DE102008010006A1 - Verfahren zur dreidimensionalen Darstellung einer bewegten Struktur durch ein tomographisches Verfahren - Google Patents

Verfahren zur dreidimensionalen Darstellung einer bewegten Struktur durch ein tomographisches Verfahren Download PDF

Info

Publication number
DE102008010006A1
DE102008010006A1 DE102008010006A DE102008010006A DE102008010006A1 DE 102008010006 A1 DE102008010006 A1 DE 102008010006A1 DE 102008010006 A DE102008010006 A DE 102008010006A DE 102008010006 A DE102008010006 A DE 102008010006A DE 102008010006 A1 DE102008010006 A1 DE 102008010006A1
Authority
DE
Germany
Prior art keywords
projection
image
projection images
heart rate
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE102008010006A
Other languages
English (en)
Other versions
DE102008010006B4 (de
Inventor
Joachim Prof. Dr. Hornegger
Günter Dr. Lauritsch
Marcus Prümmer
Christopher Rohkohl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Healthcare GmbH
Original Assignee
Friedrich Alexander Univeritaet Erlangen Nuernberg FAU
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Friedrich Alexander Univeritaet Erlangen Nuernberg FAU, Siemens AG filed Critical Friedrich Alexander Univeritaet Erlangen Nuernberg FAU
Priority to DE102008010006.4A priority Critical patent/DE102008010006B4/de
Priority to US12/378,793 priority patent/US8183529B2/en
Publication of DE102008010006A1 publication Critical patent/DE102008010006A1/de
Application granted granted Critical
Publication of DE102008010006B4 publication Critical patent/DE102008010006B4/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4435Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure
    • A61B6/4441Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure the rigid structure being a C-arm or U-arm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/46Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with special arrangements for interfacing with the operator or the patient
    • A61B6/461Displaying means of special interest
    • A61B6/466Displaying means of special interest adapted to display 3D data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/005Specific pre-processing for tomographic reconstruction, e.g. calibration, source positioning, rebinning, scatter correction, retrospective gating
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2211/00Image generation
    • G06T2211/40Computed tomography
    • G06T2211/412Dynamic

Abstract

Die Erfindung betrifft ein Verfahren zur dreidimensionalen Darstellung einer bewegten Struktur durch ein tomographisches Verfahren, bei welchem von einer Bildaufnahmeeinheit (2 bis 4) während mehrerer Rotationsläufe (13) eine Vielzahl von Projektionsbildern aus unterschiedlichen Projektionswinkeln (14) zwischen einem Startwinkel mit einem Startknotenpunkt (11) und einem Endwinkel mit einem Endknotenpunkt (12) aufgenommen wird, wobei aus den Projektionsbildern dreidimensionale Bilddaten rekonstruierbar sind, wobei die Projektionsbilder mittels eines Pfades oder einer Kante (15, 16) beabstandet sind. Zur Ermittlung der dreidimensionalen Darstellung für jeden Projektionswinkel (14) werden nur diejenigen Projektionsbilder ausgewählt, die die Summe der Pfade oder gewichteten Kanten zwischen benachbarten Projektionswinkeln für ein Gating minimieren.

Description

  • Die Erfindung betrifft ein Verfahren zur dreidimensionalen Darstellung einer bewegten Struktur durch ein tomographisches Verfahren, bei welchem von einer Bildaufnahmeeinheit während mehrerer Rotationsläufe eine Vielzahl von Projektionsbildern aus unterschiedlichen Aufnahmewinkeln zwischen einem Startwinkel mit einem Startknotenpunkt und einem Endwinkel mit einem Endknotenpunkt aufgenommen wird, wobei aus den Projektionsbildern dreidimensionale Bilddaten rekonstruierbar sind, wobei die Projektionsbilder mittels eines Pfades oder einer Kante beabstandet sind.
  • Die Erfindung betrifft die 3-D-Bildrekonstruktion dynamischer Objekte aus 2-D-Projektionsbildern. Die Theorie der Bildrekonstruktion verlangt einen Satz Projektionsbilder eines stationären Objektes über Projektionswinkel im Bereich von 200° (180° + Fächerwinkel). Bei einem dynamischen Objekt wird versucht, daraus ein stationäres Objekt zu emulieren. In der Herzbildgebung werden nur die Projektionsdaten verwendet, die zu einer Herzphase gehören, bei der das Herz nahezu in Ruhe ist. Dies geschieht in der Endsystole und in der Enddiastole.
  • Üblicherweise werden die Herzphasen aus dem EKG bestimmt. Die Herzphase wird relativ zur Herzschlaglänge zwischen zwei QRS-Komplexen (R-Zacke) zwischen 0 und 100% angegeben. Die Endsystole befindet sich dann bei etwa 30%, die Enddiastole bei 70–90% bei einer Herzrate von 60 bpm.
  • Dies ist beispielsweise in der US 2008/0025590 A1 anhand eines Verfahren zur zeitlichen und dreidimensionalen Darstellung einer periodisch veränderlichen Struktur, beispielsweise eines Herzens, beschrieben, bei dem mehrere Rotationsaufnahmen erstellt werden. Die benötigten Rotationsläufe werden zu einem gleichen Ereignis des periodischen Vorgangs um einen bestimmten Winkel versetzt, ausgelöst durch das spezifizierte Ereignis im EKG-Signal gestartet. Aus den Rotationsaufnahmen werden neue Bilderserien zusammengestellt, womit 3-D-Bilddarstellungen zu verschiedenen Phasenbereichen der Periode rekonstruiert werden können.
  • Alternativ dazu gibt es in der CT-Bildgebung die Kymogram-Methode, wie sie von Kachelrieß et al. in "Kymogram detection and kymogram-correlated image reconstruction from subsecond spiral computed tomography scans of the heart", veröffentlicht in Med. Phys. 29(7), Seiten 1489 bis 1503, Juli 2002, beschrieben ist. Die Kymogram-Methode bestimmt in den Projektionsbildern den Schwerpunkt und sucht nach Phasen mit gleich bleibendem Schwerpunkt. Für die Kymogram-Methode müssen die Projektionsbilder in der transaxialen Richtung vollständig sein. Dies ist jedoch bei der C-Bogen-Computertomographie nicht gegeben.
  • Die Erfindung geht von der Aufgabe aus, das oben genannte Verfahren derart auszubilden, dass sich für ein Gating eine geeignete Herzphase auch ohne die Erfassung eines EKGs finden lässt.
  • Die Aufgabe wird erfindungsgemäß dadurch gelöst, dass zur Ermittlung der dreidimensionalen Darstellung für jeden Projektionswinkel nur diejenigen Projektionsbilder ausgewählt werden, die die Summe der Pfade oder gewichteten Kanten zwischen benachbarten Projektionswinkeln (14) für ein Gating minimieren.
  • Es hat sich als vorteilhaft erwiesen, wenn zur dreidimensionalen Darstellung von jedem Projektionswinkel mit Knotenpunkt nur dasjenige Projektionsbild ausgewählt wird, bei dem unter der Menge der möglichen Pfade oder Kanten die Summe der Pfade oder gewichteten Kanten zwischen benachbarten Knotenpunkten das geringste Abstandsmaß besitzt.
  • Erfindungsgemäß kann das Verfahren folgende Schritte aufweisen:
    • a) Erfassung der Bilddaten durch mehrere Rotationsläufe,
    • b) Vorverarbeitung der erfassten Bilddaten,
    • c) Bestimmung der mittleren Herzrate,
    • d) Messung der Abstände der Herzraten von der mittleren Herzrate,
    • e) Bestimmung von Kantengewichten,
    • f) Ermittlung der Projektionen entlang des kürzesten Pfades oder Kante zwischen dem Startknotenpunkt und dem Endknotenpunkt,
    • g) Rekonstruktion des 3-D-Datensatzes und
    • h) Darstellung des 3-D-Datensatzes.
  • In vorteilhafter Weise kann die mittlere Herzrate bildorientiert berechnet werden, wobei sie gemäß der Schritte c) und e) nach dem Verfahren der Euklidischen Distanz ermittelt werden.
  • Erfindungsgemäß kann die kürzeste Distanz der Pfade gemäß der Schritte e) und f) mittels des Dijkstra-Algorithmus bestimmt werden.
  • Es hat sich als vorteilhaft erwiesen, wenn die Vorverarbeitung gemäß Schritt b) folgende Schritte beinhaltet:
    S1 Vorverarbeitung von 3-D-Rekonstruktionsalgorithmen,
    S2 Verkleinerung der Bilddaten,
    S3 Tiefpassfilterung,
    S4 Berechnung der Größe des Bildgradienten (optional) und/oder
    S5 Bildung eines interessierenden Bereiches (ROI).
  • Dabei kann erfindungsgemäß der Schritt S1 eine Streustrahlungskorrektur, eine Strahlenaufhärtungskorrektur, eine Truncation-Korrektur, eine Überstrahlungskorrektur, eine Korrektur des Low Frequency Drop und/oder eine Korrektur der Ringartefakte beinhalten.
  • Die Erfindung ist nachfolgend anhand von in der Zeichnung dargestellten Ausführungsbeispielen näher erläutert. Es zeigen:
  • 1 ein bekanntes Röntgen-C-Bogen-System zur Durchführung des erfindungsgemäßen Verfahrens,
  • 2 eine Ansicht der Bahn eines Detektors und einer Strahlungsquelle gemäß 1 um ein zu untersuchendes Objekt in axialer Blickrichtung,
  • 3 eine Darstellung eines Projektionsgraphs für eine Rotationsaufnahme mittels des Röntgen-C-Bogen-Systems gemäß 1,
  • 4 eine Darstellung der relativen Herzphase eines Vor-/Rückwärtslaufs,
  • 5 die normalisierten Verläufe der Phasendistanz zwischen EKG-basierten Herzphasen eines Vor-/Rückwärtslaufs und den Bild-basierten Distanzwert
  • 6 einen Ablauf des erfindungsgemäßen Verfahrens und
  • 7 einen erfindungsgemäßen Verfahrensablauf einer Vorverarbeitung.
  • Aus der US 2006/0120507 A1 ist eine derartige Röntgendiagnostikeinrichtung zur Durchführung des Verfahrens für Angiographie bekannt, die beispielsweise in der 1 dargestellt ist, die einen an einem Ständer 1 drehbar gelagerten C-Bogen 2 aufweist, an dessen Enden eine Röntgenstrahlungsquelle, beispielsweise ein Röntgenstrahler 3, und ein Röntgenbilddetektor 4 angebracht sind.
  • Der Röntgenbilddetektor 4 kann ein rechteckiger oder quadratischer, flacher Halbleiterdetektor sein, der vorzugsweise aus amorphem Silizium (a-Si) erstellt ist.
  • Im Strahlengang des Röntgenstrahlers 3 befindet sich ein Patientenlagerungstisch 5 zur Aufnahme beispielsweise eines Herzen eines zu untersuchenden Patienten. An der Röntgendiagnostikeinrichtung ist ein Bildsystem 6 angeschlossen, das die Bildsignale des Röntgenbilddetektors 4 empfängt und verarbeitet. Die Röntgenbilder können dann auf einem Monitor 7 betrachtet werden.
  • Sollen 3-D-Datensätze erstellt werden, wird der drehbar gelagerte C-Bogen 2 mit Röntgenstrahler 3 und Röntgenbilddetektor 4 derart gedreht, dass, wie die 2 schematisch in Aufsicht auf die Drehachse zeigt, sich der hier bildlich durch seinen Strahlenfokus dargestellte Röntgenstrahler 3 sowie der Röntgenbilddetektor 4 um ein zu untersuchendes Objekt 9 auf einer Umlaufbahn 8 bewegen. Die Umlaufbahn 8 kann zur Erstellung eines 3-D-Datensatzes vollständig oder teilweise durchfahren werden.
  • Bei dem zu untersuchenden Objekt 9 kann es sich beispielsweise um einen tierischen oder menschlichen Körper aber auch einen Phantomkörper handeln.
  • Der Röntgenstrahler 3 emittiert ein von einem Strahlenfokus seiner Röntgenstrahlungsquelle ausgehendes Strahlenbündel 10, das auf den Röntgenbilddetektor 4 trifft.
  • Der Röntgenstrahler 3 und der Röntgenbilddetektor 4 laufen jeweils so um das Objekt 5 herum, dass sich der Röntgenstrahler 3 und der Röntgenbilddetektor 4 auf entgegengesetzten Seiten des Objekts 9 gegenüberliegen.
  • Bei der normalen Radiographie oder Fluoroskopie mittels einer derartigen Röntgendiagnostikeinrichtung werden die medizinischen 2-D-Daten des Röntgenbilddetektors 4 im Bildsystem 6 ggf. zwischengespeichert und anschließend auf dem Monitor 7 wiedergegeben.
  • Allgemein ist ein Gating eine Selektion von Projektionsbildern. In vorliegendem Falle wird exakt ein Projektionsbild für jede Aufnahmeposition ausgewählt, so dass man aus mehreren Datensätzen einen kompletten Datensatz für eine Rekonstruktion erhält.
  • Die Bildführung während interventioneller Herzuntersuchungen unter Verwendung eines Kardio-C-Bogen-CT-Systems ist für viele Verfahren wünschenswert. Die Anwendung des Elektrokardiogramm-Gatings während der Akquisition von vielfachen, seriellen, rückwärts und vorwärts EKG-getriggerten Rotationsläufen unter Verwendung eines C-Bogen-Systems erlaubt die 3D + t Rekonstruktion des Herzens. Der Prozess des retrospektiven Gatings ist eine besonders wichtige Komponente der 3-D-Rekonstruktion. Es erlaubt die Erstellung eines Projektionsdatensatzes des Herzens in einem quasi-statischen Zustand. Der Goldstandard im Gating ist EKG-basiert. Das EKG-Signal misst die elektrische Aktivität während des Herzzyklus, die mit einer Herzphase korreliert werden kann. Die Korrelation zwischen EKG-basierter und dem tatsächlichen Herzzustand (Herzgeometrie, Blutvolumen, ect.) ist für ruhige und regelmäßige Herzschläge sehr gut und zuverlässig. Bei variablen, hohen oder abnormalen Herzrhythmen, wie sie in einem klinischen Umfeld häufig auftreten, wird die Korrelation schwächer. Deshalb muss nach alternativen Gating-Verfahren gesucht werden, die auf den akquirierten Projektionsdaten basieren. Außerdem können damit auch Nicht-Herzbewegungen, wie beispielsweise die Atmung, berücksichtigt werden, die über das EKG nicht zugänglich sind. Das erfindungsgemäße Ziel ist es, ein bildbasiertes Gating-Verfahren ohne EKG vorzusehen, das bereits akquirierte Projektionsdaten von einem mehrfachen Rotationslauf für eine Rekonstruktion nutzen kann.
  • Das Gating-Problem wird durch einen gewichteten und gerichteten Graph repräsentiert, dessen Elemente die Projektionsbilder sind. Jeder Pfad in diesem Graph entspricht einem möglichen Gating. Bei dem vorliegenden Ansatz wird ein kürzester Pfad gesucht, der eine Zielfunktion optimiert. Der Pfadauf wand (Gewichtung) ist definiert durch auf Bildmaße basierende Ähnlichkeiten von Projektionsbildern. Die Optimierung ist zusätzlich geregelt, um Lösungen zu bevorzugen, bei denen aufeinanderfolgend ausgewählte Projektionen entlang eines vorwärts oder rückwärts erfassten C-Bogen-Durchlaufs kurz sind. Diese Regelung hängt von einer abgeschätzten mittleren Herzrate ab, die ebenfalls während eines bildbasierten Verfahrens geschätzt wurde. Es kann gezeigt werden, dass das eingeführte bildbasierte Gating-Verfahren eine Alternative zum EKG-Gating ist.
  • Für das vorliegende Verfahren wird angenommen, dass kein EKG-Signal vorhanden ist und die erfassten Projektionsdaten bereits vorverarbeitet sind, wie dies noch weiter unten beschrieben wird. So können beispielsweise Intensitätsvariationen, hervorgerufen durch mögliche Belichtungssteuerungen, korrigiert worden sein. Mögliche Verfahrensabläufe sind beispielsweise Abtastungen mit mehrfachen Rotationsläufen von 6 × 4 s oder 4 × 4 s, die beispielsweise sechs oder vier aufeinanderfolgende Vorwärts- und Rückwärts-Durchläufe von jeweils ungefähr vier Sekunden umfassen und ungefähr K = 191 Projektionen pi pro Durchlauf ergeben. Jedoch andere Verfahrensabläufe zur Erfassung der erforderlichen Daten sind ebenfalls möglich.
  • Die Bildung oder Formulierung von bildbasierten Gatings erfolgt auf folgender intuitiver Beobachtung.
  • Es werden einfachheitshalber nur zwei beliebige 2-D-Projektionen p1 und p2 von zwei aufeinanderfolgenden Projektionsrichtungen Vi (beispielsweise pi ∊ Vi, p2 ∊ Vi+1) betrachtet. Die Änderung des Bildinhalts zwischen p1 und p2 ist relativ klein, verglichen mit allen Projektionen von jeder anderen Projektionsrichtung. Deshalb ist die Definition eines aussagekräftigen Distanzwertes d(p1, p2) wünschenswert. Zur Berechnung dieses Distanzwertes d(p1, p2) wird jede Projektion in mehreren Schritten vorverarbeitet. Zu den Verarbeitungsschritten können gehören: Tiefpassfilterung, Auswahl eines interessierenden Bereichs (ROI) um das Herz (üblicherweise ist das Herz in der Projektion zentriert), eine lokale Kontrastverbesserung oder eine Gradientenberechnung. Verschiedene Distanzfunktionen, wie beispielsweise Summe der quadratischen Differenzen oder der Korrelationskoeffizient, sind denkbar. Im vorliegenden Fall erfolgt eine strukturbasierte Korrelation, die sichere Ergebnisse liefert und schnell zu berechnen ist. Die Sinogrammbewegung (Bildänderung durch die Detektorrotation) zwischen solchen aufeinanderfolgenden Projektionen p1 ∊ Vi und p2 ∊ Vi+1 (inter view) ist sehr klein und eine Sinogrammbewegung zwischen zwei Projektionen von demselben Bildwinkel (intra view), beispielsweise p1 ∊ Vi und pk ∊ Vi+1), ist nicht vorhanden (unter Vernachlässigung schmaler, durch Kalibrierung bewirkter Transformationen).
  • Dadurch kann vermieden werden, einen winkelunabhängigen Distanzwert zu definieren, der ein viel größeres Problem ist. Die Projektionspaare charakterisieren die ähnlichsten Herzphasen, wenn d besonders klein ist. Diese Idee kann ausgedehnt werden, um alle K vorhandenen Projektionsrichtungen abzudecken. Es sei ein beliebiges Set p1, ..., pk von Projektionen erfasst von aufeinanderfolgenden Projektionsrichtungen V1, ..., Vk. Der Grad der Unähnlichkeit d ^ ist die Summe aller d(pi, pi+1) für jedes aufeinanderfolgende Paar von Projektionsrichtungen. Jeder mögliche Satz von Projektionen repräsentiert ein mögliches Gating. Ein Gating wird gesucht, das d ^ minimiert, so dass man theoretisch den Bilddatensatz erhält, der die meisten ähnlichen Herzphasen aufweist, die in dem Datensatz enthalten sind. Ein effizientes Berechnungsschema für das Minimierungsproblem kann erreicht werden durch eine Repräsentation der dargestellten Ideen in einem gerichteten gerichteten Graph G = (U, E). Der Satz von Knotenpunkten U enthält alle möglichen Projektionsbilder und einen zusätzlichen Startknotenpunkt α und Endknotenpunkt ζ. Der Satz von Kanten E enthält eine Kante von allen Projektionspaaren von aufeinanderfolgenden Projektionsrichtungen; Kanten vom Anfangsknotenpunkt α zur Projektion von V1 und Kanten von der Projektion Vk zu dem Endknotenpunkt ζ. Jede Kante ist durch d(p1, p2), falls die verbundenen Knotenpunkte Projektionsbilder sind, oder einer Konstante c gewichtet, falls p1 = α oder p2 = ζ. Bei einem gegebenen Projektionsgraph G korrespondiert das optimale Gating zu den Projektionen entlang dem kürzesten Pfad von dem Startknotenpunkt α und dem Endknotenpunkt ζ. Die 1 zeigt ein Beispiel eines sehr kleinen Projektionsgraphs ohne Wichtung.
  • Die 3 zeigt einen sehr schmalen Projektionsgraph ohne Wichtung. Er ähnelt einem Akquisitionsverfahren von drei kurzen Rotationsläufen 13 (pi) über vier Projektionswinkel 14 (Vi). Die in dem Projektionsgraph dargestellten Pfeile stellen mögliche Pfade zwischen den einzelnen Knotenpunkten dar. Die strichpunktierten Pfade 16 geben ein Beispiel für ein mögliches Gating in dem dargestellten Projektionsgraph an, dass aufgrund der Bestimmung des kürzesten Pfades 16 ermittelt wurde.
  • Zusätzlich wird eine Regelung einer Sub-Pfad-Länge eingeführt, um zu verhindern, dass ein aufeinanderfolgender Sub-Pfad von demselben Durchlauf zu lang wird. Während die Zeitdistanz zwischen aufeinanderfolgenden erfassten Projektionen bekannt ist, kann die Sub-Pfad-Länge entsprechend der Zeit begrenzt werden. Deshalb wird ein zusätzlicher Aufwand eines Pfades hinzugefügt, falls aufeinanderfolgende Teile eines ausgewählten Pfades entlang desselben Durchlaufes einen gewissen Teil einer vorhergesagten mittleren Herzschlagdauer übersteigen. Um bildbasiert die mittlere Herzrate abzuschätzen, wird folgendes Verfahren angewandt:
    Es wird ein Vorwärts-Durchlauf betrachtet, bei dem der C-Bogen von einem Winkel 1 ... N rotiert und für eine gewisse Zeit pausiert. Dann wird der Rückwärtslauf gestartet und nun in umgekehrter Anordnung der Winkel N ... 1 Projektionsbilder gesammelt. Werden nun die Herzphasendistanzen bei jedem Winkel 1 ... N über der Zeit betrachtet, ergeben sich mehrere minimale Werte, die in 5 dargestellt sind. Der Vorwärts-Durchlauf 17 ist durch die Kreuze x und der Rückwärts- Durchlauf 18 durch die Punkte • gekennzeichnet. In 4 kreuzen sich die Linien des Vorwärts- und des Rückwärts-Durchlaufs. Offensichtlich korrespondieren diese Minimalwerte zu Kreuzpunkten der Herzphase; beispielsweise zeigen beide Bilder dieselbe Herzphase. Glücklicherweise kann dieser Umstand durch einen bildbasierten Algorithmus ausgenutzt werden, der nur die Distanzen zwischen Bildprojektionspaaren derselben Angulation bestimmt. Bei vorgegebenem Satz von Minimalwerten zwischen allen Kombinationen der Intra-Projektionsrichtung von Vorwärts- und Rückwärtsläufen als Referenz kann eine Optimierungsprozedur gestartet werden. Es erfordert ein künstliches Herzsignal über der Aufnahmedauer, das dem Satz der Referenzminimalwerte entspricht. Die Optimierung ist in einem Zwei-Schritt-Verfahren durchgeführt, um den Suchraum zu reduzieren. Zuerst wird eine konstante Herzrate angenommen und eine graphische Darstellung der sich ergebenden Angulation ist in 5 gezeigt, die einen Vergleich der zeitlichen Position der Kreuzungspunkte zu dem Minimalwert der bildbasierten Ähnlichkeit ermöglicht. Anschließend wird jede Herzschlagdauer modifiziert in einer stochastischen Gradientenabnahme durch Modifizierung des Herzsignals, bis eine minimale zeitliche Distanz von allen Herzschlägen zwischen allen Vorwärts/Rückwärts-Durchläufen Kreuzungen ergeben.
  • Die Änderung des Bildinhaltes bei benachbarten C-Bogen-Angulationen ist durch die Bildänderungen aufgrund der Detektorrotation (Sinogrammbewegung) und die Änderungen in der Herzphase zusammengesetzt. Zwischen benachbarten Blickwinkeln ist die Verteilung der Sinogrammbewegung als konstant anzusehen und ist deshalb unabhängig von den C-Bogen-Durchläufen 1 bis K. Im Gegensatz dazu hängt die Herzphase von dem einzelnen Durchlauf ab. In jedem Durchlauf ist das zu untersuchende Objekt voraussichtlich in einer abweichenden Herzphase. Deshalb kann man daraus folgern, dass die Ähnlichkeit zwischen aufeinanderfolgenden C-Bogen-Angulationen minimiert werden sollten, damit die Bilder die gleiche physiologische Herzphase darstellen.
  • Diese Überlegungen führen zum folgenden Algorithmus:
    Finde ein Gating für die Summe der bildbasierten Distanzen d zwischen benachbarten Projektionsrichtungen gemäß folgender Gleichung:
    Figure 00110001
  • Diese Formulierung kann auch in einem Term interpretiert werden; verringere die Summe des ersten Gradienten der Herzbewegung, die nahe Null ist und dieselbe Herzphase darstellt. Dieses Ziel kann leicht durch ein Mapping der Minimierungsaufgaben folgendermaßen auf einen gerichteten Graph erreicht werden, der Projektionsgraph G = (V, E) genannt wird: Der Satz von Knotenpunkten enthält zwei Anschlüsse oder Terminale α und ζ und die Projektionsbilder, beispielsweise V = {p1, ..., pNK,α,ζ}. Der Satz von Kanten E wird durch Addition von Kanten der Quelle oder dem Startknotenpunkt α zu den Bildern der ersten Projektionssicht V1 gebildet. Eine Kante wird dann für jedes Bild von der k-ten Projektionssicht Vk zu allen Bildern der k + 1-ten Projektionssicht Vk+1 hinzugefügt. Die Bilder der letzten Projektionssicht sind mit dem Endknotenpunkt ζ verbunden. Die gerichteten Kanten sind durch ein Bildmaß d für jedes der zwei Projektionsbilder und, falls einer der Knotenpunkte nicht ein Projektionsbild ist (ein Terminal α oder ζ), durch eine Konstante von c = 1 gewichtet.
  • Die 3 zeigt das Ergebnis des Projektionsgraphs für einen sehr kleinen künstlichen Scan. Die Projektionsbilder entlang jedes Pfads, der die beiden Terminale α und ζ verbindet, ist ein mögliches Gating. Der kürzeste Pfad zwischen ihnen minimiert die Summe der Distanzen zwischen benachbarten Projektionsrichtungen. Ein effizienter Algorithmus für das kürzeste Pfadproblem in einem kreisfreien gerichteten Graph mit nicht negativen Kantenwichtungen ist von E. W. Dijkstra, aus "A Note an Two Problems in Connexion with Graphs" in Numerische Mathematik 1, Seiten 269 bis 271, bekannt. Dieser Algorithmus ergibt den Pseudocode einer Veränderung, die ein fache Subpfadbedingungen enthält, wie noch nachfolgend beschrieben wird.
  • Für optimale Effizienz des Projektionsgraphen werden einige Vorkenntnisse zusätzlich betrachtet. Zuerst sollte der Winkelzuwachs von aufeinanderfolgenden Angulationen klein sein; andernfalls dominiert die Sinogrammbewegung und die Herzphasenänderung wird vernachlässigbar. Weiterhin können Dateninkonsistenzen aufeinanderfolgender C-Bogen-Durchläufe zusätzlich das vorher beschriebene Verhältnis stören und die Änderungen im Bildinhalt dominieren. Weitere zu betrachtende Faktoren sind Rauschen, die Dynamik des Kontrastmittels und Nicht-Herzbewegungen. Dies wird berücksichtigt durch die nachfolgend beschriebene Vorverarbeitung und die Einführung von Gating-Beschränkungen.
  • Entsprechend den vorhergehenden Absätzen sind die Projektionsdaten einer Vorverarbeitung zu unterziehen. Dabei können folgende Verarbeitungsschritte gemäß 6 für ein Projektionsbild durchgeführt werden:
  • S1 Vorverarbeitung von 3-D-Rekonstruktionsalgorithmen
    • – Die Ausführung einer Vorverarbeitung von 3-D-Rekonstruktionsalgorithmen und Auswahl der Bilder, die direkt einen Beitrag zur Berechnung des 3-D-Volumens beitragen. Diese Vorverarbeitung kann allgemein, aber nicht darauf begrenzt, die Korrektionsalgorithmen für Streustrahlung, Strahlenaufhärtung, Truncation, Überstrahlung, Low Frequency Drop und Ringartefakte beinhalten, wie dies beispielsweise in Zellerhoff et al. in "Low contrast 3D reconstruction from C-arm data", Proceedings of SPIE, Medical Imaging 2005, Vol. 5745, Seiten 646 bis 655, oder der US 2006/0120507 A1 beschrieben ist.
  • S2 Verkleinerung der Bilddaten
    • – Dadurch kann die Berechnung beschleunigt werden.
  • S3 Filterung
    • – Aufgrund der Detektorrotation zwischen benachbarten Winkelpositionen überlappen sich gemeinsame Strukturen, wie beispielsweise Kanten, nicht exakt. Um diesen Einfluss zu kompensieren, wird eine Tiefpassfilterung, beispielsweise ein Gauss-Filter-Kernel, angewandt.
  • S4 Berechnung der Größe des Bildgradienten (optional)
    • – Der Bildgradient liefert strukturelle Informationen der Herzgeometrie.
  • S5 Bildung eines interessierenden Bereiches (ROI, Region of Interest)
    • – Die Sinogramm-Bewegungen verbreiten sich über dem kompletten Projektionsbild aus. Um diesen Einfluss zu verringern, werden die Projektionsbilder abgeschnitten auf eine vom Anwender gewünschte ROI, so dass sie das komplette Herz in allen Projektionsbildern und Herzphasen enthält.
  • Im Allgemeinen können jegliche Grauskalen-Messwerte als Distanz-Messwert d im bildbasierten Gating-Algorithmus verwendet werden. Im vorliegenden Falle können beispielsweise drei verschiedene Distanzmessungen, die Euklidische Distanz, der Korrelationskoeffizient und eine SVD-basierte Messung, die in A. Shnayderman, A. Gusev, and A. Eskicioglu, "An svd-based gray-scale image quality measure for local and global assessment," IEEE Transactions an Image Processing 15, Seiten 422 bis 429, February 2006, beschrieben ist, Verwendung finden. Als besonders vorteilhaft wegen sicherer und stabiler Ergebnisse bei geringem Rechenaufwand wird die Euklidische Distanz angesehen.
  • Um weiterhin das Gating-Ergebnis zu verbessern, wird eine Regelung der Länge von aufeinanderfolgenden, ausgewählten Projektionen aus demselben C-Bogen-Durchlauf in einem bestimmten Zeitraum eingeführt. Diese Dauer hängt von der mittleren Herzrate ab, die auch auf einer geschätzten vorgesehenen Bildinformation basiert. Deshalb wird die Möglichkeit eingeführt, eine einfache beschränkte, kürzeste Pfadsuche unter Verwendung des Dijkstra-Algorithmus durchzuführen. Bei jedem Schritt der Dijkstra-Pfadsuche wird zu jedem möglichen Unterpfad unter Betrachtung vom zusätzlichen Validitätswert v zu dem aktuellen Pfadaufwand addiert. Der Algorithmus ergibt den Pseudocode der modifizierten Pfadsuche. Die einzige Änderung zu dem Standardalgorithmus befindet sich in den Zeilen 17 und 18 des angefügten Programmablaufs, in dem der Validitätswert v durch eine Funktion „Validität" ersetzt wird. Der Validitätswert ist Null für gültige Gatings und unendlich für nichtgültige Gatings. Ein Pfad ist gültig, falls innerhalb eines Zeitrahmens von w nicht mehr als m Projektionsbilder von einem einzelnen Durchlauf ausgewählt wurden. Dies erlaubt die Auswahl nur möglicher Lösungen im Hinblick auf die Charakteristik des Herzzyklus. Aus "Cardiovascular Physiology Concepts" von Richard E. Klabunde, Lippincott Williams & Wilkins, July 2004, (http://www.cvphysiology.com) ist es bekannt, dass spezifische Herzphasen eine bestimmte maximale Zeitdauer haben, die durch den eingeführten Validitätswert erzwungen, d. h. nicht überschritten werden kann.
  • Durch Erfahrung geben die mittlere Herzrate Ĥ und die mittlere Zeit ΔT zwischen zwei aufeinanderfolgenden erfassten Projektionsbildern eine gute Intuition, wie die Validitätsparameter m und w parametrisiert werden können. Die mittlere Herzrate erlaubt die Bestimmung einer oberen Grenze für die diastolische oder systolische Dauer. Folgende heuristische Werte können beim Gating Verwendung finden und haben sich als vorteilhaft erwiesen:
    Figure 00140001
  • Dies ermöglicht, dass nicht mehr als 65% der Projektionen während eines Teils von 65% der Zeit eines Herzzyklus aus einem einzigen Durchlauf ausgewählt werden. Die mittlere Herzrate ist patientenspezifisch und benötigt eine Ableitung der Bilddaten für einen reinen bildbasierten Algorithmus. Ein Verfahren für eine Bestimmung der bildbasierten mittleren Herzrate wird nachfolgend beschrieben.
  • Während eines Vorwärtslaufes rotiert der C-Bogen von einem Winkel 1 bis N und pausiert dann für eine bestimmte Zeit. Dann wird der Rückwärtslauf gestartet und es werden wieder Bilder gesammelt, die nun in umgekehrter Reihenfolge an den Winkeln N bis 1 erfasst werden. Die Darstellung in 4 zeigt die EKG-gemessenen Herzphasen, aufgetragen über die Akquisitionszeit. Bei konstanter Herzrate können typischerweise zwei Schnittpunkte pro Herzzyklus betrachtet werden. In der 5 ist punktiert der normalisierte EKG-Abstand zwischen Paaren von Projektionsbildern bei gleicher Angulation dargestellt. Der Abstand für zwei Projektionen P1, P2 ergibt sich durch minc∊{0,1,–1}|τ(p1) – τ(p2) + c|. Die ausgezogene Kurve in 5 zeigt den normalisierten bildbasierten Abstandsmesswert d für dasselbe Paar von Projektionsbildern. Hieraus wird klar deutlich, dass der Satz von Zeitpunkten, in denen die Herzphase einer Vorwärts- und Rückwärts-Durchlaufkombination gleich ist, einem Minimum der bildbasierten Distanzfunktion entspricht. Die Kernidee des vorliegenden bildbasierten Algorithmus für geschätzte mittlere Herzraten ist ein künstliches Herzsignal zu erzeugen, das den gleichen Satz von Kreuzpunkten aufweist. Dieser Algorithmus arbeitet folgendermaßen:
    L sei in der folgenden Betrachtung die Anzahl der Vorwärts- und Rückwärts-Kombinationen (F/B-Kombinationen). In einer ersten Phase des Algorithmus wird für jede der L F/B-Kombinationen die bildbasierte Entfernungskurve bestimmt. Für jede der Kurven ist der Satz der lokalen Minima Ri detektiert. Der Satz von allen Kombinationen
    Figure 00150001
  • In der zweiten Phase des Algorithmus wird ein künstliches Herzsignal mit einer angenommenen konstanten Herzrate h erzeugt. Dadurch kann für jede F/B-Kombination eine graphische Darstellung, ähnlich der in 4, mit dem künstlichen Herzsignal erzeugt werden. Als nächstes werden die Minima Ah = {A n / 1, ..., A n / L} für jede der F/B-Kombinationen durch Ermitt lung des Herzphasenkreuzungspunktes in dem künstlichen Signal berechnet.
  • Für eine Qualitätsmessung wird die Übereinstimmung zwischen
    Figure 00160001
    und jedem Ah ermittelt; eine Funktion λM(x) wird eingeführt, die für jeden Satz der Minima M von
    Figure 00160002
    oder Ah eine Dreiecksform erzeugt. Sie nimmt den Wert Eins, falls x ein Minimum ist, und den Wert Null an, falls x in der Mitte von zwei aufeinanderfolgenden Minima liegt und einen linearen Interpolationswert für dazwischen liegende Werte. Visuell ausgedrückt ist diese Funktion ein Dreieck mit der Höhe 1, zentriert um jeden Minimalwert. Unter Verwendung von λM(x) können wir folgende zu minimierende Zielfunktion definieren:
    Figure 00160003
    welche die quadratische Differenz der Referenz und der künstlichen Dreiecksfunktionen der Minima für alle Kombinationen der Vorwärts/Rückwärts-Durchläufe misst. Die Minimierung von ∊ erfolgt durch Diskretisierung des Suchraumes [hmin, hmax] und Durchführung einer vollständigen Suche. Die optimale Herzrate h wird als mittlere Herzrate interpretiert. Um die geschätzte mittlere Herzrate zu stabilisieren, wird ein gewisser Teil der am besten optimierten Herzrate gemittelt. Die geschätzte mittlere Herzrate kann weiter verbessert durch eine gezielte Veränderung des Herzsignals zur Minimierung von ∊ werden.
  • In der kardialen C-Bogen-Computertomographie werden mehrere C-Bogenumläufe hintereinander aufgenommen (DynaCT Cardiac ECG-gated Protokoll). Durch das erfindungsgemäße Verfahren, geeignete Herzphasen mit einem bildorientierten Verfahren auszuwählen, wird erreicht, dass sich für ein Gating auch ohne die Erfassung eines EKGs eine geeignete Herzphase finden lässt. Für N C-Bogenumläufe werden N Projektionsbilder pro Projektionswinkel aufgenommen. Ein Gating wird bestimmt, das die Summe der Differenzen der Projektionsbilder von aufeinanderfolgenden Projektionswinkeln minimiert. Als Nebenbedingung wird die mittlere Herzrate bildorientiert berechnet und dem gemäß rechtzeitige Wechsel bei der Auswahl der C-Bogenumläufe eingefordert.
  • Das EKG basierte Auswahlverfahren kann zu einer falschen Auswahl an Projektionsbildern führen. Die relative Herzphase gibt primär noch keine Auskunft über den Bewegungszustand des Herzens. Aus Erfahrung kennt man die Phasen relativer Ruhe bei gegebenen festen Herzraten. Im klinischen Umfeld besitzt die Herzschlaglänge aber große Varianzen. Innerhalb von 20 s kann man bei einem Patienten Herzraten zwischen 50 bpm und 120 bpm beobachten. Modellhaft beschreibt man das Herz so, dass die Systole in einer relativ konstant vorgegebenen absoluten Zeit stattfindet. Die Varianz in der Herzrate wird zum größten Teil durch eine Verlängerung oder Verkürzung der diastolischen Phase bewerkstelligt. Damit zeigen gleiche relative Herzphasen ungleiche Zustände des Herzens.
  • Ein modellbasierter Zugang hätte den Nachteil, dass Patienten abhängige Variationen nicht berücksichtigt würden. Ein bildbasiertes Auswahlverfahren ist unabhängig von Grundannahmen. Es sucht sich nach Maßgabe vorhandener Projektionsaufnahmen die Phasen der relativen Herzruhe heraus.
  • Durch die bildbasierte Selektion der Herzphasen in der kardialen 3-D-Bildgebung aus Projektionsbildern erhält man ohne der Durchführung eines EKG auch nachträglich 3-D-Aufnahmen von Herzphasen mit geringer Bewegung und damit geringer Unschärfe.
  • Nachfolgend ist beispielhaft der von E. W. Dijkstra, "A Note an Two Problems in Connexion with Graphs" in Numerische Mathematik 1, Seiten 269 bis 271, beschriebene Algorithmus modifiziert wiedergegeben, der den kürzesten Weg in den Projektionsgraphen G = (V, E) ermittelt. Die Funktion "getpath" generiert den kürzesten Weg mittels Iteration durch die Abbildung des Vorgängers P. Die Funktion "validity" ergibt den "validity"-Wert für einen Unterpfad (subpath).
    Figure 00180001
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • - US 2008/0025590 A1 [0004]
    • - US 2006/0120507 A1 [0022, 0044]
  • Zitierte Nicht-Patentliteratur
    • - Kachelrieß et al. in "Kymogram detection and kymogram-correlated image reconstruction from subsecond spiral computed tomography scans of the heart", veröffentlicht in Med. Phys. 29(7), Seiten 1489 bis 1503, Juli 2002 [0005]
    • - E. W. Dijkstra, aus "A Note an Two Problems in Connexion with Graphs" in Numerische Mathematik 1, Seiten 269 bis 271 [0042]
    • - Zellerhoff et al. in "Low contrast 3D reconstruction from C-arm data", Proceedings of SPIE, Medical Imaging 2005, Vol. 5745, Seiten 646 bis 655 [0044]
    • - A. Shnayderman, A. Gusev, and A. Eskicioglu, "An svd-based gray-scale image quality measure for local and global assessment," IEEE Transactions an Image Processing 15, Seiten 422 bis 429, February 2006 [0045]
    • - "Cardiovascular Physiology Concepts" von Richard E. Klabunde, Lippincott Williams & Wilkins, July 2004, (http://www.cvphysiology.com) [0046]
    • - E. W. Dijkstra, "A Note an Two Problems in Connexion with Graphs" in Numerische Mathematik 1, Seiten 269 bis 271 [0056]

Claims (8)

  1. Verfahren zur dreidimensionalen Darstellung einer bewegten Struktur durch ein tomographisches Verfahren, bei welchem von einer Bildaufnahmeeinheit (2 bis 4) während mehrerer Rotationsläufe (13) eine Vielzahl von Projektionsbildern aus unterschiedlichen Projektionswinkeln (14) zwischen einem Startwinkel mit einem Startknotenpunkt (11) und einem Endwinkel mit einem Endknotenpunkt (12) aufgenommen wird, wobei aus den Projektionsbildern dreidimensionale Bilddaten rekonstruierbar sind, wobei die Projektionsbilder mittels eines Pfades oder einer Kante (15, 16) beabstandet sind, dadurch gekennzeichnet, dass zur Ermittlung der dreidimensionalen Darstellung für jeden Projektionswinkel (14) nur diejenigen Projektionsbilder ausgewählt werden, die die Summe der Pfade oder gewichteten Kanten zwischen benachbarten Projektionswinkeln (14) für ein Gating minimieren.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass zur dreidimensionalen Darstellung von jedem Projektionswinkel (14) mit Knotenpunkt nur dasjenige Projektionsbild ausgewählt wird, bei dem unter der Menge der möglichen Pfade oder Kanten (15, 16) die Summe der Pfade oder gewichteten Kanten zwischen benachbarten Knotenpunkten das geringste Abstandsmaß besitzt.
  3. Verfahren nach Anspruch 1 oder 2, gekennzeichnet durch folgende Schritte: a) Erfassung der Bilddaten durch mehrere Rotationsläufe (13), b) Vorverarbeitung der erfassten Bilddaten, c) Bestimmung der mittleren Herzrate, d) Messung der Abstände der Herzraten von der mittleren Herzrate, e) Bestimmung von Kantengewichten, f) Ermittlung der Projektionen entlang des kürzesten Pfades oder der Kante (16) zwischen dem Startknotenpunkt (11) und dem Endknotenpunkten (12), g) Rekonstruktion des 3-D-Datensatzes und h) Darstellung des 3-D-Datensatzes.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die mittlere Herzrate bildorientiert berechnet wird.
  5. Verfahren nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass die mittlere Herzrate gemäß der Schritte c) und e) nach dem Verfahren der Euklidischen Distanz ermittelt wird.
  6. Verfahren nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, dass die kürzeste Distanz der Pfade (16) gemäß der Schritte e) und f) mittels des Dijkstra-Algorithmus bestimmt wird.
  7. Verfahren nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, dass die Vorverarbeitung gemäß Schritt b) folgende Schritte beinhaltet: S1 Vorverarbeitung von 3-D-Rekonstruktionsalgorithmen, S2 Verkleinerung der Bilddaten, S3 Tiefpassfilterung, S4 Berechnung der Größe des Bildgradienten (optional) und/oder S5 Bildung eines interessierenden Bereiches (ROI).
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass der Schritt S1 eine Streustrahlungskorrektur, eine Strahlenaufhärtungskorrektur, eine Truncation-Korrektur, eine Überstrahlungskorrektur, eine Korrektur des Low Frequency Drop und/oder eine Korrektur der Ringartefakte beinhaltet.
DE102008010006.4A 2008-02-19 2008-02-19 Verfahren zur dreidimensionalen Darstellung einer bewegten Struktur durch ein tomographisches Verfahren Expired - Fee Related DE102008010006B4 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102008010006.4A DE102008010006B4 (de) 2008-02-19 2008-02-19 Verfahren zur dreidimensionalen Darstellung einer bewegten Struktur durch ein tomographisches Verfahren
US12/378,793 US8183529B2 (en) 2008-02-19 2009-02-19 Method for three-dimensional presentation of a moved structure using a tomographic method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102008010006.4A DE102008010006B4 (de) 2008-02-19 2008-02-19 Verfahren zur dreidimensionalen Darstellung einer bewegten Struktur durch ein tomographisches Verfahren

Publications (2)

Publication Number Publication Date
DE102008010006A1 true DE102008010006A1 (de) 2009-08-27
DE102008010006B4 DE102008010006B4 (de) 2017-06-08

Family

ID=40896530

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102008010006.4A Expired - Fee Related DE102008010006B4 (de) 2008-02-19 2008-02-19 Verfahren zur dreidimensionalen Darstellung einer bewegten Struktur durch ein tomographisches Verfahren

Country Status (2)

Country Link
US (1) US8183529B2 (de)
DE (1) DE102008010006B4 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5436665B2 (ja) * 2009-06-03 2014-03-05 グーグル・インコーポレーテッド 同時選択画像の分類
CN105426927B (zh) * 2014-08-26 2019-05-10 东芝医疗系统株式会社 医学图像处理装置、医学图像处理方法和医学图像设备
US10792492B2 (en) * 2014-10-14 2020-10-06 East Carolina University Methods, systems and computer program products for determining physiologic status parameters using signals derived from multispectral blood flow and perfusion imaging
EP3188651A4 (de) 2014-10-14 2018-07-04 East Carolina University Verfahren, systeme und computerprogrammprodukte zur visualisierung anatomischer strukturen und des blutflusses und der perfusionsphysiologie durch verwendung von bildgebungstechniken
US11553844B2 (en) * 2014-10-14 2023-01-17 East Carolina University Methods, systems and computer program products for calculating MetaKG signals for regions having multiple sets of optical characteristics
US10058256B2 (en) 2015-03-20 2018-08-28 East Carolina University Multi-spectral laser imaging (MSLI) methods and systems for blood flow and perfusion imaging and quantification
US10390718B2 (en) 2015-03-20 2019-08-27 East Carolina University Multi-spectral physiologic visualization (MSPV) using laser imaging methods and systems for blood flow and perfusion imaging and quantification in an endoscopic design
US10560367B2 (en) * 2016-01-18 2020-02-11 Nokia Of America Corporation Bidirectional constrained path search
DE102016219817B4 (de) * 2016-10-12 2018-05-30 Siemens Healthcare Gmbh Verfahren zur Ermittlung eines Röntgenbilddatensatzes und Röntgeneinrichtung

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060120507A1 (en) 2004-11-26 2006-06-08 Thomas Brunner Angiographic x-ray diagnostic device for rotation angiography
US20080025590A1 (en) 2006-07-28 2008-01-31 Siemens Aktiengesellschaft Method for the tree-dimensional representation of a structure influenced by a periodic process, and medical imaging system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4974598A (en) * 1988-04-22 1990-12-04 Heart Map, Inc. EKG system and method using statistical analysis of heartbeats and topographic mapping of body surface potentials
DE102005022899A1 (de) * 2005-05-18 2006-11-23 Siemens Ag Verfahren und Einrichtung zum Erzeugen eines digitalen tomosynthetischen 3D-Röntgenbildes von einem Untersuchungsobjekt
CA2619308A1 (en) * 2005-08-17 2007-02-22 Koninklijke Philips Electronics, N.V. Method and apparatus for automatic 4d coronary modeling and motion vector field estimation
EP2238906B1 (de) * 2005-09-07 2015-04-08 Kabushiki Kaisha Toshiba Röntgenstrahlen-Computer-Tomographie Gerät
US7711168B2 (en) * 2005-10-19 2010-05-04 Siemens Medical Solutions Usa, Inc. Method for tracking blood vessels
US7570738B2 (en) * 2006-08-04 2009-08-04 Siemens Medical Solutions Usa, Inc. Four-dimensional (4D) image verification in respiratory gated radiation therapy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060120507A1 (en) 2004-11-26 2006-06-08 Thomas Brunner Angiographic x-ray diagnostic device for rotation angiography
US20080025590A1 (en) 2006-07-28 2008-01-31 Siemens Aktiengesellschaft Method for the tree-dimensional representation of a structure influenced by a periodic process, and medical imaging system

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"Cardiovascular Physiology Concepts" von Richard E. Klabunde, Lippincott Williams & Wilkins, July 2004, (http://www.cvphysiology.com)
A. Shnayderman, A. Gusev, and A. Eskicioglu, "An svd-based gray-scale image quality measure for local and global assessment," IEEE Transactions an Image Processing 15, Seiten 422 bis 429, February 2006
E. W. Dijkstra, "A Note an Two Problems in Connexion with Graphs" in Numerische Mathematik 1, Seiten 269 bis 271
E. W. Dijkstra, aus "A Note an Two Problems in Connexion with Graphs" in Numerische Mathematik 1, Seiten 269 bis 271
Kachelrieß et al. in "Kymogram detection and kymogram-correlated image reconstruction from subsecond spiral computed tomography scans of the heart", veröffentlicht in Med. Phys. 29(7), Seiten 1489 bis 1503, Juli 2002
Zellerhoff et al. in "Low contrast 3D reconstruction from C-arm data", Proceedings of SPIE, Medical Imaging 2005, Vol. 5745, Seiten 646 bis 655

Also Published As

Publication number Publication date
US8183529B2 (en) 2012-05-22
US20090214098A1 (en) 2009-08-27
DE102008010006B4 (de) 2017-06-08

Similar Documents

Publication Publication Date Title
DE102008010006B4 (de) Verfahren zur dreidimensionalen Darstellung einer bewegten Struktur durch ein tomographisches Verfahren
DE102005027963B3 (de) Verfahren und Vorrichtung zur Rekonstruktion eines 3D-Bilddatensatzes eines bewegten Objektes
DE60034748T2 (de) Verfahren und Vorrichtung zur bewegungsfreien kardiologischen Computertomographie
DE60208311T2 (de) Verfahren und Vorrichtung zur Minimierung von Bewegungsartefakten in Bildern aus geschalteter CT Bildgebung
DE19957083B4 (de) Verfahren zur Untersuchung eines eine periodische Bewegung ausführenden Körperbereichs
DE102010022791B4 (de) Verfahren zur dreidimensionalen Darstellung einer bewegten Struktur durch ein Rotationsangiographie-Verfahren
DE102010019016B4 (de) Verfahren zur Rekonstruktion von Bilddaten eines bewegten Untersuchungsobjektes aus Messdaten nebst zugehöriger Gegenstände
DE102012207629B4 (de) CT-Bildrekonstruktion im erweiterten Messfeld
DE102011083643A1 (de) Verfahren, Rechensystem und CT-System zur Bestimmung eines Bewegungsfeldes und zur bewegungskompensierenden Rekonstruktion mit diesem Bewegungsfeld
DE102010027227B4 (de) Verfahren und Computertomographiegerät zur Durchführung einer angiographischen Untersuchung
DE102007061935A1 (de) Verfahren zur Qualitätssteigerung von computertomographischen Aufnahmeserien durch Bildverarbeitung und CT-System mit Recheneinheit
DE102010034099B4 (de) Iterative Bildfilterung mit anisotropem Rauschmodell für ein CT-Bild
EP3539475B1 (de) Verfahren zur bewegungskorrektur von spektralen computertomographiedaten, sowie ein energiesensitives computertomographiegerät
DE102011083647A1 (de) Verfahren, Rechensystem und CT-System zur Erzeugung eines bewegungskompensierten CT-Bilddatensatzes eines sich teilweise und zyklisch bewegenden Untersuchungsobjektes
DE102010006585A1 (de) CT-Bildrekonstruktion im erweiterten Messfeld
DE102013201136A1 (de) Vorhersage eines voraussichtlichen Kontrastmittelverlaufs
DE102017217599A1 (de) Medizinische Informationsverarbeitungsvorrichtung, Röntgen-CT-Vorrichtung und medizinisches Informationsverarbeitungsverfahren
DE102006049865A1 (de) Auswertungsverfahren für Daten eines Untersuchungsobjekts unter Korrelierung eines Volumendatensatzes mit einer Anzahl von Durchleuchtungsbildern
DE102010024684A1 (de) Verbesserung der Zeitauflösung in der Cardio-CT
DE102010013360B4 (de) Verfahren zur Rekonstruktion von Bilddaten eines zyklisch sich bewegenden Untersuchungsobjektes
DE102007061934A1 (de) Verfahren zur Qualitätssteigerung von computertomographischen Aufnahmeserien durch Projektionsdatenverarbeitung und CT-System mit Recheneinheit
DE102011083646A1 (de) Verfahren, Rechensystem und CT-System zur Bestimmung eines Bewegungsfeldes und zur Erzeugung eines bewegungskompensierten CT-Bilddatensatzes eines sich teilweise bewegenden Objektes
WO2014072153A1 (de) Dosisreduzierte ct-aufnahme mittels dynamischer kollimierung
DE102013202313A1 (de) Verfahren und Vorrichtung zur Korrektur von Bewegungsartefakten bei einem computertomographischen Bild
DE10333074A1 (de) Verfahren zur Untersuchung eines eine periodische Bewegung in Form ausführenden Körperbereichs eines Untersuchungsobjektes und Diagnostik-Gerät zur Durchführung eines solchen Verfahrens

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8120 Willingness to grant licences paragraph 23
8127 New person/name/address of the applicant

Owner name: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

R016 Response to examination communication
R016 Response to examination communication
R081 Change of applicant/patentee

Owner name: SIEMENS HEALTHCARE GMBH, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

R018 Grant decision by examination section/examining division
R020 Patent grant now final
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee