010041807A1 DE102010041807A DE102010041807A DE102010041807A1 DE 102010041807 A1 DE102010041807 A1 DE 102010041807A1 DE 102010041807 A DE102010041807 A DE 102010041807A DE 102010041807 A DE102010041807 A DE 102010041807A DE 102010041807 A1 DE102010041807 A1 DE 102010041807A1
Authority
DE
Germany
Prior art keywords
cylindrical elements
elements
tower
wind turbine
wind
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE102010041807A
Other languages
German (de)
Inventor
Karl-Heinz Gunzelmann
Henning Hanebuth
Heinz-Ingo Schneider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to DE102010041807A priority Critical patent/DE102010041807A1/en
Priority to PCT/EP2011/065544 priority patent/WO2012041677A1/en
Publication of DE102010041807A1 publication Critical patent/DE102010041807A1/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/0213Narrow gap welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/028Seam welding; Backing means; Inserts for curved planar seams
    • B23K9/0282Seam welding; Backing means; Inserts for curved planar seams for welding tube sections
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H12/00Towers; Masts or poles; Chimney stacks; Water-towers; Methods of erecting such structures
    • E04H12/34Arrangements for erecting or lowering towers, masts, poles, chimney stacks, or the like
    • E04H12/342Arrangements for stacking tower sections on top of each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2230/00Manufacture
    • F05B2230/20Manufacture essentially without removing material
    • F05B2230/23Manufacture essentially without removing material by permanently joining parts together
    • F05B2230/232Manufacture essentially without removing material by permanently joining parts together by welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/20Geometry three-dimensional
    • F05B2250/23Geometry three-dimensional prismatic
    • F05B2250/231Geometry three-dimensional prismatic cylindrical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

The method involves welding two hollow cylindrical elements (10,11) together at peripheral end faces (30,31). A circumferential gap (16) is formed between two cylindrical elements with a width of 8-12 mm using a narrow gap welding method for connecting the cylindrical elements.

Description

Die Erfindung betrifft ein Verfahren zum Verbinden mehrerer zylindrischer Elemente des Turms einer Windkraftanlage.The invention relates to a method for connecting a plurality of cylindrical elements of the tower of a wind turbine.

Bei Windkraftanlagen befindet sich ein meist mehrere Tonnen schwerer Generator auf der Spitze eines Turms, der in einzeln aufeinander aufgesetzten Rohrteilen hochgebaut wird, bis die Endhöhe erreicht ist. Die Stahlrohrteile werden meist in einer Werkstattvorfertigung aus mehreren Rohrschüssen zu größeren, einige Meter langen und transportfähigen Teilen zusammengeschweißt. Diese Rohrteile müssen dann vor Ort aufeinandergesetzt und zu einem Turm verschweißt werden.In wind turbines, a generator, usually several tons in weight, is located on the top of a tower, which is built up in individually superimposed pipe parts until the final height is reached. The steel pipe parts are usually welded together in a workshop prefabrication of several pipe sections to larger, several meters long and transportable parts. These pipe parts must then be placed on site and welded into a tower.

Aus EP 2047941 A ist ein Schweißverfahren zum Verbinden von Rohrteilen des Turms einer Windkraftanlage bekannt, bei dem eine x-förmige Verbindungsschweißung verwendet wird.Out EP 2047941 A For example, a welding method for connecting pipe parts of the tower of a wind turbine using an X-shaped joint welding is known.

Die Aufgabe besteht darin, bei Montage-Aufbau vor Ort und/oder in der Werkstattfertigung ein mechanisiertes Schweißverfahren zu nutzen, mit dem ein horizontal liegender Fügespalt schweißbar ist.The task is to use a mechanized welding process in assembly assembly on site and / or in the workshop production, with a horizontally lying joint gap is weldable.

Die Aufgabe der Erfindung wird gelöst durch die unabhängigen Patentansprüche. Vorteilhafte Weiterbildungen und Ausgestaltungen der Erfindung und sind in den abhängigen Ansprüchen angegeben.The object of the invention is achieved by the independent claims. Advantageous developments and refinements of the invention and are specified in the dependent claims.

Mehrerer zylindrischer Elemente für den Turm einer Windkraftanlage werden miteinander verbunden, indem bei jeweils zwei Elementen an deren zueinander zugeordneten Stirnseiten umlaufend miteinander verschweißt werden, wobei zwischen den beiden Elementen ein nahezu paralleler, umlaufender Spalt mit einer Breite von 8–12 mm vorhanden ist.Several cylindrical elements for the tower of a wind turbine are connected to each other by circumferentially welded together at each two elements at their mutually associated end faces, wherein between the two elements, a nearly parallel, circumferential gap with a width of 8-12 mm is present.

Durch das mechanisierte MSG(Metallschutzgas)-Engspalt-Schweißverfahren ist ein schnelleres und kostengünstiges Schweißen möglichThe mechanized MSG (metal inert gas) nip welding process enables faster and less expensive welding

Bevorzugt beträgt der dass der Schweißnahtöffnungswinkel zwischen den einander zugeordneten Stirnseiten der beiden Elemente mindestens 30°. Dadurch ist eine schnelle Schweißverbindung mit hoher Qualität möglich.Preferably, that of the weld seam opening angle between the mutually associated end faces of the two elements is at least 30 °. This allows a quick weld with high quality.

Bevorzugt wird die beim MSG-Engspalt-Schweißverfahren verwendete Schweißelektrode in der Schweißfuge automatisch nachgeführt, wodurch die Schweißnahtqualität erhöht wird.Preferably, the welding electrode used in the MSG narrow gap welding process is automatically tracked in the welding joint, whereby the quality of the weld seam is increased.

Bevorzugt liegt die Abschmelzleistung des verschweißten Materials zwischen 3 und 6 kg pro Stunde, wodurch die Kosten der Schweißnaht reduziert werden.Preferably, the deposition rate of the welded material is between 3 and 6 kg per hour, which reduces the cost of the weld.

Bevorzugt ist die Position der umlaufenden Schweißfuge während des Schweißverfahrens horizontal ausgerichtet ist, wodurch auch vertikal übereinander angeordnete Elemente vor Ort, d. h. am Ort der Windkraftanlage, verschweißbar sind. Somit ist dieses Verfahren in horizontaler Fugenposition zum Verbinden der aufeinander gestellten Rohrteile einer Windkraftanlage vor Ort anwendbar. In Verbindung mit einer Engspaltversion des MSG-Schweißverfahrens lassen sich zusätzliche technologische und wirtschaftliche Vorteile erschließen.Preferably, the position of the circumferential weld joint during the welding process is aligned horizontally, whereby also vertically superimposed elements in place, d. H. at the site of the wind turbine, are weldable. Thus, this method is applicable in the horizontal joint position for connecting the stacked pipe parts of a wind turbine on site. In conjunction with a narrow gap version of the MSG welding process, additional technological and economic advantages can be achieved.

Ausführungsbeispiele der Erfindung sind in den folgenden Figuren dargestellt:Embodiments of the invention are illustrated in the following figures:

1 zwei vertikal übereinander angeordnete zylindrische Elemente in perspektivischer Darstellung, 1 two vertically stacked cylindrical elements in perspective,

2 zwei übereinander angeordnete und miteinander verschweißte Elemente aus 1, 2 two superimposed and welded together elements 1 .

3 eine Windkraftanlage, deren Turm zumindest teilweise aus den zylindrischen Elementen aus 1 und 2 aufgebaut ist. 3 a wind turbine whose tower is at least partially made of the cylindrical elements 1 and 2 is constructed.

1 zeigt in perspektivischer Darstellung zwei Elemente 10, 11 für einen Tower/Turm 20 einer Windturbine 1 aus 3. Ein Element 10, 11 ist meist gebildet aus einer Platte, die aufgerollt ist und zu einem zylindrischem Rohr 10 geformt verschweißt ist (nicht dargestellt). In 2 sind die beiden vertikal übereinander angeordneten Elemente 10, 11 aus 1 mittels einer Schweißnaht 16 der Breite b miteinander verschweißt. Die Schweißnaht 16 ist im Wesentlichen horizontal verlaufend und wird vorzugsweise auch in horizontaler Lage ausgeführt. In 1 sind die zwei Elemente 10, 11 an ihren zueinander zugeordneten Stirnseiten 30, 31 einander zugeordnet. Die als Schweißkanten dienenden Stirnseiten 30, 31 der Elemente 10, 11 sind mit Hilfe des Schweißelektrode 3 umlaufend miteinander verschweißt, wobei zwischen den beiden Elementen 10, 11 ein nahezu paralleler, umlaufender Spalt 16 mit einer Breite b von 8–12 mm vorhanden ist, der mithilfe eines MSG-Engspalt-Schweißverfahrens (MSG = Metallschutzgas) mittels einer Schweißnaht 16 miteinander verbunden wird. 1 shows a perspective view of two elements 10 . 11 for a tower / tower 20 a wind turbine 1 out 3 , An element 10 . 11 is usually formed from a plate that is rolled up and turned into a cylindrical tube 10 molded welded (not shown). In 2 are the two vertically stacked elements 10 . 11 out 1 by means of a weld 16 the width b welded together. The weld 16 is substantially horizontal and is preferably carried out in a horizontal position. In 1 are the two elements 10 . 11 at their mutually associated end faces 30 . 31 associated with each other. The end faces serving as welding edges 30 . 31 of the elements 10 . 11 are using the welding electrode 3 circumferentially welded together, being between the two elements 10 . 11 a nearly parallel, circumferential gap 16 with a width b of 8-12 mm, using a MSG narrow gap welding process (MSG = metal inert gas) by means of a weld 16 is connected to each other.

Bevorzugt beträgt der Nahtöffnungswinkel a der Schweißnaht 16 mindestens 30° beträgt.The seam opening angle a is preferably the weld seam 16 at least 30 °.

Dabei wird die beim MSG-Engspalt-Schweißverfahren verwendete Schweißelektrode 3 in der Schweißfuge 16 automatisch nachgeführt. Die Abschmelzleistung des verschweißten Materials liegt dabei zwischen 3 und 6 kg pro Stunde.Here, the welding electrode used in the MSG narrow gap welding process becomes 3 in the welding joint 16 automatically tracked. The melting rate of the welded material is between 3 and 6 kg per hour.

Während des Schweißverfahrens ist es möglich, die Position der umlaufenden Schweißfuge horizontal auszurichten, so dass vorteilhaft vor Ort die Röhren 10, 11, 12 übereinander angeordnet in ihrer später fixierten Position als Teil des Turms 20 verschweißbar sind. During the welding process, it is possible to align the position of the circumferential welding joint horizontally, so that advantageously on site the tubes 10 . 11 . 12 arranged one above the other in their later fixed position as part of the tower 20 are weldable.

Auf diese Weise kann aus einfachen übereinander gestapelten und miteinander verschweißten Röhren 10, 11, 12, ... ein Turm 20 einer Windkraftanlage 1 gebildet werden, wie in 3 dargestellt ist.In this way can be made of simple stacked and welded together tubes 10 . 11 . 12 , ... a tower 20 a wind turbine 1 be formed as in 3 is shown.

6 zeigt zwei Elemente 10 entsprechend 5, die zusammengeschweißt sind, um zumindest ein Segment eines Turms einer Windturbine zu ergeben. Die beiden Elemente 30 werden zusammen übereinander zusammengefügt und durch eine erfindungsgemäße Schweißnaht 16 miteinander verbunden. Diese Schweißnaht verläuft im Wesentlichen horizontal und kann durch das erfindungsgemäße Schweißverfahren vorgefertigt werden. Auf diese Art und Weise kann zumindest ein Segment des Turms einer Windturbine 1 zylindrisch aus den Elementen aus 2 gefertigt werden. 6 shows two elements 10 corresponding 5 welded together to give at least one segment of a tower of a wind turbine. The two elements 30 are joined together one above the other and by a weld according to the invention 16 connected with each other. This weld extends substantially horizontally and can be prefabricated by the welding method according to the invention. In this way, at least one segment of the tower of a wind turbine 1 cylindrical out of the elements 2 be made.

ZITATE ENTHALTEN IN DER BESCHREIBUNG QUOTES INCLUDE IN THE DESCRIPTION

Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.This list of the documents listed by the applicant has been generated automatically and is included solely for the better information of the reader. The list is not part of the German patent or utility model application. The DPMA assumes no liability for any errors or omissions.

Zitierte PatentliteraturCited patent literature

  • EP 2047941 A [0003] EP 2047941A [0003]

Claims (5)

Verfahren zum Verbinden mehrerer zylindrischer, insbesondere hohlzylindrischer Elemente (10, 11, 12) des Turms (20) einer Windkraftanlage (1) miteinander, bei dem jeweils zwei Elemente (10, 11, 12) an ihren zueinander zugeordneten Stirnseiten (30, 31) umlaufend miteinander verschweißt werden, wobei zwischen den beiden Elementen (10, 11, 12) ein nahezu paralleler, umlaufender Spalt (16) mit einer Breite (b) von 8–12 mm vorhanden ist, der mithilfe eines MSG-Engspalt-Schweißverfahrens mittels einer Schweißnaht (16) miteinander verbunden wird.Method for connecting a plurality of cylindrical, in particular hollow cylindrical elements ( 10 . 11 . 12 ) of the tower ( 20 ) of a wind turbine ( 1 ), in which two elements ( 10 . 11 . 12 ) at their mutually associated end faces ( 30 . 31 ) are circumferentially welded together, wherein between the two elements ( 10 . 11 . 12 ) a nearly parallel, circumferential gap ( 16 ) having a width (b) of 8-12 mm, which is produced by means of a seam-to-seam welding process using a 16 ) is connected to each other. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Nahtöffnungswinkel (a) mindestens 30° beträgt.A method according to claim 1, characterized in that the seam opening angle (a) is at least 30 °. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die beim MSG-Engspalt-Schweißverfahren verwendete Schweißelektrode (3) in der Schweißfuge (16) automatisch nachgeführt wird.Method according to claim 1 or 2, characterized in that the welding electrode used in the MSG narrow gap welding process ( 3 ) in the welding joint ( 16 ) is tracked automatically. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Abschmelzleistung des verschweißten Materials zwischen 3 und 6 kg pro Stunde liegt.Method according to one of the preceding claims, characterized in that the Abschmelzleistung of the welded material is between 3 and 6 kg per hour. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Position der umlaufenden Schweißfuge (16) während des Schweißverfahrens horizontal ausgerichtet ist.Method according to one of the preceding claims, characterized in that the position of the circumferential weld joint ( 16 ) is horizontally aligned during the welding process.
DE102010041807A 2010-09-30 2010-09-30 Method for connecting hollow cylindrical elements of tower of wind-power plant e.g. wind turbine, involves forming circumferential gap between cylindrical elements to connect cylindrical elements that are welded together at end faces Ceased DE102010041807A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102010041807A DE102010041807A1 (en) 2010-09-30 2010-09-30 Method for connecting hollow cylindrical elements of tower of wind-power plant e.g. wind turbine, involves forming circumferential gap between cylindrical elements to connect cylindrical elements that are welded together at end faces
PCT/EP2011/065544 WO2012041677A1 (en) 2010-09-30 2011-09-08 Method for connecting a plurality of cylindrical elements of the tower of a wind power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102010041807A DE102010041807A1 (en) 2010-09-30 2010-09-30 Method for connecting hollow cylindrical elements of tower of wind-power plant e.g. wind turbine, involves forming circumferential gap between cylindrical elements to connect cylindrical elements that are welded together at end faces

Publications (1)

Publication Number Publication Date
DE102010041807A1 true DE102010041807A1 (en) 2012-04-05

Family

ID=44654095

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102010041807A Ceased DE102010041807A1 (en) 2010-09-30 2010-09-30 Method for connecting hollow cylindrical elements of tower of wind-power plant e.g. wind turbine, involves forming circumferential gap between cylindrical elements to connect cylindrical elements that are welded together at end faces

Country Status (1)

Country Link
DE (1) DE102010041807A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102773619A (en) * 2012-07-02 2012-11-14 林德工程(杭州)有限公司 Vertical type assembly welding method for space division aluminum tower
CN102922096A (en) * 2012-10-19 2013-02-13 林德工程(杭州)有限公司 On-site assembly welding method for large aluminum tower
EP2692967A2 (en) 2012-08-04 2014-02-05 e.n.o. energy systems GmbH Method for erecting a steel tower of a wind energy plant and tower made of steel for a wind energy plant
EP3881964A1 (en) * 2020-03-17 2021-09-22 Siemens Gamesa Renewable Energy A/S Method of connecting by welding two sections of a structure, especially of a wind turbine, and corresponding connection tool

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2047941A1 (en) 2007-10-11 2009-04-15 Siemens Aktiengesellschaft Method for the strengthening of a welded connexion, and/or for the increase of tolerance of a welded connexion in relation to fatigue load ; Element for a tower of a wind turbine ; Tower of a wind turbine and wind turbine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2047941A1 (en) 2007-10-11 2009-04-15 Siemens Aktiengesellschaft Method for the strengthening of a welded connexion, and/or for the increase of tolerance of a welded connexion in relation to fatigue load ; Element for a tower of a wind turbine ; Tower of a wind turbine and wind turbine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102773619A (en) * 2012-07-02 2012-11-14 林德工程(杭州)有限公司 Vertical type assembly welding method for space division aluminum tower
CN102773619B (en) * 2012-07-02 2016-01-20 林德工程(杭州)有限公司 The empty point vertical welding method of aluminium tower
EP2692967A2 (en) 2012-08-04 2014-02-05 e.n.o. energy systems GmbH Method for erecting a steel tower of a wind energy plant and tower made of steel for a wind energy plant
DE102012015489A1 (en) 2012-08-04 2014-02-06 E.N.O. Energy Systems Gmbh Method of erecting a steel tower of a wind turbine and tower of steel for a wind turbine
CN102922096A (en) * 2012-10-19 2013-02-13 林德工程(杭州)有限公司 On-site assembly welding method for large aluminum tower
CN102922096B (en) * 2012-10-19 2015-12-09 林德工程(杭州)有限公司 Large size Aluminium tower field assembly welding method
EP3881964A1 (en) * 2020-03-17 2021-09-22 Siemens Gamesa Renewable Energy A/S Method of connecting by welding two sections of a structure, especially of a wind turbine, and corresponding connection tool
WO2021185488A1 (en) * 2020-03-17 2021-09-23 Siemens Gamesa Renewable Energy A/S Method of connecting by welding two sections of a structure, especially of a wind turbine, and corresponding connection tool

Similar Documents

Publication Publication Date Title
WO2016207322A1 (en) Tower consisting of segments and a method for producing a segment of a tower
EP2067914A2 (en) Grid structure for an offshore construction, in particular an offshore wind energy converter, and method for manufacture thereof
EP2824257A1 (en) Method for preparation and erection of a tubular tower structure
EP2551050B1 (en) Method for welding thin-walled pipes using peak temperature welding
DE102010041807A1 (en) Method for connecting hollow cylindrical elements of tower of wind-power plant e.g. wind turbine, involves forming circumferential gap between cylindrical elements to connect cylindrical elements that are welded together at end faces
EP3189907A1 (en) Device for making a cylindrical container with large diameter, in particular of a silo
EP3436651B1 (en) Support structure for a wind turbine
DE102012021755A1 (en) Laser beam welding method for welding metallic component e.g. aluminum component used in automobile industry, involves providing constant cooling phase interruption time between adjacent weld portions
DE102017120487A1 (en) Tower of a wind energy plant and method for producing a section segment for such a tower
DE102012015489A1 (en) Method of erecting a steel tower of a wind turbine and tower of steel for a wind turbine
DE102016002372A1 (en) Method for assembling a tubular tower segment
DE102017120488A1 (en) Tower of a wind energy plant and longitudinal reinforcement for a tower of a wind energy plant
EP3601791B1 (en) Flange segment for a wind turbine, steel tower ring segment, and method
WO2012041677A1 (en) Method for connecting a plurality of cylindrical elements of the tower of a wind power plant
DE102011002944A1 (en) Connecting cylindrical elements of a tower of a wind power plant, by welding two elements rotating together at its front sides assigned to each other, where parallel, circumferential gap having width is present between the two elements
EP3658770B1 (en) Wind turbine steel tower ring segment and method
DE102008029059A1 (en) Joining and welding profile
DE102016111739B3 (en) Pillar jib crane
EP3189906B1 (en) Device for making a cylindrical container with large diameter, in particular of a silo
EP3070205A1 (en) Foundation pile for a wind turbine
EP4065798B1 (en) Lattice structure for a tower of a wind turbine, and tower of a wind turbine
DE102019101330A1 (en) Support structure for a wind turbine
DE102013110528A1 (en) Method for producing a connecting element and connecting element
DE102012111769A1 (en) Method of manufacturing foundation structure for wind turbine, involves making points of tubular strut segments to lie on planes which are in manufacturing state of structure and perpendicular to longitudinal axis of central tube
DE102012011770A1 (en) Flange part for a tower of a wind turbine

Legal Events

Date Code Title Description
R002 Refusal decision in examination/registration proceedings
R003 Refusal decision now final

Effective date: 20140214