DE102008009137B4 - Seitenemittierende Stufenindexfaser - Google Patents

Seitenemittierende Stufenindexfaser Download PDF

Info

Publication number
DE102008009137B4
DE102008009137B4 DE102008009137.5A DE102008009137A DE102008009137B4 DE 102008009137 B4 DE102008009137 B4 DE 102008009137B4 DE 102008009137 A DE102008009137 A DE 102008009137A DE 102008009137 B4 DE102008009137 B4 DE 102008009137B4
Authority
DE
Germany
Prior art keywords
fiber
core
fibers
step index
emitting step
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
DE102008009137.5A
Other languages
English (en)
Other versions
DE102008009137A1 (de
Inventor
Dr. Ritter Simone
Dr. Henze Inka
Dr. Wolff Detlef
Dr. Alkemper Jochen
Bernd Hoppe
Bernd Schultheis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schott AG
Original Assignee
Schott AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DE102008009137.5A priority Critical patent/DE102008009137B4/de
Application filed by Schott AG filed Critical Schott AG
Priority to PCT/EP2009/000702 priority patent/WO2009100834A1/de
Priority to EP09710583.7A priority patent/EP2243048B1/de
Priority to JP2010546237A priority patent/JP5480822B2/ja
Priority to US12/867,735 priority patent/US8582943B2/en
Priority to CN200980105142.1A priority patent/CN101946197B/zh
Priority to ES09710583T priority patent/ES2730703T3/es
Publication of DE102008009137A1 publication Critical patent/DE102008009137A1/de
Application granted granted Critical
Publication of DE102008009137B4 publication Critical patent/DE102008009137B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0005Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type
    • G02B6/001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type the light being emitted along at least a portion of the lateral surface of the fibre
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q3/00Arrangement of lighting devices for vehicle interiors; Lighting devices specially adapted for vehicle interiors
    • B60Q3/70Arrangement of lighting devices for vehicle interiors; Lighting devices specially adapted for vehicle interiors characterised by the purpose
    • B60Q3/78Arrangement of lighting devices for vehicle interiors; Lighting devices specially adapted for vehicle interiors characterised by the purpose for generating luminous strips, e.g. for marking trim component edges

Abstract

Seitenemittierende Stufenindexfaser, beinhaltend einen lichtleitenden Kern (1) aus anorganischem Glas mit dem Brechungsindex n1 und einen den Kern entlang der Faserachse (A) umschließenden transparenten und/oder transluzenten Mantel (2) aus anorganischem Glas mit dem Brechungsindex n2, dadurch gekennzeichnet, dass sich zwischen Kern und Mantel zumindest ein Streubereich (3) befindet, der aus einem anorganischem Glas gebildet wird, welches im wesentlichen den Brechungsindex n1 aufweist und in welches Streupartikel eingelagert sind, wobei der thermische Ausdehnungskoeffizient des anorganischen Kernglases größer ist als der thermische Ausdehnungskoeffizient des anorganischen Mantelglases.

Description

  • Die Erfindung betrifft seitenemittierende Stufenindexfasern aus anorganischem Glas, Preformen und Verfahren zu deren Herstellung sowie seitenemittierende Stufenindexfasern beinhaltende Faserbündel sowie Flächengebilde und deren Anwendungen.
  • Als Stufenindexfasern werden lichtleitende Fasern verstanden, wobei die Lichtleitung in dem Faserkern durch Totalreflektion des in dem Kern geleiteten Lichts an dem den Faserkern entlang der Faserachse umschließenden Mantel erfolgt. Die Totalreflektion tritt dann auf, wenn der Mantel einen niedrigeren Brechungsindex aufweist als der das Licht leitende Faserkern. Allerdings ist die Bedingung der Totalreflektion nur bis zu einem Grenzwinkel des auf den Mantel treffenden Lichts möglich, der von den Brechungsindices von Kern und Mantel abhängig ist. Der Grenzwinkel βMin, d. h. der kleinste Winkel, bei dem noch die Totalreflektion auftritt, kann berechnet werden durch sin(βMin) = n2/n1, wobei βMin von einer Ebene senkrecht zur Faserachse gemessen wird, n1 den Brechungsindex des Faserkerns und n2 den Brechungsindex des Mantels repräsentiert.
  • Im allgemeinen wird eine möglichst gute Führung des Lichts in der Faser angestrebt, d. h. es soll möglichst wenig Licht bei der Einkopplung in die Faser und bei dem Transport in der Faser verloren gehen. Eine seitenemittierende Stufenindexfaser ist eine Stufenindexfaser, bei der absichtlich Licht aus dem Faserkern und aus der Faser ausgekoppelt wird. Im allgemeinen ist eine gleichmäßige Auskopplung erwünscht, welche eine seitenemittierende Stufenindexfaser im Idealfall als ein gleichmäßig leuchtendes Band oder Linie erscheinen lassen. Dies macht sie für mannigfaltige Anwendungen insbesondere in der Beleuchtungstechnik interessant.
  • Seitenemittierend im Sinne der Erfindung heißt, dass die Faser in der Lage ist, Licht seitlich zu emittieren, unabhängig davon, ob sie im Betrieb ist, d. h. ob tatsächlich eine Lichtquelle angeschlossen und das Licht eingeschaltet ist.
  • Die Fasern werden wie allgemein bekannt mit Hilfe von Faserziehprozessen hergestellt, wobei zumindest die Preform des Faserkerns bis zur Erweichungstemperatur des Materials der Preform bzw. des Faserkerns oder darüber hinaus erwärmt und eine Faser ausgezogen wird. Die Prinzipien des Faserziehprozesses sind beispielsweise in den deutschen Patenten DE 103 44 205 B4 und DE 103 44 207 B3 ausführlich beschrieben.
  • Vielfältige Methoden zum Erzeugen des Effekts der Seitenemission sind aus dem Stand der Technik bekannt. Eine bekannte Methode ist, für eine Lichtauskopplung im Faserkern zu sorgen.
  • Die japanische Offenlegungsschrift JP 9258028 A2 offenbart seitenemittierende Stufenindexfasern, bei denen die Lichtauskopplung durch einen unrunden Kern erzeugt werden soll. Die Auskopplung erfolgt, wenn Licht unter Winkeln auf die Grenzfläche zwischen Faserkern und Mantel trifft, welche kleiner als der Grenzwinkel der Totalreflektion βMin sind. Durch die beschriebenen unrunden Kerngeometrien, beispielsweise quadratische, dreieckige oder Sternformen, werden in dem Kern geometrische Bereiche erzeugt, in denen ansonsten durch Totalreflektion geleitetes Licht ausgekoppelt werden kann. Die Erzeugung von seitenemittierenden Fasern durch solche Kerngeometrien ist allerdings mit dem Problem behaftet, dass die Auskopplung des Lichts in diesem Fall sehr ineffizient ist. Das Licht wird in der Faser im wesentlichen unter sehr flachen Einfallswinkeln zum Mantel geleitet, und die beschriebenen Kerngeometrien erstrecken sich entlang der Faserachse. Demnach gibt es kaum Flächen, bei welchen βMin unterschritten wird. Ferner ist es sehr aufwendig, die in der JP 9258028 A2 offenbarten Kerngeometrien für Fasern aus Glas einzusetzen, weil es sehr schwierig ist, entsprechende Preformen, wie sie für den Faserzug benötigt werden, herzustellen. Darüber hinaus ist gerade bei Glasfasern die Bruchfestigkeit solcher Fasern mit unrunden Faserkerndurchmessern stark herabgesetzt. Wahrscheinlich offenbart diese Schrift aus diesem Grund auch nur Fasern aus Polymeren.
  • Eine weitere Methode, das Licht aus dem Faserkern auszukoppeln, wird in der US 4,466,697 A beschrieben. Demnach werden Licht reflektierende und/oder streuende Partikel in den Faserkern gemischt. Hierbei gestaltet es sich schwierig, längere Fasern mit gleichmäßig seitenemittierenden Eigenschaften herzustellen, da die Lichtleitung im Kern durch die beigegebenen Partikel im Kerndurch Absorption abgeschwächt wird, da es keine vollständig streuenden Partikel gibt, sondern nur solche, die nur nahezu das gesamte auftreffende Licht streuen. Weil die Wahrscheinlichkeit bei gleichmäßig im Kern verteilten Partikeln sehr hoch ist, dass das im Kern geführte Licht auf solche Partikel trifft, ist auch die Absorptionswahrscheinlichkeit sehr hoch, selbst wenn die Gesamtzahl der Partikel klein ist. Dadurch ist der Auskopplungseffekt auch nur sehr schwer zu skalieren, was reproduzierbare Ergebnisse im Faserzug zumindest für Fasern über 3 m Länge extrem aufwendig bis nahezu unmöglich werden lässt, zumindest, solange Glasfasern hergestellt werden sollen.
  • Unter Skalierbarkeit im Sinne der vorliegenden Offenbarung wird die Möglichkeit des gezielten Einstellens des Seitenemissionseffekts über die Länge der Faser verstanden. Dies ist notwendig, weil Faserlängen für verschiedene Anwendungen sehr stark variieren können, aber eine möglichst gleichmäßige Intensität des Leuchtens über die gesamte Faserlänge erzielt werden soll.
  • Alternativ zur Auskopplung des Lichts direkt aus dem Faserkern können seitenemittierende Eigenschaften bei Fasern auch durch Effekte in der Grenzfläche zwischen Faserkern und Mantel oder im Mantel selbst verursacht werden. So ist es aus dem Stand der Technik bekannt, dass Kristallisationsreaktionen zwischen Kern- und Mantelgläsern unerwünscht sind, da die Kristallite in der Grenzfläche zwischen Kern und Mantel als Streuzentren dienen können, so dass Licht aus der Faser auskoppelt und somit ihre Lichtleitfähigkeit herabsetzt. Dieser Effekt ist bei Lichtleitfasern im allgemeinen unerwünscht, und Glasfasern werden wie in dem deutschen Patent DE 102 45 987 B3 beschrieben üblicherweise gezielt dahingehend entwickelt, dass eine Kristallisation zwischen Kern und Mantel nicht stattfindet. Allerdings wäre es denkbar, dass die Kristallisation zwischen Kern und Mantel gezielt dazu eingesetzt wird, um seitenemittierende Eigenschaften zu erzeugen. Die Kristallisation kann während des Faserzugs auftreten, wenn Kern und Mantel miteinander verschmelzen und die Faser wieder abkühlt. Es hat sich in Versuchen allerdings herausgestellt, dass der Kristallisationsprozeß während des Faserzugs nur schwer einzustellen und zu beherrschen ist, so dass eine reproduzierbare und skalierbare Produktion von seitenemittierenden Glasfasern, deren seitenemittierende Eigenschaften auf dem Vorliegen von Kristalliten in der Grenzfläche zwischen Kern und Mantel beruhen, bisher noch nicht in wirtschaftlicher Weise geglückt ist.
  • Zur Erzeugung seitenemittierender Eigenschaften aufgrund von Streuzentren in der Grenzfläche zwischen Kern und Mantel wird gemäß der Patentschrift LV 11644 B für Quartzglasfasern vorgeschlagen, eine Beschichtung auf der ausgezogenen Quartzglasfaser aufzubringen, die streuende Partikel enthält. Der äußere Schutzmantel um die Quartzglasfaser kann anschließend appliziert werden. Wie bei Quartzglasfasern üblich, bestehen die Beschichtungen sowohl der streuenden Schicht als auch des äußeren Mantels aus Kunststoffen. Dies hat den Nachteil, dass der ausgezogene Faserkern weiteren Beschichtungsschritten unterzogen werden muss und währenddessen ungeschützt ist. Schmutzpartikel, die sich zwischen Kern und Beschichtung setzen, führen zu möglichen Bruchstellen und/oder zu Punkten mit starker Lichtauskopplung. Quartfasern sind als solche aufgrund des Materials sowieso schon extrem teuer, aber das in dieser Schrift benötigte aufwendige Fertigungsverfahren verteuert diese noch zusätzlich.
  • Die US 2005/0074216 A1 offenbart eine seitenemittierende Faser mit einem transparenten Kern aus Kunststoff, der zuerst einen transparenten ersten Mantel und danach einen zweiten Mantel besitzt, beide ebenfalls aus Kunststoff. In den zweiten Mantel, welcher der äußere Mantel ist, sind Streupartikel eingelagert. Diese Methode ist nur bei Fasern mit sehr großen Kerndurchmessern von 4 mm oder mehr möglich, weil das im Faserkern geleitete Licht durch die zwangsläufig an der sehr großen Grenzfläche zwischen Kern und erstem Mantel vorliegenden Inhomogenitäten ausgekoppelt werden muss. Der zweite Mantel mit den eingelagerten Streupartikeln dient in diesem Fall dem Homogenisieren des ausgekoppelten Lichts über alle Raumwinkel. Fasern mit solch großem Kerndurchmesser sind allerdings wenig flexibel und können daher nur schwer verlegt werden. Aus Glas sind solche Fasern nur als starre Faserstäbe herstellbar und vollkommen unflexibel.
  • Die US 2002/0159732 A2 beschreibt einen Lichtleitstab aus Kunststoff, auf dem ein lichtstreuender Bereich aus Kunststoff aufgebracht ist, beispielsweise durch Aufdrucken.
  • Die JP 2007-272070 A beschreibt eine Faser mit einem Mantel, die durch das Ausziehen einer Preform aus Kernstab und Mantelrohr erzeugt wird. Zum Herstellen von lichtauskoppelnden Bereichen wird das Mantelrohr gedoped. Es entstehen lichtstreuende Bereiche im Mantel, die einen Brechungsindex aufweisen, der bedeutend niedriger ist als der Brechungsindex des Kerns.
  • Ein schwerwiegender Nachteil bei allen beschriebenen Lösungen, die Kunststoff enthalten, ist ferner, dass die beschriebenen Kunststoffmäntel allesamt brennbar sind. Daher sollten solche Fasern allgemein unerwünscht sein. Davon abgesehen können sie zumindest in Bereichen mit erhöhten Brandschutzbestimmungen, beispielsweise innerhalb von Flugzeugkabinen, nicht zugelassen werden.
  • Glasfasern sind als solche nicht brennbar. Seitenemittierende Glasfasern sind allerdings ebenfalls bereits bekannt. Die etablierte Methode zur Herstellung von Glasfasern mit seitenemittierenden Eigenschaften sieht vor, die Preform des Faserkerns durch Schleifen oder Sandstrahlen aufzurauhen. Durch diese Bearbeitungsprozesse werden auf der Umfangsfläche des Faserkerns in den Faserkern hineinragende Strukturen geschaffen, welche das geleitete Licht auskoppeln sollen. Auch hier hat sich gezeigt, dass der Prozeß zum Erzeugen der Seitenemission ineffizient und auch nur schwer skalierbar ist. Darüber hinaus ist das Bearbeiten von Preformen, insbesondere wenn diese aus Glas bestehen, oftmals teuer und aufwendig. Die in den Faserkern hineinragenden Strukturen stellen darüber hinaus Verletzungen des Faserkerns dar, von denen bei Biegebelastungen Belastungsspitzen und dadurch Risse ausgehen können, wodurch solche Fasern unter einer verminderten Bruchfestigkeit leiden. Auch deshalb erscheint diese Technik verbesserungswürdig.
  • Vor diesem Hintergrund ist es eine Aufgabe der Erfindung, eine seitenemittierende Stufenindexfaser bereit zu stellen, die wirtschaftlich zu produzieren ist, die effizient das Licht zur Seite auskoppelt, wobei der Effekt leicht skalierbar sein soll, und welche darüber hinaus nicht brennbar ist. Eine weitere Aufgabe der Erfindung ist es, ein Verfahren zur Herstellung eben solcher seitenemittierenden Fasern bereitzustellen, sowie Faserbündel beinhaltend solche seitenemittierende Fasern und deren Anwendungen.
  • Die Aufgabe und/oder die Teilaufgaben werden gelöst durch die unabhängigen Ansprüche. Bevorzugte Ausführungsformen ergeben sich aus den nebengeordneten und den Unteransprüchen.
  • Eine erfindungsgemäße seitenemittierende Stufenindexfaser beinhaltet einen lichtleitenden Kern aus einem anorganischen Glas mit dem Brechungsindex n1 und einen den Kern entlang der Faserachse umschließenden transparenten und/oder transluzenten Mantel aus einem anorganischen Glas mit dem Brechungsindex n2, wobei sich zwischen Kern und Mantel zumindest ein Streubereich befindet, der aus einem anorganischen Glas gebildet wird, welches im wesentlichen den gleichen Brechungsindex n1 wie der Kern aufweist und in welches Streupartikel eingelagert sind. Eine erfindungsgemäße seitenemittierende Stufenindexfaser kann flexibel oder auch starr sein.
  • Der Mantel umschließt wie bei Fasern üblich sowohl den Kern aber auch den oder die Streubereiche entlang der Faserachse vollständig. Der oder die Streubereiche liegen demnach auf der Oberfläche des Faserkerns, geschützt von dem Mantel. Der Streubereich selbst umschließt den zumindest teilweise, d. h. beispielsweise in Form von Ringsegmenten oder aber vollständig.
  • Der Effekt der Seitenemission wird bei der vorliegenden Erfindung durch Streuung des in dem Kern geleiteten Lichts in einem im Verhältnis zum Kerndurchmesser dünnen Bereich zwischen Kern und Mantel erzeugt. Dazu befindet sich zwischen Kern und Mantel in unmittelbarem Kontakt zwischen beiden zumindest ein Streubereich, in welchem die Streuung stattfindet. Verantwortlich für die Streuung sind Streupartikel, welche in den Streubereich eingelagert sind. Im Sinne der Erfindung sind Streupartikel alle Partikel, gleich welcher Form, welchen Materials und/oder welcher Größe, die das geleitete Licht streuen können. Streupartikel können durch klassische Streuung, insbes. Rayleigh- und/oder Mie-Streuung, ebenso wie durch Beugung und/oder Reflektion sowie Mehrfachprozessen dieser Mechanismen untereinander ihre streuende Wirkung entfalten. Ihre Aufgabe ist lediglich, individuell oder in ihrer Summe auftreffendes Licht abzulenken.
  • Die Erfinder haben erkannt, dass der Effekt der Seitenemission am besten skalierbar ist, wenn die Streuung hauptsächlich an den Streupartikeln selbst erfolgt. Dazu muss das in dem Kern geführte Licht erst einmal zu diesen gelangen können. Deshalb ist der Brechungsindex des Materials, in welchem die Streupartikel eingelagert sind, im wesentlichen gleich dem Brechungsindex n1 des Kerns. Die Einlagerung der Streupartikel in einer Matrix aus anorganischem Glas ist deshalb im Sinne der Erfindung notwendig, um sie überhaupt erst auf wirtschaftliche Weise auf dem Kern aufbringen zu können. Ein wesentlich von n1 abweichender Brechungsindex des Matrixmaterials würde dazu führen, dass das Matrixmaterial selbst die Lichtleitung im Kern beeinflussende Effekte bewirken würde. Wäre der Brechungsindex beispielsweise wesentlich kleiner als n1, würde das in dem Kern geführte Licht eher von dem Material der Matrix als durch die Streupartikel reflektiert, so dass nur wenig bis keine Streuung an den Streupartikeln erfolgen könnte. Eine solche Faser würde nur wenig Licht zur Seite auskoppeln. Wäre dahingegen der Brechungsindex des Materials der Matrix wesentlich größer als n1, würde das in dem Kern geleitete Licht sehr schnell nach außen gelangen und die Faser auf sehr kurzer Länge ihre gesamte Lichtintensität verlieren, so dass nur sehr kurze Faserlängen möglich wären. Ist der Brechungsindex des Matrixmaterials hingegen im wesentlichen gleich dem Brechungsindex n1 des Kerns, wird das in dem Kern geführte Licht von dem Matrixmaterial höchstens unwesentlich gestört, so dass das in dem Kern geführte Licht von dem Matrixmaterial ungehindert auf die Streupartikel auftreffen kann. Somit ist über die Wahl der Konzentration der Streupartikel im Streubereich eine effiziente Skalierung der seitlichen Emission möglich.
  • Der größte Effekt der Seitenemission lässt sich erzielen, wenn sich zwischen Kern und Mantel zumindest ein Streubereich befindet, der den Kern entlang der Faserachse vollständig umschließt. Dies bedeutet, dass sich der Streubereich über die gesamte Umfangsfläche des Faserkerns erstreckt. Der Mantel umschließt in diesem Fall seinerseits bevorzugt wiederum das gesamte Gebilde aus Kern und Streubereich. Bevorzugt sind in dieser Ausführungsform die Streupartikel homogen im Streubereich verteilt. Ein solcher Streubereich wird im Sinne der Erfindung beim Faserzug durch das Verschmelzen eines Inlayrohres mit dem Kernstab und dem Hüllrohr erzeugt, welches aus dem Matrixmaterial bestehen, in welches die Streupartikel eingelagert sind. Das Ziehverfahren und das zumindest eine Inlayrohr werden im Zusammenhang mit der Beschreibung der Preform und des erfindungsgemäßen Herstellungsverfahrens näher erläutert. Die Inlayrohre werden bevorzugt in einem Rohrzugverfahren hergestellt. Ein homogener, den Kern entlang der Faserachse vollständig umschließender Streubereich kann erhalten werden, wenn in die Streupartikel homogen verteilt in das Inlayrohr eingelagert werden. Ein den Kern nur teilweise umschließender Streubereich ist erhältlich, wenn in das Material des Inlayrohrs nur an bestimmten Stellen die Streupartikel eingelagert werden.
  • Eine weitere bevorzugte Ausführungsform sieht vor, dass sich zwischen Kern und Mantel zumindest ein Streubereich befindet, der den Kern in einem Teilbereich entlang der Faserachse zumindest teilweise umschließt. Dies bedeutet in anderen Worten, dass die Streupartikel nur in Teilen des Matrixglases eingelagert sind, wobei diese Teile den Kern ringförmig und/oder ringsegmentförmig umschließen. Ist der Abstand zwischen Bereichen, in denen Streupartikel vorliegen und solchen, die keine Streupartikel aufweisen ausreichend groß, kann gezielt eine seitenemittierende Faser hergestellt werden, welche in manchen Bereichen den Emissionseffekt zeigt und in anderen Bereichen nicht. Eine solche Faser kann vorteilhaft sein, um einen entsprechenden Designeffekt zu erzielen, oder aber das Licht erst einmal mit möglichst wenig Verlust durch den Bereich ohne den Seitenemissionseffekt zu dem Ort zu leiten, an dem die Seitenemission stattfinden soll. Dies ermöglicht die Trennung von Lichtquelle, welche in die Faser eingekoppelt werden soll, und dem Beleuchtungsort. Fasern dieses Typs können hergestellt werden, wenn Inlayrohre verwendet werden, in die nur in Teilbereichen entlang ihrer Achse Streupartikel eingelagert sind. Beim Faserzug verschmilzt allerdings auch der nicht mit Streupartikeln dotierte Bereich der Inlayrohre mit dem Faserkern, so dass der Betrag der Summe aus Kerndurchmesser und Dicke des Streubereichs ohne eingelagerte Streupartikel und mit eingelagerten Streupartikeln über die gesamte Faserlänge im wesentlichen gleich bleibt. Alternativ ist es möglich, den Kernstab nur an bestimmten Stellen mit Abschnitten von Inlayrohren zu umgeben. In diesem Fall variiert die Summe aus Kerndurchmesser und Streubereich bei der ausgezogenen Faser um die Dicke des Streubereichs.
  • Umgeben die Streubereiche den Faserkern nur auf Teilbereichen entlang der Faserachse, weist eine solche Faser nicht über ihre gesamte Länge den Seitenemissionseffekt auf, so dass beispielsweise alternierend Bereiche mit Seitenemission auf Bereiche ohne Seitenemission folgen.
  • Üblicherweise werden bei der erfindungsgemäßen seitenemittierenden Stufenindexfaser Streupartikel verwendet, deren Schmelztemperatur größer ist als die Schmelztemperatur des Glases, in welches sie eingebettet sind. Weil die Streupartikel in diesem Fall zumindest ihre streuenden Eigenschaften beim Herstellungsprozeß nicht verändern, wird ihre Auswahl erleichtert und sie können entsprechend als Rohmaterial eingekauft werden.
  • Bevorzugt weisen die Streupartikel einen Durchmesser zwischen 10 nm und 5000 nm auf, besonders bevorzugt zwischen 100 nm und 1200 nm. Für nicht runde Streupartikel wird als Durchmesser im Sinne der Erfindung ihre maximale Ausdehnung verstanden.
  • Die Streupartikel können aus einer Vielzahl von Materialen ausgewählt sein. Bevorzugt bestehen sie im wesentlichen aus SiO2 und/oder BaO und/oder MgO und/oder BN und/oder AlN und/oder SN und/oder ZrO2 und/oder Y2O3 und/oder Al2O3 und/oder TiO2 und/oder Ru und/oder Os und/oder Rh und/oder Ir und/oder Ag und/oder Au und/oder Pd und/oder Pt und/oder diamantartiger Kohlenstoff und/oder Glaskeramik-Partikel. Mischungen von Streupartikeln aus verschiedenen Materialien, Verbindungen und/oder Konglomerate aus diesen oder auch miteinander verschmolzene und/oder gesinterte Streupartikel sind ebenfalls denkbar und von der Erfindung umfasst ebenso wie die metallischen Komponenten der vorgenannten Oxide und Nitride alleine.
  • Die Effizienz der Auskopplung aus dem Streubereich und damit aus der Faser ist neben der streuenden Eigenschaft der Streupartikel als intrinsischem Parameter auch von der Konzentration der Streupartikel im Streubereich abhängig. Es wurde festgestellt, dass Konzentrationen der Streupartikel im Streubereich zwischen 10 ppm und 1000 ppm eine effiziente Auskopplung ermöglichen, wobei der bevorzugte Bereich zwischen 20 ppm und 100 ppm liegt. Die Konzentrationsangabe in ppm bezieht sich hierbei auf den Anteil der Streupartikel im Verhältnis zu den Masseanteilen der Bestandteile des Glases, in welchem die Streupartikel eingelagert sind.
  • Die Stärke des Seitenemissionseffekts lässt sich im Sinne der Erfindung durch die Auswahl der Streupartikel und die Konzentration der Streupartikel in dem Streubereich auf rationelle Weise skalieren. Durch die geeignete Kombination dieser Parameter wird es möglich, für das menschliche Auge weitgehend homogen erscheinende seitenemittierende Fasern unterschiedlichster Länge herzustellen, so dass eine Vielzahl von Anwendungen überhaupt erst möglich werden.
  • Neben der Effizienz und Homogenität der Seitenemission müssen die erfindungsgemäßen Fasern aber auch möglichst gut mechanischen Belastungen widerstehen. Sind die Fasern mechanisch zu empfindlich, treten leicht Faserbrüche auf, welche die Faser unbrauchbar machen können. Insbesondere müssen die erfindungsgemäßen Fasern wiederholt gebogen werden können, ohne dass sie brechen. Ein Kriterium, um die Bruchfestigkeit von Fasern zu beurteilen, ist der sogenannte Schlingentest. Dabei wird aus einer Faser eine Schlinge gebildet, welche zugezogen wird. Je kleiner der Durchmesser der Schlinge ist, bei dem die Faser bricht, desto bruchfester ist sie.
  • Angemessene Bruchfestigkeiten lassen sich durch vorgespannte Fasern erzeugen. Dies bedeutet für die erfindungsgemäßen Fasern, dass der thermische Ausdehnungskoeffizient des Kernglases größer ist als der thermische Ausdehnungskoeffizient des Mantelglases. Beim Herstellungsprozeß der Faser wird somit der Mantel während des Abkühlens auf den Kern und/oder den Streubereich gezogen, so dass der Mantel eine Spannung auf den Kern und/oder den Streubereich ausübt. Solche vorgespannten Fasern sind in der Regel erheblich bruchfester als nicht vorgespannte Fasern. Neben der beschriebenen thermischen Vorspannung sind natürlich auch andere Methoden zum Erzeugen der Spannung möglich. Beispielsweise könnte die Faser während des Herstellungsprozesses oder danach auch chemisch vorgespannt werden. Dabei würden durch bekannte Prozesse zum chemischen Vorspannen bevorzugt Ionen in den Mantel eingebracht, welche für den Aufbau der Spannung verantwortlich wären.
  • Bei einer bevorzugten erfindungsgemäßen seitenemittierenden Stufenindexfaser beträgt der Durchmesser des Kerns von 10 μm bis 150 μm, der zumindest eine Streubereich weist eine Dicke von 100 nm bis 2 μm auf und der Mantel ist zwischen 500 nm und 2 μm dick.
  • Selbstverständlich werden die erfindungsgemäßen seitenemittierenden Stufenindexfasern in den seltensten Fällen als einzelne Fasern eingesetzt, sondern zusammen mit anderen seitenemittierenden Stufenindexfasern oder zusammen mit anderen Lichtleitfasern, welche keinen Seitenemissionseffekt aufweisen, in Faserbündeln. Das Faserbündel ist seinerseits üblicherweise von einem schützenden äußeren Mantel umgeben, der in den meisten Fällen aus Kunststoff besteht. Faserbündel haben gegenüber einer Einzelfaser mit gleichem Durchmesser den Vorteil, dass sie viel flexibler sind und in kleineren Biegeradien verlegt werden können. Aus diesem Grund finden fast nur Faserbündel einen kommerziellen Einsatz in Beleuchtungsanwendungen. Aufgrund dieser Gegebenheit sind auch Faserbündel, welche die zuvor beschriebene seitenemittierende Stufenindexfaser beinhalten, Gegenstand dieser Erfindung.
  • Auch das Faserbündel muss im Sinne der Erfindung nicht zwangsläufig flexibel sein, es ist ebenso möglich, dass das Faserbündel als starrer Faserstab ausgeführt ist, der durch späteres Umformen, beispielsweise Biegen und/oder Pressen, in seine endgültige Form gebracht wird.
  • Ein erfindungsgemäßes Faserbündel beinhaltet eine Vielzahl von anorganischen Glasfasern und einen diese Vielzahl von anorganischen Glasfasern entlang der Faserbündelachse vollständig umschließenden äußeren Mantel, wobei die anorganischen Glasfasern eine Vielzahl der zuvor beschriebenen erfindungsgemäßen seitenemittierenden Stufenindexfasern beinhalten und der äußere Mantel zumindest in Teilbereichen entlang der Faserbündelachse transparent und/oder transluzent ist. Die Transparenz und/oder Transluzenz des äußeren Mantels ist deshalb notwendig, damit das von den einzelnen Fasern seitlich emittierte Licht das Faserbündel auch verlassen kann und somit für den Betrachter sichtbar wird. Wird anstelle eines transparenten äußeren Mantels ein transluzenter äußerer Mantel verwendet, ist es möglich, das seitlich emittierende Licht der Einzelfasern zu homogenisieren.
  • Das erfindungsgemäße Faserbündel kann typischerweise von 100 bis 10000 Einzelfasern aufweisen.
  • Um höchste Ansprüche bzgl. der Brandsicherheit des erfindungsgemäßen Faserbündels sicherzustellen, besteht der äußere Mantel des Faserbündels bevorzugt aus flammfesten Kunststoffen oder aus einem Gewebe von anorganischen Glasfasern. Es ist aber ebenfalls möglich, dass der äußere Mantel durch das Umwickeln der Vielzahl von anorganischen Glasfasern mit einer oder einer Vielzahl von anorganischen Glasfasern hergestellt wird. Auch ist es möglich, die einzelnen Fasern des Bündels miteinander zu verspinnen, so dass eine Art Seil und/oder Garn entsteht, die keines separaten Mantels mehr bedarf.
  • Durch die Erfindung wird es möglich, seitenemittierende Stufenindexfasern mit einer effizienten Seitenemission bereitzustellen, bei denen der Seitenemissionseffekt auch entsprechend den Anforderungen sehr gut skalierbar und damit die Menge des ausgekoppelten Lichts über die Faserlänge gut einstellbar ist. Dadurch wird es möglich, die erfindungsgemäßen seitenemittierenden Stufenindexfasern auch zusammen mit anderen Lichtleitern und/oder anderen seitenemittierenden Stufenindexfasern und/oder Textilfasern zu einem Flächengebilde zu verbinden. Ein Flächengebilde ist im Sinne der Erfindung ein Objekt, welches im Verhältnis zu seiner Dicke eine große Fläche aufweist. Auf diese Weise kann auf der Basis der erfindungsgemäßen seitenemittierenden Stufenindexfasern ein selbst leuchtendes, flächiges Gebilde erzeugt werden, welches Licht homogen über die Fläche verteilt emittieren kann. Ein solches Flächengebilde ist bevorzugt so ausgestaltet, dass ein Betrachter es als homogen leuchtende Fläche wahrnimmt, wenn das Flächengebilde in Betrieb ist, d. h. wenn Licht in die seitenemittierenden Stufenindexfasern des Flächengebildes eingekoppelt wird.
  • In einer bevorzugten Ausführungsform sind die seitenemittierenden Stufenindexfasern in einem solchen Flächengebilde im wesentlichen parallel zueinander angeordnet sind. Entsprechend der Abstrahlcharakteristik andersartig angeordnete seitenemittierende Stufenindexfasern innerhalb des Flächengebildes sind aber selbstverständlich ebenso möglich.
  • Um ein stabiles Flächengebilde zu erhalten, sind die seitenemittierenden Stufenindexfasern bevorzugt auf einem Trägerelement fixiert. Auf diese Weise wird ein Verbundelement aus Trägerelement und seitenemittierenden Stufenindexfasern gebildet. Das Trägerelement ist bevorzugt ebenfalls flächig, kann aber beliebige Formen und Wölbungen aufweisen.
  • Alternativ zu der Fixierung der seitenemittierenden Stufenindexfasern auf dem Trägerelement können diese auch in das Trägerelement eingebettet sein und auf diese Weise ein Verbundelement aus Trägerelement und seitenemittierenden Stufenindexfasern bilden. Dies kann durch einen Spritzgießprozess erfolgen, bei dem bevorzugt transparenter Kunststoff eine Einkapselung der Lichtleitfasern darstellt. Dazu können thermoplastische Kunststoffe, z. B. Polycarbonat, PVC, thermoplastische Elastomere oder Silikone verwendet werden.
  • Bevorzugt werden die seitenemittierenden Stufenindexfasern auf dem Trägerelement durch Vernähen und/oder Verweben fixiert. Ebenso ist es möglich, die Stufenindexfasern auch miteinander und/oder mit dem Trägerelement zu vernähen. Als Nähgarn können sowohl textile Garne als auch wiederum anorganischen Glasfasern verwendet werden.
  • Generell kann das Flächengebilde auch durch das Verbinden der erfindungsgemäßen seitenemittierenden Stufenindexfasern mit einem geeigneten Träger erfolgen, beispielsweise durch Verkleben, Laminieren gegebenenfalls zusammen mit einer Folie und/oder andere geeignete Verfahren.
  • Besonders bevorzugt ist das Trägerelement des erfindungsgemäßen Flächengebildes, auf dem und/oder in dem die seitenemittierenden Stufenindexfasern fixiert sind, transparent und/oder transluzent, damit das Licht durch die Stufenindexfasern emittierbare Licht durch das Trägerelement hindurchtreten kann. Zur Erzielung von Farbeffekten kann das Trägerelement eingefärbt sein.
  • Zur weiteren Stabilisierung des Flächengebildes ist es in einer weiteren erfindungsgemäßen bevorzugten Ausführungsform auch vorgesehen, dass das Verbundelement aus Trägerelement und seitenemittierenden Stufenindexfasern mit einem Stabilisierungselement verbunden ist.
  • Besonders bevorzugt wird das Stabilisierungselement so angeordnet, dass sich die seitenemittierenden Stufenindexfasern zwischen einer Oberfläche des Trägerelements und einer Oberfläche des Stabilisierungselements befinden. Das Stabilisierungselement kann damit auch zum Schutz der Stufenindexfasern beitragen. Bevorzugt wird es rückseitig als eine Deckschicht in Form einer Folie oder einer starren Platte angeordnet.
  • Zur Steigerung der Lichtausbeute ist die den seitenemittierenden Stufenindexfasern zugewandte Seite des Trägerelements und/oder des Stabilisierungselements vorzugsweise so ausgebildet, dass sie das von den seitenemittierenden Stufenindexfasern ausgestrahlte Licht reflektieren kann. Dies bedeutet, dass die den Stufenindexfasern zugewandte Seite des Trägerelements oder des Stabilisierungselements weiß eingefärbt sein kann oder spiegelnd ausgebildet ist. Dies lässt sich beispielsweise besonders einfach erreichen, wenn als Stabilisierungselement Aluminiumfolie verwendet wird. Das Trägerelement besteht in diesem Fall bevorzugt aus einem transparenten und/oder transluzenten Kunststoff wie zum Beispiel Plexiglas. Selbstverständlich ist es auch möglich, weitere Stabilisierungselemente mit dem Verbundelement zu verbinden.
  • Zur Lichteinkopplung sind die Lichtleitfasern mittels einer Lichtleiterbündelung zusammengefasst, wobei die Lichtleiter mittels Endhülsen und/oder Klebebändern zusammengefasst, in der Regel verklebt und die Endflächen geschliffen und poliert sind, so dass eine optimale Lichteinkopplung erfolgen kann. Zur Steigerung der Leuchtdichte der Abstrahlfläche können die Lichtleitfasern auch beidseitig zusammengefasst sein, so dass eine beidseitige Lichteinkopplung realisiert werden kann.
  • Zum Betreiben des erfindungsgemäßen Flächengebildes kann Licht in die Lichtleitfasern und damit die seitenemittierenden Stufenindexfasern eingekoppelt werden. Als Lichtquelle werden bevorzugt punktförmige Lichtquellen verwendet, die zur optimalen Lichtausbeute das Licht mittels einer Vorsatzoptik derart fokussieren, dass das Licht innerhalb des für die Lichtleitfasern spezifischen Akzeptanzwinkels eingestrahlt wird. Aufgrund ihrer kompakten Bauart und vergleichsweise hohen Lichtausbeute werden insbesondere LEDs, besonders bevorzugt Weißlicht-LEDs oder RGB-LEDs zur Lichteinkopplung vorgeschlagen. Um Licht in das erfindungsgemäße Flächengebilde einleiten zu können, verfügt es bevorzugt über Maßnahmen zum Anschließen von zumindest einer LED als Lichtquelle. Besonders bevorzugt weist ein erfindungsgemäßes Flächengebilde Maßnahmen zum Anschließen von zumindest einer LED an entgegengesetzten Kanten des Flächengebildes vor, so dass das Licht in die Stirnflächen auf beiden Seiten der Stufenindexfasern einkoppeln kann.
  • Weil die Erzeugung des Streubereichs in der erfindungsgemäßen seitenemittierenden Faser ein schwerwiegendes Problem darstellt, ist ebenfalls die Preform, welche im Herstellungsverfahren eingesetzt wird, ein wesentlicher Teil der Erfindung. Der Begriff ”Preform” ist dem Fachmann auf dem Gebiet des Faserzugs wohlbekannt. Er umfasst das Gebilde, aus welchem die Faser gezogen wird. Eine konventionelle Preform, welche zum Herstellen von Glasfasern ohne seitenemittierende Eigenschaften verwendet wird, besteht in der Regel aus einem Kernstab aus anorganischem Glas, um den Koaxial ein Hüllrohr aus einem anorganischen Glas angeordnet ist. Der Kernstab kann durch das Giessen des Glases in eine Form erzeugt werden. Meistens ist eine Nachbearbeitung durch beispielsweise durch Schleifen oder Feuerpolieren notwendig. Das Hüllrohr kann einem Rohrzug entstammen. Verfahren zum Herstellen von Glasrohren sind hinlänglich bekannt. Beim Ausziehen der Preform zur Faser verschmilzt das Hüllrohr mit dem Kernstab, wobei aus dem Kernstab der Faserkern und aus dem Hüllrohr der Mantel gebildet wird. Die Faser weist einen um ein vielfaches kleineren Durchmesser als die Preform auf und aus einer einzigen Preform können auf diese Weise viele Kilometer Faser gezogen werden.
  • Eine erfindungsgemäße Preform zum Herstellen einer seitenemittierenden Stufenindexfaser beinhaltet einen Kernstab aus anorganischem Glas mit dem Brechungsindex n1 und ein Hüllrohr aus einem anorganischem Glas mit dem Brechungsindex n2, wobei das Hüllrohr den Kernstab entlang der Kernstabachse umschließt. Zwischen Kernstab und Hüllrohr ist parallel zur Kernstabachse zumindest ein Inlayrohr aus einem anorganischen Glas angeordnet, das im wesentlichen den Brechungsindex n1 aufweist und in welches Streupartikel eingelagert sind. Aus den Inlayrohren mit den eingelagerten Streupartikeln werden während des Faserziehens die Streubereiche gebildet.
  • Der Durchmesser der Streupartikel in einem Inlayrohr kann bevorzugt von 10 nm bis 2000 nm betragen, besonders bevorzugt zwischen 100 nm und 1200 nm.
  • Die Streupartikel, welche in das Material des Inlayrohres eingelagert sind, beinhalten bevorzugt SiO2 und/oder SiN und/oder BaO und/oder MgO und/oder ZnO und/oder Al2O3 und/oder AlN und/oder TiO2 und/oder ZrO2 und/oder Y2O3 und/oder die Metalle dieser Oxide alleine und/oder BN und/oder B2O3 und/oder Ru und/oder Os und/oder Rh und/oder Ir und/oder Ag und/oder Au und/oder Pd und/oder Pt und/oder diamantartigem Kohlenstoff und/oder Glaskeramik-Partikel.
  • Ihre Konzentration in dem zumindest einen Inlayrohr beträgt bevorzugt zwischen 10 ppm und 1000 ppm, besonders bevorzugt zwischen 20 ppm und 100 ppm.
  • Zum Herstellen der erfindungsgemäßen seitenemittierenden Stufenindexfaser wird zunächst zumindest eine zuvor beschriebene Preform als Zwischenprodukt hergestellt. Dazu wird ein Kernstab aus einem anorganischen Glas mit dem Brechungsindex n1 bereitgestellt, um den Kernstab herum wird zumindest ein Inlayrohr aus einem anorganischen Glas mit dem Brechungsindex n1 parallel zu der Kernstabachse angeordnet. In das Glas des Inlayrohres und/oder der Inlayrohre sind die zuvor beschriebenen Streupartikel eingelagert. Um Kernstab und Inlayrohr herum wird daraufhin ein Hüllrohr aus einem anorganischen Glas mit dem Brechungsindex n2 angeordnet, so dass sich der Kernstab und das Inlayrohr und/oder die Inlayrohre innerhalb des Hüllrohres befinden. Es ist allerdings auch möglich, den oder die Inlayrohre nach der Anordnung von Kernstab und Inlayrohr in dem Zwischenraum zwischen Kernstab und Hüllrohr anzuordnen. Die so erhaltene Preform wird anschließend in einem Heizaggregat befestigt, in diesem erwärmt und in dem Fachmann bekannter Weise zu einer Glasfaser ausgezogen.
  • Während des Faserzugs verschmelzen der Kern, und der jeweilige Inlayrohr an der Grenzfläche zwischen Kern und Inlayrohr. Die Streupartikel werden auf diese Weise sozusagen auf Bereichen der Kernumfangsfläche verteilt, welche ihrer Verteilung im Inlayrohr entsprechen. Verschmelzen mehrere Inlayrohre miteinander, in die unterschiedliche Streupartikel eingelagert sind, ist es möglich, dass Streubereiche gebildet werden, welche unterschiedliche Eigenschaften beispielsweise bzgl. der Farbanmutung aufweisen und welche im Zusammenspiel bestimmte Effekte erzielbar werden lassen.
  • Die Temperatur, bei welcher der Faserzug erfolgt, wird Ziehtemperatur genannt und liegt oberhalb der Erweichungstemperatur des Glases, aus welchem das Hüllrohr besteht. Üblicherweise werden für den Kern Gläser verwendet, welche eine niedrigere Erweichungstemperatur aufweisen als das Glas des Hüllrohres, damit während der Erwärmung im Heizaggregat auch im Kernstab eine Temperatur erreicht wird, welche oberhalb der Erweichungstemperatur des Glases des Kernstabs liegt. Allerdings sind auch Heizverfahren bekannt, welche es ermöglichen, dass die Erweichungstemperatur des Kernstabs oberhalb der des Hüllrohrs liegen kann. Bevorzugt liegt die Ziehtemperatur auch über der Erweichungstemperatur des höchstschmelzenden Glases, welches in der Preform Verwendung findet. Über das Einstellen der Ziehtemperatur wird die Viskosität des Glases während des Faserzugs so beeinflusst, dass im Zusammenspiel mit der Ziehgeschwindigkeit eine Faser der gewünschten Dicke erhalten werden kann.
  • Die Inlayrohre, in welche die Streupartikel eingelagert sind, müssen wie zuvor beschrieben im wesentlichen den gleichen Brechungsindex aufweisen wie der Kernstab. Dies ist am einfachsten dadurch zu erreichen, dass das gleiche Glas für Kernstab und Inlayrohre verwendet wird. Abweichungen der Brechungsindices von Kernstab und Inlayrohren und somit von Faserkern und Matrixglas des Streubereichs, die durch Variationen in der Produktion des Glases auftreten können, sind von der Erfindung selbstverständlich ebenfalls umfasst. Werden mehrere Inlayrohre verwendet, verschmelzen diese bevorzugt miteinander.
  • Bevorzugt wird beim Ausziehen der Faser aus der Preform an diese ein Unterdruck angelegt, d. h. in den Zwischenräumen der Preform wird ein Druck erzeugt, der niedriger ist als der Druck des die Preform umgebenden Mediums. Dadurch wird beim Ziehprozeß das Anlegen des Hüllrohrs bzw. des Mantels an den Kernstab bzw. den Faserkern und/oder die Inlayrohre bzw. den Streubereich unterstützt. Dieser Verfahrensaspekt trägt somit dazu bei, in den ausgezogenen Fasern unerwünschte Zwischenräume zu vermeiden.
  • In einer bevorzugten Ausgestaltung des erfindungsgemäßen Verfahrens wird für das Hüllrohr ein Glas verwendet wird, dessen thermischer Ausdehnungskoeffizient kleiner ist als der thermische Ausdehnungskoeffizient des verwendeten Kernglases. Das Kernglas ist das Glas, aus welchem der Kernstab und somit der Faserkern bestehen. Wie zuvor beschrieben wird damit erreicht, dass der Mantel eine Spannung auf den Faserkern und/oder den oder die Streubereiche ausübt, so dass die resultierende Faser eine erhöhte Bruchfestigkeit aufweist.
  • Besonders bevorzugt findet das erfindungsgemäße Verfahren Anwendung in einer Vielfaserziehanlage. In einer Vielfaserziehanlage werden aus einer Mehrzahl von Preformen gleichzeitig eine entsprechende Anzahl von Fasern gezogen. Auf diese Weise lassen sich effizient Faserbündel herstellen. Eine Vielfaserziehanlage ist beispielsweise in den deutschen Patentschriften DE 103 44 205 B4 und DE 103 44 207 B3 ausführlich beschrieben. Im wesentlichen werden dabei mehrere Preformen nebeneinander in einem Heizaggregat einer Vielfaserziehanlage angeordnet und mehrere seitenemitierende Stufenfasern gleichzeitig in einer Vielfaserziehanlage ausgezogen werden, so dass ein Faserbündel erhalten wird, welches seitenemittierende Stufenindexfasern enthält.
  • Das so erhaltene Faserbündel kann entweder weiterverarbeitet oder mit weiteren Faserbündeln mit oder ohne seitenemittierende Eigenschaften zu einem größeren Faserbündel weiterverarbeitet werden. Zum Schutz des Faserbündels sieht es eine besonders bevorzugte Ausgestaltung des erfindungsgemäßen Verfahrens vor, dass um das Faserbündel ein äußerer Mantel aus einem transparenten und/oder transluzenten Kunststoff extrudiert wird. Bevorzugt ist der verwendete Kunststoff flammfest.
  • Alternativ kann das Faserbündel mit Glasfasern umgeben werden, welche einen äußeren nicht-brennbaren transparenten und/oder transluzenten Mantel um das Faserbündel bilden. Dies kann durch das Umschlingen mit anderen Glasfasern oder das Umlegen mit einem Gewebe aus Glasfasern erfolgen.
  • Bevorzugt wird die erfindungsgemäße seitenemittierenden Stufenindexfaser zusammen mit anderen Lichtleitern und/oder anderen seitenemittierenden Stufenindexfasern in einem Faserbündel verwendet, welches wie zuvor beschrieben von einem äußeren transparenten und/oder transluzenten Mantel umgeben ist.
  • Um starre Faserbündel zu erzeugen, werden die Preformen nicht wie im Falle der flexiblen Faserbündel zu Fasern mit Durchmessern von typischerweise 50 μm bis 150 μm ausgezogen, sondern zu Faserstäben von etwa 0,5 mm bis 1 mm Durchmesser. Danach werden etwa 200 bis 10000 dieser Faserstäbe in ein Mantelrohr dicht gepackt, dessen Durchmesser von etwa 10 mm bis 60 mm betragen kann, und zu einem starren Faserbündel mit einem Durchmesser von etwa 0,5 mm bis 20 mm ausgezogen. Dieses Faserbündel weist im wesentlichen die gleichen seitenemittierenden Eigenschaften wie ein flexibles Faserbündel auf. Daraus ergeben sich vor allem Einsatzmöglichkeiten bis typischerweise etwa 2 m Länge für exakt gerade Beleuchtungen. Durch thermische Umformung, beispielsweise Biegen und/oder Pressen, können aus den geraden Faserstäben zweidimensionale oder dreidimensionale Objekte hergestellt werden. Diese können alle im folgenden genannten Beleuchtungslösungen sein, aber auch Schriftzüge o. ä.. Auch ist die Herstellung von flachen Faserstäben oder allgemein von unrunden starren Faserstäben oder Platten ist möglich. Sowohl Faserbündel aus Faserstäben als auch aus flexiblen Fasern sind im Sinne der Erfindung von dem Begriff Faserbündel umfasst.
  • Ein erfindungsgemäßes Faserbündel kann für die akzentuierte Beleuchtung von Innenräumen und/oder Fassaden in der Architektur verwendet werden. Bevorzugt werden dabei die Faserbündel entlang von Konturen von Innenraumbestandteilen, beispielsweise Durchgängen, Trägerelementen, Umrissen von Gebäuden etc. angebracht und an geeignete Lichtquellen angeschlossen. So ist es möglich, die Konturen eines Gebäudes oder Gebäudeteile durch das Faserbündel mit seitenemittierenden Fasern nachzustellen und eine linienförmige Lichtquelle zu realisieren.
  • Besonders bevorzugt wird das Faserbündel beinhaltend die erfindungsgemäßen seitenemittierenden Fasern für die akzentuierte Beleuchtung von Innenräumen von Fahrzeugen, insbesondere von Automobilen, Flugzeugen, Schiffen und/oder Zügen eingesetzt. Dabei kann das Faserbündel an beliebigen Stellen angebracht oder in Konturen dieser Innenräume eingelegt werden. Wird Licht in das Faserbündel eingekoppelt, erscheint dieses bevorzugt als leuchtendes Band oder leuchtende Linie entlang dieser Konturen. Dadurch, dass das Faserbündel so ausgestaltet werden kann, dass es nur flammfeste Stoffe beinhaltet, kann es selbst sehr strenge Brandsicherheitsbestimmungen erfüllen. Das macht es für den Einsatz in Fahrzeugen aller Art besonders geeignet. In Automobilen kann ein bevorzugter Anbringungsort eines erfindungsgemäßen Faserbündels beispielsweise eine Türinnenverkleidung sein, in welcher die Kontur der Vertiefungen der Türöffner, Armauflage, der Übergänge im Verkleidungsmaterial etc. auf diese Weise hervorgehoben werden können. Bei Flugzeugen und Schiffen bietet sich die Anbringung entlang der Fensterbänder, Handgepäckfächer etc. an. In Flugzeugen und Schiffen kann dass das erfindungsgemäße Faserbündel vorteilhaft zur Markierung von Fluchtwegen eingesetzt werden.
  • Ebenso bevorzugt ist die Verwendung des erfindungsgemäßen Faserbündels als Teil von Möbeln, insbesondere von Sitzmöbeln, Fahrzeugsitzen, Wohnlandschaften und/oder Küchen. Wird das Faserbündel beispielsweise in die Nähte von Sitzmöbeln wie Sessel, Sofas, Stühle etc. eingearbeitet, können die Konturen dieser Möbel bei Beleuchtung des Faserbündels als leuchtendes Band akzentuiert werden. Bei der Integration in Regale, Schränke lassen sich auf diese Weise ganze Wohnlandschaften mit gezielten Lichteffekten gestalten.
  • Insbesondere im Automobilbau, werden zunehmend auch die Scheinwerfer dazu eingesetzt, durch besondere Beleuchtungseinrichtungen einen Wiedererkennungswert des Herstellers zu erzeugen. Daher weisen manche Automobilscheinwerfer Standlichtringe auf, welche das Abblendlicht umgeben und bei eingeschaltetem Licht als weitgehend homogen leuchtender Ring erscheinen. Andere Hersteller setzen beispielsweise ein Band von LEDs in ihren Scheinwerfern ein. Das erfindungsgemäße Faserbündel wird bevorzugt in Scheinwerfern eingesetzt, insbesondere von Fahrzeugscheinwerfer aller Art, besonders bevorzugt in Scheinwerfern von Automobilen. Das erfindungsgemäße Faserbündel ermöglicht es, beliebige bevorzugt homogen leuchtende Strukturen in Scheinwerfern zu erzeugen. Aus verschiedenen Gründen finden LEDs auch zunehmend Anwendungen in Automobilscheinwerfern. Gegenüber in Bändern angeordneten LEDs hat diese erfindungsgemäße Verwendung den Vorteil, dass wenige LEDs ausreichen, um die Beleuchtung herzustellen. Darüber hinaus sind gegenüber einem Band aus LEDs keine einzelnen Lichtpunkte sichtbar, was auch aus Designgründen bevorzugt werden kann. Auch können ein oder mehrere LEDs in die Stirnfläche des erfindungsgemäßen Faserbündels eingekoppelt werden. Im Sinne der erfindungsgemäßen Verwendung ist die Funktion als Positionslicht innerhalb von Scheinwerfern umfasst, welches wiederum beispielsweise die Anwendungen als Standlicht und als Tagfahrlicht beinhalten.
  • Eine weitere bevorzugte Verwendung des erfindungsgemäßen Faserbündels ist die Konturbeleuchtung von Fahrzeugen, insbesondere von Automobilen, Flugzeugen, Schiffen und/oder Zügen. Diese Konturbeleuchtung kann gegebenenfalls bei den entsprechenden Fahrzeugen die vorgeschriebenen Positionslichter ersetzen oder ergänzen und so zur Verkehrssicherheit beitragen.
  • Bevorzugt ist auch die Verwendung des erfindungsgemäßen Faserbündels zur Beleuchtung von Landebahnen für Luftfahrzeuge, beispielsweise Flugzeuge, Hubschrauber, Luftschiffe etc.. Bisher werden Landebahnen durch eine Vielzahl von in einer Reihe angeordneten Glühlampen beleuchtet. Diese haben eine begrenzte Lebenszeit, weshalb in einer solchen Reihe immer wieder die ausgefallenen Glühlampen im laufenden Betrieb des Flughafens ersetzt werden müssen. Wird das erfindungsgemäße Faserbündel entlang der Landebahnen und/oder auch in deren Mitte angeordnet, wird eine linienförmige leuchtende Struktur erzeugt, welche die Lage der Landebahn bei Dunkelheit und/oder schlechten Sichtverhältnissen markiert. Die Beleuchtungsquelle kann das Licht in die Faserbündel an wenigen zentralen Stellen einkoppeln, die sich noch nicht einmal in unmittelbarer Nähe der Landebahn befinden müssen. Das erfindungsgemäße Faserbündel ist weitestgehend wartungsfrei, so dass sich die Wartung dieser Landebahnbeleuchtung auf die wenigen eingesetzten Lichtquellen beschränkt. Auf diese Weise können beispielsweise die Start- und Landepisten von Flughäfen markiert werden, aber auch die von Flugzeugträgern, Hubschrauberlandeplätzen und anderen Luftfahrzeugen markiert werden.
  • Eine andere bevorzugte Anwendung des erfindungsgemäßen Flächengebildes ist die Hintergrundbeleuchtung von Displays. Displays können Anzeigeeinrichtungen aller Art sein, bevorzugt aber Flachbildschirme, beispielsweise Computermonitore, Flachbildfernseher und die Displays von Mobiltelefonen und PDAs (Personal Digital Assistants). Bisher werden großformatige Displays, welche eine Hintergrundbeleuchtung benötigen, von Leuchtstoffröhren beleuchtet, welche am Rand des Displays oder aber hinter der Anzeigefläche des Displays angeordnet sind. Eine möglichst homogene Ausleuchtung der Anzeigefläche wird erwünscht, weshalb sich zwischen Leuchtstoffröhren und Anzeigefläche üblicherweise eine Diffusorplatte befindet, welche das von den Leuchtstoffröhren emittierte Licht homogenisiert. In Diffusorplatten kann das Licht auch seitlich eingekoppelt werden, beispielsweise wenn die Leuchtstoffröhren am Rande des Displays angeordnet sind. Die Diffusorplatte wirkt dann als Lichtleiter. Bei kleineres Displays, beispielsweise Displays von Mobiltelefonen und/oder PDAs, wird üblicherweise Licht von LEDs seitlich in die Diffusorplatte eingekoppelt. Bei größeren Displays findet die LED-Beleuchtung bisher noch keine nennenswerte Anwendung, obwohl sie kostengünstiger wäre als die Beleuchtung mit Leuchtstoffröhren, weil damit bisher noch keine ausreichend homogen beleuchtete Leichtfläche realisiert werden konnte. Abhilfe können die erfindungsgemäßen seitenemittierenden Faserbündel schaffen. Werden sie in geeigneten Strukturen hinter der Anzeigefläche verlegt, je nach Bedarf hinter eine Diffusorplatte oder aber auch ohne, können LEDs Licht in die Stirnflächen der Faserbündel einkoppeln, so dass die oder das Faserbündel mit seitenemittierenden Eigenschaften für die Hintergrundbeleuchtung des Displays sorgt. Wird die Anordnung des Faserbündels mit dem Intensitätsverlauf des seitlich emittierten Lichts abgeglichen, lässt sich so kosteneffizient auch eine großflächige homogene Hintergrundbeleuchtung für Displays erzielen.
  • Alle vorgenannten Anwendungen sind ebenso möglich mit einem solchen Flächengebilde. Insbesondere kann ein solches Flächengebilde auch als Teil der Sitzfläche von Sitzmöbeln ausgeführt werden, aber auch von Bekleidung und allen für Textilien bekannten Anwendungen.
  • Die Erfindung wird weiterhin anhand der beiliegenden Zeichnungen erläutert. Es stellen dar:
  • 1a: den Längsschnitt entlang der Faserachse einer nicht seitenemittierenden Stufenindexfaser aus dem Stand der Technik.
  • 1b: den Querschnitt einer nicht seitenemittierenden Stufenindexfaser aus dem Stand der Technik.
  • 2a: den Längsschnitt entlang der Faserachse einer erfindungsgemäßen seitenemittierenden Stufenindexfaser mit den Kern vollumfänglich umschließendem Streubereich.
  • 2b: den Querschnitt einer erfindungsgemäßen seitenemittierenden Stufenindexfaser mit den Kern vollumfänglich umschließendem Streubereich.
  • 3a: den Längsschnitt entlang der Faserachse einer erfindungsgemäßen seitenemittierenden Stufenindexfaser mit Streubereichen, die den Kern in Teilbereichen entlang der Faserachse vollumfänglich umschließen.
  • 3b: den Querschnitt einer erfindungsgemäßen seitenemittierenden Stufenindexfaser mit Streubereichen, die den Kern in Teilbereichen entlang der Faserachse vollumfänglich umschließen.
  • 4a: eine erfindungsgemäße Preform zum Herstellen einer seitenemittierenden Stufenindexfaser.
  • 4b: ein Faserbündel beinhaltend seitenemittierende Stufenindexfasern.
  • 5: das Schema einer Vielfaserziehanlage.
  • 6: einen Schnitt quer zur Faserachse durch ein erfindungsgemäßes Flächengebilde, bei dem die seitenemittierenden Stufenindexfasern zwischen einem Trägerelement und einem Stabilisierungselement fixiert sind.
  • 7: einen Schnitt quer zur Faserachse durch ein alternatives erfindungsgemäßes Flächengebilde, bei dem die seitenemittierenden Stufenindexfasern in einem Trägerelement eingelagert sind.
  • 8: einen Schnitt quer zur Faserachse durch ein erfindungsgemäßes Flächengebilde, bei dem die seitenemittierenden Stufenindexfasern als Faserbündel auf einem Trägerelement fixiert sind und das Gebilde in einem Gehäuse gekapselt ist.
  • 9: ein Flächengebilde mit Maßnahmen zum Anschließen von Lichtquellen
  • 10: den schematischen Schnitt durch ein Display beinhaltend ein erfindungsgemäßes Flächenelement zur Hintergrundbeleuchtung des Displays.
  • 11: ein Flächengebilde entsprechend 9, jedoch mit Maßnahmen zum Anschließen von Lichtquellen an beiden Stirnflächen der seitenemittierenden Stufenindexfasern.
  • 12: einen Flugzeuginnenraum mit Anwendungen von Faserbündeln mit seitenemittierenden Eigenschaften.
  • 13a: einen Automobilscheinwerfer mit Faserbündeln mit seitenemittierenden Eigenschaften.
  • 13b: einen weiteren Automobilscheinwerfer mit Faserbündeln mit seitenemittierenden Eigenschaften.
  • 14: ein Gebäude mit einer akzentuiert leuchtenden Spitze.
  • 15: die Landebahn eines Flughafens mit leuchtender Landebahnmarkierung.
  • Alle Figuren sind schematisch, die Durchmesser ihrer Elemente sind nicht Maßstäblich und auch die Größenverhältnisse aller Elemente untereinander können in den realen Gegenständen von den Zeichnungen abweichen.
  • 1a zeigt den Längsschnitt entlang der Faserachse (A) einer Stufenindexfaser aus dem Stand der Technik. Diese Stufenindexfaser besteht aus einem Kern (1) mit dem Brechungsindex n1. Dieser ist vollumfänglich von dem Mantel (2) umschlossen, welcher den Brechungsindex n2 aufweist. Einfallendes Licht (4) wird in dem Kern (1) geleitet, weil aufgrund des kleineren Brechungsindex n2 Totalreflektion am Mantel (2) auftritt. Allerdings ist die Bedingung der Totalreflektion nur bis zu einem Grenzwinkel des auf den Mantel treffenden Lichts möglich, der von den Werten der Brechungsindices von Kern und Mantel abhängig ist. Der Grenzwinkel βMin kann berechnet werden durch sin(βMin) = n2/n1, wobei βMin von einer Ebene senkrecht zur Faserachse gemessen wird.
  • Die Brechungsindices des Faserkerns und des ihn umgebenden Mantels sind ebenso für den Akzeptanzwinkel αMax maßgeblich, welcher gemessen von der Faserachse (A) den maximalen Winkel des auf die Endfläche der Faser treffenden Lichts beschreibt, welches in die Faser einkoppeln kann. Als Maß für die Fähigkeit der Faser, schräg einfallendes Licht einzukoppeln, ist die numerische Aperatur NA der Faser gebräuchlich. Sie berechnet sich zu NA = nsin(αMax) = (n1 2 – n2 2)1/2, wobei n den Brechungsindex des Mediums repräsentiert, welches das Licht vor dem Einkoppeln in die Faser durchläuft.
  • 1b zeigt den Querschnitt der Faseraus 1a, d. h. einen Schnitt quer zur Faserachse (A). Die in 1a und 1b dargestellten Fasern weisen keine seitenemittierenden Eigenschaften auf, da sie keinen Streubereich enthalten.
  • 2a zeigt eine erfindungsgemäße seitenemittierende Stufenindexfaser in ihrem Längsschnitt entlang der Faserachse (A). Diese Faser weist einen Streubereich (3) auf, der sich zwischen Kern (1) und Mantel (2) der Faser befindet und den Kern (1) vollumfänglich umschließt. In die Faser eingekoppeltes Licht (4) wird in dem Streubereich (3) nach außen, d. h. radial aus der Faser ausgekoppelt, auch wenn der Winkel βMin überschritten wird. Ohne Vorliegen des Streubereichs (3) wäre ansonsten die Bedingung der Totalreflektion erfüllt und die Faser würde das Licht im wesentlichen im Kern (1) leiten. Verantwortlich für die Auskopplung des Lichts (4) ist die Streuung des Lichts (4) an den in dem Streubereich (3) eingelagerten Streupartikeln. Weil das Material des Streubereichs (3), in dessen Matrix die Streupartikel eingelagert sind, im wesentlichen den gleichen Brechungsindex n1 wie das Material des Kerns (1) aufweist, kann das Licht (4) von dem Matrixmaterial weitgehend ungehindert zu den Streupartikeln gelangen. Durch einzelne oder mehrfache Interaktion mit den Streupartikeln kann es durch die Streupartikel von seinem ursprünglichen Einfallswinkel abgelenkt werden, so dass der Auftreffwinkel auf den Mantel (2) so herabgesetzt wird, dass er kleiner als βMin ist und das Licht aus der Faser auskoppeln kann. Ist der Winkel des Einfallens auf den Mantel (2) größer als βMin, erfolgt eine Rückreflektion in den Streubereich (3) oder je nach Auftreffen und/oder Interaktion mit den Streupartikeln in den Kern (1).
  • Trifft das Licht (4) auf seinem Weg durch den Streubereich (3) zufällig auf keine Streupartikel, trifft es auf den Mantel (2) und verhält sich so, als ob kein Streubereich vorhanden wäre. Das bedeutet in diesem Fall, dass falls der Winkel des Durchtretens durch den Streubereich (3) und damit der Winkel des Auftreffens auf den Mantel (2) größer als βMin ist, das Licht von dem Mantel (2) wieder in den Streubereich (3) zurückreflektiert wird. Das rückreflektierte Licht kann wie im Fall zuvor beschrieben seinerseits wieder auf Streupartikel treffen, wodurch sich Strahlengänge ergeben können, die letztendlich zu einer Auskopplung des Lichts aus der Faser oder zu seiner Leitung im Kern (1) führen können.
  • Dass der Streubereich (3) den Kern vollumfänglich umschließt, ist anhand von 2b gut ersichtlich, welche den Querschnitt der Faser nach 2a zeigt.
  • In 3a ist sind Streubereich (3) der gezeigten Faser so ausgestaltet, dass sie alternierend Bereiche mit eingelagerten Streupartikeln aufweisen, die sich entlang der Faserachse (A) erstrecken und den Kern (1) entsprechend dem Querschnitt nach 3b vollumfänglich umschließen und sich mit Bereichen entlang der Faserachse (A) abwechseln, welche zwar das Matrixmaterial des Streubereichs aufweisen, aber in das keine Streupartikel eingelagert sind. Trifft das in dem Kern (1) geleitete Licht (4) auf Streubereiche (3) mit eingelagerten Streupartikel, kann das Licht (4) entsprechend den zuvor beschriebenen Mechanismen mit einer bestimmten Wahrscheinlichkeit radial ausgekoppelt werden. Trifft in dem Kern (1) geleitetes Licht (5) jedoch auf Bereiche des Streubereichs, welche keine Streupartikel aufweisen, tritt es weitgehend ungehindert durch diese Bereiche, weil sie wie beschrieben den gleichen Brechungsindex n1 wie der Kern (1) aufweisen und können durch Totalreflektion am Mantel (2) in der Faser geleitet werden. Durch das gezielte Einstellen des Intervalls zwischen den Streubereichen (3) mit eingelagerten Streupartikeln und den Bereichen ohne eingelagerte Streupartikel kann die Menge des ausgekoppelten Lichts eingestellt werden. Wie bereits beschrieben sind allerdings auch andere Parameter für die Effizienz der Auskopplung verantwortlich.
  • 4a zeigt eine Preform (10), welche zum Herstellen eines erfindungsgemäßen Faserbündels mit den Kern vollumfänglich umschließenden Streubereichen oder den Kern nur auf Teilbereichen des Kernumfangs umschließenden Streubereichen geeignet ist. Sie ist somit als Vorprodukt der erfindungsgemäßen Faser notwendig. Die Preform (10) beinhaltet einen Kernstab (11), um den ein Inlayrohr (13) angeordnet ist. Der Kernstab (11) und das Inlayrohr (13) sind von einem Hüllrohr (12) umgeben. In den meisten Fällen werden Kernstab (11), Inlayrohr (13) und Hüllrohr (12) koaxial zueinander ausgereichtet, d. h. dass die Achse von Kernstab (11), Inlayrohr (13) und Hüllrohr (12) im wesentlichen aufeinander liegen, und sich zwischen Kernstab (11) und Hüllrohr (12) das Inlayrohr (13) befindet.
  • Der Kernstab (11) besteht aus einem Glas mit dem Brechungsindex n1 und das Hüllrohr (12) aus einem Glas mit dem Brechungsindex n2. Die Inlayrohre (13) bestehen ebenfalls aus einem Glas mit dem Brechungsindex n1, in das die Streupartikel eingelagert sind. Wie beschrieben wird es bevorzugt, wenn das Glas der Inlayrohre (13) weitgehend identisch mit dem des Kernstabes (11) ist, da so die Übereinstimmung der Brechungsindices am besten gewährleistet werden kann und auch am wenigsten Gefahr von unerwünschten Kontaktreaktionen besteht, welche beim Faserzug auftreten können und welche die Faserqualität entscheidend herabsetzen können.
  • Um eine unter Spannung stehende Faser zu erhalten, wird das Glas des Hüllrohres (12) wie beschrieben so gewählt, dass seine thermische Ausdehnung kleiner als die des Glases des Kernstabes (11) ist.
  • Beim Ausziehen der Preform (10) wird aus dem Kernstab (11) der Faserkern (1) und aus dem Hüllrohr (12) der Mantel (2). Die Inlayrohre (13) mit den eingelagerten Streupartikeln verschmelzen beim Faserziehen mit dem Kernstab (11) und dem Hüllrohr (12) und werden zu den Streubereichen (3). Es ist ebenfalls möglich, dass die Inlayrohre (13) dabei auch miteinander verschmelzen. Bevorzugt wird dabei während des Faserziehens ein Streubereich (3) gebildet, der den Faserkern (1) entsprechend den 2a und 2b vollumfänglich umschließt.
  • In 4b ist ein Faserbündel (23) dargestellt, welches eine Vielzahl von seitenemittierenden Stufenindexfasern (22) enthält. In der vorliegenden Form ist es von einem äußeren Mantel (24) umgeben, welcher das Bündel vor mechanischen Belastungen schützt und welcher wie beschrieben aus Kunststoffen und/oder Glasfasern bestehen kann.
  • 5 zeigt das gleichzeitige Faserziehen von Fasern (22) aus mehreren Preformen (10) in einer Vielfaserziehanlage. Die Preformen (10) werden in ein Heizaggregat (20) eingebracht. Zumindest der untere Bereich der Preformen (10) wird Ziehtemperatur gebracht. Üblicherweise beinhaltet das Heizaggregat (20) mehrere Heizbuchsen, wobei jeder Preform (10) eine Heizbuchse zugeordnet ist. In der Heizbuchse sind üblicherweise die Mittel zum Aufheizen der Preform (10) enthalten. Mehrere Fasern (22) werden gemäß der Zeichnung gleichzeitig gezogen, über eine Umlenkrolle (21) umgelenkt und auf einer Aufwickelspule aufgewickelt. Auf der Aufwickelspule befindet sich ein Faserbündel (23), das in diesem Fall nicht von einem äußeren Mantel umgeben ist. Die Anzahl der Fasern in dem Faserbündel entspricht der Anzahl der gleichzeitig gezogenen Fasern (22).
  • 6 zeigt den prinzipiellen Aufbau eines Flächengebildes gemäß der Erfindung als Schnitt quer zur Faserbündelachse (A). Die einzelnen seitenemittierenden Stufenindexfasern (22) sind hier als Monolage auf ein transparentes Trägerelement (71) aufgeklebt und somit mit diesem fixiert. Das durch die seitenemittierenden Stufenindexfasern (22) emittierte Licht (4) tritt durch das Trägerelement (71) und wird von dort bevorzugt in alle möglichen Raumrichtungen abgestrahlt. Die den Stufenindexfasern abgewandte Oberfläche des Trägerelements (71) wirkt somit als bevorzugt homogen leuchtende Abstrahlfläche. Rückseitig ist ein Stabilisierungselement (72) mit den seitenemittierenden Stufenindexfasern verbunden, so dass die diese mit dem Trägerelement (71) und dem Stabilisierungselement (72) eine Sandwich-Struktur ausbilden. Als Stabilisierungselement (72) kann beispielsweise eine Aluminiumfolie verwendet werden, deren Fixierung kann auf einfache Weise durch verkleben erfolgen.
  • In 7 ist eine Variante dargestellt, bei der die vorwiegend parallel ausgerichteten seitenemittierenden Stufenindexfasern (22) von einem transparenten Kunststoff umspritzt sind, welcher auf diese Weise das Trägerelement (71) bildet. Dies kann abschnittsweise als Spritzgießprozess oder quasi endlos als Extrusionsprozess geschehen. Das von den Stufenindexfasern emittierte Licht (4) kann dabei bevorzugt von beiden Oberflächen des Flächengebildes abstrahlen. Es ist aber ebenso möglich, dass eine Oberfläche des Flächengebildes mit einer reflektierenden Schicht versehen wird, so dass nur die Lichtabstrahlung in eine Richtung erfolgen kann, deren Intensität aber erhöht wird.
  • In 8 liegen die seitenemittierenden Stufenindexfasern zumindest als Bestandteil von zueinander beabstandeten Faserbündeln (23) vor, in welchen eine Vielzahl von seitenemittierenden Stufenindexfasern (22) enthalten ist. Dabei sind die Faserbündel (23) auf einem Trägerelement (71) mit einer reflektiven Deckschicht fixiert. Die ganze Anordnung eingekapselt (75). Das von den Faserbündeln (23) emittierte Licht (4) tritt durch die Verkapselung (75). Diese kann aus einem transparenten Kunststoff bestehen. Andere Materialien sind allerdings ebenso möglich, so dass eine hermetische Verkapselung des Flächengebildes ermöglicht wird. Selbstverständlich ist es auch möglich, dass bei dieser Verkapselungslösung anstatt der Faserbündel (23) auch seitenemittierende Stufenindexfasern (22) auf dem Trägerelement (71) fixiert werden.
  • 9 zeigt ein Flächengebilde, bei dem die seitenemittierenden Stufenindexfasern (22) und/oder Faserbündel (23) beinhaltend die seitenemittierenden Stufenindexfasern vorwiegend parallel angeordnet sind. Dabei können die Stufenindexfasern (22) und/oder die Faserbündel (23) miteinander fixiert sein und/oder mit nicht abgebildeten Trägerelementen (71) und/oder Stabilisierungselementen (72) verbunden sein. Eine Lichtquelle (81) kann in die Stirnfläche der erfindungsgemäßen Stufenindexfasern (22) und/oder die Faserbündel (23) eingekoppelt werden. Dazu sind die Stufenindexfasern (22) und/oder die Faserbündel (23) mittels der Lichtleiterbündelung (83) zusammengefasst, so dass die flächige Anordnung zu einer Einkoppelfläche (82) umgebildet wird. In der Einkoppelfläche (82) sind die Stirnflächen der Stufenindexfasern (22) bevorzugt möglichst dicht zusammengefasst. Wird Licht von der Lichtquelle (81) über die Einkoppelfläche (82) in die Stufenindexfasern (22) und/oder die Faserbündel (23) und damit in das Flächengebilde eingekoppelt, kann durch die parallel angeordneten Stufenindexfasern (22) und/oder Faserbündel (23) seitlich ausgekoppelt und von der Fläche emittiert werden (4).
  • Entsprechend 11 kann das Flächengebilde auch zwei Einkoppelflächen (81, 82) aufweisen, so dass in das Faserbündel (23) und/oder die seitenemittierenden Stufenindexfasern (22) von beiden Stirnflächen Licht eingekoppelt werden kann. Je nach Art der Anordnung der Faserbündel (23) und/oder die seitenemittierenden Stufenindexfasern (22) ist aber auch eine höhere Anzahl von Einkoppelflächen (81, 82) möglich.
  • 10 stellt den schematischen Schnitt durch ein Display beinhaltend ein erfindungsgemäßes Flächenelement zur Hintergrundbeleuchtung des Displays dar. Hierbei wird eine Anzeige-Einheit (91) mittels mehrerer beabstandeter, parallel zueinander angeordneten Lichtleiterbündeln (23) mit jeweils einer Vielzahl von seitenemittierenden Stufenindexfasern (22) hinterleuchtet. Das Faserbündel (23) ist auf einem Trägerelement (72) fixiert, das bevorzugt auf der dem Faserbündel (23) zugewandten Seite verspiegelt ist. Die Anzeige-Einheit (91) kann beispielsweise eine TFT-Einheit mit den beiden Polarisationsplatten und den Flüssigkristallen dazwischen sein. Das von dem Faserbündel (23) emittierte Licht (4) tritt durch die TFT-Einheit hindurch. Besonders bevorzugt werden in diesem Anwendungsbeispiel LEDs als Lichtquelle (81) verwendet.
  • In 12 ist der Innenraum eines Flugzeuges dargestellt, beispielsweise die Kabine eines Passagierflugzeugs. Faserbündel beinhaltend die erfindungsgemäßen seitenemittierenden Fasern können vielfältige Anwendungen in Flugzeugkabinen finden. Wenn die äußeren Mäntel der Faserbündel aus Materialien gebildet werden, die Flammfest sind, erfüllen die Faserbündel, die ansonsten Glas enthalten, die Zulassungsbestimmungen der für die Zulassung von Passagierflugzeugen zuständigen Behörden und die anwendbaren Herstelleranforderungen. In 12 sind die seitenemittierenden Faserbündel mitunter als breite Bänder dargestellt. Diese Darstellung muss nicht Maßstabsgerecht sein. Üblicherweise werden die Faserbündel als schmaler Faserstrang verwendet, der als leuchtende Linie erscheint.
  • Ein solches Leuchtband kann als Konturbeleuchtung (30) entlang Fenster der Flugzeugkabine, der Fächer der Handgepäckaufbewahrung oder von Innenraumteilern angebracht sein. Generell ist jede Form von Konturbeleuchtung innerhalb der Flugzeugkabine möglich. In dem Boden der Flugzeugkabine ist das seitenemittierende Faserbündel zur Markierung der Wege (31) innerhalb des Flugzeugs angebracht. Besonders vorteilhaft ist diese Wegemarkierung (31) zur Markierung der Wege zu den Notausstiegen. Ebenso ist es möglich, die seitenemittierenden Faserbündel als Konturbeleuchtung für Sitze (33) zu verwenden. Neben dem dekorativen Effekt hat diese Anwendung den Vorteil, dass zur Einstellung von Nachtverhältnissen in der Kabine, welche für die Passagiere zum Unterstützen von Schlafphasen eingesetzt werden, das Umgebungslicht reduziert werden kann, aber die Passagiere ihre Sitzplätze immer noch auffinden können. Man hat erkannt, dass gerade auf Langstreckenflügen das Einlegen von Schlafphasen die Reise für die Passagiere stressfreier macht. Daher wird immer mehr Wert auf eine geeignete Nachtausstattung von Flugzeuginnenkabinen gelegt.
  • Werden die seitenemittierenden Lichtleitfasern in Form eines Flächengebildes verwendet, beispielsweise indem sie mit Textilfasern verwoben werden, können sie in das Gewebe der Sitzbezüge integriert werden. Dann ist es mit den Fasern nicht nur möglich, Konturbeleuchtungen zu realisieren, sondern auch Flächen wie Teile der Oberfläche der Sitze (32) leuchtend zu gestalten.
  • 13a zeigt einen Automobilscheinwerfer (40), in den seitenemittierende Faserbündel Beleuchtungsaufgaben übernehmen. In diesem Beispiel umschließen sie als Ring (41) Abblendlicht (42) und/oder Fernlicht (42). Die seitenemittierenden Faserbündel können so innerhalb des Scheinwerfers (40) als Standlicht oder Tagfahrlicht eingesetzt werden.
  • In 13b ist ebenfalls ein Automobilscheinwerfer (40) dargestellt, in welchem das seitenemittierende Faserbündel (45) als Strang unterhalb der Hauptscheinwerfer (42) angeordnet ist. Auch in diesem Beispiel kann es neben dekorativen Funktionen die Aufgaben als Stand- und/oder Tagfahrlicht realisieren.
  • Die Anwendung des erfindungsgemäßen Faserbündels (41, 45) in Automobilscheinwerfern (40) ist vorteilhaft, da das Faserbündel (41, 45) zumindest überwiegend aus Glas besteht und somit Beständig gegenüber Hitze und Verwitterung ist, die durch das Einwirken von aggressiven Substanzen verstärkt werden kann. Das erfindungsgemäße Faserbündel aus Glas ist gegenüber Verwitterung und Hitzebelastung unempfindlicher als seitenemittierende Faserbündel aus Kunststoffen. Außerdem können sehr viel höhere Lichtleistungen in Faserbündel aus Glas eingekoppelt werden, als es in Faserbündel aus Kunststoff möglich ist.
  • Ebenso eignen sich insbesondere LEDs zur Einkopplung in seitenemittierende Faserbündel besonders gut, da ihre im Vergleich zu Glühlampen oder Gasentladungslampen geringe Abstrahlfläche eine effiziente Einkopplung ohne eine großvolumige Optik ermöglicht. So lassen sich in einem Automobilscheinwerfer u. a. Kosten, Gewicht und Platz sparen. Gegenüber dem Anbringen von bandförmig angeordneten LEDs hat die Verwendung eines seitenemittierenden Faserbündels (41, 45) in Automobilscheinwerfern (40) den Vorteil, dass das Licht homogen ausgestrahlt wird, so dass nicht der ästhetisch unschöne Eindruck einzelner Leuchtpunkte entsteht, andere Verkehrsteilnehmer nicht durch eine Vielzahl von Leuchtpunkten irritiert werden, der Leuchteffekt weitgehend winkelunabhängig ist und die Anzahl von LEDs verringert wird und dadurch Energie beim Gebrauch des Scheinwerfers eingespart werden kann, was wiederum den Kraftstoffverbrauch des Fahrzeugs senken kann.
  • 14 zeigt die Konturbeleuchtung (51) von Teilen eines Gebäudes (50). Im vorliegenden Beispiel ist das Gebäude ein Hochhaus, wobei die Umrisse der Kuppel für den Betrachter durch die seitenemittierenden Faserbündel als leuchtend erscheinen.
  • Anhand 15 ist die Anwendung der erfindungsgemäßen Faserbündel mit seitenemittierenden Eigenschaften als Markierung von Landebahnen von Luftfahrzeugen (60) dargestellt. Sowohl die seitliche Markierung (61) als auch ein Mittelstreifen (62) lassen sich wie zuvor beschrieben vorteilhaft mittels der erfindungsgemäßen seitenemittierenden Stufenindexfasern realisieren.
  • Zum Erzeugen einer bevorzugten Ausführungsform der erfindungsgemäßen seitenemittierenden Stufenindexfaser wurde ein Kernstab (11) mit feuerpolierter Oberfläche zusammen mit einem Inlayrohr (13) und einem Hüllrohr gemäß dem beschriebenen Verfahren zu einer Faser ausgezogen. Der Kernstab wies einen Durchmesser von 30 mm auf. Das Hüllrohr (12) hatte einen Außendurchmesser von 35 mm und einen Innendurchmesser von 33,5 mm. In das an einem Ende zugeschmolzene Hüllrohr (12) wurde der Kernstab (11) eingesteckt und in den dazwischenliegenden Spalt wurde ein Inlayrohr (13) aus einem Glas mit der gleichen Zusammensetzung wie der Kernstab (11) angeordnet, welchem in der Schmelze jedoch nanofeine Zirkonpartikel oder nanofeine Edelmetallpartikel im Konzentrationsbereich von 1 ppm bis 100 ppm zugesetzt wurden. Wandstärke des Inlayrohres betrug zwischen 0,1 mm und 2 mm. Das geschlossene Ende der so entstandenen Preform (10) wurde unter Anlegen eines Unterdrucks am offenen Ende der Preform zwischen Kernstab (11) und Hüllrohr (12) in das Heizaggregat (20) einer bekannten Ziehanlage eingefahren und bis zur Ziehtemperatur erhitzt. Nach Erweichen des Endes der Preform (10) wurde dieses nach unten aus dem Heizaggregat (20) gezogen und somit zu einer Faser verjüngt. Durch diesen Prozeß wurden die Inlayrohre (13) so stark erweicht, dass sie sich verformten und schließlich einen Streubereich (3) zwischen Kern (1) und Mantel (2) der Faser (22) bildeten. Durch Nachführen der Preform (10) in dem Heizaggregat (20) war ein kontinuierlicher Faserziehprozeß möglich, dessen Ergebnis eine seitenemittierende Stufenindexfaser mit einem Durchmesser von 5 μm bis 300 μm und einer Länge von mehreren Kilometern war.
  • Vorteilhaft können als Materialien für den Kernstab (11) und somit für den Kern (1) Gläser mit den im Folgenden genannten Zusammensetzungen eingesetzt werden.
  • Kernglas Variante 1 mit Brechungsindex n1 von 1,65 bis 1,75, beinhaltend (in Mol% auf Oxidbasis)
    SiO2 25 bis 45 Ta2O5 0,1 bis 6
    B2O3 13 bis 25 ZrO2 0,1 bis 8
    CaO 0 bis 16 ZnO 0,1 bis 8
    SrO 0 bis 8 CaO + SrO + BaO + ZnO > 33
    BaO 17 bis 35 Al2O3 0 bis 5
    La2O3 2 bis 12
  • Kernglas Variante 2 mit Brechungsindex n1 von 1,65 bis 1,75, beinhaltend (in Mol% auf Oxidbasis)
    SiO2 54,5 bis 65
    ZnO 18,5 bis 30
    Summe der Alkalioxide 8 bis 20
    La2O3 0 bis 3
    ZrO2 2 bis 5
    HfO2 0,02–5
    ZrO2 + HfO2 2,02 bis 5
    BaO 0,4 bis 6
    SrO 0 bis 6
    MgO 0 bis 2
    CaO 0 bis 2
    Summe der Erdalkalioxide 0,4 bis 6
    Li2O 0,5 bis 3, jedoch nicht mehr als 25 Mol% der Summe der Alkalioxide
    SiO + ZrO2 + HfO2 > 58,5
    Verhältnis ZnO: Summe der Erdalkalioxide > 3,5:1
  • Kernglas Variante 3 mit Brechungsindex n1 von 1,58 bis 1,65, beinhaltend (in Mol% auf Oxidbasis)
    SiO2 50 bis 60 Nb2O5 0 bis 4
    B2O3 0 bis 15 La2O3 + Y2O3 + Nb2O5 0 bis 4
    BaO 10 bis 35 Na2O 4,5 bis 10
    SrO 0 bis 18 K2O 0,1 bis 1
    Sr + Ba 10 bis 35 Rb2O 0 bis 1,5
    ZnO 0 bis 15 Cs2O 0 bis 1,5
    Sr + Ba + Zn 10 bis 40 Rb2O + Cs2O 0 bis 1,5
    B2O3 + ZnO 5 bis 35 Summe der Erdalkalioxide 4,8–11
    Al2O3 0,1 bis 1,9 MgO 0 bis 6
    ZrO2 0 bis 4 CaO 0 bis < 5
    La2O3 0 bis 4
    Y2O3 0 bis 4
  • Kernglas Variante 4 mit Brechungsindex beinhaltend (in Gew.% auf Oxidbasis)
    SiO2 42 bis 53
    ZnO 30 bis 38
    Na2O < 14
    K2O < 12
    Na2O + K2O ≥ 2
    BaO < 1
  • Kernglas Variante 5 mit Brechungsindex beinhaltend (in Gew.% auf Oxidbasis)
    SiO2 30 bis 45
    B2O3 < 12
    ZnO < 10
    BaO 25 bis 40
    Na2O < 10
    K2O < 2
    Al2O3 < 1
    La2O3 < 10
  • Mantelglas Variante 1 (in Gew.% auf Oxidbasis), beinhaltend
    SiO2 70 bis 78 MgO 0 bis 1
    Al2O3 0 bis 10 CaO 0 bis 2
    B2O3 5 bis 14 SrO 0 bis 1
    Na2O 0 bis 10 BaO 0 bis 1
    K2O 0 bis 10 F 0 bis 1
    und im wesentlichen kein Li2O.
  • Mantelglas Variante 2 (in Gew.% auf Oxidbasis), beinhaltend
    SiO2 63 bis 75 MgO 0 bis 5
    Al2O3 1 bis 7 CaO 1 bis 9
    B2O3 0 bis 3 BaO 0 bis 5
    Na2O 8 bis 20 F 0 bis 1
    K2O 0 bis 6
    und im wesentlichen kein Li2O.
  • Mantelglas Variante 3 (in Gew.% auf Oxidbasis), beinhaltend
    SiO2 75 bis 85
    Al2O3 1 bis 5
    B2O3 10 bis 14
    Na2O 2 bis 8
    K2O 0 bis 1
    und im wesentlichen kein Li2O und MgO.
  • Mantelglas Variante 4 (in Gew.% auf Oxidbasis), beinhaltend
    SiO2 62 bis 70
    B2O3 > 15
    Li2O > 0.1
    Na2O 0 bis 10
    K2O 0 bis 10
    MgO 0 bis 5
    CaO 0 bis 5
    SrO 0 bis 5
    BaO 0 bis 5
    ZnO 0 bis 5
    F 0 bis 1
  • Mantelglas Variante 5 (in Gew.% auf Oxidbasis), beinhaltend
    SiO2 60 bis 72
    B2O3 < 20
    Al2O3 < 10
    Na2O < 18
    K2O < 15
    Li2O < 5
    F ≤ 1
  • Mantelglas Variante 6 (in Gew.% auf Oxidbasis), beinhaltend
    SiO2 72–78
    B2O3 5 bis 15
    Al2O3 5 bis 10
    Na2O < 10
    K2O < 10
    Li2O < 5
    F ≤ 1
  • Mantelglas Variante 7 (in Gew.% auf Oxidbasis), beinhaltend
    SiO2 70–80
    B2O3 < 5
    Al2O3 < 10
    La2O3 < 2
    Na2O < 10
    K2O < 10
    ZrO2 < 2
  • Wie beschrieben können alle für die Kerngläser verwendeten Gläser im Sinne der Erfindung auch für das Glas der Inlaystäbe (13) verwendet werden und somit als Matrixglas für die Herstellung des Streubereichs (3) dienen, indem in das Glas Streupartikel eingelagert werden.
  • Die auf diese Weise erhaltene Glasfaser weist eine hervorragende Bruchfestigkeit auf. Durchgeführte Schlingentests ergaben für seitenemittierende Stufenfasern, welche aus den vorgenannten Gläsern bei einer Ziehtemperatur von 1040°C gezogen wurden, folgende Werte im Schlingentest:
    FF = 150–450 FF = 500–1200
    dMin [mm] 1 1
    dMax [mm] 4 3
    dBruch [mm] 1,64 1,31
  • Die Streupartikel bestanden dabei hauptsächlich aus Pt. FF bezeichnet den Formfaktor, gleichbedeutend den Durchmesser der Streupartikel. FF = 150–450 symbolisiert demnach das Vorliegen von Streupartikeln in einer Korngrößenverteilung mit den Durchmessern 150 nm bis 450 nm. FF = 500–1200 dementsprechend Streupartikel in einer Korngrößenverteilung mit den Durchmessern 500 nm bis 1200 nm. Für jeden Wert von FF wurden je 25 Schlingentests durchgeführt. dMin gibt den kleinsten Durchmesser der Schlinge in mm an, bei welchem die Faser bricht, dMax den größten Durchmesser der Schlinge in mm, bei welcher ein Faserbruch zu beobachten war. dBruch ist der arithmetische Mittelwert der Einzelergebnisse der jeweils 25 Schlingentests in mm.
  • Anhand der Tabelle ist ersichtlich, dass die Vergrößerung der Durchmesser der Streupartikel wegen der Abnahme von dBruch zu einer leichten Verbesserung der Bruchfestigkeit zu führen scheint. Der Vergleich zu einer Glasfaser ohne die erfindungsgemäßen Streubereiche, welche einen Wert von dBruch = 1,25 mm aufweist, belegt allerdings, dass die erfindungsgemäßen seitenemittierenden Stufenindexfasern immer noch eine sehr gute Bruchfestigkeit gewährleisten. Seitenemittierende Stufenindexfasern mit unrunden Kerndurchmessern, wie sie aus dem Stand der Technik bekannt sind, brechen in den Schlingentests bedeutend früher.
  • Gegenüber den aus dem Stand der Technik bekannten seitenemittierenden Stufenindexfasern haben die erfindungsgemäßen seitenemittierenden Stufenindexfasern darüber hinaus den Vorteil, dass sie effizienter das Licht seitwärts auskoppeln, dass der Effekt der Seitenemission durch die Verwendung der Inlayrohre (13) für die betreffenden Anwendungen sehr gut skalierbar ist und dass die erfindungsgemäßen seitenemittierenden Stufenindexfasern aufgrund des Materials, aus dem sie bestehen, brandbeständig sind. Daher können sie in Bereichen mit erhöhten Brandschutzbestimmungen eingesetzt werden. Dies sind Anwendungsgebiete, welche insbesondere Fasern aus Kunststoffen verschlossen sind. Mit dem erfindungsgemäßen Verfahren lassen sich Faserbündel beinhaltend die erfindungsgemäßen seitenemittierenden Stufenindexfasern wirtschaftlich maschinell herstellen.

Claims (46)

  1. Seitenemittierende Stufenindexfaser, beinhaltend einen lichtleitenden Kern (1) aus anorganischem Glas mit dem Brechungsindex n1 und einen den Kern entlang der Faserachse (A) umschließenden transparenten und/oder transluzenten Mantel (2) aus anorganischem Glas mit dem Brechungsindex n2, dadurch gekennzeichnet, dass sich zwischen Kern und Mantel zumindest ein Streubereich (3) befindet, der aus einem anorganischem Glas gebildet wird, welches im wesentlichen den Brechungsindex n1 aufweist und in welches Streupartikel eingelagert sind, wobei der thermische Ausdehnungskoeffizient des anorganischen Kernglases größer ist als der thermische Ausdehnungskoeffizient des anorganischen Mantelglases.
  2. Seitenemittierende Stufenindexfaser nach Anspruch 1, dadurch gekennzeichnet, dass sich zwischen Kern (1) und Mantel (2) zumindest ein Streubereich (3) befindet, der den Kern entlang der Faserachse (A) zumindest teilweise umschließt.
  3. Seitenemittierende Stufenindexfaser nach Anspruch 1, dadurch gekennzeichnet, dass sich zwischen Kern (1) und Mantel (2) zumindest ein Streubereich (3) befindet, der den Kern in einem Teilbereich entlang der Faserachse (A) zumindest teilweise umschließt.
  4. Seitenemittierende Stufenindexfaser nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Schmelztemperatur der Streupartikel größer ist als die Schmelztemperatur des anorganischen Glases, in welches sie eingelagert sind.
  5. Seitenemittierende Stufenindexfaser nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Streupartikel einen Durchmesser von 10 nm bis 5000 nm aufweisen.
  6. Seitenemittierende Stufenindexfaser nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Streupartikel SiO2 und/oder SiN und/oder BaO und/oder MgO und/oder ZnO und/oder Al2O3 und/oder AlN und/oder TiO2 und/oder ZrO2 und/oder Y2O3 und/oder die Metalle dieser Oxide alleine und/oder BN und/oder B2O3 und/oder Ru und/oder Os und/oder Rh und/oder Ir und/oder Ag und/oder Au und/oder Pd und/oder Pt und/oder diamantartigem Kohlenstoff und/oder Glaskeramik-Partikel enthalten.
  7. Seitenemittierende Stufenindexfaser nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Konzentration der Streupartikel im Streubereich von 10 ppm bis 1000 ppm beträgt.
  8. Seitenemittierende Stufenindexfaser nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Durchmesser des Kerns (1) von 10 μm bis 150 μm beträgt, der zumindest eine Streubereich (3) eine Dicke von 100 nm bis 2 μm aufweist und der Mantel (2) von 500 nm bis 2 μm dick ist.
  9. Faserbündel (23) beinhaltend eine Vielzahl von Glasfasern und einen die Vielzahl von Glasfasern entlang der Faserbündelachse vollständig umschließenden äußeren Mantel (24), dadurch gekennzeichnet, dass das Faserbündel (23) eine Vielzahl von seitenemittierenden Stufenindexfasern (22) nach mindestens einem der vorhergehenden Ansprüche beinhaltet und der äußere Mantel (24) transparent und/oder transluzent ist.
  10. Flächengebilde mit einer Mehrzahl von seitenemittierenden Stufenindexfasern (22) gemäß mindestens einem der vorhergehenden Ansprüche 1 bis 8.
  11. Flächengebilde nach Anspruch 10, wobei die seitenemittierenden Stufenindexfasern (22) parallel zueinander angeordnet sind.
  12. Flächengebilde nach mindestens einem der Ansprüche 10 bis 11, wobei die seitenemittierenden Stufenindexfasern auf einem Trägerelement (71) fixiert sind und so ein Verbundelement aus Trägerelement (71) und seitenemittierenden Stufenindexfasern gebildet wird.
  13. Flächengebilde nach mindestens einem der Ansprüche 10 bis 11, wobei die seitenemittierenden Stufenindexfasern in ein Trägerelement (71) eingebettet sind und so ein Verbundelement aus Trägerelement (71) und seitenemittierenden Stufenindexfasern gebildet wird.
  14. Flächengebilde nach mindestens einem der Ansprüche 10 bis 12, wobei die seitenemittierenden Stufenindexfasern miteinander und/oder mit dem Trägerelement (71) durch Vernähen fixiert sind.
  15. Flächengebilde nach mindestens einem der Ansprüche 10 bis 14, wobei die seitenemittierenden Stufenindexfasern miteinander und/oder mit dem Trägerelement (71) verklebt sind.
  16. Flächengebilde nach mindestens einem der Ansprüche 10 bis 15, wobei das Trägerelement transparent und/oder transluzent ist.
  17. Flächengebilde nach mindestens einem der Ansprüche 10 bis 16, wobei das Verbundelement aus Trägerelement (71) und seitenemittierenden Stufenindexfasern mit einem Stabilisierungselement (72) verbunden ist.
  18. Flächengebilde nach Anspruch 17, wobei das Stabilisierungselement (72) so angeordnet ist, das sich die seitenemittierenden Stufenindexfasern zwischen einer Oberfläche des Stabilisierungselements (72) und einer Oberfläche des Trägerelements (71) befinden.
  19. Flächengebilde nach mindestens einem der Ansprüche 12 bis 18, wobei die den seitenemittierenden Stufenindexfasern zugewandte Seite des Trägerelements (71) und/oder des Stabilisierungselements (72) so ausgebildet ist, dass sie das von den seitenemittierenden Stufenindexfasern ausgestrahlte Licht reflektieren kann.
  20. Flächengebilde nach mindestens einem der Ansprüche 10 bis 19, wobei das Flächengebilde über Maßnahmen zum Anschließen von zumindest einer LED als Lichtquelle verfügt.
  21. Preform (10) zum Herstellen einer seitenemittierenden Stufenindexfaser, beinhaltend einen Kernstab (1.1) aus einem anorganischen Glas mit dem Brechungsindex n1 und ein Hüllrohr (12) aus einem anorganischen Glas mit dem Brechungsindex n2, wobei das Hüllrohr (12) den Kernstab (11) entlang der Kernstabachse umschließt, dadurch gekennzeichnet, dass zwischen Kernstab (11) und Hüllrohr (12) parallel zur Kernstabachse zumindest ein Inlayrohr (13) aus einem anorganischen Glas angeordnet ist, das im wesentlichen den Brechungsindex n1 aufweist und in welches Streupartikel eingelagert sind.
  22. Preform (10) nach Anspruch 21, dadurch gekennzeichnet, dass die Streupartikel SiO2 und/oder SiN und/oder BaO und/oder MgO und/oder ZnO und/oder Al2O3 und/oder AlN und/oder TiO2 und/oder ZrO2 und/oder Y2O3 und/oder die Metalle dieser Oxide alleine und/oder BN und/oder B2O3 und/oder Ru und/oder Os und/oder Rh und/oder Ir und/oder Ag und/oder Au und/oder Pd und/oder Pt und/oder diamantartigem Kohlenstoff und/oder Glaskeramik-Partikel enthalten.
  23. Preform (10) nach mindestens einem der Ansprüche 21 bis 22, dadurch gekennzeichnet, dass die Konzentration der Streupartikel in dem zumindest einen Inlayrohr (13) von 10 ppm bis 1000 ppm beträgt.
  24. Verfahren zum Herstellen einer seitenemittierenden Stufenindexfaser, beinhaltend die Verfahrensschritte – Bereitstellen eines Kernstabes (11) aus einem anorganischen Glas mit dem Brechungsindex n1, – Anordnen eines Hüllrohres (12) aus einem anorganischen Glas mit dem Brechungsindex n2, so dass sich der Kernstab (11) innerhalb des Hüllrohres (12) befindet und eine Perform (10) erhalten wird, – Erwärmen der Preform (10), – Ausziehen der Preform (10) zu einer Glasfaser (22), dadurch gekennzeichnet, dass zum Erhalten der Preform (10) ferner zumindest ein Inlayrohr (13) aus einem anorganischen Glas mit im wesentlichen dem Brechungsindex n1 parallel zu der Kernstabachse angeordnet wird, wobei in das anorganische Glas des Inlayrohres (13) Streupartikel eingelagert sind.
  25. Verfahren nach Anspruch 24, dadurch gekennzeichnet, dass beim Ausziehen der Preform (10) zumindest ein Inlayrohr (13) mit dem Kernstab (11) verschmilzt, so dass ein Streubereich gebildet wird, der den Faserkern (1) zumindest in Teilbereichen entlang der Faserachse (A) umschließt.
  26. Verfahren nach mindestens einem der Ansprüche 24 bis 25, dadurch gekennzeichnet, dass die Preform (10) eine Mehrzahl von Inlayrohren (13) enthält, welche beim Ausziehen der Preform (10) sowohl mit dem Kernstab (11) als auch miteinander verschmelzen, so dass zumindest ein Streubereich (3) gebildet wird, der sich zumindest auf einem Teilumfang des Faserkerns (1) entlang der Faserachse (A) erstreckt.
  27. Verfahren nach mindestens einem der Ansprüche 24 bis 26, dadurch gekennzeichnet, dass beim Ausziehen der Preform (10) die Inlayrohre (13) sowohl mit dem Kernstab (11) als auch mit dem Hüllrohr (12) verschmelzen.
  28. Verfahren nach mindestens einem der Ansprüche 24 bis 27, dadurch gekennzeichnet, dass an die Preform (10) beim Ausziehen Unterdruck angelegt wird.
  29. Verfahren nach mindestens einem der Ansprüche 24 bis 28, dadurch gekennzeichnet, dass für das Hüllrohr (12) ein anorganisches Glas verwendet wird, dessen thermischer Ausdehnungskoeffizient kleiner ist als der thermische Ausdehnungskoeffizient des verwendeten anorganischen Glases des Kernstabes (11).
  30. Verfahren nach mindestens einem der Ansprüche 24 bis 29, dadurch gekennzeichnet, dass mehrere Preformen (10) nebeneinander in einem Heizaggregat (20) einer Vielfaserziehanlage angeordnet und mehrere seitenemitierende Stufenfasern (22) gleichzeitig in einer Vielfaserziehanlage ausgezogen werden, so dass ein Faserbündel (22) erhalten wird, welches seitenemittierende Stufenindexfasern enthält.
  31. Verfahren nach Anspruch 30, dadurch gekennzeichnet, dass um das Faserbündel (22) ein äußerer Mantel aus einem transparenten und/oder transluzenten Kunststoff extrudiert wird.
  32. Verfahren nach Anspruch 30, dadurch gekennzeichnet, dass das Faserbündel (22) mit Glasfasern umgeben wird, welche einen äußeren nicht-brennbaren transparenten und/oder transluzenten Mantel um das Faserbündel bilden.
  33. Verwendung zumindest einer seitenemittierenden Stufenindexfaser nach mindestens einem der Ansprüche 1 bis 8 zusammen mit anderen Lichtleitern und/oder anderen seitenemittierenden Stufenindexfasern in einem Faserbündel, welches von einem äußeren transparenten und/oder transluzenten Mantel umgeben ist.
  34. Verwendung nach Anspruch 33 für die akzentuierte Beleuchtung von Innenräumen und/oder Fassaden (51) in der Architektur.
  35. Verwendung nach Anspruch 33 für die akzentuierte Beleuchtung von Innenräumen von Fahrzeugen (30, 31, 32, 33).
  36. Verwendung nach Anspruch 35 als Teil von Innenverkleidungen (30) von Fahrzeugen.
  37. Verwendung nach Anspruch 33 als Teil von Möbeln.
  38. Verwendung nach Anspruch 33 als Bestandteil (41, 45) eines Scheinwerfers (40).
  39. Verwendung nach Anspruch 38 in Automobilscheinwerfern (40), wobei durch das Faserbündel (41, 45) beinhaltend die seitenemittierende Stufenindexfaser das Licht von punktuellen Lichtquellen wie LEDs ausgekoppelt wird.
  40. Verwendung nach Anspruch 33 zur Konturbeleuchtung von Fahrzeugen.
  41. Verwendung nach Anspruch 33 zur Beleuchtung von Landebahnen (61, 62) für Luftfahrzeuge.
  42. Verwendung zumindest einer seitenemittierenden Stufenindexfaser nach mindestens einem der Ansprüche 1 bis 8 zusammen mit anderen Lichtleitern und/oder anderen seitenemittierenden Stufenindexfasern in einem Flächengebilde.
  43. Verwendung eines Flächengebildes nach mindestens einem der Ansprüche 10 bis 20 als Beleuchtungskörper.
  44. Verwendung nach Anspruch 43 zur Hintergrundbeleuchtung von Displays.
  45. Verwendung nach Anspruch 43 zur Ambientebeleuchtung in Fahrzeuginnenräumen.
  46. Verwendung nach Anspruch 43 zur Ambientebeleuchtung in der Architektur.
DE102008009137.5A 2008-02-14 2008-02-14 Seitenemittierende Stufenindexfaser Active DE102008009137B4 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE102008009137.5A DE102008009137B4 (de) 2008-02-14 2008-02-14 Seitenemittierende Stufenindexfaser
EP09710583.7A EP2243048B1 (de) 2008-02-14 2009-02-03 Seitenemittierende stufenindexfaser, methode der herstellung, und verwendung selbiger
JP2010546237A JP5480822B2 (ja) 2008-02-14 2009-02-03 側面光放射ステップ・インデックス型ファイバ
US12/867,735 US8582943B2 (en) 2008-02-14 2009-02-03 Side-emitting step index fiber
PCT/EP2009/000702 WO2009100834A1 (de) 2008-02-14 2009-02-03 Seitenemittierende stufenindexfaser
CN200980105142.1A CN101946197B (zh) 2008-02-14 2009-02-03 侧发光阶跃型光纤
ES09710583T ES2730703T3 (es) 2008-02-14 2009-02-03 Fibras con índice de nivel de emisión lateral, método de producción y empleo de las mismas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102008009137.5A DE102008009137B4 (de) 2008-02-14 2008-02-14 Seitenemittierende Stufenindexfaser

Publications (2)

Publication Number Publication Date
DE102008009137A1 DE102008009137A1 (de) 2009-08-27
DE102008009137B4 true DE102008009137B4 (de) 2017-09-21

Family

ID=40896464

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102008009137.5A Active DE102008009137B4 (de) 2008-02-14 2008-02-14 Seitenemittierende Stufenindexfaser

Country Status (1)

Country Link
DE (1) DE102008009137B4 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008034791B4 (de) 2008-07-25 2022-01-20 Schott Ag Preformen und Verfahren zur Herstellung von seitenemittierenden Stufenindexfasern
DE102011006645A1 (de) * 2011-04-01 2012-10-04 Bayerische Motoren Werke Aktiengesellschaft Kraftfahrzeuginnenbeleuchtung
DE102012208810B4 (de) 2012-05-25 2019-03-28 Schott Ag Seitenemittierendes Glaselement, Beleuchtungseinrichtung und Verfahren zu seiner Herstellung
DE102013002822A1 (de) 2013-02-15 2014-08-21 Johnson Controls Gmbh Lichtemittierendes Profil und dessen Verwendung
US9180810B2 (en) * 2013-06-21 2015-11-10 Toyota Boshoku Kabushiki Kaisha Base, illumination apparatus using the same, and interior material
DE102016003853A1 (de) * 2016-03-24 2017-09-28 Friedrich-Schiller-Universität Jena Lateral abstrahlender Lichtwellenleiter und Verfahren zu seiner Herstellung
DE102017100754A1 (de) 2017-01-16 2018-07-19 Automotive Lighting Reutlingen Gmbh Beleuchtungseinrichtung für ein Kraftfahrzeug
DE102017129978A1 (de) * 2017-12-14 2019-06-19 Schott Ag Linienförmige Lichtquelle
US10908342B2 (en) 2017-12-14 2021-02-02 Schott Ag Linear light source
DE102018208717A1 (de) * 2018-06-04 2019-12-05 Faurecia Innenraum Systeme Gmbh Fahrzeug-Verkleidungselement
FR3089848A1 (fr) * 2018-12-13 2020-06-19 Compagnie Plastic Omnium Procédé de surmoulage de fibres optiques dans une pièce de carrosserie
DE102019004113A1 (de) 2019-06-11 2020-12-17 Friedrich-Schiller-Universität Jena Verfahren zur Herstellung lateral Licht abstahlender Glasfasern und danach hergestellte Glasfasern

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4234907A (en) * 1979-01-29 1980-11-18 Maurice Daniel Light emitting fabric
US5226105A (en) * 1991-06-27 1993-07-06 Poly-Optical Products, Inc. Fiber optic backlighting panel and dot process for making same
LV11644B (en) * 1995-05-19 1997-04-20 Daumant Pfafrod Lateral emitting optical fiber
EP0800036A1 (de) * 1996-04-04 1997-10-08 Hitachi Cable, Ltd. Beleuchtungssystem
EP0895104A1 (de) * 1997-07-14 1999-02-03 Matsushita Electric Works, Ltd. Optische Faser für Beleuchtung durch die Seitenfläche
US20020159732A1 (en) * 1999-04-08 2002-10-31 3M Innovative Properties Company Light-illuminating rods
EP1319636A2 (de) * 2001-12-17 2003-06-18 Ceram Optec GmbH Teilstreuende optische Faser sowie Verfahren und Vorrichtung für ihre Herstellung
EP1105673B1 (de) * 1998-08-10 2004-04-14 Minnesota Mining And Manufacturing Company Lichtfaser und verfahren zur herstellung
DE10245987B3 (de) * 2002-10-02 2004-05-06 Schott Glas Optische Stufenfasern aus Mehrkomponentengläsern
DE10344205B4 (de) * 2003-09-22 2005-09-08 Schott Ag Vorrichtung und Verfahren zum Herstellen von Glasfasern
WO2006124548A1 (en) * 2005-05-16 2006-11-23 3M Innovative Properties Company Lateral emitting optical fiber and light emitting device
DE102005063208A1 (de) * 2005-12-31 2007-07-12 Schott Ag Faseroptische Vorrichtung für sekundäre Beleuchtungssysteme in Flugzeugkabinen
JP2007272070A (ja) * 2006-03-31 2007-10-18 Hamamatsu Photonics Kk 漏洩光ファイバ及び漏洩光ファイバ製造方法
US20070281155A1 (en) * 2005-10-26 2007-12-06 Xiaoming Tao Photonic fabric display with controlled pattern, color, luminescence intensity, scattering intensity and light self-amplification
US20080019659A1 (en) * 2005-10-26 2008-01-24 Xiaoming Tao Photonic fabric display with controlled graphic pattern, color, luminescence intensity, and light self-amplification

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4466697A (en) 1981-11-12 1984-08-21 Maurice Daniel Light dispersive optical lightpipes and method of making the same
JPH09258028A (ja) 1996-03-26 1997-10-03 Toray Ind Inc 側面漏光プラスチック光ファイバ
US20050074216A1 (en) 2000-12-21 2005-04-07 Shinichi Irie Side-illumination type optical fiber
DE10344207B3 (de) 2003-09-22 2004-12-23 Schott Ag Vorrichtung und Verfahren zum Konfektionieren optischer Fasern

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4234907A (en) * 1979-01-29 1980-11-18 Maurice Daniel Light emitting fabric
US5226105A (en) * 1991-06-27 1993-07-06 Poly-Optical Products, Inc. Fiber optic backlighting panel and dot process for making same
LV11644B (en) * 1995-05-19 1997-04-20 Daumant Pfafrod Lateral emitting optical fiber
EP0800036A1 (de) * 1996-04-04 1997-10-08 Hitachi Cable, Ltd. Beleuchtungssystem
EP0895104A1 (de) * 1997-07-14 1999-02-03 Matsushita Electric Works, Ltd. Optische Faser für Beleuchtung durch die Seitenfläche
EP1105673B1 (de) * 1998-08-10 2004-04-14 Minnesota Mining And Manufacturing Company Lichtfaser und verfahren zur herstellung
US20020159732A1 (en) * 1999-04-08 2002-10-31 3M Innovative Properties Company Light-illuminating rods
EP1319636A2 (de) * 2001-12-17 2003-06-18 Ceram Optec GmbH Teilstreuende optische Faser sowie Verfahren und Vorrichtung für ihre Herstellung
DE10245987B3 (de) * 2002-10-02 2004-05-06 Schott Glas Optische Stufenfasern aus Mehrkomponentengläsern
DE10344205B4 (de) * 2003-09-22 2005-09-08 Schott Ag Vorrichtung und Verfahren zum Herstellen von Glasfasern
WO2006124548A1 (en) * 2005-05-16 2006-11-23 3M Innovative Properties Company Lateral emitting optical fiber and light emitting device
US20070281155A1 (en) * 2005-10-26 2007-12-06 Xiaoming Tao Photonic fabric display with controlled pattern, color, luminescence intensity, scattering intensity and light self-amplification
US20080019659A1 (en) * 2005-10-26 2008-01-24 Xiaoming Tao Photonic fabric display with controlled graphic pattern, color, luminescence intensity, and light self-amplification
DE102005063208A1 (de) * 2005-12-31 2007-07-12 Schott Ag Faseroptische Vorrichtung für sekundäre Beleuchtungssysteme in Flugzeugkabinen
JP2007272070A (ja) * 2006-03-31 2007-10-18 Hamamatsu Photonics Kk 漏洩光ファイバ及び漏洩光ファイバ製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP 2007- 272 070 A (Maschinenübersetzung), AIPN [online] JPO [abgerufen am 28.04.2017] *

Also Published As

Publication number Publication date
DE102008009137A1 (de) 2009-08-27

Similar Documents

Publication Publication Date Title
EP2243048B1 (de) Seitenemittierende stufenindexfaser, methode der herstellung, und verwendung selbiger
DE102008009137B4 (de) Seitenemittierende Stufenindexfaser
DE102012208810B4 (de) Seitenemittierendes Glaselement, Beleuchtungseinrichtung und Verfahren zu seiner Herstellung
DE102008034791B4 (de) Preformen und Verfahren zur Herstellung von seitenemittierenden Stufenindexfasern
DE102008009138A1 (de) Seitenemittierende brechwertangepasste Faser
DE102008009139B4 (de) Seitenemittierende Stufenindexfaser, Faserbündel und Flächengebilde und deren Verwendungen sowie Preformen und Verfahren zu deren Herstellung
DE102020101813A1 (de) Linienleuchte
EP1804095B1 (de) Faseroptische Vorrichtung für sekundäre Beleuchtungssysteme in Flugzeugkabinen
EP2753501B1 (de) Funkelnde brillanz bei einer hinterleuchteten dekorschicht
DE102007017343B4 (de) Leseleuchte mit Streulichtunterdrückung
DE102011106595A1 (de) Anordnung einer Leuchteinrichtung in einem Fahrzeug und Verfahren zum Herstellen eines Außenflächenelements eines Fahrzeugs
DE102013020715B4 (de) Gleichmäßig leuchtendes Textilgewebe
DE102013010163A1 (de) Anordnung zum Verschließen einer Öffnung eines Fahrzeugs mit einer Scheibe und einer Lichtleiterfolie
DE102005017639B4 (de) Lichtleiteranordnung sowie Verfahren zur Herstellung einer solchen
DE202017107616U1 (de) Linienförmige Lichtquelle
DE102004046256A1 (de) Oberflächenleuchtsystem
DE102020107734A1 (de) Leuchteinheit für eine Leuchtvorrichtung eines Kraftfahrzeugs und eine Leuchtvorrichtung mit der Leuchteinheit
DE102011085226A1 (de) Beleuchtungselement
DE102013007856A1 (de) Lichtleitkörper und Leuchtvorrichtung mit dem Lichtleitkörper
DE102013112905A1 (de) Optisches Element und Beleuchtungsvorrichtung mit optischem Element
EP4113001A1 (de) Lichtmodul für eine beleuchtungsvorrichtung eines fahrzeugs und verfahren zur minderung einer farbentsättigung bei einem lichtmodul für eine beleuchtungsvorrichtung eines fahrzeugs
DE102017129978A1 (de) Linienförmige Lichtquelle
EP2284583A1 (de) Beleuchtungseinrichtung für ein Kraftfahrzeug
EP2543540A1 (de) Lichtleiter, Leuchtmittel und Kraftfahrzeugleuchte
DE202005001507U1 (de) Oberflächenleuchtsystem

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final