DE102007028318A1 - Oxazolidinone zur Behandlung und Prophylaxe von Sepsis - Google Patents

Oxazolidinone zur Behandlung und Prophylaxe von Sepsis Download PDF

Info

Publication number
DE102007028318A1
DE102007028318A1 DE102007028318A DE102007028318A DE102007028318A1 DE 102007028318 A1 DE102007028318 A1 DE 102007028318A1 DE 102007028318 A DE102007028318 A DE 102007028318A DE 102007028318 A DE102007028318 A DE 102007028318A DE 102007028318 A1 DE102007028318 A1 DE 102007028318A1
Authority
DE
Germany
Prior art keywords
salts
septic
sepsis
compound
solvates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102007028318A
Other languages
English (en)
Inventor
Georges Dr. Degenfeld
Elisabeth Dr. Perzborn
Claudia Dr. Hirth-Dietrich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer Pharma AG
Original Assignee
Bayer Healthcare AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Healthcare AG filed Critical Bayer Healthcare AG
Priority to DE102007028318A priority Critical patent/DE102007028318A1/de
Priority to PCT/EP2008/004565 priority patent/WO2008155035A2/de
Publication of DE102007028318A1 publication Critical patent/DE102007028318A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/42Oxazoles
    • A61K31/422Oxazoles not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/425Thiazoles
    • A61K31/427Thiazoles not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/4365Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system having sulfur as a ring hetero atom, e.g. ticlopidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/496Non-condensed piperazines containing further heterocyclic rings, e.g. rifampin, thiothixene
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/50Pyridazines; Hydrogenated pyridazines
    • A61K31/501Pyridazines; Hydrogenated pyridazines not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/53771,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/54Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame
    • A61K31/541Non-condensed thiazines containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors

Landscapes

  • Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Hematology (AREA)
  • Rheumatology (AREA)
  • Pain & Pain Management (AREA)
  • Diabetes (AREA)
  • Pulmonology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

Die vorliegende Erfindung betrifft die Verwendung von Faktor Xa-Inhibitoren, insbesondere von Oxazolidinonen der Formel (I), zur Behandlung und/oder Prophylaxe von Sepsis, der disseminierten intravaskulären Gerinnung, des septischen Schocks, der septischen Organdysfunktion, des septischen Organversagens und/oder des ARDS sowie ihre Verwendung zur Herstellung von Arzneimitteln zur Behandlung und/oder Prophylaxe von Sepsis, der disseminierten intravaskulären Gerinnung, des septischen Schocks, der septischen Organdysfunktion, des septischen Organversagens und/oder des ARDS.

Description

  • Die vorliegende Erfindung betrifft die Verwendung von Faktor Xa-Inhibitoren, insbesondere von Oxazolidinonen der Formel (I), zur Behandlung und/oder Prophylaxe von Sepsis, der disseminierten intravaskulären Gerinnung, des septischen Schocks, der septischen Organdysfunktion, des septischen Organversagens und/oder des ARDS sowie ihre Verwendung zur Herstellung von Arzneimitteln zur Behandlung und/oder Prophylaxe von Sepsis, der disseminierten intravaskulären Gerinnung, des Septischen Schocks, der septischen Organdysfunktion, des septischen Organversagens und/oder des ARDS.
  • Oxazolidinone der Formel (I) sind aus WO 01/047919 bekannt und wirken insbesondere als selektive Inhibitoren des Blutgerinnungsfaktors Xa und als Antikoagulantien.
  • Oxazolidinone der Formel (I) sind selektive Faktor Xa Inhibitoren und hemmen spezifisch nur FXa. Eine antithrombotische Wirkung von Faktor Xa-Inhibitoren konnte in zahlreichen Tiermodellen nachgewiesen werden (vgl. U. Sinha, P. Ku, J. Malinowski, B. Yan Zhu, RM. Scarborough, C K. Marlowe, PW. Wong, P. Hua Lin, SJ. Hollenbach, Antithrombotic and hemostatic capacity of factor Xa versus thrombin inhibitors in models of venous and arteriovenous thrombosis, European Journal of Pharmacology 2000, 395, 51–59; A. Betz, Recent advances in Factor Xa inhibitors, Expert Opin. Ther. Patents 2001, 11, 1007; K. Tsong Tan, A. Makin, G. YH Lip, Factor X inhibitors, Exp. Opin. Investig. Drugs 2003, 12, 799; J. Ruef, HA. Katus, New antithrombotic drugs an the horizon, Expert Opin. Investig. Drugs 2003, 12, 781; MM. Samama, Synthetic direct and indirect factor Xa inhibitors, Thrombosis Research 2002, 106, V267; ML. Quan, JM. Smallheer, The race to an orally active Factor Xa inhibitor, Recent advances, J. Current Opinion in Drug Discovery & Development 2004, 7, 460–469) sowie in klinischen Studien an Patienten (The Ephesus Study, Blood 2000, 96, 490a; The Penthifra Study, Blood 2000, 96, 490a; The Pentamaks Study, Blood 2000, 96, 490a–491a; The Pentathlon 2000 Study, Blood 2000, 96, 491a). Faktor Xa-Inhibitoren können deshalb bevorzugt eingesetzt werden in Arzneimitteln zur Prophylaxe und/oder Behandlung von thromboembolischen Erkrankungen. Selektive FXa-Inhibitoren zeigen ein breites therapeutisches Fenster. In zahlreichen tierexperimentellen Untersuchungen konnte gezeigt werden, dass FXa Inhibitoren in Thrombosemodellen eine antithrombotische Wirkung zeigen ohne, oder nur geringfügig, verlängernd auf Blutungszeiten zu wirken (vergl. RJ Leadly, Coagulationfactor Xa inhibition: biological background and rationale, Curr Top Med Chem 2001; 1, 151–159). Eine individuelle Dosierung bei Antikoagulation mit selektiven FXa Inhibitoren ist daher nicht notwendig.
  • Sepsis (oder Septikämie) ist eine häufige Erkrankung mit hoher Letalität. Anfängliche Symptome der Sepsis sind typischerweise unspezifisch (z. B. Fieber, reduziertes Allgemeinbefinden), im weiteren Verlauf kann es jedoch zur generalisierten Aktivierung des Gerinnungssystems kommen ("Disseminated Intravascular coagulation", oder "Verbrauchskoagulopathie", nachfolgend als "DIC" bezeichnet) mit Mikrothrombosierung in verschiedenen Organen und sekundärer Blutungskomplikationen. Außerdem kann es zur endothelialen Schädigung mit Erhöhung der Gefäßpermeabilität und Austritt von Flüssigkeit und Proteinen in den Extravasalraum kommen. Im weiteren Verlauf kann es zur Dysfunktion oder dem Versagen eines Organs (z. B. Nierenversagen, Leberversagen, Atemversagen, zentralnervöse Defizite und Herz-/Kreislaufversagen) bis hin zum Multiorganversagen kommen. Hiervon kann prinzipiell jedes Organ betroffen sein, am häufigsten tritt Organdysfunktion und -Versagen bei der Lunge, der Niere, dem Herz-Kreislaufsystem, dem Gerinnungssystem, dem zentralnervösen System, endokrinen Drüsen und der Leber auf. Eine Sepsis kann mit einem „Acute Respiratory Distress Syndrome" (nachfolgend als ARDS bezeichnet) einhergehen. Ein ARDS kann auch unabhängig von einer Sepsis auftreten. "Septischer Schock" bezeichnet das Auftreten einer behandlungspflichtigen Blutdruckerniedrigung, die eine weitere Organschädigung begünstigt und mit einer Verschlechterung der Prognose einhergeht.
  • Krankheitserreger können Bakterien (gram-negativ und gram-positiv), Pilze, Viren und/oder Eukaryonten sein. Eintrittspforte bzw. Primärinfektion können z. B. Pneumonie, Harnwegsinfekt, Peritonitis sein. Die Infektion kann, muß aber nicht zwingend, mit einer Bakteriämie einhergehen.
  • Sepsis wird definiert als das Vorliegen einer Infektion und eines "systemic inflammatory response syndrome" (nachfolgend mit "SIRS" bezeichnet). SIRS tritt im Rahmen von Infekten, aber auch von anderen Zuständen wie Verletzungen, Verbrennungen, Schock, Operationen, Ischämie, Pankreatitis, Reanimation oder Tumoren auf. Nach der Definition des ACCP/SCCM Consensus Conference Committee von 1992 (Crit Care Med 1992; 20: 864–874) werden die zur Diagnose "SIRS" erforderlichen Symptome zur Diagnose und Meßparameter beschrieben (u. a. veränderte Körpertemperatur, erhöhte Herzfrequenz, Atemschwierigkeiten und verändertes Blutbild). In der späteren (2001) SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference wurden die Kriterien im Wesentlichen beibehalten, in Details jedoch verfeinert (Levy et al., Crit Care Med 2003; 31: 1250–1256).
  • DIC uns SIRS können im Rahmen einer Sepsis, aber auch infolge von Operationen, Tumorerkrankungen, Verbrennungen oder anderen Verletzungen auftreten. Bei der DIC kommt es an der Oberfläche von geschädigten Endothelzellen, Fremdkörperoberflächen oder verletztem extravaskulärem Gewebe zur massiven Aktivierung des Gerinnungssystems. Als Folge kommt es zur Gerinnung in kleinen Gefäßen verschiedener Organe mit Hypoxie und anschließender Organdysfunktion. Sekundär kommt es zum Verbrauch von Gerinnungsfaktoren (z. B. Faktor X, Prothrombin, Fibrinogen) und Plättchen, wodurch die Gerinnungsfähigkeit des Blutes herabgesetzt wird und schwere Blutungen auftreten können.
  • Die Therapie der Sepsis besteht einerseits in der konsequenten Beseitigung der infektiösen Ursache, z. B. durch operative Herdsanierung und Antibiose. Andererseits besteht sie in der temporären intensivmedizinischen Unterstützung der beeinträchtigten Organsysteme. Therapien der verschiedenen Stadien dieser Erkrankung sind z. B. in folgender Publikation beschrieben (Dellinger et al., Crit Care Med 2004; 32: 858–873). Für die DIC existieren keine erwiesenermaßen effektive Therapien.
  • Es wurde nun überraschenderweise gefunden, dass selektive Faktor Xa-Inhibitoren, insbesondere Oxazolidinone der Formel (I), auch zur Behandlung und/oder Prophylaxe von Sepsis, der disseminierten intravaskulären Gerinnung, des septischen Schocks, der septischen Organdysfunktion, des septischen Organversagens und/oder des ARDS geeignet sind.
  • Gegenstand der vorliegenden Erfindung ist die Verwendung von selektiven Faktor Xa-Inhibitoren zur Herstellung von Arzneimitteln zur Behandlung und/oder Prophylaxe von Sepsis, der disseminierten intravaskulären Gerinnung, des septischen Schocks, der septischen Organdysfunktion, des septischen Organversagens und/oder des ARDS.
  • Gegenstand der vorliegenden Erfindung ist insbesondere die Verwendung von Verbindungen der Formel (I)
    Figure 00030001
    in welcher
    R1 für 2-Thiophen steht, das in der 5-Position substituiert ist durch einen Rest ausgewählt aus der Gruppe Chlor, Brom, Methyl und Trifluormethyl,
    R2 für D-A- steht,
    wobei
    der Rest „A" für Phenylen steht,
    wobei
    die Gruppe „A" in der meta-Position bezüglich der Verknüpfung zum Oxazolidinon gegebenenfalls ein- oder zweifach substituiert sein kann mit einem Rest ausgewählt aus der Gruppe von Fluor, Chlor, Nitro, Amino, Trifluormethyl, Methyl und Cyano,
    und
    der Rest „D" für einen gesättigten 5- oder 6-gliedrigen Heterocyclus steht, der über ein Stickstoffatom mit „A" verknüpft ist und der in direkter Nachbarschaft zum verknüpfenden Stickstoffatom eine Carbonylgruppe besitzt und in dem ein Ring-Kohlenstoffglied durch ein Heteroatom aus der Reihe S, N und O ersetzt sein kann,
    sowie ihrer Salze, Solvate und Solvate der Salze zur Herstellung von Arzneimitteln zur Behandlung und/oder Prophylaxe von Sepsis, der disseminierten intravaskulären Gerinnung, des septischen Schocks, der septischen Organdysfunktion, des septischen Organversagens und/oder des ARDS.
  • Besonders bevorzugt ist die Verwendung der Verbindungen der Formel (I) sowie ihrer Salze, Solvate und Solvate der Salze zur Herstellung von Arzneimitteln zur Behandlung und/oder Prophylaxe von Sepsis, des septischen Schocks und/oder des septischen Organversagens.
  • Ganz besonders bevorzugt ist hierbei die Verwendung der Verbindung 5-Chlor-N-({(5S)-2-oxo-3-[4-(3-oxomorpholin-4-yl)phenyl]-1,3-oxazolidin-5-yl}methyl)thiophen-2-carboxamid (Beispiel 1) mit der folgenden Formel
    Figure 00040001
    sowie ihrer Salze, Solvate und Solvate der Salze zur Herstellung von Arzneimitteln zur Behandlung und/oder Prophylaxe von Sepsis, der disseminierten intravaskulären Gerinnung, des septischen Schocks, der septischen Organdysfunktion, des septischen Organversagens und/oder des ARDS.
  • Ganz besonders bevorzugt ist auch die Verwendung der Verbindung 5-Chlor-N-({(5S)-2-oxo-3-[4-(3-oxomorpholin-4-yl)phenyl]-1,3-oxazolidin-5-yl}methyl)thiophen-2-carboxamid (Beispiel 1) mit der folgenden Formel
    Figure 00050001
    sowie ihrer Salze, Solvate und Solvate der Salze zur Herstellung von Arzneimitteln zur Behandlung und/oder Prophylaxe von Sepsis, des septischen Schocks und/oder des septischen Organversagens.
  • Oxazolidinone wurden ursprünglich im wesentlichen nur als Antibiotika, vereinzelt auch als MAO-Hemmer und Fibrinogen-Antagonisten beschrieben (Übersicht: Riedl, B., Endermann, R., Exp. Opin. Ther. Patents 1999, 9 (5), 625), wobei für die antibakterielle Wirkung eine kleine 5-[Acyl-aminomethyl]-gruppe (bevorzugt 5-[Acetyl-aminomethyl]) essentiell zu sein scheint.
  • Substituierte Aryl- und Heteroarylphenyloxazolidinone, bei denen an das N-Atom des Oxazolidinonrings ein ein- oder mehrfach substituierte Phenylrest gebunden sein kann und die in der 5-Position des Oxazolidinonrings einen unsubstituierten N-Methyl-2-thiophencarboxamid-Rest aufweisen können, sowie ihre Verwendung als antibakteriell wirkende Substanzen sind bekannt aus den U.S.-Patentschriften US 5 929 248 , US 5 801 246 , US 5 756 732 , US 5 654 435 , US 5 654 428 und US 5 565 571 .
  • Darüber hinaus sind benzamidinhaltige Oxazolidinone als synthetische Zwischenstufen bei der Synthese von Faktor Xa-Inhibitoren bzw. Fibrinogenantagonisten bekannt ( WO 99/31092 , EP 0 623 615 ).
  • Erfindungsgemäß verwendbare Verbindungen, nachstehend auch als erfindungsgemäße Verbindungen bezeichnet, sind die Verbindungen der Formel (I) und deren Salze, Solvate und Solvate der Salze, die von Formel (I) umfassten Verbindungen der nachfolgend genannten Formeln und deren Salze, Solvate und Solvate der Salze sowie die von Formel (I) umfassten, nachfolgend als Ausführungsbeispiele genannten Verbindungen und deren Salze, Solvate und Solvate der Salze, soweit es sich bei den von Formel (I) umfassten, nachfolgend genannten Verbindungen nicht bereits um Salze, Solvate und Solvate der Salze handelt.
  • Die erfindungsgemäßen Verbindungen können in Abhängigkeit von ihrer Struktur in stereoisomeren Formen (Enantiomere, Diastereomere) existieren. Die Erfindung umfasst deshalb die Verwendung der Enantiomeren oder Diastereomeren und ihrer jeweiligen Mischungen.
  • Sofern die erfindungsgemäßen Verbindungen in tautomeren Formen vorkommen können, umfasst die vorliegende Erfindung die Verwendung sämtlicher tautomere Formen.
  • Als Salze sind im Rahmen der vorliegenden Erfindung physiologisch unbedenkliche Salze der erfindungsgemäßen Verbindungen bevorzugt. Umfasst sind auch Salze, die für pharmazeutische Anwendungen selbst nicht geeignet sind, jedoch beispielsweise für die Isolierung oder Reinigung der erfindungsgemäßen Verbindungen verwendet werden können.
  • Physiologisch unbedenkliche Salze der erfindungsgemäßen Verbindungen umfassen Säureadditionssalze von Mineralsäuren, Carbonsäuren und Sulfonsäuren, z. B. Salze der Chlorwasserstoffsäure, Bromwasserstoffsäure, Schwefelsäure, Phosphorsäure, Methansulfonsäure, Ethansulfonsäure, Toluolsulfonsäure, Benzolsulfonsäure, Naphthalindisulfonsäure, Essigsäure, Trifluoressigsäure, Propionsäure, Milchsäure, Weinsäure, Äpfelsäure, Zitronensäure, Fumarsäure, Maleinsäure und Benzoesäure.
  • Physiologisch unbedenkliche Salze der erfindungsgemäßen Verbindungen umfassen auch Salze üblicher Basen, wie beispielhaft und vorzugsweise Alkalimetallsalze (z. B. Natrium- und Kaliumsalze), Erdalkalisalze (z. B. Calcium- und Magnesiumsalze) und Ammoniumsalze, abgeleitet von Ammoniak oder organischen Aminen mit 1 bis 16 C-Atomen, wie beispielhaft und vorzugsweise Ethylamin, Diethylamin, Triethylamin, Ethyldiisopropylamin, Monoethanolamin, Diethanolamin, Triethanolamin, Dicyclohexylamin, Dimethylaminoethanol, Prokain, Dibenzylamin, N-Methylmorpholin, Arginin, Lysin, Ethylendiamin und N-Methylpiperidin.
  • Als Solvate werden im Rahmen der Erfindung solche Formen der erfindungsgemäßen Verbindungen bezeichnet, welche in festem oder flüssigem Zustand durch Koordination mit Lösungsmittelmolekülen einen Komplex bilden. Hydrate sind eine spezielle Form der Solvate, bei denen die Koordination mit Wasser erfolgt. Als Solvate sind im Rahmen der vorliegenden Erfindung Hydrate bevorzugt.
  • Außerdem umfasst die vorliegende Erfindung auch die Verwendung von Prodrugs der erfindungsgemäßen Verbindungen. Der Begriff "Prodrugs" umfasst Verbindungen, welche selbst biologisch aktiv oder inaktiv sein können, jedoch während ihrer Verweilzeit im Körper zu erfindungsgemäßen Verbindungen umgesetzt werden (beispielsweise metabolisch oder hydrolytisch).
  • Im Rahmen der vorliegenden Erfindung haben die Substituenten, soweit nicht anders spezifiziert, die folgende Bedeutung:
    Ein gesättigter 5- oder 6-gliedriger Heterocyclus, der über ein Stickstoffatom verknüpft ist und der in direkter Nachbarschaft zum verknüpfenden Stickstoffatom eine Carbonylgruppe besitzt und in dem ein Ring-Kohlenstoffglied durch ein Heteroatom aus der Reihe S, N und O ersetzt sein kann, ist bespielsweise 2-Oxo-pyrrolidin-1-yl, 2-Oxo-piperidin-1-yl, 2-Oxo-piperazin-1-yl, 2-Oxo-morpholin-1-yl, 3-Oxo-thiomorpholin-4-yl, 2-Oxo-1,3-oxazolidin-1-yl, 2-Oxo-1,3-oxazinan-1-yl, 2-Oxo-imidazolidin-1-yl und 2-Oxo-tetrahydropyrimidin-1-yl.
  • Erklärungen zu den Figurenen:
  • 1: TAT 90 min nach LPS
  • 2: Fibrinogen 4 h nach LPS
  • Die Verbindungen der Formel (I) können hergestellt werden, indem man entweder
    • [A] Verbindungen der allgemeinen Formel
      Figure 00070001
      in welcher R2 die oben angegebene Bedeutung hat, mit Carbonsäuren der allgemeinen Formel
      Figure 00070002
      in welcher R1 die oben angegebene Bedeutung hat, oder aber mit den entsprechenden Carbonsäurehalogeniden, vorzugsweise Carbonsäurechloriden, oder aber mit den entsprechenden symmetrischen oder gemischten Carbonsäureanhydriden der zuvor definierten Carbonsäuren der allgemeinen Formel (III) in inerten Lösungsmitteln, gegebenenfalls in Gegenwart eines Aktivierungs- oder Kupplungsreagenzes und/oder einer Base, umsetzt, oder
    • [B] Verbindungen der allgemeinen Formel
      Figure 00080001
      in welcher R1 die oben angegebene Bedeutung hat, mit einem geeigneten selektiven Oxidationsmittel in einem inerten Lösungsmittel in das entsprechenden Epoxid der allgemeinen Formel
      Figure 00080002
      in welcher R1 die oben angegebene Bedeutung hat, überführt, und durch Umsetzung in einem inerten Lösungsmittel gegebenenfalls in Gegenwart eines Katalysators mit einem Amin der allgemeinen Formel R2-NH2 (VI),in welcher R2 die oben angegebene Bedeutung hat, zunächst die Verbindungen der allgemeinen Formel
      Figure 00090001
      in welcher R1 und R2 die oben angegebene Bedeutung haben, herstellt und anschließend in inertem Lösungsmittel in Anwesenheit von Phosgen oder Phosgenäquivalenten wie z. B. Carbonyldiimidazol (CDI) zu den Verbindungen der allgemeinen Formel (I) cyclisiert.
  • Als Lösemittel für die zuvor beschriebenen Verfahren eignen sich hierbei organische Lösemittel, die unter den Reaktionsbedingungen inert sind. Hierzu gehören Halogenkohlenwasserstoffe wie Dichlormethan, Trichlormethan, Tetrachlormethan, 1,2-Dichlorethan, Trichlorethan, Tetrachlorethan, 1,2-Dichlorethylen oder Trichlorethylen, Ether wie Diethylether, Dioxan, Tetrahydrofuran, Glykoldimethylether oder Diethylenglykoldimethylether, Alkohole wie Methanol, Ethanol, n-Propanol, iso-Propanol, n-Butanol oder tert.-Butanol, Kohlenwasserstoffe wie Benzol, Xylol, Toluol, Hexan oder Cyclohexan, Dimethylformamid, Dimethylsulfoxid, Acetonitril, Pyridin, Hexamethylphosphorsäuretriamid oder Wasser. Ebenso ist es möglich, Lösemittelgemische der zuvor genannten Lösemittel einzusetzen.
  • Als Aktivierungs- oder Kupplungsreagenzien für die zuvor beschriebenen Verfahren eignen hierbei die hierfür üblicherweise verwendeten Reagenzien, beispielsweise N'-(3-Dimethylaminopropyl)-N-ethylcarbodiimid·HCl, N,N'-Dicyclohexylcarbodiimid, 1-Hydroxy-1H-benzotriazol·H2O und dergleichen.
  • Als Basen eignen sich die üblichen anorganischen oder organischen Basen. Hierzu gehören bevorzugt Alkalihydroxide wie beispielsweise Natrium- oder Kaliumhydroxid oder Alkalicarbonate wie Natrium- oder Kaliumcarbonat oder Natrium- oder Kaliummethanolat oder Natrium- oder Kaliumethanolat oder Kalium-tert.-butylat oder Amide wie Natriumamid, Lithium-bis-(trimethylsilyl)amid oder Lithiumdiisopropylamid oder Amine wie Triethylamin, Diisopropylethylamin, Diisopropylamin, 4-N,N-Dimethylaminopyridin oder Pyridin.
  • Die Base kann hierbei in einer Menge von 1 bis 5 Mol, bevorzugt von 1 bis 2 Mol, bezogen auf 1 Mol der Verbindungen der allgemeinen Formel (II), eingesetzt werden.
  • Die Reaktionen erfolgen im allgemeinen in einem Temperaturbereich von –78°C bis zur Rückflusstemperatur, bevorzugt im Bereich von 0°C bis Rückflusstemperatur.
  • Die Umsetzungen können bei normalem, erhöhtem oder erniedrigtem Druck durchgeführt werden (z. B. im Bereich von 0.5 bis 5 bar). Im allgemeinen arbeitet man bei Normaldruck.
  • Als geeignete selektive Oxidationsmittel sowohl für die Herstellung der Epoxide als auch für die gegebenenfalls durchgeführte Oxidation zum Sulfon, Sulfoxid oder N-Oxid kommen beispielsweise m-Chlorperbenzoesäure (MCPBA), Natriummetaperiodat, N-Methylmorpholin-N-oxid (NMO), Monoperoxyphthalsäure oder Osmiumtetroxid in Betracht.
  • Hinsichtlich der Herstellung der Epoxide werden die hierfür üblichen Herstellungsbedingungen angewandt.
  • Hinsichtlich der näheren Verfahrensbedingungen für die gegebenenfalls durchgeführte Oxidation zum Sulfon, Sulfoxid oder N-Oxid kann verwiesen werden auf die folgende Literatur: M. R. Barbachyn et al., J. Med. Chem. 1996, 39, 680 sowie WO 97/10223 .
  • Die Verbindungen der Formeln (II), (III), (IV) und (VI) sind dem Fachmann an sich bekannt oder nach üblichen Methoden herstellbar. Für Oxazolidinone, insbesondere die benötigten 5-(Aminomethyl)-2-oxooxazolidine, vgl. WO 98/01446 ; WO 93/23384 ; WO 97/03072 ; J. A. Tucker et al., J. Med. Chem. 1998, 41, 3727; S. J. Brickner et al., J. Med. Chem. 1996, 39, 673; W. A. Gregory et al., J. Med. Chem. 1989, 32, 1673.
  • Die Verfahren zur Synthese von Oxazolidinonen der Formel (I) sind ausführlich beschrieben in WO 01/047919 .
  • Die erfindungsgemäßen Verbindungen kommen für die Behandlung und/oder Prophylaxe von Sepsis (oder Septikämie), Septischer Schock und DIC ("Disseminated Intravascular coagulation", oder "Verbrauchskoagulopathie") in Betracht.
  • "Sepsis" wird definiert als das Vorliegen einer Infektion und eines "systemic inflammatory response syndrome" (nachfolgend mit "SIRS" bezeichnet). SIRS tritt im Rahmen von Infekten, aber auch von anderen Zuständen wie Verletzungen, Verbrennungen, Schock, Operationen, Ischämie, Pankreatitis, Reanimation oder Tumoren auf. Nach der Definition des ACCP/SCCM Consensus Conference Committee (Critical Care Med 1992; 101: 1644) werden die zur Diagnose "SIRS" erforderlichen Symptome zur Diagnose und Meßparameter beschrieben (u. a. veränderte Körpertemperatur, erhöhte Herzfrequenz, Atemschwierigkeiten und verändertes Blutbild).
  • Im Verlauf einer Sepsis kann es zur generalisierten Aktivierung des Gerinnungssystems kommen ("Disseminated Intravascular coagulation", oder "Verbrauchskoagulopathie", nachfolgend als "DIC" bezeichnet) mit Mikrothrombosierung in verschiedenen Organen und sekundärer Blutungskomplikationen. Außerdem kann es zur endothelialen Schädigung mit Erhöhung der Gefäßpermeabilität und Austritt von Flüssigkeit und Proteinen in den Extravasalraum kommen. Im weiteren Verlauf kann es zur Dysfunktion oder dem Versagen eines Organs (z. B. Nierenversagen, Leberversagen, Atemversagen, zentralnervöse Defizite und Herz-/Kreislaufversagen) bis hin zum Multiorganversagen kommen. Hiervon kann prinzipiell jedes Organ betroffen sein, am häufigsten tritt Organdysfunktion und -Versagen bei der Lunge, der Niere, dem Herz-Kreislaufsystem, dem Gerinnungssystem, dem zentralnervösen System, endokrinen Drüsen und der Leber auf. Eine Sepsis kann mit einem „Acute Respiratory Distress Syndrome" (nachfolgend als ARDS bezeichnet) oder einem „Acute Lung Injury" (nachfolgend als ALI bezeichnet) einhergehen. Ein ARDS kann auch unabhängig von einer Sepsis auftreten. "Septischer Schock" bezeichnet das Auftreten einer behandlungspflichtigen Blutdruckerniedrigung, die eine weitere Organschädigung begünstigt und mit einer Verschlechterung der Prognose einhergeht.
  • Krankheitserreger können Bakterien (gram-negativ und gram-positiv), Pilze, Viren und/oder Eukaryonten sein. Eintrittspforte bzw. Primärinfektion können z. B. Pneumonie, Harnwegsinfekt, Peritonitis sein. Die Infektion kann, muß aber nicht zwingend, mit einer Bakteriämie einhergehen.
  • DIC kann im Rahmen einer Sepsis, aber auch infolge von Operationen, Tumorerkrankungen, Verbrennungen oder anderen Verletzungen auftreten. Hierbei kommt es an der Oberfäche von geschädigten Endothelzellen, Fremdkörperoberflächen oder verletztem extravaskulärem Gewebe zur massiven Aktivierung des Gerinnungssystems. Als Folge kommt es zur Gerinnung in kleinen Gefäßen verschiedener Organe mit Hypoxie und anschließender Organdysfunktion. Sekundär kommt es zum Verbrauch von Gerinnungsfaktoren (z. B. Faktor X, Prothrombin, Fibrinogen) und Plättchen, wodurch die Gerinnungsfähigkeit des Blutes herabgesetzt wird und schwere Blutungen auftreten können.
  • Weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Behandlung und/oder Prophylaxe von Sepsis, der disseminierten intravaskulären Gerinnung, des septischen Schocks, der septischen Organdysfunktion, des septischen Organversagens und/oder des ARDS in Menschen und Tieren durch Verabreichung einer wirksamen Menge mindestens eines selektiven Faktor Xa- Inhibitors oder eines Arzneimittels, enthaltend mindestens einen selektiven Faktor Xa-Inhibitor in Kombination mit einem inerten, nichttoxischen, pharmazeutisch geeigneten Hilfsstoff.
  • Weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Behandlung und/oder Prophylaxe von Sepsis, der disseminierten intravaskulären Gerinnung, des septischen Schocks, der septischen Organdysfunktion, des septischen Organversagens und/oder des ARDS in Menschen und Tieren durch Verabreichung einer wirksamen Menge mindestens einer erfindungsgemäßen Verbindung oder eines Arzneimittels, enthaltend mindestens eine erfindungsgemäße Verbindung in Kombination mit einem inerten, nichttoxischen, pharmazeutisch geeigneten Hilfsstoff.
  • Die entsprechend der erfindungsgemäßen Verwendung herzustellenden oder erfindungsgemäß zu verwendenden Arzneimittel enthalten mindestens eine erfindungsgemäße Verbindung, üblicherweise zusammen mit einem oder mehreren inerten, nichttoxischen, pharmazeutisch geeigneten Hilfsstoffen.
  • Weiterer Gegenstand der vorliegenden Erfindung sind Arzneimittel, enthaltend eine erfindungsgemäße Verbindung und einen oder mehrere weitere Wirkstoffe, insbesondere zur Behandlung und/oder Prophylaxe der zuvor genannten Erkrankungen. Als geeignete Kombinationswirkstoffe seien beispielhaft und vorzugsweise genannt:
  • • Antibiotische Therapie
    • Verschiedene Antibiotika oder antifungale Medikamenten-Kombinationen kommen in Frage, entweder als kalkulierte Therapie (vor Vorliegen des mikrobiellen Befundes) oder als spezifische Therapie.
  • • Flüssigkeitstherapie
    • z. B. Kristalloide oder kolloidale Flüssigkeiten.
  • • Vasopressoren
    • z. B. Norepinephrine, Dopamine oder Vasopressin
  • • Inotrope Therapie
    • z. B. Dobutamin
  • • Kortikosteroide
    • z. B. Hydrokortison, oder Fludrokortison
  • • rekombinantes humanes aktivierte Protein C
    • Xigris
  • • Blutprodukte
    • z. B. Erythrozytenkonzentrate, Thrombozytenkonzentrate, Erythropietin oder Fresh Frozen Plasma
  • • Maschinelle Beatmung bei sepsis-induziertem Acute Lung Injury (ALI) bzw. Acute Respiratory Distress Syndrome (ARDS)
    • z. B. Permissive Hyperkapnie, niedrigere Tidalvolumina
  • • Sedierung, Analgesierung und neuromuskuläre Blockade
    • Sedierung: z. B. Diazepam, Lorazepam, Midazolam oder Propofol. Opioide: z. B. Fentanyl, Hydromorphon, Morphin, Meperidin oder Remifentanil. NSAIDs: z. B. Ketorolac, Ibuprofen oder Acetaminophen. Neuromuskuläre Blockade: z. B. Pancuronium
  • • Glukose-Kontrolle
    • z. B. Insulin, Glukose
  • • Nierenersatzverfahren
    • z. B. kontinuierliche veno-venöse-Hämofiltration oder intermittierende Hämodialyse. Dopamin niedrig-dosiert zur renalen Protektion.
  • • Antikoagulantien
    • z. B. zur Thromboseprophylaxe oder bei Nierenersatzverfahren, z. B. unfraktionierte Heparine, low molecular weight Heparine, Heparinoide, Hirudin, Bivalirudin oder Argatroban.
  • • Bikarbonat-Therapie
  • • Streßulkusprophylaxe
    • z. B. H2-Rezeptorinhibitoren, Antazida
  • Die erfindungsgemäßen Verbindungen können systemisch und/oder lokal wirken. Zu diesem Zweck können sie auf geeignete Weise appliziert werden, wie z. B. oral, parenteral, pulmonal, nasal, sublingual, lingual, buccal, rectal, dermal, transdermal, conjunctival, otisch oder als Implantat bzw. Stent.
  • Für diese Applikationswege können die erfindungsgemäßen Verbindungen in geeigneten Applikationsformen verabreicht werden.
  • Für die orale Applikation eignen sich nach dem Stand der Technik funktionierende, die erfindungsgemäßen Verbindungen schnell und/oder modifiziert abgebende Applikationsformen, die die erfindungsgemäßen Verbindungen in kristalliner und/oder amorphisierter und/oder gelöster Form enthalten, wie z. B. Tabletten (nicht-überzogene oder überzogene Tabletten, beispielsweise mit magensaftresistenten oder sich verzögert auflösenden oder unlöslichen Überzügen, die die Freisetzung der erfindungsgemäßen Verbindung kontrollieren), in der Mundhöhle schnell zerfallende Tabletten oder Filme/Oblaten, Filme/Lyophylisate, Kapseln (beispielsweise Hart- oder Weichgelatinekapseln), Dragees, Granulate, Pellets, Pulver, Emulsionen, Suspensionen, Aerosole oder Lösungen.
  • Die parenterale Applikation kann unter Umgehung eines Resorptionsschrittes geschehen (z. B. intravenös, intraarteriell, intrakardial, intraspinal oder intralumbal) oder unter Einschaltung einer Resorption (z. B. intramuskulär, subcutan, intracutan, percutan oder intraperitoneal). Für die parenterale Applikation eignen sich als Applikationsformen u. a. Injektions- und Infusionszubereitungen in Form von Lösungen, Suspensionen, Emulsionen, Lyophilisaten oder sterilen Pulvern.
  • Für die sonstigen Applikationswege eignen sich z. B. Inhalationsarzneiformen (u. a. Pulverinhalatoren, Nebulizer), Nasentropfen, -lösungen oder -sprays, lingual, sublingual oder buccal zu applizierende Tabletten, Filme/Oblaten oder Kapseln, Suppositorien, Ohren- oder Augenpräparationen, Vaginalkapseln, wässrige Suspensionen (Lotionen, Schüttelmixturen), lipophile Suspensionen, Salben, Cremes, transdermale therapeutische Systeme (z. B. Pflaster), Milch, Pasten, Schäume, Streupuder, Implantate oder Stents.
  • Bevorzugt sind die orale oder parenterale Applikation, insbesondere die orale Applikation.
  • Die erfindungsgemäßen Verbindungen können in die angeführten Applikationsformen überführt werden. Dies kann in an sich bekannter Weise durch Mischen mit inerten, nichttoxischen, pharmazeutisch geeigneten Hilfsstoffen geschehen. Zu diesen Hilfsstoffen zählen u. a. Trägerstoffe (beispielsweise mikrokristalline Cellulose, Lactose, Mannitol), Lösungsmittel (z. B. flüssige Polyethylenglycole), Emulgatoren und Dispergier- oder Netzmittel (beispielsweise Natriumdodecylsulfat, Polyoxysorbitanoleat), Bindemittel (beispielsweise Polyvinylpyrrolidon), synthetische und natürliche Polymere (beispielsweise Albumin), Stabilisatoren (z. B. Antioxidantien wie beispielsweise Ascorbinsäure), Farbstoffe (z. B. anorganische Pigmente wie beispielsweise Eisenoxide) und Geschmacks- und/oder Geruchskorrigentien.
  • Im Allgemeinen hat es sich als vorteilhaft erwiesen, bei parenteraler Applikation Mengen von etwa 0.001 bis 1 mg/kg, vorzugsweise etwa 0.01 bis 0.5 mg/kg Körpergewicht zur Erzielung wirksamer Ergebnisse zu verabreichen. Bei oraler Applikation beträgt die Dosierung etwa 0.01 bis 100 mg/kg, vorzugsweise etwa 0.01 bis 20 mg/kg und ganz besonders bevorzugt 0.1 bis 10 mg/kg Körpergewicht.
  • Trotzdem kann es gegebenenfalls erforderlich sein, von den genannten Mengen abzuweichen, und zwar in Abhängigkeit von Körpergewicht, Applikationsweg, individuellem Verhalten gegenüber dem Wirkstoff, Art der Zubereitung und Zeitpunkt bzw. Intervall, zu welchem die Applikation erfolgt. So kann es in einigen Fällen ausreichend sein, mit weniger als der vorgenannten Mindestmenge auszukommen, während in anderen Fällen die genannte obere Grenze überschritten werden muss. Im Falle der Applikation größerer Mengen kann es empfehlenswert sein, diese in mehreren Einzelgaben über den Tag zu verteilen.
  • Die nachfolgenden Ausführungsbeispiele erläutern die Erfindung. Die Erfindung ist nicht auf die Beispiele beschränkt.
  • Die Prozentangaben in den folgenden Tests und Beispielen sind, sofern nicht anders angegeben, Gewichtsprozente; Teile sind Gewichtsteile. Lösungsmittelverhältnisse, Verdünnungsverhältnisse und Konzentrationsangaben von flüssig/flüssig-Lösungen beziehen sich, sofern nicht anders angegeben, jeweils auf das Volumen.
  • Beispiele
  • A. Herstellungbeispiele
  • Ausgangsverbindungen
  • Die Synthesen der Ausgansverbindungen sind ausführlich beschrieben in WO 01/047919 . Ausführungsbeispiele
    Figure 00160001
    Beispiel A-B-C D D' E
    1 CH2OCH2CH2 H H Cl
    2 CH2CH2CH2 H H Cl
    3 CH2CH2CH2 H H CH3
    4 CH2CH2CH2 H H Br
    5 CH2OCH2CH2 H H CH3
    6 CH2OCH2CH2 H H Br
    7 OCH2CH2 H H Cl
    8 CH2CH2CH2 H H Br
    9 CH2CH2CH2 H H CH3
    10 OCH2CH2CH2 H H Cl
    11 CH2CH2CH2 F H Cl
    12 CH2OCH2CH2 H H Cl
    13 CH2CH2CH2 CF3 H Cl
    14 CH2OCH2CH2 Cl H Cl
    15 CH2OCH2CH2 CF3 H Cl
    16 CH2OCH2CH2 CH3 H Cl
    17 CH2OCH2CH2 CN H Cl
    18 CH2CH2CH2 Cl H Cl
    19 CH2OCH2CH2 CH3 CH3 Cl
    20 CH2OCH2CH2 NH2 H Cl
    21 CH2OCH2CH2 F H Br
    22 CH2CH2CH2 F H Br
    23 CH2CH2CH2CH2 H H Br
    24 CH2CH2CH2 F H Cl
    25 CH2OCH2CH2 F H Cl
    26 CH2CH2CH2CH2 H H Cl
  • Die Synthesen der Ausführungsbeispiele sind ausführlich beschrieben in WO 01/047919 .
  • B. Bewertung der physiologischen Wirksamkeit
  • Die Verbindungen der Formel (I) wirken insbesondere als selektive Inhibitoren des Blutgerinnungsfaktors Xa und hemmen nicht oder erst bei deutlich höheren Konzentrationen auch andere Serinproteasen wie Plasmin oder Trypsin.
  • Als „selektiv" werden solche Inhibitoren des Blutgerinnungsfaktors Xa bezeichnet, bei denen die IC50-Werte für die Faktor Xa-Inhibierung gegenüber den IC50-Werten für die Inhibierung anderer Serinproteasen, insbesondere Plasmin und Trypsin, um mindestens das 100-fache kleiner sind, wobei bezüglich der Testmethoden für die Selektivität Bezug genommen wird auf die im folgenden beschriebenen Testmethoden der Beispiele A.a.1) und A.a.2).
  • Vorteilhafte pharmakologische Eigenschaften der erfindungsgemäß verwendbaren Verbindungen können durch folgende Methoden festgestellt werden.
  • a) Testbeschreibung (in vitro)
  • a.1) Messung der Faktor Xa-Hemmung
  • a.1.1) Chromogener Assay
  • Die enzymatische Aktivität von humanem Faktor Xa (FXa) wird über die Umsetzung eines für den FXa-spezifischen chromogenen Substrats gemessen. Dabei spaltet der Faktor Xa aus dem chromogenen Substrat p-Nitroanilin ab. Die Bestimmungen werden wie folgt in Mikrotiterplatten durchgeführt.
  • Die Prüfsubstanzen werden in unterschiedlichen Konzentrationen in DMSO gelöst und für 10 Minuten mit humanem FXa (0.5 nmol/l gelöst in 50 mmol/l Tris-Puffer [C,C,C-Tris(hydroxymethyl)-aminomethan], 150 mmol/l NaCl, 0.1% BSA (bovine serum albumine), pH = 8,3) bei 25°C inkubiert. Als Kontrolle dient reines DMSO. Anschließend wird das chromogene Substrat (150 μmol/l Pefachrome® FXa von der Firma Pentapharm) hinzugefügt. Nach 20 Minuten Inkubationsdauer bei 25°C wird die Extinktion bei 405 nm bestimmt. Die Extinktionen der Testansätze mit Prüfsubstanz werden mit den Kontrollansätzen ohne Prüfsubstanz verglichen und daraus die IC50-Werte berechnet.
  • a.1.2) Fluorogener Assay
  • Die enzymatische Aktivität von humanem Faktor Xa (FXa) wird über die Umsetzung eines für den FXa spezifischen fluorogenen Substrats gemessen. Dabei spaltet FXa aus dem peptischen Substrat Aminomethylcoumarin ab, das fluoreszent gemessen wird. Die Bestimmungen werden in Mikrotiterplatten durchgeführt.
  • Zu testende Substanzen werden in unterschiedlichen Konzentrationen in Dimethylsulfoxid gelöst und 15 min mit humanem FXa (1.3 nmol/l gelöst in 50 mmol/l Tris-Puffer [C,C,C-Tris(hydroxymethyl)-aminomethan], 100 mmol/l NaCl, 0.1% BSA [bovines Serumalbumin], pH 7.4) bei 22°C inkubiert. Anschließend wird das fluorogene Substrat (5 μmol/l Boc-Ile-Glu-Gly-Arg-AMC von der Firma Bachem) hinzugefügt. Nach einer Inkubation von 30 min wird die Probe bei einer Wellenlänge von 360 nm angeregt und die Emission bei 460 nm gemessen. Die gemessenen Emissionen der Testansätze mit Prüfsubstanz werden mit den Kontrollansätzen ohne Prüfsubstanz (ausschließlich Dimethylsulfoxid anstatt Prüfsubstanz in Dimethylsulfoxid) verglichen und aus den Konzentrations-Wirkungs-Beziehungen IC50-Werte berechnet.
  • a.2) Bestimmung der Selektivität
  • a.2.1) Chromogener Assay
  • Zum Nachweis der selektiven FXa-Inhibition werden die Prüfsubstanzen auf ihre Hemmung anderer humaner Serinproteasen wie Trypsin und Plasmin hin untersucht. Zur Bestimmung der enzymatischen Aktivität von Trypsin (500 mU/ml) und Plasmin (3.2 nmol/l) werden diese Enzyme in Tris-Puffer (100 mmol/l, 20 mmol/l CaCl2, pH = 8.0) gelöst und für 10 Minuten mit Prüfsubstanz oder Lösungsmittel inkubiert. Anschließend wird durch Zugabe der entsprechenden spezifischen chromogenen Substrate (Chromozym Trypsin® und Chromozym Plasmin®; Fa. Roche Diagnostics) die enzymatische Reaktion gestartet und die Extinktion nach 20 Minuten bei 405 nm bestimmt. Alle Bestimmungen werden bei 37°C durchgeführt. Die Extinktionen der Testansätze mit Prüfsubstanz werden mit den Kontrollproben ohne Prüfsubstanz verglichen und daraus die IC50-Werte berechnet.
  • a.2.2) Fluorogener Assay
  • Zum Nachweis der Selektivität der Substanzen bezüglich Faktor Xa-Hemmung werden die Prüfsubstanzen auf ihre Hemmung anderer humaner Serinproteasen wie Trypsin und Plasmin hin untersucht. Zur Bestimmung der enzymatischen Aktivität von Trypsin (83 mU/ml von Sigma) und Plasmin (0.1 μg/ml von Kordia) werden diese Enzyme gelöst (50 mmol/l Tris-Puffer [C,C,C-Tris(hydroxymethyl)-aminomethan], 100 mmol/l NaCl, 0.1% BSA [bovines Serumalbumin], 5 mmol/l Calciumchlorid, pH 7.4) und für 15 min mit Prüfsubstanz in verschiedenen Konzentrationen in Dimethylsulfoxid sowie mit Dimethylsulfoxid ohne Prüfsubstanz inkubiert. Anschließend wird die enzymatische Reaktion durch Zugabe der entsprechenden Substrate gestartet (5 μmol/l Boc-Ile-Glu-Gly-Arg-AMC von Bachem für Trypsin und 50 μmol/l MeOSuc-Ala-Phe-Lys-AMC von Bachem für Plasmin). Nach einer Inkubationszeit von 30 min bei 22°C wird die Fluoreszenz gemessen (Anregung: 360 nm, Emission: 460 nm). Die gemessenen Emissionen der Testansätze mit Prüfsubstanz werden mit den Kontrollansätzen ohne Prüfsubstanz (ausschließlich Dimethylsulfoxid anstatt Prüfsubstanz in Dimethylsulfoxid) verglichen und aus den Konzentrations-Wirkungs-Beziehungen IC50-Werte berechnet.
  • a.3) Bestimmung der antikoagulatorischen Wirkung
  • a.3.1) Prothrombinzeit (PT)
  • Die antikoagulatorische Wirkung der Prüfsubstanzen wird in vitro in Human- und Kaninchenplasma bestimmt. Dazu wird Blut unter Verwendung einer 0.11 molaren Natriumcitrat-Lösung als Vorlage in einem Mischungsverhältnis Natriumcitrat/Blut 1/9 abgenommen. Das Blut wird unmittelbar nach der Abnahme gut gemischt und 10 Minuten bei ca. 2500 g zentrifugiert. Der Überstand wird abpipettiert. Die Prothrombinzeit (PT, Synonyme: Thromboplastinzeit, Quick-Test) wird in Gegenwart variierender Konzentrationen an Prüfsubstanz oder dem entsprechenden Lösungsmittel mit einem handelsüblichen Testkit (Neoplastin® von der Firma Boehringer Mannheim oder Hemoliance® RecombiPlastin, Fa. von der Firma Instrumentation Laboratory) bestimmt. Die Testverbindungen werden 3 Minuten bei 37°C mit dem Plasma inkubiert. Anschließend wird durch Zugabe von Thromboplastin die Gerinnung ausgelöst und der Zeitpunkt des Gerinnungseintritts bestimmt. Es wird die Konzentration an Prüfsubstanz ermittelt, die eine Verdoppelung der Prothrombinzeit bewirkt.
  • a.3.2) aktivierte partielle Thromboplastinzeit (APTT)
  • Die antikoagulatorische Wirkung der Prüfsubstanzen wird in vitro in Human-, Kaninchen- und Rattenplasma bestimmt. Dazu wird Blut unter Verwendung einer 0.11 molaren Natriumcitrat-Lösung als Vorlage in einem Mischungsverhältnis Natriumcitrat/Blut 1/9 abgenommen. Das Blut wird unmittelbar nach der Abnahme gut gemischt und 15 Minuten bei ca. 4000 g zentrifugiert. Der Überstand wird abpipettiert. Die aktivierte partielle Thromboplastinzeit (APTT) wird in Gegenwart variierender Konzentrationen an Prüfsubstanz oder dem entsprechenden Lösungsmittel mit einem handelsüblichen Testkit (PTT Reagent von der Firma Roche) bestimmt. Die Testverbindungen werden 3 Minuten bei 37°C mit dem Plasma und dem PTT Reagenz (Cephalin, Kaolin) inkubiert. Anschließend wird durch Zugabe von 25 mM Calciumchlorid die Gerinnung ausgelöst und der Zeitpunkt des Gerinnungseintritts bestimmt. Es wird die Konzentration an Prüfsubstanz ermittelt, die eine Verdoppelung der APTT bewirkt.
  • a.3.3) Thrombin Generation Assay (Thrombogram)
  • Im Thrombin Generation Assay nach Hemker wird die Aktivität von Thrombin in gerinnendem Plasma durch die Messung der fluoreszenten Spaltprodukte des Substrats I-1140 (Z-Gly-Gly-Arg-AMC, Bachem) bestimmt. Die Reaktionen werden in 20 mM Hepes, 60 mg/ml BSA, 102 mM CaCl2, pH 7.5 bei 37°C durchgeführt. Die Reaktionen erfolgen in Immulon 2HB clear U-bottom 96-well plates (Thermo Electron) in einem Gesamtvolumen von 100 μl. Um die Reaktionen in Plättchen armem Plasma (PPP) oder Plättchen reichem Plasma (PRP) zu starten werden Reagenzien der Firma Thrombinoscope verwendet (PPP Reagenz: 30 pM recombinant tissue factor, 24 μM phospholipids in HEPES; PRP-Reagenz: 3 pM recombinant tissue factor). Außerdem wird ein Calibrator benötigt, dessen amidolytische Aktivität zur Berechnung der Thrombinaktivität in einer Probe mit unbekannter Menge an Thrombin benötigt wird. Außerdem ermöglicht der Calibrator die Korrektur der Daten bezüglich der Spendervariabilität (unterschiedliche Färbung des Plasmas), der Variabilität durch das Meßgerät, des „inner filter effect" und des Substratverbrauchs. Die Messung wird mit einem Fluorometer (Fluoroskan Ascent) der Firma Thermo Electron durchgeführt, der mit einem 390/460 nM Filterpaar und einem Dispenser ausgestattet ist. Testdurchführung: Lyophilisate lösen (PPP-Reagenz, PRP-Reagenz, Calibrator), MTP 5 min bei 37°C inkubieren, FluCa ansetzen (70 μl I-1140 + 2800 μl Fluo-Puffer (20 mM HEPES, 102 mM CaCl2, 60 mg/ml BSA, pH 7,5) pro Platte), Starten des Programms, Spülen des Dispensers und Befüllen des Systems mit FluoCa, Zugabe von 20 μl FluoCa pro well und Messung der Thrombin Generierung, 120 min alle 20 s (oder bei Tierplasma alle 10 s). Durch die Verwendung der „thrombinoscope software" wird das Thrombogramm berechnet und graphisch dargestellt. Die folgenden Parameter werden angegeben: lag time (Zeit bis zum Starten der Thrombin Generierung), ttPeak (time to peak, Zeit bis zum Erreichen des Maximums), Peak (maximale Thrombinkonzentration), ETP (endogenous thrombin potential, die Fläche unter der Kurve) and start tail (Zeitpunkt, an dem die Thrombinkonzentration auf 0 zurück geht).
  • a.4) Spezielle Diagnostik der Gerinnungsstörung und Organsfunktion bei endotoxämischen Mäusen und Ratten
  • a.4.1) Thrombin-Antithrombin-Komplexe
  • Thrombin-Antithrombin-Komplexe (nachfolgend als „TAT" bezeichnet) sind ein Maß für das durch Gerinnungsaktivierung endogen gebildete Thrombin. TAT werden mittels eines ELISA-Assays bestimmt (Enzygnost TAT micro, Dade-Behring). Aus Zitratblut wird durch Zentrifugation Plasma gewonnen. Zu 50 μl Plasma wird 50 μl TAT-Probenpuffer gegeben, kurz geschüttelt und 15 min bei Raumtemperatur inkubiert. Die Proben werden abgesaugt, und das Well 3-malig mit Waschpuffer gewaschen (300 μl/Well). Die Platte wird zwischen den Waschgängen abgeklopft. Es wird Konjugatlösung (100 μl) hinzugegeben und 15 min bei Raumtemperatur inkubiert. Die Proben werden abgesaugt, und das Well 3-malig mit Waschpuffer gewaschen (300 μl/Well). Anschließend wird chromogenes Susbtrat hinzugegeben (100 μ/Well), 30 min im Dunkeln bei Raumtemperatur inkubiert, Stopplösung hinzugegeben (100 μl/Well), und die Farbbildung bei 492 nm gemessen (Saphire Plate reader).
  • a.4.2) Parameter für Organfunktion
  • Es werden verschiedene Parameter bestimmt, aufgrund derer Rückschlüsse auf die Funktionseinschränkung verschiedener innerer Organe durch die LPS-Gabe gezogen werden können, und der therapeutische Effekt von Prüfsubstanzen abgeschätzt werden kann. Zitratblut oder ggf. Lithium-Heparin-Blut wird zentrifugiert, und die Parameter aus dem Plasma bestimmt. Folgende Parameter werden typischerweise erhoben: Kreatinin, Harnstoff, Aspartat-Aminotransferase (AST), Alanin-Aminotransferase (ALT), Gesamt-Bilirubin, Laktatdehydrogenase (LDH), Gesamt-Protein, Gesamt-Albumin und Fibrinogen. Die Werte geben Aufschluss auf die Funktion der Niere, der Leber, des Kreislaufes und der Gefäße.
  • a.4.3) Parameter für Entzündung
  • Das Ausmaß der durch Endotoxin ausgelösten Entzündungsreaktion lässt sich aus dem Anstieg von Entzündungsmediatoren im Plasma nachweisen, z. B. Interleukine (1, 6, 8 und 10), Tumornekrosefaktor alpha oder Monocyte Chemoattractant Protein-1. Hierzu können ELISAs oder das Luminex-System verwendet werden.
  • b) Bestimmung der antithrombotischen Wirkung (in vivo)
  • b) Arteriovenöses Shunt-Modell (Ratte)
  • Nüchterne männliche Ratten (Stamm: HSD CPB: WU) mit einem Gewicht von 200–250 g werden mit einer Rompun/Ketavet Lösung narkotisiert (12 mg/kg/50 mg/kg). Die Thrombusbildung wird in einem arteriovenösen Shunt in Anlehnung an die von Christopher N. Berry et al., Br. J. Pharmacol. (1994), 113, 1209–1214 beschriebene Methode ausgelöst. Dazu werden die linke Vena jugularis und die rechte Arteria carotis freipräpariert. Zur Erstellung des extracorporalen Shunts wird jeweils ein 10 cm langer Polyethylenschlauch (PE 60) in die beiden freipräparierten Gefäße eingebunden. Der Shunt wird in der Mitte über einen 3 cm langen Polyethylenschlauch (PE 160), der zur Erzeugung einer thrombogenen Oberfläche einen aufgerauhten und zu einer Schlinge gelegten Nylonfaden enthält, geschlossen. Der extrakorporale Kreislauf wird 15 Minuten lang aufrechterhalten. Dann wird der Shunt entfernt und der Nylonfaden mit dem Thrombus sofort gewogen. Das Leergewicht des Nylonfadens war vor Versuchsbeginn ermittelt worden. Die Prüfsubstanzen werden vor Anlegung des extrakorporalen Kreislaufs entweder intravenös über die Schwanzvene oder oral mittels Schlundsonde wachen Tieren verabreicht.
  • c) Bestimmung der Wirkung bei Endotoxinämie (in vivo)
  • Die Untersuchung wird an Ratten oder Mäusen durchgeführt. Im Modell an Mäusen (NMRI, männlich) wird LPS (Escherichia coli Serotyp 055:B5, Sigma-Aldrich) 50 mg/kg intraperitoneal injiziert. Die Prüfsubstanzen werden bis zu einer Stunde vor LPS-Injektion entweder intravenös über die Schwanzvene, subkutan, intraperitoneal oder oral mittels Schlundsonde verabreicht. Vier Stunden nach LPS-Applikation wird das Tier narkotisiert (Ketavet/Rompun) und das Abdomen operativ eröffnet. Natrium-Zitratlösung (3.2% w/v) (Formel: Körpergewicht in g/13 mal 100 μl) wird in die untere Hohlvene injiziert, und nach 30 Sek. Blut entnommen (ca. 1 ml). Aus dem Blut werden verschiedene Parameter bestimmt, z. B. die zellulären Blutbestandteile (insbesondere Erythrozyten, Leukozyten und Thrombozyten), der Laktatspiegel, die Gerinnungsaktivierung (TAT) oder Parameter der Organdysfunktion oder des Organversagens und Sterblichkeit.
  • d) Methodikbeschreibung zu DIC-Versuchen an der Ratte
  • Bei männlichen Wistar-Ratten wird LPS (E. coli 055 B5, Hersteller Sigma, gelöst in PBS) in einer Dosierung von 250 μg/kg intravenös in die Schwanzvene injiziert (Applikationsvolumen 2 ml/kg). Die Prüfsubstanz wird in PEG 400/H2O 60%/40% gelöst und oral (Applikationsvolumen 5 ml/kg) 30 Minuten vor LPS-Injektion appliziert. 1, 5 oder 4 Stunden nach LPS-Injektion werden die Tiere in Terminalnarkose (Trapanal® 100 mg/kg i. p.) durch Herzpunktion entblutet und Citratplasma für die Bestimmung von Fibrinogen, PT, TAT und Plättchenzahl gewonnen. Optional wird Serum zur Bestimmung von Leberenzymen, Nierenfunktionsparamertern und Cytokinen gewonnen. TNFα und IL-6 werden mit kommerziell erhältlichen ELISAs (R & D Systems) bestimmt.
  • Es können auch direkte Parameter der Organfunktion gemessen werden, z. B. links- und rechtsventrikuläre Drucke, arterielle Drucke, Urinausscheidung, Nierendurchblutung und Blutgase und Säure-/Basenstatus.
  • Der Effekt von LPS auf die Koagulation wird deutlich in einer Zunahme von TAT, die bereits nach 1.5 Stunden stark erhöht ist, und in einer Depletion von Fibrinogen und Plättchen um 25–30% nach 4 Stunden. Diese Wirkung von LPS wird durch die erfindungsgemäßen Verbindungen vermindert. Tabelle 1 zeigt die Werte für einen Gerinnungsparameter mit kurzer Halbwertszeit (TAT) nach 1.5 Stunden und Tabelle 2 für einen Gerinnungsparameter mit langer Halbwertszeit (Fibrinogen) nach 4 Stunden. Tabelle 1 (Fig. 1):
    TAT [μg/l]
    Kontrolle (kein LPS) 0.50
    Kontrolle (mit LPS) 17.30
    Beispiel 1 [1 mg/kg/d] 6.90
    Beispiel 1 [10 mg/kg/d] 6.40
    Tabelle 2 (Fig. 2):
    Fibrinogen [g/l]
    Kontrolle (kein LPS) 2.69
    Kontrolle (mit LPS) 2.12
    Beispiel 1 [0.1 mg/kg/d] 2.19
    Beispiel 1 [1 mg/kg/d] 2.41
    Beispiel 1 [3 mg/kg/d] 2.49
    Beispiel 1 [10 mg/kg/d] 2.58
  • C. Ausführungsbeispiele für pharmazeutische Zusammensetzungen
  • Die erfindungsgemäßen Verbindungen können folgendermaßen in pharmazeutische Zubereitungen überführt werden:
  • Tablette:
  • Zusammensetzung:
  • 100 mg der erfindungsgemäßen Verbindung, 50 mg Lactose (Monohydrat), 50 mg Maisstärke (nativ), 10 mg Polyvinylpyrrolidon (PVP 25) (Fa. BASF, Ludwigshafen, Deutschland) und 2 mg Magnesiumstearat.
    • Tablettengewicht 212 mg. Durchmesser 8 mm, Wölbungsradius 12 mm.
  • Herstellung:
  • Die Mischung aus erfindungsgemäßer Verbindung, Lactose und Stärke wird mit einer 5%-igen Lösung (m/m) des PVPs in Wasser granuliert. Das Granulat wird nach dem Trocknen mit dem Magnesiumstearat 5 Minuten gemischt. Diese Mischung wird mit einer üblichen Tablettenpresse verpresst (Format der Tablette siehe oben). Als Richtwert für die Verpressung wird eine Presskraft von 15 kN verwendet.
  • Oral applizierbare Suspension:
  • Zusammensetzung:
  • 1000 mg der erfindungsgemäßen Verbindung, 1000 mg Ethanol (96%), 400 mg Rhodigel® (Xanthan gum der Firma FMC, Pennsylvania, USA) und 99 g Wasser.
  • Einer Einzeldosis von 100 mg der erfindungsgemäßen Verbindung entsprechen 10 ml orale Suspension.
  • Herstellung:
  • Das Rhodigel wird in Ethanol suspendiert, die erfindungsgemäße Verbindung wird der Suspension zugefügt. Unter Rühren erfolgt die Zugabe des Wassers. Bis zum Abschluß der Quellung des Rhodigels wird ca. 6 h gerührt.
  • Oral applizierbare Lösung:
  • Zusammensetzung:
  • 500 mg der erfindungsgemäßen Verbindung, 2.5 g Polysorbat und 97 g Polyethylenglycol 400. Einer Einzeldosis von 100 mg der erfindungsgemäßen Verbindung entsprechen 20 g orale Lösung.
  • Herstellung:
  • Die erfindungsgemäße Verbindung wird in der Mischung aus Polyethylenglycol und Polysorbat unter Rühren suspendiert. Der Rührvorgang wird bis zur vollständigen Auflösung der erfindungsgemäßen Verbindung fortgesetzt.
  • i. v.-Lösung:
  • Die erfindungsgemäße Verbindung wird in einer Konzentration unterhalb der Sättigungslöslichkeit in einem physiologisch verträglichen Lösungsmittel (z. B. isotonische Kochsalzlösung, Glucoselösung 5% und/oder PEG 400-Lösung 30%) gelöst. Die Lösung wird steril filtriert und in sterile und pyrogenfreie Injektionsbehältnisse abgefüllt.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • - WO 01/047919 [0002, 0040, 0061, 0062]
    • - US 5929248 [0016]
    • - US 5801246 [0016]
    • - US 5756732 [0016]
    • - US 5654435 [0016]
    • - US 5654428 [0016]
    • - US 5565571 [0016]
    • - WO 99/31092 [0017]
    • - EP 0623615 [0017]
    • - WO 97/10223 [0038]
    • - WO 98/01446 [0039]
    • - WO 93/23384 [0039]
    • - WO 97/03072 [0039]
  • Zitierte Nicht-Patentliteratur
    • - Levy et al., Crit Care Med 2003; 31: 1250–1256 [0006]
    • - Dellinger et al., Crit Care Med 2004; 32: 858–873 [0008]
    • - M. R. Barbachyn et al., J. Med. Chem. 1996, 39, 680 [0038]
    • - . [0038]
    • - J. A. Tucker et al., J. Med. Chem. 1998, 41, 3727 [0039]
    • - S. J. Brickner et al., J. Med. Chem. 1996, 39, 673 [0039]
    • - W. A. Gregory et al., J. Med. Chem. 1989, 32, 1673 [0039]
    • - Critical Care Med 1992; 101: 1644 [0042]
    • - Christopher N. Berry et al., Br. J. Pharmacol. (1994), 113, 1209–1214 [0078]

Claims (5)

  1. Verwendung einer Verbindung der Formel
    Figure 00270001
    in welcher R1 für 2-Thiophen steht, das in der 5-Position substituiert ist durch einen Rest ausgewählt aus der Gruppe Chlor, Brom, Methyl und Trifluormethyl, R2 für D-A- steht, wobei der Rest „A" für Phenylen steht, wobei die Gruppe „A" in der meta-Position bezüglich der Verknüpfung zum Oxazolidinon gegebenenfalls ein- oder zweifach substituiert sein kann mit einem Rest ausgewählt aus der Gruppe von Fluor, Chlor, Nitro, Amino, Trifluormethyl, Methyl und Cyano, und der Rest „D" für einen gesättigten 5- oder 6-gliedrigen Heterocyclus steht, der über ein Stickstoffatom mit „A" verknüpft ist und der in direkter Nachbarschaft zum verknüpfenden Stickstoffatom eine Carbonylgruppe besitzt und in dem ein Ring-Kohlenstoffglied durch ein Heteroatom aus der Reihe S, N und O ersetzt sein kann, oder eines ihrer Salze, Solvate und Solvate der Salze zur Herstellung eines Arzneimittels zur Behandlung und/oder Prophylaxe von Sepsis, der disseminierten intravaskulären Gerinnung, des septischen Schocks, der septischen Organdysfunktion, des septischen Organversagens und/oder des ARDS.
  2. Verwendung gemäß Anspruch 1, dadurch gekennzeichnet, dass die Verbindung der Formel (I) 5-Chlor-N-({(5S)-2-oxo-3-[4-(3-oxomorpholin-4-yl)phenyl]-1,3-oxazolidin-5-yl}methyl)thiophen-2-carboxamid der Formel
    Figure 00280001
    oder eines ihrer Salze, Solvate und Solvate der Salze ist.
  3. Verwendung einer Verbindung der Formel (I), wie in Anspruch 1 oder 2 definiert, oder eines ihrer Salze, Solvate und Solvate der Salze zur Herstellung eines Arzneimittels zur Behandlung und/oder Prophylaxe von Sepsis, des septischen Schocks und/oder des septischen Organversagens.
  4. Verfahren zur Bekämpfung von Sepsis, der disseminierten intravaskulären Gerinnung, des septischen Schocks, der septischen Organdysfunktion, des septischen Organversagens und/oder des ARDS in Menschen und Tieren durch Verabreichung einer wirksamen Menge mindestens einer Verbindung, wie in Anspruch 1 oder 2 definiert, oder eines Arzneimittels, enthaltend mindestens eine Verbindung, wie in Anspruch 1 oder 2 definiert, in Kombination mit einem inerten, nichttoxischen, pharmazeutisch geeigneten Hilfsstoff.
  5. Verfahren zur Bekämpfung von Sepsis, des septischen Schocks und/oder des septischen Organversagens in Menschen und Tieren durch Verabreichung einer wirksamen Menge mindestens einer Verbindung, wie in Anspruch 1 oder 2 definiert, oder eines Arzneimittels, enthaltend mindestens eine Verbindung, wie in Anspruch 1 oder 2 definiert, in Kombination mit einem inerten, nichttoxischen, pharmazeutisch geeigneten Hilfsstoff.
DE102007028318A 2007-06-20 2007-06-20 Oxazolidinone zur Behandlung und Prophylaxe von Sepsis Withdrawn DE102007028318A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102007028318A DE102007028318A1 (de) 2007-06-20 2007-06-20 Oxazolidinone zur Behandlung und Prophylaxe von Sepsis
PCT/EP2008/004565 WO2008155035A2 (de) 2007-06-20 2008-06-07 Oxazolidinone zur behandlung und prophylaxe von sepsis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102007028318A DE102007028318A1 (de) 2007-06-20 2007-06-20 Oxazolidinone zur Behandlung und Prophylaxe von Sepsis

Publications (1)

Publication Number Publication Date
DE102007028318A1 true DE102007028318A1 (de) 2008-12-24

Family

ID=40029255

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102007028318A Withdrawn DE102007028318A1 (de) 2007-06-20 2007-06-20 Oxazolidinone zur Behandlung und Prophylaxe von Sepsis

Country Status (2)

Country Link
DE (1) DE102007028318A1 (de)
WO (1) WO2008155035A2 (de)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993023384A1 (en) 1992-05-08 1993-11-25 The Upjohn Company Oxazolidinones containing a substituted diazine moiety and their use as antimicrobials
EP0623615A1 (de) 1993-05-01 1994-11-09 MERCK PATENT GmbH Adhäsionsrezeptor -Antagonisten
US5565571A (en) 1991-11-01 1996-10-15 The Upjohn Company Substituted aryl- and heteroaryl-phenyloxazolidinones
WO1997003072A1 (de) 1995-07-07 1997-01-30 Boehringer Mannheim Gmbh Neue oxazolidinonderivate, verfahren zu deren herstellung und diese verbindungen enthaltende arzneimittel
WO1997010223A1 (en) 1995-09-15 1997-03-20 Pharmacia & Upjohn Company Aminoaryl oxazolidinone n-oxides
WO1998001446A1 (en) 1996-07-06 1998-01-15 Zeneca Limited Substituted piperazinyl-phenyl-oxazolidinone derivatives and their use as anti-bacterial agents
WO1999031092A1 (de) 1997-12-12 1999-06-24 Merck Patent Gmbh Benzamidinderivate als koagulationsfaktor-xa-hemmer
WO2001047919A1 (de) 1999-12-24 2001-07-05 Bayer Aktiengesellschaft Substituierte oxazolidinone und ihre verwendung im gebiet der blutgerinnung

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1934208B1 (de) * 2005-10-04 2011-03-23 Bayer Schering Pharma Aktiengesellschaft Neue polymorphe form von 5-chlor-n-({ ( 5s )-2-0x0-3-[4-( 3-oxo-4-morpholinyl)-phenyl]-1,3-oxazolidin-5-yl} -methyl)-2-thiophencarboxamid

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5801246A (en) 1991-11-01 1998-09-01 Pharmacia & Upjohn Company Substituted heteroarylphenyloxazolidinones
US5565571A (en) 1991-11-01 1996-10-15 The Upjohn Company Substituted aryl- and heteroaryl-phenyloxazolidinones
US5654428A (en) 1991-11-01 1997-08-05 Pharmacia & Upjohn Company Substituted heteroarylphenyloxazolidinones
US5654435A (en) 1991-11-01 1997-08-05 Pharmacia & Upjohn Company Substituted arylphenyloxazolindinones
US5756732A (en) 1991-11-01 1998-05-26 Pharmacia & Upjohn Company Substituted heteroarylphenyloxazolidinones
US5929248A (en) 1991-11-01 1999-07-27 Pharmacia & Upjohn Company Substituted heteroarylphenyloxazolidinones
WO1993023384A1 (en) 1992-05-08 1993-11-25 The Upjohn Company Oxazolidinones containing a substituted diazine moiety and their use as antimicrobials
EP0623615A1 (de) 1993-05-01 1994-11-09 MERCK PATENT GmbH Adhäsionsrezeptor -Antagonisten
WO1997003072A1 (de) 1995-07-07 1997-01-30 Boehringer Mannheim Gmbh Neue oxazolidinonderivate, verfahren zu deren herstellung und diese verbindungen enthaltende arzneimittel
WO1997010223A1 (en) 1995-09-15 1997-03-20 Pharmacia & Upjohn Company Aminoaryl oxazolidinone n-oxides
WO1998001446A1 (en) 1996-07-06 1998-01-15 Zeneca Limited Substituted piperazinyl-phenyl-oxazolidinone derivatives and their use as anti-bacterial agents
WO1999031092A1 (de) 1997-12-12 1999-06-24 Merck Patent Gmbh Benzamidinderivate als koagulationsfaktor-xa-hemmer
WO2001047919A1 (de) 1999-12-24 2001-07-05 Bayer Aktiengesellschaft Substituierte oxazolidinone und ihre verwendung im gebiet der blutgerinnung

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
Christopher N. Berry et al., Br. J. Pharmacol. (1994), 113, 1209-1214
Critical Care Med 1992; 101: 1644
Dellinger et al., Crit Care Med 2004; 32: 858-873
J. A. Tucker et al., J. Med. Chem. 1998, 41, 3727
Levy et al., Crit <?page 3?>Care Med 2003; 31: 1250-1256
M. R. Barbachyn et al., J. Med. Chem. 1996, 39, 680
S. J. Brickner et al., J. Med. Chem. 1996, 39, 673
W. A. Gregory et al., J. Med. Chem. 1989, 32, 1673

Also Published As

Publication number Publication date
WO2008155035A2 (de) 2008-12-24
WO2008155035A3 (de) 2009-05-07

Similar Documents

Publication Publication Date Title
EP2167499B1 (de) Substituierte oxazolidinone und ihre verwendung
DE102007028320A1 (de) Substituierte Oxazolidinone und ihre Verwendung
EP2170877B1 (de) Substituierte (oxazolidinon-5-yl-methyl) -2-thiophen-carboxamide und ihre verwendung im gebiet der blutgerinnung
DE60123294T2 (de) Diazepan Derivate als Faktor X Inhibitor
JP2009511513A5 (de)
DE102005048824A1 (de) Behandlung und Prophylaxe von Mikroangiopathien
CZ2006426A3 (cs) Benzo [d]isoxazol-3-olové inhibitory DAAO
BRPI0715492A2 (pt) uso de inibidores diretos de trombina
EP1679073A1 (de) 2-(PHENYL)-2H-PYRAZOL-3-CARBONSÄURE-N-4-(IMINO-HETEROCYCLYL)-PHENYL-AMID DERIVATE SOWIE VERWANDTE VERBINDUNGEN ALS INHIBITOREN DER KOAGULATIONSFAKTOREN XA UND/ODER VIIA ZUR BEHANDLUNG VON THROMBOSENPhenylderivate 5
EP2173744B1 (de) Substituierte (oxazolidinon-5-yl-methyl) -2-thiophen-carboxamide und ihre verwendung im gebiet der blutgerinnung
DE102006025314A1 (de) Arylsubstituierte Heterozyklen und ihre Verwendung
RU2494740C2 (ru) Оксазолидиноны для лечения и/или профилактики расстройств сердечной деятельности
EP1441726B1 (de) Derivate des phenoxy-n-&#39;4-(isothiazolidin-1,1-dioxid-2yl)pheny]-valerian-säureamids und andere verbindungen als inhibitoren des koagulationsfaktors xa zur behandlung von thromboembolischen erkrankungen und tumoren
CN105820163B (zh) 取代的1,3-杂唑类化合物、其制备方法、包含其的药物组合物及用途
DE102007028318A1 (de) Oxazolidinone zur Behandlung und Prophylaxe von Sepsis
EP1414456B1 (de) Phenylderivate als faktor xa inhibitoren
DE60118916T2 (de) KOMBINATIONSPRODUKT ENTHALTEND MELAGATRAN UND EINEN FAKTOR-VIIIa INHIBITOR
DE102007018662A1 (de) Oxazolidinone zur Behandlung und Prophylaxe von pulmonaler Hypertonie
CN115819414A (zh) 含n-酰基芳腙类衍生物及其制备方法和用途
DE102005018690A1 (de) Imino-oxazolidine und ihre Verwendung
JP2010507613A (ja) 新規へテロアリールカルボキサミド

Legal Events

Date Code Title Description
8127 New person/name/address of the applicant

Owner name: BAYER SCHERING PHARMA AKTIENGESELLSCHAFT, 1335, DE

8139 Disposal/non-payment of the annual fee