DE102008059740B3 - Verfahren zur Herstellung von Explosivstoffen - Google Patents

Verfahren zur Herstellung von Explosivstoffen Download PDF

Info

Publication number
DE102008059740B3
DE102008059740B3 DE200810059740 DE102008059740A DE102008059740B3 DE 102008059740 B3 DE102008059740 B3 DE 102008059740B3 DE 200810059740 DE200810059740 DE 200810059740 DE 102008059740 A DE102008059740 A DE 102008059740A DE 102008059740 B3 DE102008059740 B3 DE 102008059740B3
Authority
DE
Germany
Prior art keywords
raw material
explosive raw
explosive
raw materials
isostatic pressing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE200810059740
Other languages
English (en)
Inventor
Gerhard Dr. Huber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bowas AG fuer Industrieplanung
Original Assignee
Bowas AG fuer Industrieplanung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bowas AG fuer Industrieplanung filed Critical Bowas AG fuer Industrieplanung
Priority to DE200810059740 priority Critical patent/DE102008059740B3/de
Application granted granted Critical
Publication of DE102008059740B3 publication Critical patent/DE102008059740B3/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B21/00Apparatus or methods for working-up explosives, e.g. forming, cutting, drying
    • C06B21/0033Shaping the mixture
    • C06B21/0041Shaping the mixture by compression
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B25/00Compositions containing a nitrated organic compound
    • C06B25/18Compositions containing a nitrated organic compound the compound being nitrocellulose present as 10% or more by weight of the total composition
    • C06B25/24Compositions containing a nitrated organic compound the compound being nitrocellulose present as 10% or more by weight of the total composition with nitroglycerine
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B25/00Compositions containing a nitrated organic compound
    • C06B25/34Compositions containing a nitrated organic compound the compound being a nitrated acyclic, alicyclic or heterocyclic amine

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Press Drives And Press Lines (AREA)

Abstract

Verfahren zur Herstellung von Explosivstoffen aus einem Explosivrohstoff durch Gelatinieren des Explosivrohstoffs, dadurch gekennzeichnet, dass der Explosivrohstoff vor dem Schritt des Gelatinierens einem isostatischen Pressen unterzogen wird.

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung von Explosivstoffen.
  • Im Rahmen dieser Erfindung sind unter dem Begriff ”Explosivstoffe” explosionsgefährliche und/oder explosionsfähige Stoffe und Stoffgemische zu verstehen, die zur Verwendung als Sprengstoffe, Treibstoffe, Zündstoffe oder als pyrotechnische Sätze dienen oder zu deren Herstellung verwendet werden.
  • Explosivstoffe, und insbesondere Treibladungspulver werden für zahlreiche Anwendungen, wie beispielsweise in der Sprengtechnik oder zum Antrieb von Geschossen benötigt. Üblicherweise wird hierbei gefordert, dass der Explosivstoff in einer bestimmten Form, beispielsweise als Pulver oder als Granulat, als Würfel oder in kompakter Form unterschiedlicher Größe vorliegt, wobei sich jedoch aus der Explosivität des Explosivrohstoffes, beispielsweise auf Nitrocellulose- und/oder Nitroglycerinbasis, eine besondere Problematik hinsichtlich der Verarbeitung desselben ergibt.
  • So werden bei der Herstellung von Treibladungspulvern grundsätzlich Prozesse mit und ohne Lösungsmittel unterschieden.
  • Bei der Herstellung der Treibladungspulver ohne Lösungsmittel (POL-Pulver) wird nach einer herkömmlichen Prozessführung von einer wasserfeuchten Nitrocellulose/Sprengöl-Mischung ausgegangen. Diese wird auf beheizten Walzwerken entwässert und gelatiniert. Dies erfolgt manuell oder teilautomatisiert mit sehr aufwendigen Einrichtungen, wobei am Ende des Walzvorgangs ein Fell erzeugt wird, das zu einem Wickel gerollt und in einer hydraulischen Presse zu einer gewünschten Geometrie extrudiert wird.
  • Demgegenüber offenbart die US 4,963,296 A bzw. die damit korrespondierende EP 0 288 505 B1 bzw. DE 36 35 296 A1 ein Verfahren zum Herstellen von Treibladungspulver in einem lösungsmittelfreien Prozess, bei dem eine wasserfeuchte Pulverrohmasse bei erhöhter Temperatur in einer Scherwalze bearbeitet wird. Die Pulverrohmasse wird hierzu kontinuierlich zugeführt, als gelatinierte Masse am Ende der Scherwalze kontinuierlich abgenommen und unmittelbar im Anschluss daran kontinuierlich granuliert. Das entstehende Granulat wird dann fortlaufend einem Extruder zugeführt, mittels dem es zu Pulversträngen gepresst wird, die durch Schneiden oder eine andere Endbehandlung zum fertigen Pulver verarbeitet werden.
  • Hinsichtlich des Entwässerns und Gelatinierens stellt dieses Verfahren eine erhebliche Verbesserung des erstgenannten POL-Prozesses dar, wobei die Verarbeitung des Granulats in einem Extruder bisher nicht auf sichere Weise gewährleistet werden konnte, da beim Verpressen des Granulats hohe Massedrücke in der Presse erzeugt werden, was erhebliche sicherheitstechnische Bedenken und Probleme mit sich bringt. Um diesen zu begegnen, wurde das Granulat deshalb mit originärem wasserfeuchten Rohmaterial vermischt und erst anschließend auf einer Walze zu einem Fell ausgewalzt und weiterverarbeitet. Das Rollen zu einem Wickel und das Verpressen zu einer gewünschten Geometrie erfolgt nach dem oben bereits beschriebenen herkömmlichen Verfahren.
  • Außer einer umständlichen Arbeitsweise wirft das letztgenannte Verfahren jedoch auch erhebliche Probleme auf. So weist der hergestellte Wickel Inhomogenitäten auf, die auf einer unterschiedlich guten bzw. einer weniger guten Gelatinierung der miteinander vermischten und bereits entwässerten sowie gelatinierten bzw. wasserfeuchten Rohmaterialien beruhen. Diese machen sich qualitativ negativ bemerkbar, so dass ein Großteil des Treibladungspulvers immer noch nach dem erstgenannten herkömmlichen Walzverfahren hergestellt wird.
  • Eine weitere Verbesserung wurde durch ein in der WO 03/035580 A2 beschriebenes Verfahren erreicht. Nach diesem Verfahren wird die Explosivstoffmasse nach dem Gelatinieren in einer Schervorrichtung und der anschließenden Verarbeitung zu einem Granulat unmittelbar nach dem Granulieren mittels einer isostatischen Presse zu einem Block geformt. Dadurch, dass das Granulat der isostatischen Presse in noch warmer und plastischem Zustand zugeführt wird, wird vermieden, dass abgekühltes oder verhärtetes Granulat in der Presse aufeinander stößt und beim Verpressen an den Berührungsflächen bzw. an den Wandungen der Presse sicherheitsrelevant hohe Druckbereiche aufbaut.
  • Mit den genannten Verfahren bestehen jedoch bei vielen Explosivrohstoffmassen nach wie vor Schwierigkeiten bei der Verarbeitung. Diese Schwierigkeiten sind unter anderem darauf zurückzuführen, dass bei der Verarbeitung der Explosivstoffrohmasse in einer Schervorrichtung die Anfangshaftung der Rohmasse an der Scherwalze zu gering ist, um eine zügige und vollständige Plastifizierung des Explosivstoffs zu erreichen. Durch diese mangelnde Anfangshaftung lassen sich viele Zusammensetzungen auf einer kontinuierlichen Schwerwalze nicht verarbeiten. Auch auf den herkömmlichen Walzen im Batch-Verfahren bereitet die Verarbeitung oftmals große Schwierigkeiten. Um eine hinreichende Gelatinierung zu erreichen, sind oftmals lange Verarbeitungszeiten und/oder aufwendige Schervorrichtungen notwendig, was sowohl hinsichtlich der Prozesskosten als auch in Bezug auf die Sicherheit der Verfahrensdurchführung von großem Nachteil ist.
  • Demgemäß lag der vorliegenden Erfindung die Aufgabe zugrunde, ein Verfahren zur Herstellung von Explosivstoffen bereitzustellen, das gegenüber den im Stand der Technik bekannten Verfahren schneller und kostengünstiger durchgeführt werden kann, sowie eine breitere Anwendbarkeit im Hinblick auf die eingesetzten Explosivstoffzusammensetzungen zeigt.
  • Die Aufgabe wird durch ein Verfahren gemäß Anspruch 1 gelöst.
  • Ein wichtiger Punkt der Erfindung liegt darin, dass der Explosivrohstoff vor der Gelatinierung zunächst einem isostatischen Pressen unterworfen wird.
  • Es hat sich gezeigt, dass durch das isostatische Pressen die Gelbildungseigenschaften insbesondere von Cellulosenitraten beeinflusst werden. Dabei fällt auf, dass sich thermo-induzierte Gele von druck-induzierten Gelen in ihren physikalischen und strukturellen Eigenschaften deutlich unterscheiden. Insbesondere weisen druck-induzierte Gele einen niedrigeren Elastizitätsmodul auf, was eine spätere Extrusion erleichtert. Durch das isostatische Pressen des Explosivrohstoffes kommt es also zu einer gewissen Gelatinierung des Explosivrohstoffs, was die Verarbeitbarkeit des so behandelten Explosivrohstoffs deutlich verbessert.
  • REM-Aufnahmen von nitrocellulosehaltigen Explosivrohstoffmassen bestätigen, dass das Volumen der Nitrocellulosefasern nach dem isostatischen Pressschritt stark vergrößert ist. Diese Quellung lässt darauf schließen, dass der Gelbildner bereits zwischen den Polymerketten sitzt. Durch den Gelbildner wird die Kettenassoziation teilweise aufgehoben. Die scheinbare Vernetzung wird gelockert. Eine weitere Lockerung tritt dann bei der Weiterverarbeitung ein, die typischerweise unter Schereinwirkung erfolgt.
  • In einer bevorzugten Ausführungsform erfolgt das isostatische Pressen bei einem Druck von 1 bis 10000 bar, insbesondere von 1000 bis 7500 bar.
  • Es ist auch bevorzugt, das isostatische Pressen bei einer gegenüber der Raumtemperatur erhöhten Temperatur durchzuführen. Durch diese Maßnahme wird neben der Druck-induzierten Gelbildung auch eine Thermo-induzierte Gelbildung eingeleitet, was die Vorplastifizierung des Explosivrohstoffs verbessert. Vorzugsweise erfolgt das isostatische Pressen bei einer Temperatur von 30 bis 100°C, insbesondere von 50 bis 90°C.
  • Um besonders gute Ergebnisse zu erzielen, sollte die Explosivrohstoffmasse dem isostatischen Pressen für eine bestimmte Verweilzeit ausgesetzt werden. Als besonders vorteilhaft haben sich Verweilzeiten von 1 bis 20 Minuten, insbesondere von 5 bis 10 Minuten erwiesen.
  • Bei einer bevorzugten Ausführungsform erfolgt das dem isostatischem Pressen nachgeschaltete Gelatinieren des Explosivstoffes in einer Gelatiniervorrichtung, die eine Scherwalze umfasst, bei einer Temperatur im Bereich von 30°C bis 130°C, bevorzugt bei einer Temperatur im Bereich von 50°C bis 110°C, und besonders bevorzugt einem Bereich von 70°C bis 95°C durchgeführt.
  • Unter einer Scherwalze ist im Sinne der Erfindung eine Walze zu verstehen, wie sie in der EP 0 288 505 B1 detailliert beschrieben wird.
  • Die durch das isostatische Pressen verursachte Quellung des Explosivrohstoffs verbessert bei Weiterverarbeitung auf einer Scherwalze die Anfangshaftung des Explosivstoffes an die Scherwalze deutlich, was den Ablauf der Gelatinierung an der Scherwalze deutlich verbessert.
  • Um die Verarbeitbarkeit des vorbehandelten Explosivrohstoffs in der Gelatiniervorrichtung weiter zu verbessern, umfasst die Gelatiniervorrichtung einer bevorzugten Ausführungsform eine rotierende Trommel mit hebenden Einbauten an der Innenseite der Trommel und rückwärts fördernden Einbauten am Trommelausgang. Durch die hebenden Einbauten an der Innenseite der Trommel wird nicht sofort haftende, abgefallene Explosivstoffrohmasse automatisch wieder aufgegeben. Die rückwärts fördernden Einbauten am Trommelausgang verhindern ein Austreten des Materials.
  • In einer alternativen Ausführungsform wird das Gelatinieren des Explosivrohstoffs mittels einer Gelatiniervorrichtung, die eine Walze umfasst, bei einer Temperatur im Bereich von 30°C bis 130°C, bevorzugt bei einer Temperatur im Bereich von 50°C bis 110°C, und besonders bevorzugt einem Bereich von 70°C bis 95°C durchgeführt.
  • Der beim isostatischen Pressen entstandene warme Explosivstoffkörper weist eine Gummielastizität auf, die für die weitere Verarbeitung sehr vorteilhaft ist. Es ist daher bevorzugt, den durch das isostatische Pressen erhaltenen Explosivstoffkörper ohne zwischenzeitliches Abkühlen sofort der Weiterverarbeitung durch Gelatinieren zu unterziehen.
  • Die Weiterverarbeitung des gelatinierten Explosivstoffs kann beispielsweise wie in der WO 03/035580 A2 beschrieben erfolgen. Ein typischer Ablauf eines Verfahrens bis zum Endprodukt ist in dem als 1 beigefügten Verfahrensschema dargestellt.
  • Insbesondere wird in einer bevorzugten Ausführungsform der Explosivstoff nach Austritt aus der Gelatiniervorrichtung sofort granuliert und das Granulat unmittelbar nach dem Granulieren mittels einer isostatischen Presse zu einem Block geformt. Dabei ist es bevorzugt, dass das Granulat der isostatischen Presse in warmem, insbesondere plastischem Zustand zugeführt wird. Die Weiterverarbeitung des so erhaltenen Blocks kann auf herkömmliche Weise erfolgen, insbesondere mittels einer hydraulischen Presse.
  • In einer bevorzugten Ausführungsform umfasst der Explosivrohstoff mindestens eine gelatinierbare Komponente und mindestens eine gelbildende Komponente.
  • Die gelatinierbare Komponente des Explosivrohstoffs umfasst vorzugsweise Nitrocellulose. Der Explosivrohstoff kann aber auch gelatinierbare Komponenten umfassen, die selbst keine Explosivstoffe sind. Beispiele für solche gelatinierbare Komponenten sind Celluloseacetate.
  • Die gelbildende Komponente des Explosivrohstoffs umfasst vorzugsweise Glycerintrinitrat und/oder Ethylenglykoldinitrat und/oder Nitramine. Der Explosivrohstoff kann aber auch gelbildende Komponenten umfassen, die selbst keine Explosivstoffe sind. Beispiele für solche gelbildenden Komponenten sind typische Weichmacher wie beispielsweise Phthalate.
  • Der Explosivrohstoff kann auch Explosivstoffe umfassen, die weder gelatinierbar noch gelbildend sind. Beispiele für solche Explosivstoffe sind Hexogen, Oktogen, Nitropenta und Nitroguanidin.
  • Ein für das erfindungsgemäße Verfahren besonders vorteilhaft einsetzbarer Explosivstoff umfasst eine oder mehrere der folgenden Komponenten: Nitrocellulose, Glycerintrinitrat, Ethylenglykoldinitrat, ein oder mehrere Nitramine, Hexogen, Nitroguanidin.
  • In einer bevorzugten Ausführungsform wird als Explosivrohstoff ein wasserfeuchter lösungsmittelfreier Explosivrohstoff eingesetzt.
  • In einer alternativen Ausführungsform wird als Explosivrohstoff ein lösungsmittelfeuchter Explosivrohstoff eingesetzt. Der lösungsmittelfeuchte Explosivrohstoff umfasst vorzugsweise Aceton, Diethylether, Ethanol oder Gemische aus den genannten Lösungsmitteln.
  • In einer Ausführungsform umfasst der Explosivrohstoff Kohlenstoff in Form von Ruß oder Graphit, insbesondere in einer Menge von 0,1 bis 1 Gew.-%.
  • In einer besonders bevorzugten Ausführungsform umfasst der Explosivrohstoff Kohlenstoff-Nanoröhren, insbesondere in einer Menge von 0,05 bis 1 Gew.-% Kohlenstoff-Nanoröhren stellen neben Graphit, Diamant und Fullerenen eine allotope Modifikation des Kohlenstoffs dar. In Kohlenstoff-Nanoröhren sind Graphitgitter röhrenförmig angeordnet und mit einer Fullerenhalbkappe an den Enden abgeschlossen.
  • Das Einbeziehen von Kohlenstoff-Nanoröhren führt zu folgenden Vorteilen bei den Explosivstoffen:
    • – Erreichen einer elektrischen Leitfähigkeit oder elektrostatischer Dissipation (Antistatik) in den ansonsten isolierenden Explosivstoffen
    • – Verbesserung der mechanischen Eigenschaften, insbesondere in Bezug auf die Festigkeit
    • – Erhöhung der thermischen Leitfähigkeit und der thermischen Stabilität der Explosivstoffe
  • Es hat sich gezeigt, dass das erfindungsgemäße Verfahren mit einer Reihe von Vorteilen verbunden ist. Durch das isostatische Pressen erfolgt wie oben beschrieben eine einsetzende Gelbildung der Explosivrohstoffmasse. Dies führt dazu, dass die anschließende Weiterverarbeitung unter Gelatinierung deutlich vereinfacht wird. Insbesondere hat sich gezeigt, dass bei Einsatz einer Scherwalze zum Gelatinieren die Anfangshaftung des Explosivrohstoffes an der Walze sowie der Wärmeübergang von der Walze zur isostatisch verdichteten Explosivrohstoffmasse stark verbessert werden. Dies ermöglicht den Einsatz von weniger aufwendigen Schervorrichtungen sowie die Verkürzung der Prozesszeiten, was zu geringeren Anlagenkosten und höherem Durchsatz führt. Als zusätzlicher Vorteil hat sich gezeigt, dass die durch die geringeren Prozesszeiten bedingten verminderten thermischen Belastungen des Materials zu einer erhöhten Langzeitstabilität des Endproduktes führen.
  • Im Bezug auf die Vereinfachung der Schervorrichtung hat sich gezeigt, dass die besseren Verarbeitungseigenschaften der durch isostatisches Pressen vorbehandelten Explosivstoffrohmasse ein Verkürzen der Scherwalzen ermöglicht, was neben der Veringerung der Anlagekosten den zusätzlichen Vorteil einer verringerten Durchbiegung der Walzen ermöglicht, was sich in einem geringeren Verschleiß der Schervorrichtung und einer erhöhten Prozesssicherheit bei der Verarbeitung der Explosivstoffmassen äußert.
  • Ein weiterer überraschender Vorteil des erfindungsgemäßen Verfahrens besteht in der Möglichkeit, Explosivrohstoffe zu verarbeiten, die nach den bisherigen Verfahren nicht oder nur schwer verarbeitbar waren. So sind nach den bisherigen Verfahren Explosivrohstoffe auf Basis von Nitrocellulose und Glycerintrinitrat/Ethylenglykoldinitrat für bestimmte Zusammensetzungen nur bei bestimmten Stickstoffgehalten der Nitrocellulose (Grad der Nitrierung) verarbeitbar. Außerhalb dieses „Fensters” gelingt die Gelatinierung des Explosivrohstoffes nach den herkömmlichen Verfahren nicht. Das erfindungsgemäße Verfahren ermöglicht durch den vorgelagerten Schritt des isostatischen Pressens die Gelatinierung auch von solchen Explosivrohstoffen, die außerhalb dieses Fensters liegen. Dies erhöht die Flexibilität des Verfahrens in Bezug auf den Einsatz von Nitrocellulose verschiedener Stickstoffgehalte erheblich.
  • Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen näher beschrieben, die anhand von Abbildungen näher erläutert werden.
  • Beispiel 1: Untersuchung einer durch isostatisches Pressen behandelten Explosivstoffmasse durch REM-Aufnahmen
  • Eine Explosivrohstoffmasse auf Basis von Nitrocellulose und Nitroglycerin wurde einem isostatischen Pressen für 5 Minuten bei 80°C und 3500 bar ausgesetzt.
  • Vor und nach dem isostatischen Pressen wurden Proben der Explosivrohstoffmasse genommen und anschließend durch ein Rasterelektronenmikroskop untersucht.
  • 2 zeigt die Explosivrohstoffmasse vor der isostatischen Druckbehandlung, während 3 die Explosivrohstoffmasse nach dem isostatischen Pressen zeigt. Es zeigen sich auffällige Unterschiede in der Struktur der Explosivstoffrohmasse vor und nach dem isostatischen Pressen. Insbesondere zeigt sich, dass das Volumen der Nitrocellulosefasern nach dem isostatischen Pressschritt nahezu verdoppelt ist. Diese Quellung lässt darauf schließen, dass die Kettenassoziation der Nitrocellulose durch den Gelbilder bereits teilweise aufgehoben wird.
  • Beispiel 2: Herstellung eines Explosivstoffs
  • Eine Explosivstoffrohmasse (37% Nitrocellulose, 37% Nitroglycerin, 1% Centralit, 25% Hexogen) wurde in einen Polyethylenschlauch eingefüllt. Nach dem Evakuieren des Schlauches wurde dieser verschlossen und in die isostatische Presse eingesetzt. Die Temperatur der Hydraulikflüssigkeit betrug 85°C, der angewandte Druck 5000 bar und die Verweilzeit 8 Minuten. Nach der Entnahme und dem Entformen wurde der gebildete Körper mit einer beheizten Zerkleinerungs-/Dosierungsvorrichtung so auf eine Scherwalze aufgegeben, dass keine Abkühlung stattfand.
  • Es hat sich gezeigt, dass die wie oben beschrieben durch isostatisches Pressen vorbehandelte Explosivstoffrohmasse hervorragende Eigenschaften zur Weiterverarbeitung auf der Scherwalze aufweist.

Claims (14)

  1. Verfahren zur Herstellung von Explosivstoffen aus einem Explosivrohstoff durch Gelatinieren des Explosivrohstoffs, dadurch gekennzeichnet, dass der Explosivrohstoff vor dem Schritt des Gelatinierens einem isostatischen Pressen unterzogen wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das isostatische Pressen bei einem Druck von 1 bis 10000 bar, insbesondere von 1000 bis 7500 bar durchgeführt wird.
  3. Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das isostatische Pressen bei einer Temperatur von 30 bis 100°C, insbesondere von 50 bis 90°C durchgeführt wird.
  4. Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das isostatische Pressen für eine Zeitdauer von 1 bis 20 Minuten, insbesondere von 5 bis 10 Minuten durchgeführt wird.
  5. Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Gelatinieren des Explosivrohstoffs mittels einer Gelatiniervorrichtung, die eine Scherwalze umfasst, bei einer Temperatur im Bereich von 30°C bis 130°C, bevorzugt bei einer Temperatur im Bereich von 50°C bis 110°C, und besonders bevorzugt einem Bereich von 70°C bis 95°C, durchgeführt wird.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Gelatiniervorrichtung neben einer Scherwalze eine rotierende Trommel mit hebenden Einbauten und am Trommelausgang gelegene rückwärtsfördernde Einbauten umfasst.
  7. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Gelatinieren des Explosivrohstoffs mittels einer Gelatiniervorrichtung, die eine Walze umfasst, bei einer Temperatur im Bereich von 30°C bis 130°C, bevorzugt bei einer Temperatur im Bereich von 50°C bis 110°C, und besonders bevorzugt einem Bereich von 70°C bis 95°C, durchgeführt wird.
  8. Verfahren nach mindestens einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass der Explosivrohstoff nach Durchführung des isostatischen Pressens mit einer beheizten Zerkleinerungs-/Dosiervorrichtung im Wesentlichen ohne zwischenzeitliches Abkühlen des Explosivrohstoffes in die Gelatiniervorrichtung eingebracht wird.
  9. Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Explosivrohstoff mindestens eine gelatinierbare Komponente und mindestens eine gelbildende Komponente umfasst.
  10. Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Explosivrohstoff ein wasserfeuchter, lösungsmittelfreier Explosivrohstoff eingesetzt wird.
  11. Verfahren nach mindestens einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass als Explosivrohstoff ein lösungsmittelfeuchter Explosivrohstoff eingesetzt wird.
  12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass der lösungsmittelfeuchte Explosivrohstoff Aceton, Diethylether, Ethanol oder Gemische aus den genannten Lösungsmitteln umfasst.
  13. Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Explosivrohstoff Kohlenstoff in Form von Ruß oder Graphit, insbesondere in einer Menge von 0,1 bis 1 Gew.-% umfasst.
  14. Verfahren nach mindestens einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass der Explosivrohstoff Kohlenstoff-Nanoröhren, insbesondere in einer Menge von 0,05 bis 1 Gew.-% umfasst.
DE200810059740 2008-12-01 2008-12-01 Verfahren zur Herstellung von Explosivstoffen Expired - Fee Related DE102008059740B3 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE200810059740 DE102008059740B3 (de) 2008-12-01 2008-12-01 Verfahren zur Herstellung von Explosivstoffen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200810059740 DE102008059740B3 (de) 2008-12-01 2008-12-01 Verfahren zur Herstellung von Explosivstoffen

Publications (1)

Publication Number Publication Date
DE102008059740B3 true DE102008059740B3 (de) 2010-04-29

Family

ID=42055395

Family Applications (1)

Application Number Title Priority Date Filing Date
DE200810059740 Expired - Fee Related DE102008059740B3 (de) 2008-12-01 2008-12-01 Verfahren zur Herstellung von Explosivstoffen

Country Status (1)

Country Link
DE (1) DE102008059740B3 (de)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3635296A1 (de) * 1986-10-16 1988-04-28 Nitrochemie Gmbh Verfahren zum herstellen von treibladungspulver
WO2003035580A2 (de) * 2001-10-24 2003-05-01 BOWAS AG für Industrievertrieb Herstellung von lösungsmittelfreiem treibladungspulver

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3635296A1 (de) * 1986-10-16 1988-04-28 Nitrochemie Gmbh Verfahren zum herstellen von treibladungspulver
WO2003035580A2 (de) * 2001-10-24 2003-05-01 BOWAS AG für Industrievertrieb Herstellung von lösungsmittelfreiem treibladungspulver

Similar Documents

Publication Publication Date Title
DE2461646C2 (de) Verfahren zur Herstellung von Treibladungspulvern
EP0288505B2 (de) Verfahren zum herstellen von treibladungspulver
US4120920A (en) Process for extrusion of pyrotechnical compositions
WO1992019675A1 (de) Nassfeste stärkewerkstoffe für die herstellung von giessfolien und thermoplastischen materialien
EP2723700B1 (de) Verwendung eines feststoffs zur herstellung eines treibladungspulvers, verfahren zur herstellung eines treibladungspulvers und treibladungspulver
DE2323709C3 (de) Verfahren zur Herstellung gehäusefreier Treibsätze
EP0424490B1 (de) Verfahren und vorrichtung zur herstellung eines dreibasigen treibladungspulvers
EP2332894A1 (de) Verfahren und Herstellung von Explosivstoffen
DE2316538C3 (de) Verfahren zur Herstellung von Gudol- Pulver
DE102008059740B3 (de) Verfahren zur Herstellung von Explosivstoffen
DE10152397B4 (de) Herstellung von lösungsmittelfreiem Treibladungspulver
CH644831A5 (de) Verfahren zur herstellung eines mehrbasigen treibladungspulvers.
DE102005037017B4 (de) Pulvervorkonzentrat und dessen Verwendung
CA2688696A1 (en) Method of manufacturing explosives
US8062563B2 (en) Method of manufacturing explosives
US3989776A (en) Process for preparing double base propellants containing ballistic modifier
JP2011121844A (ja) 爆薬の製造方法
KR20110067351A (ko) 폭발물의 제조방법
ZA200908913B (en) Method of manufacturing explosives
DE102010047530A1 (de) Prozess ohne Lösungsmittel (PoL-Prozess) auf Basis DNDA, Nitrozellulose und kristalliner Energieträger
DE4012294C1 (de)
DE2141408C3 (de) Sprengstoff
US4001287A (en) Reaction product of normal lead beta resorcylate and monobasic cupric salicylate
DE2458834C2 (de) Verfahren zum Herstellen von doppelbasigen Treibsätzen für Raketen, Ausstoßladungen und dergleichen
EP4317323A1 (de) Verfahren zum vernetzen von polysacchariden aus makroalgen zu einem polymerwerkstoff

Legal Events

Date Code Title Description
8364 No opposition during term of opposition
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee