DE102010027972A1 - Anordnung zur Bestimmung der Entfernung und der Richtung zu einem Objekt - Google Patents

Anordnung zur Bestimmung der Entfernung und der Richtung zu einem Objekt Download PDF

Info

Publication number
DE102010027972A1
DE102010027972A1 DE102010027972A DE102010027972A DE102010027972A1 DE 102010027972 A1 DE102010027972 A1 DE 102010027972A1 DE 102010027972 A DE102010027972 A DE 102010027972A DE 102010027972 A DE102010027972 A DE 102010027972A DE 102010027972 A1 DE102010027972 A1 DE 102010027972A1
Authority
DE
Germany
Prior art keywords
emitter
array
elements
receiver
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102010027972A
Other languages
English (en)
Inventor
Felix Streichert
Christian Zott
Andre Gerlach
Christopher Brown
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to DE102010027972A priority Critical patent/DE102010027972A1/de
Priority to PCT/EP2011/056208 priority patent/WO2011131650A1/de
Priority to CN201180019814.4A priority patent/CN102844675B/zh
Priority to US13/642,251 priority patent/US9274223B2/en
Priority to KR1020127027390A priority patent/KR20130065641A/ko
Priority to JP2013505448A priority patent/JP2013525776A/ja
Priority to EP11716870A priority patent/EP2561381A1/de
Publication of DE102010027972A1 publication Critical patent/DE102010027972A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/46Indirect determination of position data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/46Indirect determination of position data
    • G01S2013/466Indirect determination of position data by Trilateration, i.e. two antennas or two sensors determine separately the distance to a target, whereby with the knowledge of the baseline length, i.e. the distance between the antennas or sensors, the position data of the target is determined
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • G01S15/46Indirect determination of position data
    • G01S2015/465Indirect determination of position data by Trilateration, i.e. two transducers determine separately the distance to a target, whereby with the knowledge of the baseline length, i.e. the distance between the transducers, the position data of the target is determined

Abstract

Die Erfindung betrifft eine Anordnung zur Bestimmung der Entfernung und der Richtung zu einem Objekt umfassend einen Emitter (1) und mindestens zwei Empfängerelemente (3) zum Empfang eines vom Emitter (1) gesendeten und vom Objekt reflektierten Signals, wobei die Empfängerelemente (3) als lineares Array, als zwei zueinander in einem Winkel angeordnete lineare Arrays, als den Emitter (1) umgebendes, einen Kreis bildendes Array oder als zweidimensionales Array angeordnet sind, wobei der Durchmesser des Arrays größer als die halbe Wellenlänge des Signals sein kann, und die einzelnen Empfängerelemente (3) jeweils eine individuelle Fläche ausweisen, deren Höhe beziehungsweise Durchmesser maximal der halben Wellenlänge des Signals entspricht, und der separate Emitter (1) eine Höhe beziehungsweise einen Durchmesser aufweist, der größer ist als die halbe Wellenlänge des Signals.

Description

  • Stand der Technik
  • Die Erfindung geht aus von einer Anordnung zur Bestimmung der Entfernung und der Richtung zu einem Objekt gemäß dem Oberbegriff des Anspruchs 1. Weiterhin betrifft die Erfindung ein Verfahren zur Bestimmung der Entfernung und der Richtung zu einem Objekt.
  • Um die Entfernung zu einem Objekt zu bestimmen, werden üblicherweise Sensoren eingesetzt, die ein Signal aussenden und ein vom Objekt reflektiertes Echo des Signals empfangen. Aus der Laufzeit des Signals vom Zeitpunkt des Sendens bis zum Empfangen des Echos wird der Abstand zu dem Objekt bestimmt.
  • Neben dem Abstand zu einem Objekt interessiert üblicherweise auch die Richtung, in der sich das Objekt befindet. Insbesondere für Anwendungen im Automobilbereich ist die Information zur Richtung eines Objekts wie auch die Entfernungsinformation wesentlich. Auch in der Robotik, z. B. zur Hinderniserkennung in der Nahfeldnavigation sind Entfernungsinformationen und Richtungsinformationen zu Objekten von essentieller Bedeutung.
  • Um die Richtung des Objekts zu bestimmen, können Trilaterationsverfahren eingesetzt werden, bei denen aus den gemessenen Entfernungen von mindestens zwei Sensoren zu dem Objekt die Richtung des Objekts bestimmt wird. Nachteile der Trilaterationsverfahren liegen im Wesentlichen im Zuordnungsproblem und damit der Mehrdeutigkeit der Entfernungsschätzung und Position bei mehreren Reflektoren in der Szene. Diese Mehrdeutigkeiten könnten typischerweise nur über Mehrfachmessungen aus verschiedenen Positionen und sogenannten Tracking-Verfahren aufgelöst werden.
  • Alternativ werden oft auch die Sende- und/oder Empfangscharakteristiken eines einzelnen Sensors so stark eingeschränkt, dass der Detektionsbereich des Sensors die laterale oder vertikale Positionierung eines Hindernisses erlaubt. Nachteilig ist hier, dass zum Erreichen von praktisch relevanten Positioniergenauigkeiten die Sende- und/oder Empfangscharakteristik stark eingeschränkt werden muss, dass eine große Anzahl an Sensoren nötig ist, um den Detektionsbereich zu überwachen.
  • Neben Triangulationsverfahren zur Richtungsbestimmung können insbesondere auch Beamforming-Verfahren eingesetzt werden. Bei aktiven Beamforming-Verfahren wird die Phase mehrerer parallel aktiver Emitter genau aufeinander abgestimmt, um den Ausfallwinkel der Hauptkeule der Überlagerung der gesendeten Signale zu steuern. Bei passiven Beamforming-Verfahren wird die Phaseninformation mehrerer parallel aufzeichnender Empfänger genutzt, um den Einfallswinkel eines empfangenen Signals zu rekonstruieren. Bei vielen Verfahren zum Beamforming ist die Größe eines Arrays, insbesondere der Durchmesser des Arrays, mehrerer parallel aktiver Emitter bzw. bei einem passiven Verfahren mehrerer parallel aufzeichnender Empfänger von Bedeutung, da die Größe des Arrays sowohl die Ausweitung eines gesendeten Signals bestimmt als auch die Winkeltrennfähigkeit für ein empfangenes Signal. Weiterhin ist auch der Abstand zwischen den Arrayelementen, das heißt den Empfängern beim passiven Beamforming oder den Emittern beim aktiven Beamforming, von Bedeutung (Elementabstand). Bei den meisten Verfahren zum Beamforming sollte der Elementabstand kleiner oder gleich der halben Wellenlänge des Signals sein, da sonst so genannte Grating Lobes auftreten können, d. h. Nebenkeulen in der Sende- oder Empfangscharakteristik in der Größenordnung der Hauptkeule, die zu Mehrdeutigkeiten in der Detektion führen können.
  • Dadurch, dass der Elementabstand kleiner oder gleich der halben Wellenlänge des Signals sein sollte, wird die Größe der einsetzbaren Arrayelemente begrenzt. Die meisten praktischen Anwendungen für akustische Wellen und Ultraschall finden sich daher derzeit in der Medizintechnik oder unter Wasser, da dort eine größere Wellenlänge im Medium auch größere Elementabstände erlaubt. Zudem ist in Wasser und in Gewebe die Ankopplung des Mediums an die Elemente deutlich günstiger als in Luft.
  • Anwendungen in Luft, wie z. B. zur Hinderniserkennung im Automobilbereich oder in der Robotik, benötigen aufgrund des notwendigen kleinen Elementabstandes in Abhängigkeit von der verwendeten Frequenz sehr kleine Arrayelemente, beispielsweise mit einem Durchmesser von weniger als 1,7 mm bei 100 kHz. Aufgrund der schlechten Ankopplung der Emitter und Empfänger an das Medium Luft werden im Falle von Emittern große Emitterflächen oder im Falle von Empfängern kleine Massen/große Flächen benötigt. Aufgrund des erforderlichen kleinen Elementabstandes zwischen den Arrayelementen sind jedoch große Flächen für einzelne die Arrayelemente nicht realisierbar.
  • Eine Anordnung, bei der ein Sender und mehrere Empfänger in einem Array angeordnet sind, ist z. B. in US-A 2008/0165620 beschrieben. Die Empfänger sind jedoch zur Anwendung im automobilen Bereich nur bedingt geeignet, da der beschriebene Dünnfilm-Piezoelektrische Emitter anfällig gegenüber mechanischen Beanspruchungen ist. Zudem wird die in US-A 2008/0165620 beschriebene Anordnung im Zusammenhang mit Trilaterationsverfahren genutzt. Diese erlauben deutlich größere Emitter und Empfänger als Beamforming-Verfahren. Daher ist davon auszugehen, dass der in US-A 2008/0165620 beschriebene Sensor nicht für Beamforming-Verfahren geeignet ist.
  • Beamforming-Verfahren zur Ermittlung des Abstandes und der Richtung zu einem Objekt sind zum Beispiel in FR-A 2 817 973 und DE-A 10 2004 050 794 beschrieben. Nachteilig bei dem in FR-A 2 817 973 beschriebenen Verfahren ist, dass man von einem homogenen linearen Array ausgeht, insbesondere wird nicht die Funktion des Sendens von der des Empfangens getrennt. Bei dem in DE-A 10 2004 050 794 beschriebenen Verfahren wird implizit von großen Emittern ausgegangen, um eine schmale Emittercharakteristik zu erreichen. Obwohl in diesem Patent ein aktives Beamforming geschrieben wird, widerspricht sowohl die große Emitterfläche, als auch die schmale Emittercharakteristik der Verwendung als aktives Emitterarray. Zudem widersprechen die zwei verwendeten Sendefrequenzen dem in diesem Anspruch beschriebenen Ansatz.
  • Offenbarung der Erfindung
  • Vorteile der Erfindung
  • Eine erfindungsgemäße Anordnung zur Bestimmung der Entfernung und der Richtung zu einem Objekt umfasst einen Emitter und mindestens zwei Empfängerelemente zum Empfang eines vom Emitter gesendeten und vom Objekt reflektierten Signals, wobei die Empfängerelemente als lineares Array, als zwei zueinander in einem Winkel angeordnete lineare Arrays, als den Emitter umgebendes, einen Kreis bildendes Array oder als zweidimensionales Array angeordnet sind, wobei der Durchmesser des Arrays deutlich größer als die halbe Wellenlänge des Signals sein kann, und die einzelnen Empfängerelemente jeweils eine individuelle Fläche ausweisen, deren Höhe beziehungsweise Durchmesser maximal der halben Wellenlänge des Signals entspricht und der separate Emitter eine Höhe beziehungsweise einen Durchmesser aufweist, der größer ist als die halbe Wellenlänge des Signals.
  • In einer alternativen Ausgestaltung umfasst die erfindungsgemäße Anordnung zur Bestimmung der Entfernung und der Richtung zu einem Objekt mindestens zwei Emitterelemente und einen Empfänger zum Empfang eines von den Emitterelementen gesendeten und vom Objekt reflektierten Signals, wobei die Emitterelemente als lineares Array, als zwei zueinander in einem Winkel angeordnete lineare Arrays, als den Empfänger umgebendes, einen Kreis bildendes Array oder als zweidimensionales Array angeordnet sind, wobei der Durchmesser des Arrays deutlich größer als die halbe Wellenlänge des Signals sein kann, und die Emitterelemente jeweils eine Fläche aufweisen, deren Höhe beziehungsweise Durchmesser maximal der halben Wellenlänge des Signals entspricht und der separate Empfänger eine Höhe beziehungsweise einen Durchmesser aufweist, der größer ist als die halbe Wellenlänge des Signals.
  • Wichtig ist in beiden Anordnungen, dass die Funktion des Sendens und des Empfangens für die Beamforming-Verfahren getrennt wird. So wird zum einen der Nahfeld-Detektionsbereich erweitert und zum anderen erlaubt es die aufgabenspezifische Dimensionierung der Emitter und Empfangskomponenten. Es folgen verschiedene Ausführungsbeispiele desselben Prinzips.
  • Im Rahmen der vorliegenden Erfindung ist unter „Durchmesser” der Durchmesser eines Kreises oder die lange Achse einer Ellipse zu verstehen. Unter Höhe ist die Strecke zwischen einer Basis und einem der Basis gegenüberliegenden Punkt mit größter Entfernung zur Basis zu verstehen. So ist die Höhe in einem Dreieck z. B. die Strecke zwischen der Basis und der der Basis gegenüber liegenden Spitze. In einem Quadrat oder Rechteck entspricht die Höhe der Länge einer Seite.
  • Die eingesetzten Emitter und Empfänger können jeden beliebigen Querschnitt aufweisen. Bevorzugt ist es jedoch, wenn Emitter und Empfänger einen kreisförmigen oder einen quadratischen Querschnitt aufweisen.
  • Anders als bei einem so genannten Transceiver, der gleichzeitig als Sender und Empfänger dient, ist es mit der erfindungsgemäßen Anordnung möglich, auch Objekte zu detektieren, die der Anordnung unmittelbar benachbart sind. Dies ist beim Transceiver nicht möglich, da bei diesem zunächst ein Signal gesendet wird und der Transceiver ein eingehendes Signal erst dann empfangen kann, wenn die sendende Membran ausgeschwungen hat. Dieser Zeitraum führt z. B. bei einem Ultraschallsensor im Allgemeinen zu einem Mindestabstand von 20 cm, ab dem der Abstand zu einem Objekt gemessen werden kann.
  • Die Ausgestaltung mit einem Emitter und mehreren Empfängerelementen oder einem Empfänger und mehreren Emitterelementen erlaubt es, einerseits Objekte zu detektieren, die die Anordnung unmittelbar benachbart sind und zum anderen ohne Mehrdeutigkeiten mit Hilfe eines Beamforming-Verfahrens, z. B. mit passiven Bartlett- oder Capon-Beamformern, auch die Richtung zu einem Objekt zu bestimmen.
  • Bei der Ausführungsform mit einem Empfänger und mehreren Emittern ist es durch die Fläche der Emitterelemente, die kleiner ist als die halbe Wellenlänge des Signals, möglich, einen effektiven Abstand der einzelnen Emitterelemente zu realisieren, der maximal der halben Wellenlänge des Signals entspricht. Effektiver Abstand ist dabei der Abstand der Mittelpunkte der Emitterelemente. Ein effektiver Abstand der einzelnen Emitterelemente, der maximal der halben Wellenlänge des Signals entspricht ermöglicht es, eine größere Anzahl an Emitterelementen einzusetzen. Dies führt zu einem verbesserten Signal-Rausch-Verhältnis.
  • Bei der Ausführungsform mit einem Emitter und mehreren Empfängern ist es durch die Fläche der Empfängerelemente, die kleiner ist als die halbe Wellenlänge des Signals, möglich, einen effektiven Abstand der einzelnen Empfängerelemente zu realisieren, der maximal der halben Wellenlänge des Signals entspricht. Effektiver Abstand ist dabei der Abstand der Mittelpunkte der Empfängerelemente. Ein effektiver Abstand der einzelnen Empfängerelemente, der maximal der halben Wellenlänge des Signals entspricht ermöglicht es, eine größere Anzahl an Empfängerelementen einzusetzen. Dies führt ebenfalls zu einem verbesserten Signal-Rausch-Verhältnis.
  • Die erfindungsgemäße Anordnung kann z. B. eingesetzt werden als Abstandssensoren an einem Kraftfahrzeug. Diese sind im Allgemeinen im Bereich des vorderen und/oder hinteren Stoßfängers des Kraftfahrzeugs angeordnet. Aufgrund der Positionierung im Stoßfänger ist es notwendig, dass die Anordnung auch gegen mechanische Einwirkungen stabil ist. So dürfen die Sensoren insbesondere z. B. durch Steinschlag oder auch bei so genannten Parkremplern, bei denen es zu einer Kollision im Stoßfängerbereich kommt, nicht beschädigt werden. Um dies zu erreichen, werden als Emitter besonders bevorzugt Ultraschallsender eingesetzt. Hierbei eignen sich insbesondere Sender auf piezoelektrischer Basis. Auch als Empfängerelemente werden vorzugsweise piezoelektrische Elemente eingesetzt, die ein eingehendes Signal in einen elektrischen Strom wandeln.
  • Um bei Einsatz eines Emitters und mindestens zwei Empfängerelementen das Detektieren von Mehrdeutigkeiten bei Einsatz des Beamforming-Verfahrens zu vermeiden, ist es notwendig, dass die Empfängerelemente jeweils eine Höhe bzw. einen Durchmesser von maximal der halben Wellenlänge des gesendeten Signals aufweisen. Um eine Richtung zu einem Objekt zu erfassen, werden mindestens zwei Empfängerelemente eingesetzt. Bevorzugt ist jedoch eine größere Anzahl an Empfängerelementen, beispielsweise mindestens fünf Empfängerelemente für lineare Arrays für lediglich laterale Auflösung, insbesondere mindestens fünfzehn Empfängerelemente für zwei-dimensionale Arrays für vertikale und laterale Auflösung.
  • In einer Ausführungsform der Erfindung sind die Empfängerelemente als lineares Array angeordnet. Üblicherweise werden die Empfängerelemente hier dem Emitter benachbart sein. Es ist jedoch auch möglich, dass das lineare Array z. B. in der Mitte unterbrochen wird und sich an dieser Stelle der Emitter befindet. Es ist weiterhin möglich das lineare Array durch zusätzliche Empfängerelemente außerhalb der Hauptlinie des linearen Arrays zu ergänzen.
  • Wenn die Empfängerelemente als zwei zueinander in einem Winkel angeordnete lineare Arrays angeordnet sind, so können diese z. B. entlang der Katheten eines rechtwinkligen Dreiecks angeordnet sein. Der Emitter ist in diesem Fall vorzugsweise innerhalb der Spitze des Dreiecks positioniert. Alternativ ist es auch möglich, dass z. b. zwei lineare Arrays sich kreuzen und der Emitter im Schnittpunkt der sich kreuzenden linearen Arrays positioniert ist. Neben einem rechtwinkligen Kreuzen oder der Anordnung als Katheten eines rechtwinkligen Dreiecks können die in einem Winkel zueinander angeordneten linearen Arrays auch in jedem beliebigen anderen Winkel zueinander angeordnet sein. Bevorzugt ist jedoch die Anordnung in einem rechten Winkel.
  • Alternativ zu einer linearen Anordnung der Empfängerelemente ist es auch möglich, dass die Empfängerelemente z. B. als zweidimensionales Array angeordnet sind und den Emitter umschließen. In diesem Fall ist es z. B. möglich, dass der Emitter zentral zwischen den Empfängerelementen positioniert ist und die Empfängerelemente den Emitter beispielsweise kreisförmig umschließen. Die Empfängerelemente können dabei einreihig oder mehrreihig angeordnet sein. Bei einem von einer Kreisform verschiedenen Emitter richtet sich die Gestalt des Arrays entsprechend dem Querschnitt des Emitters. So werden die Empfängerelemente z. B. bei einem Emitter mit einem quadratischen Querschnitt ebenfalls ein quadratisches Array bilden.
  • Auch bei der Anordnung eines zweidimensionalen Arrays, das jede beliebige Form annehmen kann, z. B. kreisförmig, quadratisch oder auch in einer beliebigen anderen Form, ist es möglich, dass der Emitter neben den Empfängerelementen angeordnet ist. In diesem Fall bilden die Empfängerelemente ein Array, das vom Emitter separiert ist. In diesem Fall ist es jedoch notwendig, dass die Position des Emitters außerhalb des Arrays bei der nachfolgenden Signalverarbeitung zur Bestimmung der Richtung und der Entfernung zu einem Objekt berücksichtigt wird.
  • Wenn die Position des Emitters außerhalb des Arrays ist, ist es weiterhin auch möglich, dass die Anordnung mindestens zwei Emitter umfasst. So ist es z. B. möglich, dass die Emitter auf gegenüber liegenden Seiten des Arrays, das von den Empfängerelementen gebildet wird, positioniert sind. Dies hat den Vorteil, dass die Umgebung aus verschiedenen Richtungen erfasst werden kann und dadurch eine noch präzisere Erfassung der Umgebung möglich ist, ohne dass die Sensoreinheit bewegt werden muss. Alternativ kann auch ein Emitter mit mindestens zwei Arrays kombiniert werden.
  • Wenn anstelle des mindestens einen Emitters und dem Array aus Empfängerelementen mindestens ein Empfänger und ein Array aus Emitterelementen eingesetzt wird, so ist es möglich, den Empfänger und die Emitterelemente in ähnlicher Weise anzuordnen wie vorstehend für einen Emitter und ein Array aus Empfängerelementen beschrieben.
  • In diesem Fall nehmen jeweils die Emitterelemente die Position der Empfängerelemente und der Empfänger die Position des Emitters ein.
  • Um mit der erfindungsgemäßen Anordnung die Entfernung und die Richtung zu einem Objekt zu bestimmen, wird von dem mindestens einen Emitter ein Signal gesendet, das Signal wird von einem Objekt reflektiert und das reflektierte Echo von den Empfängerelementen als Eingangssignal empfangen. Aus dem Eingangssignal werden aus einem beliebigen Beamforming-Verfahren Entfernung und Richtung zu dem Objekt berechnet.
  • Empfänger-Beamforming-Verfahren führen eine räumliche Filterung der von den Empfängerelementen empfangenen Signale durch. Einfallende Echos überlagern sich physikalisch zu den einzelnen Signalen, die von den räumlich getrennten Empfängerelementen empfangen werden können. Die empfangen Signale werden dann elektronisch unterschiedlichen Verstärkungs- oder Dämpfungsfaktoren unterworfen, abhängig davon in welche Richtung man das Array steuern will. Im Falle von passiven Empfänger-Beamforming-Verfahren werden dabei die verschiedenen Empfangsrichtungen häufig Softwaretechnisch durchlaufen während andere Verfahren basierend auf einer Schätzung der Anzahl der empfangenen Echos auch die verschiedenen Richtungen direkt schätzen können. In beiden Fällen werden die Relativpositionen der Empfängerelemente und die Wellenlänge des gesendeten Pulses herangezogen. In ihrer einfachsten, klassischen Form werden komplexe Gewichtungen auf die Signale der Empfängerelemente angewendet, so dass sich Signale, die aus der gewünschten „Blickrichtung” stammen, konstruktiv interferieren, wohingegen Signale aus anderen Richtungen destruktiv interferieren.
  • Sender-Beamforming-Verfahren funktionieren entsprechend, jedoch umgekehrt. In diesem Falle addieren sich die von den Emitterelementen gesendeten Signale in der gewünschten „Blickrichtung” und Signale aus anderen Richtungen heben sich gegenseitig auf. Dadurch liefern Objekte in Blickrichtung ein stärkeres Signal als Objekte in anderen Richtungen.
  • Bei einem aktiven Verfahren zur Bestimmung der Entfernung und der Richtung zu einem Objekt wird ein Array aus mehreren Emitterelmenten und mindestens einem separaten Empfänger eingesetzt. Dieses System erlaubt es, Objekte ab einer Entfernung von 0 cm wahrzunehmen. Für eine Hindernisdetektion ist jedoch das gesamte Umfeld abzuscannen, wodurch die Detektionszeit abhängig von der Rasterauflösung erhöht wird, auch wenn ein Tracking zur Positionsbestimmung entfällt.
  • Im Unterschied dazu wird bei einem passiven Ultraschallarray ein Signal von mindestens einem Emitter ausgesendet und von einem Empfänger-Array empfangen. Hierdurch lässt sich mit lediglich einem gesendeten Ultraschall-Puls das gesamte Umfeld auf das Signal reflektierende Hindernisse erfassen. Dieses erfindungsgemäße Design der getrennten Emitter und Empfängerelemente hat wieder den Vorteil der verbesserten Nahfelddetektion, erlaubt jedoch zusätzlich die aufgabenspezifische Dimensionierung der Emitter und Empfängerelemente.
  • Die erfindungsgemäße Anordnung kann z. B. eingesetzt werden als Abstandssensoren in einem Kraftfahrzeug oder auch zur Hinderniserkennung in der Nahfelderkennung der Robotik. Dies ist z. B. insbesondere bei fahrerlosen Transportsystemen von Interesse.
  • Kurze Beschreibung der Figuren
  • Ausführungsbeispiele der Erfindung sind in den Figuren dargestellt und werden in der nachfolgenden Beschreibung näher erläutert.
  • Es zeigen:
  • 1 bis 3 Anordnungen mit einem Emitter und als lineares Array angeordneten Empfängern,
  • 4 bis 6 Anordnungen mit einem Emitter und Empfängerelementen, die als zwei zueinander in einem Winkel angeordnete lineare Arrays angeordnet sind, stellvertretend für ein lineares Array mit beliebigen zusätzlichen Elementen außerhalb der Hauptachse,
  • 7 bis 9 Anordnungen mit einem Emitter und Empfängerelementen, die als ein den Emitter umgebendes Array angeordnet sind,
  • 10 bis 13 Anordnungen mit einem Emitter und Empfängerelementen, die als zweidimensionales Array neben dem Emitter angeordnet sind,
  • 14 Ein Verfahrensfließbild für ein passives Array,
  • 15 Ein Verfahrensfließbild für ein aktives Array
  • Ausführungsbeispiele der Erfindung
  • In den 1 bis 3 sind Anordnungen mit einem Emitter und Empfängerelementen, die als lineares Array angeordnet sind, dargestellt. Eine Anordnung umfasst einen Emitter 1 und mindestens zwei, in den hier dargestellter Ausführungsformen, acht Empfängerelemente 3 in 1, zehn Empfängerelemente 3 in 2 und sechs Empfängerelemente 3 in 3. Die Empfängerelemente 3 sind als lineares Array, d. h. in einer Reihe nebeneinander angeordnet. In der in 1 dargestellten Ausführungsform unterbricht der Emitter 1 das aus den Empfängerelementen 3 gebildete Array und bildet somit einen Teil des linearen Arrays.
  • Erfindungsgemäß weist der Emitter 1 eine Höhe bzw. einen Durchmesser auf, der größer ist als die halbe Wellenlänge des Signals. Demgegenüber haben die Empfängerelemente 3 eine Höhe bzw. einen Durchmesser, der maximal der halben Wellenlänge des Signals entspricht. In der Ausführungsform gemäß 1 sind der Emitter 1 und der Empfängerelemente 3 mit einem kreisförmigen Querschnitt ausgebildet, so dass hier der Durchmesser die maßgebliche Größe ist.
  • Im Unterschied zu der in 1 dargestellten Ausführungsform ist in der in 2 dargestellten Ausführungsform der Emitter 1 nicht Teil eines linearen Arrays, sondern neben dem linearen Array, das von dem Empfängerelementen 3 gebildet wird, angeordnet. Der Abstand zwischen dem Emitter 1 und den Empfängerelementen 3 konnte beliebig groß sein, sollte jedoch die Reichweite des ausgestrahlten Signals, beziehungsweise dessen Echos nicht überschreiten. Bevorzugt ist es, wenn der Emitter 1 möglichst dicht bei den Empfängerelementen 3 positioniert ist. Auch bei der in 2 dargestellten Ausführungsform haben der Emitter 1 und die Empfängerelemente 3 einen kreisförmigen Querschnitt. Davon unterscheidet sich die in 3 dargestellte Ausführungsform. In diesem Fall entspricht die Anordnung der in 2 dargestellten, jedoch haben Emitter 1 und Empfängerelemente 3 jeweils einen quadratischen Querschnitt. In diesem Fall ist für die Größe von Emitter 1 und Empfängerelementen 3 die Höhe die maßgebliche Größe. Die Höhe entspricht dabei der Seitenlänge der quadratischen Querschnittsfläche von Emitter 1 bzw. Empfängerelementen 3.
  • In den 4 bis 6 sind Anordnungen mit einem Emitter 1 und Empfängerelementen 3 dargestellt, bei denen die Empfängerelemente 3 zwei zueinander in einem Winkel angeordnete lineare Arrays bilden.
  • Bei der in 4 dargestellten Ausführungsform bilden die Empfängerelemente 3 zwei lineare Arrays, die sich jeweils in ihrer Mitte kreuzen. Der Kreuzungspunkt der beiden linearen Arrays, die durch die Empfängerelemente 3 gebildet werden, ist mit dem Emitter 1 besetzt. Neben der hier dargestellten Ausführungsform, bei der jeweils drei Empfängerelemente 3 dem Emitter 1 auf einer Seite benachbart sind, kann die Anzahl der Empfängerelemente auch variieren. So ist es z. B. auch möglich, dass dem Emitter 1 jeweils zwei, vier oder auch mehr Empfängerelemente 3 benachbart sind.
  • In den in den 5 und 6 dargestellten Ausführungsformen bilden die zwei zueinander in einem Winkel angeordneten linearen Arrays, die von den Empfängerelementen 3 geformt werden, die Katheten eines rechtwinkligen Dreiecks. Bei der Ausgestaltung in 5 steht das Dreieck dabei auf der Spitze, wohingegen bei der in 6 dargestellten Ausführungsform ein lineares Array horizontal und das andere im rechten Winkel dazu vertikal verläuft. Der Emitter 1 ist jeweils in der Spitze des durch die linearen Arrays gebildeten Dreiecks positioniert.
  • Neben den in den 4 bis 6 dargestellten Ausführungsformen, bei denen die linearen Arrays in einem rechten Winkel zueinander angeordnet sind, können die linearen Arrays auch in jedem beliebigen anderen Winkel zueinander angeordnet sein. Bevorzugt ist jedoch eine Anordnung in einem rechten Winkel.
  • Eine Ausgestaltung mit zweidimensionalen Arrays ist in den 7 bis 13 dargestellt. Bei den Ausführungsformen in den 7 bis 9 ist dabei der Emitter 1 jeweils von den Empfängerelementen 3 umschlossen, wohingegen bei den Ausführungsformen gemäß 10 bis 13 der Emitter 1 den Empfängerelementen 3 benachbart ist. Bei der in 7 dargestellten Ausführungsform bildet der Emitter 1 ein Zentrum, das von den Empfängerelementen 3 ringförmig umschlossen ist. Dies ist auch bei der in 8 dargestellten Ausführungsform der Fall, wohingegen im Unterschied zu der in 7 dargestellten Ausführungsform bei der in 8 dargestellten Ausführungsform die Empfängerelemente 3 zwei konzentrische Ringe bilden. Auch eine Anordnung mit mehr als zwei konzentrischen Ringen, die von den Empfängerelementen 3 gebildet werden, ist möglich.
  • Je nach Form und Gestaltung der Arrayelemente können verschiedene Array-Designs zu dichten Packungen führen. Zum Beispiel wenn die Empfängerelemente 3 einen kreisförmigen Querschnitt aufweisen, wie dies in den 7 und 8 der Fall ist, können kreisförmige Packungen vorteilhafter sein, während bei quadratischen oder rechteckigen Querschnitten reguläre Packungen vorteilhafter sind, wie dies beispielhaft in 9 dargestellt ist. Auch in diesem Fall ist der Emitter 1 von den Empfängern 3 umschlossen, wobei die Empfänger gemäß Darstellung in 9 einreihig angeordnet sind. Auch hier ist jedoch eine Anordnung mit mehr als nur einer Reihe Empfängern 3 an jeder Seite des Emitters 1 denkbar.
  • Beiden in den 10 bis 13 dargestellten Ausführungsformen, bei denen der Emitter 1 neben dem von den Empfängerelementen 3 gebildeten Array angeordnet ist, zeigt 10 eine Ausführungsform, die bei einer höheren horizontalen Auflösung eine reduzierte vertikale Auflösung liefert. Dies ist darauf zurückzuführen, dass ein vollwertiges lineares Array in horizontaler Richtung vorgesehen ist, jedoch nur drei Sensoren, die neben dem linearen Array positioniert sind. Die drei neben dem linearen Array positionierten Empfängerelemente 3 bilden dabei ein Dreieck. Eine rotationssymmetrische Empfangscharakteristik bei möglichst minimaler Anzahl an Empfängerelementen 3 liefert die in 11 dargestellte Ausführungsform. In diesem Fall ist das von den Empfängerelementen 3 gebildete Array kreisförmig.
  • Auch die in 12 dargestellte Anordnung liefert eine achsenweise symmetrische Empfangscharakteristik, jedoch wird eine größere Anzahl an Empfängerelementen 3 benötigt als bei der kreisförmigen Anordnung, wie sie in 11 dargestellt ist. Abhängig vom verwendeten Beamformingverfahren kann die Winkeltrennfähigkeit, welche die Anordnung in 12 erreicht, auch die Anordnung gemäß 13 erreichen. Jedoch ist hier die Anzahl der Empfängerelemente 3 deutlich gegenüber einem vollbesetzten Array, wie es in 12 dargestellt ist, reduziert.
  • Bei der in 13 dargestellten Anordnung spricht man auch von einem so genannten Minimum Redundancy Array, das je nach verwendeten Beamformingverfahren eine ähnliche Winkeltrennfähigkeit wie die in 12 dargestellte Ausführungsform aufweist, jedoch ein schlechteres Signal/Rauschverhältnis.
  • Die Position des Emitters 1 kann in den in den 2, 3, 5, 6 und 10 bis 13 dargestellten Ausführungsformen beliebig gewählt werden, muss in diesem Fall jedoch bei der nachfolgenden Signalverarbeitung berücksichtigt werden. Auch ist es möglich, bei den Ausführungsformen, wie sie in den 2, 3, 5, 6 und 10 bis 13 dargestellt sind, mehr als nur einen Emitter einzusetzen. Die Verwendung von mehr als einem Emitter erlaubt es, die Umgebung aus verschiedenen Richtungen zu erfassen.
  • Der Vorteil der Anordnungen, wie sie in den 4 bis 13 dargestellt sind, ist, dass neben einer horizontalen/lateralen Winkelpositionierung des Objektes auch eine vertikale Winkelposition ermittelt werden kann.
  • Um das Signalrauschverhältnis zu verbessern ist es vorteilhaft, die Anzahl an Empfängerelementen 3 zu erhöhen. Bei einer Integration des Emitters 1 in das von den Empfängerelementen 3 gebildete Array werden die Möglichkeiten, effiziente Arraydesigns, mit denen die Winkeltrennfähigkeit und das Signalrauschverhältnis abhängig von der jeweiligen Anwendung optimiert werden können, zu nutzen, begrenzt. Eine Optimierung ohne solche Nebenbedingungen ist möglich mit einer Anordnung, wie sie beispielsweise in den 10 bis 13 dargestellt ist, mit einem seitlich neben dem aus den Empfängern 3 gebildeten Array positionierten Emitter 1.
  • Alternativ zu den dargestellten Ausführungsformen, bei denen jeweils ein Emitter 1 und ein Array aus mehreren Empfängerelementen 3 vorgesehen ist, ist es auch möglich, jeweils einen Empfänger vorzusehen und ein Array aus mehreren Emitterelementen. In diesem Fall nimmt dann der Empfänger jeweils die Position des in den 1 bis 13 dargestellten Emitters 1 und das von den Emitterelementen gebildete Array die Position der in den 1 bis 13 dargestellten Empfängerelemente ein.
  • In 14 ist ein Aufbau für ein passives Ultraschall-Array mit separatem Emitter dargestellt.
  • Der Aufbau, wie er in 14 dargestellt ist, kombiniert die Vorteile einer größeren Reichweite und einer verringerten Blindheit im Nahbereich. Insbesondere ist es für das passive Ultraschall-Array vorteilhaft, dass mit nur einem gesendeten Ultraschall-Puls das gesamte Umfeld auf den Ultraschall reflektierende Hindernisse geprüft werden kann.
  • Um die Umgebung zu erfassen, wird zunächst von einem digitalen Signalprozessor 11 ein Signal an den Emitter 1 gesendet. Auf dieses Signal hin wird ein Ultraschall-Puls 1 vom Emitter abgegeben. Gleichzeitig wird ein digitales Empfangssystem 13 angesteuert. Hiermit wird eine Analog-Digital-Wandlung des digitalen Empfangssystems 13 aktiviert.
  • Von Objekten in der Umgebung reflektierte Echos des Ultraschall-Pulses, der vom Emitter 1 ausgesendet wurde, werden von den Empfängerelementen 3 empfangen. Die empfangenen Signale werden an das digitale Empfangssystem 13 weitergegeben und in Digitalsignale gewandelt. Diese werden an den digitalen Signalprozessor 11 weitergegeben. Im digitalen Signalprozessor 11 wird aus den hochfrequent abgetasteten Phaseninformationen der parallel empfangenen Signale mit Hilfe des Beamforming-Verfahrens die Entfernung und die Richtung zu einem Objekt bestimmt. Die gewonnenen Ergebnisse können z. B. über eine Ausgabevorrichtung 15 ausgegeben werden.
  • Neben einer Ausgabevorrichtung 15 oder zusätzlich zur Ausgabevorrichtung 15 ist es auch möglich, die im digitalen Signalprozessor 11 ermittelten Daten an andere Anwendungen weiterzugeben, die diese z. B. verarbeiten können. Insbesondere bei Anwendungen in der Robotik ist es z. B. üblich, die im digitalen Signalprozessor 11 bestimmten Daten an eine Steuereinheit für einen Roboter weiterzugeben, wobei die Steuereinheit diese Daten zur Ansteuerung des Roboters nutzt.
  • In 15 ist ein Aufbau für ein aktives Ultraschall-Array mit einem separaten Sensor dargestellt. Im Unterschied zum passiven Ultraschall-Array, wie es in 14 dargestellt ist, ist bei einem aktiven Ultraschall-Array ein Empfänger 19 und ein Array aus mehreren Emitterelementen 17 vorgesehen. Zur Erfassung der Umgebung der Anordnung werden die Emitterelemente 17 vom digitalen Signalprozessor 11 angesteuert, um einen Ultraschall-Puls zu senden. Dabei ist es möglich, dass die Emitterelemente 17 ein Signal mit jeweils unterschiedlichen Phasen aussenden, so dass in der Überlagerung der Signale die abgestrahlte Energie gerichtet werden kann (d. h. Beamforming). So kann man gezielt Signale in eine Richtung schicken oder sequenziell die Umgebung nach Hindernissen abtasten, indem man nacheinander mehrere Sendepulse in verschiedene Richtungen aussendet.
  • Gleichzeitig wird durch den digitalen Signalprozessor 11 auch der Empfänger 19 aktiviert. Vom Empfänger 19 empfangene Signale werden vom digitalen Empfangssystem 13 in digitale Signale umgewandelt. Diese digitalen Signale werden dann dem digitalen Signalprozessor 11 zur Verfügung gestellt. Nun ergibt sich die Entfernung aus der Laufzeit des Signals und die Richtung aus der gewählten Abstrahlcharakteristik des Emitterarrays. Diese Daten können dann wieder über eine Ausgabevorrichtung 15 angezeigt werden und/oder für weitere Verfahren genutzt werden.
  • Aufgrund des sequentiellen Sendens eines Signals von den Emitterelementen 17 hat die in 15 dargestellte Ausführungsform den Nachteil, dass eine höhere Detektionszeit benötigt wird, um das gesamte Umfeld zu erfassen. Daher ist es bevorzugt, eine Anordnung wie sie in 14 dargestellt ist, mit einem Emitter 1 und mehreren Empfängerelementen 3 zu verwenden.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • US 2008/0165620 A [0009, 0009, 0009]
    • FR 2817973 A [0010, 0010]
    • DE 102004050794 A [0010, 0010]

Claims (13)

  1. Anordnung zur Bestimmung der Entfernung und der Richtung zu einem Objekt umfassend einen Emitter (1) und mindestens zwei Empfängerelemente (3) zum Empfang eines vom Emitter (1) gesendeten und vom Objekt reflektierten Signals, dadurch gekennzeichnet, dass die Empfängerelemente (3) als lineares Array, als zwei zueinander in einem Winkel angeordnete lineare Arrays, als den Emitter (1) umgebendes, einen Kreis bildendes Array oder als zweidimensionales Array angeordnet sind, wobei der Durchmesser des Arrays größer als die halbe Wellenlänge des Signals sein kann, und die einzelnen Empfängerelemente (3) jeweils eine individuelle Fläche ausweisen, deren Höhe beziehungsweise Durchmesser maximal der halben Wellenlänge des Signals entspricht und der separate Emitter (1) eine Höhe beziehungsweise einen Durchmesser aufweist, der größer ist als die halbe Wellenlänge des Signals.
  2. Anordnung gemäß Anspruch 1, dadurch gekennzeichnet, dass die Empfängerelemente (3) als zweidimensionales Array angeordnet sind und den Emitter (1) umschließen.
  3. Anordnung gemäß Anspruch 1, dadurch gekennzeichnet, dass der Emitter (1) neben den Empfängerelementen (3) angeordnet ist.
  4. Anordnung gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Anordnung mindestens zwei Emitter (1) umfasst, so dass eine Szene aus mehreren Richtungen beschallt werden kann.
  5. Anordnung gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Anordnung mindestens zwei passive Arrays umfasst, so dass die reflektierten Echos aus mehreren Positionen detektiert werden können.
  6. Anordnung gemäß Anspruch 4, dadurch gekennzeichnet, dass die Emitter (1) an unterschiedlichen Seiten des von den Empfängern (3) gebildeten Arrays positioniert sind.
  7. Anordnung zur Bestimmung der Entfernung und der Richtung zu einem Objekt umfassend mindestens zwei Emitterelemente (17) und einen Empfänger (19) zum Empfang eines von den Emitterelementen (17) gesendeten und vom Objekt reflektierten Signals, dadurch gekennzeichnet, dass die Emitterelemente (17) als lineares Array, als zwei zueinander in einem Winkel angeordnete lineare Arrays, als den Empfänger (19) umgebendes, einen Kreis bildendes Array oder als zweidimensionales Array angeordnet sind, wobei der Durchmesser des Arrays größer als die halbe Wellenlänge des Signals sein kann, und die Emitterelemente (17) jeweils eine Fläche aufweisen, deren Höhe beziehungsweise Durchmesser maximal der halben Wellenlänge des Signals entspricht und der separate Empfänger (19) eine Höhe beziehungsweise einen Durchmesser aufweist, der größer ist als die halbe Wellenlänge des Signals
  8. Anordnung gemäß Anspruch 6, dadurch gekennzeichnet, dass die Emitterelemente (17) als zweidimensionales Array angeordnet sind und den Empfänger (19) umschließen.
  9. Anordnung gemäß Anspruch 1, dadurch gekennzeichnet, dass der Empfänger (19) neben den Emitterelementen (17) angeordnet ist.
  10. Anordnung gemäß einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass die Anordnung mindestens zwei Empfänger (19) umfasst, so dass das reflektierte Echo an mehreren Positionen detektiert werden kann.
  11. Anordnung gemäß einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, dass die Anordnung mindestens zwei aktive Arrays umfasst, so dass eine Szene aus mehreren Richtungen beschallt werden kann oder zusätzlich mit mehreren Frequenzen parallel beschallt werden kann.
  12. Verfahren zur Bestimmung der Entfernung und der Richtung zu einem Objekt, wobei der mindestens eine Emitter (1; 17) ein Signal sendet, das Signal von dem Objekt reflektiert wird, von den Empfängerelementen (3; 19) das reflektierte Echo als Eingangssignal empfangen wird und aus dem Eingangssignal durch ein Beamforming-Verfahren Entfernung und Richtung zu dem Objekt berechnet werden.
  13. Verwendung der Anordnung gemäß einem der Ansprüche 1 bis 6 beziehungsweise der Anordnung gemäß einem der Ansprüche 7 bis 11 als Abstandssensor in einem Kraftfahrzeug oder zur Hinderniserkennung in der Nahfelderkennung in der Robotik oder zur Hinderniserkennung im Medium Luft.
DE102010027972A 2010-04-20 2010-04-20 Anordnung zur Bestimmung der Entfernung und der Richtung zu einem Objekt Pending DE102010027972A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE102010027972A DE102010027972A1 (de) 2010-04-20 2010-04-20 Anordnung zur Bestimmung der Entfernung und der Richtung zu einem Objekt
PCT/EP2011/056208 WO2011131650A1 (de) 2010-04-20 2011-04-19 Anordnung zur bestimmung der entfernung und der richtung zu einem objekt
CN201180019814.4A CN102844675B (zh) 2010-04-20 2011-04-19 用于确定目标物体的距离和方向的装置
US13/642,251 US9274223B2 (en) 2010-04-20 2011-04-19 System for determining the distance from and the direction to an object
KR1020127027390A KR20130065641A (ko) 2010-04-20 2011-04-19 물체까지의 거리 및 방향을 검출하는 장치
JP2013505448A JP2013525776A (ja) 2010-04-20 2011-04-19 対象物までの距離および対象物への方向を求める装置
EP11716870A EP2561381A1 (de) 2010-04-20 2011-04-19 Anordnung zur bestimmung der entfernung und der richtung zu einem objekt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102010027972A DE102010027972A1 (de) 2010-04-20 2010-04-20 Anordnung zur Bestimmung der Entfernung und der Richtung zu einem Objekt

Publications (1)

Publication Number Publication Date
DE102010027972A1 true DE102010027972A1 (de) 2011-10-20

Family

ID=44140723

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102010027972A Pending DE102010027972A1 (de) 2010-04-20 2010-04-20 Anordnung zur Bestimmung der Entfernung und der Richtung zu einem Objekt

Country Status (7)

Country Link
US (1) US9274223B2 (de)
EP (1) EP2561381A1 (de)
JP (1) JP2013525776A (de)
KR (1) KR20130065641A (de)
CN (1) CN102844675B (de)
DE (1) DE102010027972A1 (de)
WO (1) WO2011131650A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013124272A1 (de) * 2012-02-20 2013-08-29 Robert Bosch Gmbh Verfahren zur lokalisierung von objekten mittels ultraschall
DE102013207823A1 (de) * 2013-04-29 2014-10-30 Robert Bosch Gmbh Verfahren und Vorrichtung zur Bestimmung der Koordinaten eines Objekts
DE102013223707A1 (de) * 2013-11-20 2015-05-21 Robert Bosch Gmbh Einstellbare Abstrahlcharakteristik in Ultraschallsystemen
EP3161658A4 (de) * 2014-12-19 2017-06-07 SZ DJI Technology Co., Ltd. Bildgebungssystem für optischen fluss und verfahren mithilfe von ultraschalltiefenerfassung
DE102017210481A1 (de) 2017-02-02 2018-08-02 Robert Bosch Gmbh Verfahren zum Kalibrieren von Ultraschallwandlern und Anordnung zum Durchführen des Verfahrens
DE102017108341A1 (de) 2017-04-20 2018-10-25 Valeo Schalter Und Sensoren Gmbh Ultraschallsensorvorrichtung für ein Kraftfahrzeug mit einer Sendeeinrichtung und separaten Empfangseinrichtungen, Fahrerassistenzsystem sowie Kraftfahrzeug

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010027972A1 (de) * 2010-04-20 2011-10-20 Robert Bosch Gmbh Anordnung zur Bestimmung der Entfernung und der Richtung zu einem Objekt
TWI452322B (zh) * 2012-08-17 2014-09-11 Au Optronics Corp 使用聲波測量物體空間位置的方法及系統
EP3004921B1 (de) * 2013-05-30 2019-08-07 Intel IP Corporation Vorrichtung, system und verfahren zur bestimmung, ob sich eine mobile vorrichtung in einem innenraum oder einem aussenbereich befindet
DE102013213475A1 (de) * 2013-07-10 2015-01-15 Robert Bosch Gmbh Baugruppe für ein Fahrassistenzsystem und Verfahren zum Betrieb eines Fahrassistenzsystems
EP2843401A1 (de) 2013-08-30 2015-03-04 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO System und Verfahren zur Fehlererkennung
CN103760563B (zh) * 2014-01-02 2016-08-24 河南科技大学 近距离避障系统用的超声测距定位仪
US20150268341A1 (en) * 2014-03-21 2015-09-24 Ford Global Technologies, Llc Object detection using ultrasonic phase arrays
EP3055734A4 (de) * 2014-10-28 2016-10-26 Sz Dji Technology Co Ltd Rgb-d-bildgebungssystem und -verfahren mithilfe von ultraschalltiefenerfassung
JP6337311B2 (ja) * 2015-05-13 2018-06-06 国立大学法人 東京大学 水底面下の堆積層の音響による情報収集方法及び水底面下の堆積層の音響による情報収集装置
CN109642937B (zh) * 2016-09-23 2023-04-18 杰富意钢铁株式会社 超声波源的方位标定装置及重合图像的分析方法
CN106526598A (zh) * 2016-12-30 2017-03-22 上海达华测绘有限公司 侧扫声纳水下高精度定位系统及方法
CN107451567B (zh) * 2017-08-03 2021-02-26 北京小米移动软件有限公司 具有指纹识别功能的终端
CN107463900B (zh) * 2017-08-03 2020-11-20 北京小米移动软件有限公司 具有指纹识别功能的终端
CN107678034B (zh) * 2017-11-16 2023-11-10 中科探海(苏州)海洋科技有限责任公司 一种掩埋目标高效三维探测声呐
CN108120977A (zh) * 2017-12-14 2018-06-05 广东五月花网络科技有限公司 一种全象限电磁波定位测距的方法及系统
CN109490980A (zh) * 2018-12-28 2019-03-19 同方威视技术股份有限公司 毫米波安检门
CN110849369B (zh) * 2019-10-29 2022-03-29 苏宁云计算有限公司 机器人跟踪方法、装置、设备及计算机可读存储介质
JP7392436B2 (ja) * 2019-12-04 2023-12-06 株式会社デンソー 障害物検知装置
CN115561743A (zh) * 2020-07-17 2023-01-03 深圳市安卫普科技有限公司 一种非线性结点探测方法及探测器
CN112764041B (zh) * 2021-01-19 2023-05-26 鹏城实验室 成像系统和方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09145839A (ja) * 1995-11-17 1997-06-06 Suzuki Motor Corp 障害物検出装置
FR2817973A1 (fr) 2000-12-13 2002-06-14 Imra Europe Sa Methode de detection et de positionnement d'objets basee sur deux etapes de formation numerique de faisceaux d'un reseau phase de capteurs
JP2003284182A (ja) * 2002-03-25 2003-10-03 Osaka Industrial Promotion Organization 超音波センサ素子と超音波アレイセンサ装置とそれらの共振周波数の調整方法
DE102004050794A1 (de) 2004-10-19 2006-04-20 Robert Bosch Gmbh Vorrichtung und Verfahren zur Umfelderfassung eines bewegbaren Objektes in einer Luftumgebung
DE102006005048A1 (de) * 2005-03-01 2006-09-07 Denso Corp., Kariya Ultraschallsensor mit Sendeeinrichtung und Empfangseinrichtung für Ultraschallwellen
US20080165620A1 (en) 2005-07-20 2008-07-10 Denso Corporation Obstacle sensor having supersonic sensor
DE102008041356A1 (de) * 2008-08-19 2010-02-25 Robert Bosch Gmbh Sensoranordnung

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3836886A (en) * 1966-01-28 1974-09-17 Trw Inc Beamformer scanning systems
GB1529304A (en) * 1974-10-24 1978-10-18 Brown R Imaging system
US4258574A (en) 1979-03-16 1981-03-31 Electric Power Research Institute Method and apparatus for ultrasonic imaging using a line source and a linear receiver array
US5235857A (en) 1986-05-02 1993-08-17 Forrest Anderson Real time 3D imaging device using filtered ellipsoidal backprojection with extended transmitters
JPH10153659A (ja) 1996-11-21 1998-06-09 Mitsui Eng & Shipbuild Co Ltd 車両用衝突防止装置
JP4076872B2 (ja) * 2002-03-19 2008-04-16 富士フイルム株式会社 超音波受信装置
JP2004125515A (ja) * 2002-09-30 2004-04-22 Matsushita Electric Works Ltd 3次元空間計測装置および3次元空間計測方法
DE10343175A1 (de) 2003-09-18 2005-04-14 Robert Bosch Gmbh Verfahren zur Abstandsmessung und Messeinrichtung hierzu
JP4829487B2 (ja) * 2004-08-10 2011-12-07 古野電気株式会社 前方探知ソナー及び水中画像表示装置
JP2006343309A (ja) 2005-05-09 2006-12-21 Nippon Soken Inc 障害物検出装置
FR2907901B1 (fr) * 2006-10-31 2009-04-24 Airbus France Sas Procede de controle non destructif par ultrasons et sonde de mesure pour la mise en oeuvre du procede
JP4367533B2 (ja) * 2007-06-12 2009-11-18 株式会社デンソー 超音波センサの自己診断方法
JP2009121936A (ja) * 2007-11-14 2009-06-04 Mitsumi Electric Co Ltd 超音波センサ
JP4509207B2 (ja) * 2008-02-22 2010-07-21 株式会社デンソー 超音波センサ
JP5228602B2 (ja) 2008-04-24 2013-07-03 株式会社日本自動車部品総合研究所 物体検出装置
DE102010027972A1 (de) * 2010-04-20 2011-10-20 Robert Bosch Gmbh Anordnung zur Bestimmung der Entfernung und der Richtung zu einem Objekt

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09145839A (ja) * 1995-11-17 1997-06-06 Suzuki Motor Corp 障害物検出装置
FR2817973A1 (fr) 2000-12-13 2002-06-14 Imra Europe Sa Methode de detection et de positionnement d'objets basee sur deux etapes de formation numerique de faisceaux d'un reseau phase de capteurs
JP2003284182A (ja) * 2002-03-25 2003-10-03 Osaka Industrial Promotion Organization 超音波センサ素子と超音波アレイセンサ装置とそれらの共振周波数の調整方法
DE102004050794A1 (de) 2004-10-19 2006-04-20 Robert Bosch Gmbh Vorrichtung und Verfahren zur Umfelderfassung eines bewegbaren Objektes in einer Luftumgebung
DE102006005048A1 (de) * 2005-03-01 2006-09-07 Denso Corp., Kariya Ultraschallsensor mit Sendeeinrichtung und Empfangseinrichtung für Ultraschallwellen
US20080165620A1 (en) 2005-07-20 2008-07-10 Denso Corporation Obstacle sensor having supersonic sensor
DE102008041356A1 (de) * 2008-08-19 2010-02-25 Robert Bosch Gmbh Sensoranordnung

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013124272A1 (de) * 2012-02-20 2013-08-29 Robert Bosch Gmbh Verfahren zur lokalisierung von objekten mittels ultraschall
DE102013207823A1 (de) * 2013-04-29 2014-10-30 Robert Bosch Gmbh Verfahren und Vorrichtung zur Bestimmung der Koordinaten eines Objekts
DE102013223707A1 (de) * 2013-11-20 2015-05-21 Robert Bosch Gmbh Einstellbare Abstrahlcharakteristik in Ultraschallsystemen
EP3161658A4 (de) * 2014-12-19 2017-06-07 SZ DJI Technology Co., Ltd. Bildgebungssystem für optischen fluss und verfahren mithilfe von ultraschalltiefenerfassung
US9704265B2 (en) 2014-12-19 2017-07-11 SZ DJI Technology Co., Ltd. Optical-flow imaging system and method using ultrasonic depth sensing
DE102017210481A1 (de) 2017-02-02 2018-08-02 Robert Bosch Gmbh Verfahren zum Kalibrieren von Ultraschallwandlern und Anordnung zum Durchführen des Verfahrens
US11320524B2 (en) 2017-02-02 2022-05-03 Robert Bosch Gmbh Method for calibrating ultrasonic transducers and system for carrying out the method
DE102017108341A1 (de) 2017-04-20 2018-10-25 Valeo Schalter Und Sensoren Gmbh Ultraschallsensorvorrichtung für ein Kraftfahrzeug mit einer Sendeeinrichtung und separaten Empfangseinrichtungen, Fahrerassistenzsystem sowie Kraftfahrzeug
DE102017108341B4 (de) 2017-04-20 2018-11-22 Valeo Schalter Und Sensoren Gmbh Ultraschallsensorvorrichtung für ein Kraftfahrzeug mit einer Sendeeinrichtung und separaten Empfangseinrichtungen, Fahrerassistenzsystem sowie Kraftfahrzeug

Also Published As

Publication number Publication date
KR20130065641A (ko) 2013-06-19
US9274223B2 (en) 2016-03-01
US20130100774A1 (en) 2013-04-25
JP2013525776A (ja) 2013-06-20
EP2561381A1 (de) 2013-02-27
CN102844675A (zh) 2012-12-26
WO2011131650A1 (de) 2011-10-27
CN102844675B (zh) 2016-05-25

Similar Documents

Publication Publication Date Title
DE102010027972A1 (de) Anordnung zur Bestimmung der Entfernung und der Richtung zu einem Objekt
EP2018577B1 (de) Hochauflösendes synthetik-apertur-seitensicht-radarsystem mittels digital beamforming
EP0268818B1 (de) Vorrichtung zum Senden und Empfangen von Ultraschall-Signalen
EP2480911B1 (de) Verfahren und vorrichtung zum vermessen eines bodenprofils
DE19843219B4 (de) Verfahren und Einrichtung zur Ultraschall-Bündelformung mit räumlich codierten Sendungen
DE2908799A1 (de) Sende-empfangs-wandleranordnung fuer eine strahlgesteuerte ultraschallabbildungsanlage
DE102007036262A1 (de) Radarsensor für Kraftfahrzeuge
EP0021196B1 (de) Verfahren und Anordnung zur zerstörungsfreien Werkstoffprüfung mit Ultraschallimpulsen und Anordnung zur Durchführung des Verfahrens
EP2630514B1 (de) Verfahren und vorrichtung zur objekterfassung
DE2853857B2 (de) Ultraschall-Ortungseinrichtung
EP0138055A1 (de) Verfahren zur Signalauswertung von Ultraschall-Echosignalen, wie sie bei Verwendung eines Ultraschall-Sensors an einem Roboterarm auftreten
DE102009027433A1 (de) Radarsensor für Kraftfahrzeuge
DE102018119877A1 (de) Weit beabstandete Radarknoten mit eindeutigem Strahlmuster
EP2817656B1 (de) Verfahren zur lokalisierung von objekten mittels ultraschall
DE102015209485A1 (de) Akustische Wandlervorrichtung mit einem Piezo-Schallwandler und einem MUT-Schallwandler, Verfahren zum Betrieb derselben, akustisches System, akustische Koppelstruktur und Verfahren zum Herstellen einer akustischen Koppelstruktur
DE102011001035B4 (de) Selbsttätig verfahrbares Saug- und/oder Kehrgerät sowie Abstandssensor
EP2804015B1 (de) Verfahren zur Erfassung von Objekten durch adaptives Beamforming
DE102009042970A1 (de) Verfahren und Vorrichtung zum Vermessen eines Bodenprofils
DE2508478C2 (de)
DE102009021818A1 (de) Ortungssystem
EP2333574B1 (de) Messgenauigkeitsverbesserungsverfahren, Messgenauigkeitsverbesserungsvorrichtung und Sonaranlage
DE4327841C1 (de) Elektroakustisches Unterwasser-Peilgerät
EP1984752B1 (de) Verfahren zum erzeugen eines sonarbildes
DE102005061149A1 (de) Verfahren zum Erzeugen eines Sonarbildes
DE1548516A1 (de) Echolotgeraet

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication